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Figure 1: Illustration of the proposed approach. FABRIC generates images based not only on text
prompt, but also on user preferences expressed during multiple rounds of generation.

ABSTRACT

In an era where visual content generation is increasingly driven by machine learn-
ing, the integration of human feedback into generative models presents significant
opportunities for enhancing user experience and output quality. This study ex-
plores strategies for incorporating iterative feedback into the generative process
of diffusion-based text-to-image models. We propose FABRIC, a training-free
approach, which exploits the self-attention layer present in the most widely used
diffusion models to condition the diffusion process on a set of feedback images.
To ensure a rigorous assessment of our approach, we introduce a comprehensive
evaluation methodology, offering a robust mechanism to quantify the performance
of generative visual models that integrate human feedback. We show that genera-
tion results improve over multiple rounds of iterative feedback through exhaustive
analysis, implicitly optimizing arbitrary user preferences. The potential applica-
tions of these findings extend to fields such as personalized content creation and
customization.

1 INTRODUCTION

The field of artificial intelligence (AI) has witnessed a surge in interest in generative visual models,
primarily due to their transformative potential across a myriad of applications, encompassing content
creation, customization, data augmentation, and virtual reality. These models leverage advanced deep
learning methodologies, such as GAN (Goodfellow et al., 2014) and VAE (Kingma & Welling, 2022),
to generate high-fidelity and visually compelling images from given inputs or descriptions (Brock
et al., 2019; Razavi et al., 2019). The significant advancements in generative visual models have
catalyzed the exploration of novel possibilities in the realms of computer vision, natural language
processing, and human-computer interaction (Radford et al., 2016).

Diffusion models, in particular, have emerged as a powerful tool in the field of image synthesis, often
delivering results that are comparable to, or exceed those produced by GANs and VAEs (Ho et al.,
2020; Rombach et al., 2022). These models are characterized by their ability to generate a diverse
array of visually coherent images, while demonstrating superior stability and reduced mode collapse
during the training phase (Song et al., 2021). Being conditioned on natural language or images, their
variety can easily be controlled in arbitrarily many different ways, making them exceptionally useful
for human image creation. This has led to their widespread adoption among researchers investigating
the frontiers of generative visual modeling. Moreover, the utility of diffusion models extends beyond
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(a) Depiction of generating images with
multi-round feedback.

(b) Details of FABRIC’s method for conditioning the generation of
latents zt+1 based on one feedback image and one prompt.

Figure 2: Illustration of the proposed approach. FABRIC improves generated results by incorporating
user feedback through an attention-based conditioning mechanism.

image synthesis, finding applications in various other domains such as inpainting, super-resolution,
and style transfer (Chan et al., 2020; Park et al., 2019).

Text conditioning serves as a crucial component of generative visual models, enabling them to
synthesize images based on human-readable descriptions (Reed et al., 2016). However, despite the
robust conditioning, artists often have to iteratively optimize their prompts and parameters to improve
results and achieve the intended outcome. This iterative workflow can be time-consuming and is
susceptible to user error, as some prompting techniques work better than others and behave differently
depending on the model. Still, users possess the ability to readily evaluate the quality of the generated
images, opening up the possibility of integrating sparse human feedback into the generative process
to enhance the results and better align them with user preferences.

In this work, we focus on this iterative workflow and propose a technique based on sparse feedback
that aims to aid in steering the generative process towards desirable and away from undesirable
outcomes. This is achieved by using positive and negative feedback images (e.g. gathered on previous
generations) to manipulate future results through reference image-conditioning. Simply voting images
as good or bad after each generated image batch allows for iterative refinement of the generated
images based on arbitrary feedback sources (including human feedback). An illustrative overview of
this system is given in Figure 2. Our contributions are three-fold:

• We introduce FABRIC (Feedback via Attention-Based Reference Image Conditioning) 1, a
novel approach that enables the integration of iterative feedback into the generative process
without requiring explicit training. It can be combined alongside many other extensions to
Stable Diffusion.

• We propose two experimental settings that facilitate the automatic evaluation of generative
visual models over multiple rounds by introducing different proxies to emulate human
feedback in an automated fashion.

• Using these settings, we evaluate FABRIC and demonstrate its superiority over baseline
methods on a variety of metrics, including feedback proxy scores. We also empirically
quantify the quality-diversity trade-off, which is common in generative model alignment.

2 FABRIC

In order to alleviate the necessity of extensive prompt-engineering, which is a tedious and time-
consuming part of current text-to-image models, we will now introduce our proposed method,
FABRIC, which provides a way to incorporate multiple rounds of positive and negative feedback into
the generative process. Specifically, we split the problem into three distinct sub-tasks: How can we

1The code is publicly available: https://anonymous.4open.science/r/fabric-FE32/
README.md
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manipulate the generative process in a way that conditions it on a reference image? How can we use
reference-image conditioning in order to incorporate binary feedback? And how can we extend this
feedback mechanism to an iterative setup?

Attention-based Reference Image Conditioning. FABRIC takes inspiration from a technique
implemented in an update to the widely used ControlNet that introduces the ability to generate
synthetic images similar to some reference (Zhang, 2023). Intuitively speaking, the mechanism
makes the model draw information from reference images during the generative process by carefully
injecting said information at each step. This is done by exploiting the self-attention module in the
U-Net. Since the self-attention module’s weights have learned to “pay attention” to other pixels in
the image, adding additional keys and values from a reference image offers a way to inject semantic
information. In order to be compatible with the generated image at timestep t of the denoising process,
the reference image x∗

0 is rescaled, encoded to its latent representation z∗0 and partially noised up to
the current timestep using the standard forward diffusion process Ho et al. (2020):

z∗t ←
√
ᾱt · z∗0 +

√
1− ᾱt · N (0, I) (1)

The keys and values needed to compute attention on the reference image are acquired by feeding
z∗t through the U-Net of Stable Diffusion (Rombach et al., 2022) and storing the keys and values
(or equivalently: the hidden states) of the self-attention module of each layer, which is given by the
following formula:

Attention(Q∗,K∗, V ∗) = softmax
(
Q∗K∗⊤

)
V ∗ (2)

where Q∗,K∗, V ∗ are linear projections of the hidden state of the reference image.

Then, for a particular U-Net denoising step of the user prompt and the current partially denoised
latent image zt+1, the stored reference keys and values are appended in the self-attention block
of the respective U-Net layers, computing Attention(Q, K̂, V̂ ) with K̂ = concat(K,K∗) and
V̂ = concat(V, V ∗). This way, the denoising process attends to the reference image and ingests
semantic information from it. By reweighting the attention scores, we additionally obtain control
over the strength of the reference influence as follows:

WeightedAttentionw(Q, K̂, V̂ ) = softmax
(
QK̂⊤ + log(W )

)
V̂ (3)

where W = concat (1N×N , w · 1N×C) with N denoting the number of queries and C denoting the
number of feedback keys and values. An equivalent, more intuitive formulation of weighted attention
is given in Eq. 7, App. A.2. While the keys and values of the generated latents zt+1 have weight
1, the attention features (keys and values) of the reference latents z∗t+1 can have a weight w ≤ 1
modulating the conditioning strength.

Incorporating Feedback in the Generation Process. Armed with a technique to inject reference
images into the generative process, we now extend this to multi-round binary feedback. Given a
set of liked and disliked images, we precompute K∗ and V ∗ as outlined above in a separate U-Net
pass for every feedback image using the empty prompt (null prompt) as text condition. Note that
a user-defined prompt at this point could be used to guide the feature extraction process in a more
fine-grained manner. Also, as the attention injection is independent of the reference shape, one could
also use image cutouts as references allowing more fine-grained control of feedback.

The attention features of liked and disliked images are injected into the conditional and unconditional
U-Net pass respectively (see Classifier-Free Guidance) (Ho & Salimans, 2022) guiding the image
generations to be more similar to the positive and less similar to the negative feedback.

We modulate the feedback by using weighted attention with w depending on the feedback label and
on the current timestep in the denoising process, all of which is configurable via hyperparameters.
Namely, we configure the overall feedback weight (feedback strength), at which denoising steps to
use feedback (feedback schedule), and how strong negative feedback is relative to positive (negative
feedback scale).

Note that precomputing the attention features requires an additional U-Net forward pass for each
image, roughly increasing computation time linearly in the number of feedback images. Further, con-
catenating K∗ and V ∗ in the self-attention layer also increases the compute and memory requirements
linearly in the number of feedback images.
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Name SD version Checkpoint LoRA

Baseline 1.5 stable-diffusion-v1.5 ✗
Dreamlike Photoreal 1.5 dreamlike-photoreal-2.0 ✗
HPS LoRA 1.5 dreamlike-photoreal-2.0 HPS LoRA

Table 1: Stable Diffusion models used during evaluation

Extending to Iterative Feedback. Given the ability to incorporate positive and negative feedback,
the extension to multiple rounds is straightforward: In the first round, we generate images without
feedback (or optionally with user-provided seed-feedback images). From those images, a set of liked
and disliked images is selected and added to the feedback. How the feedback is obtained is arbitrary,
although we envision either a human user or a separate vision model being the feedback source. A
new batch of refined images is generated using the updated feedback and the process is repeated. The
full procedure is given as pseudocode in Appendix A.2.

3 EVALUATION

3.1 MODELS AND BASELINES

Since the proposed approach is training-free and model-agnostic, it is applicable to any model
with self-attention modules (including any Stable Diffusion model). We conduct experiments with
FABRIC applied to three baselines, all of which are based on Stable Diffusion 1.5, including the
base model2, a fine-tuned model called Dreamlike Photoreal3 and a Low-Rank Adaptation (LoRA)
based on Human Preference Score (HPS) (Wu et al., 2023b). An overview of the all models taken
into account can be found in Table 1.

Since, to the best of our knowledge, there doesn’t exist a method designed to incorporate iterative
feedback gathered over multiple rounds, we compare the proposed method to standard Stable
Diffusion models in the following manner. First, we run Stable Diffusion (either of the models
mentioned above) N times, each with a different seed, generating N batches of images. Then, we
collect the desired evaluation metrics for the generated batch at each round and we use this values to
perform quantitative comparisons with FABRIC.

It is important to note that while we may add images from each round as feedback to future rounds for
our method, the baselines do not have a mechanism to incorporate feedback into future generations.
Therefore, the baseline models generate images independently in each round without taking previous
rounds into consideration.

3.2 METRICS

Preference Model In order to automatically estimate user preference we use the PickScore intro-
duced in Section 5 as a proxy score for general human preference. Note that we use PickScore over
HPS, which is another preference model, due to better alignment with human preference.

CLIP Similarity to Feedback Images To assess the effectiveness of incorporating feedback into
the generation process, we compute the CLIP similarity between the generated and the previous
positive and negative feedback images.

For a generated image x we compute the average CLIP-similarity to feedback images y(1)pos, . . . , y
(k)
pos or

y
(1)
neg, . . . , y

(l)
neg. Specifically, let CLIP(x, y) denote the cosine similarity between CLIP-embeddings

of x and y. Then the positive CLIP similarity is defined as follows:

spos(x) =
1

k

k∑
i=1

CLIP(x, y(i)pos) (4)

The negative similarity sneg(x) is defined analogously.
2https://huggingface.co/runwayml/stable-diffusion-v1-5
3https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0
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In-Batch Image Diversity In the process of steering the generation of images toward user prefer-
ences it is crucial to balance exploration (offering diverse image options for user selection) against
exploitation (generating images aligned with previous feedback). To quantify the trade-off between
these two factors across different rounds, we introduce a metric called In-Batch Diversity.

For a batch of images x1, . . . , xn, we define the in-batch diversity based on the average CLIP-
similarity between images in the batch. Specifically, with CLIP similarity defined as above, the
In-Batch Diversity IBD is defined as follows:

IBDCLIP(x1, . . . , xn) = 1− 2

n(n− 1)

n∑
i=2

i−1∑
j=1

CLIP(xi, xj) (5)

where n(n−1)
2 is the number of elements in the upper triangular cosine similarity matrix.

4 EXPERIMENTS

In order to evaluate the capabilities of our model, we designed two experimental settings, each
employing a different criterion for selecting feedback images during rounds. In Section 4.1 we
present a Preference Model-Based approach, where we select liked and disliked images using a
preference score. In Section 4.2 we present a Target Image-Based approach, where feedback selection
relies on the similarity with a target image provided at the start of the experiment (but not used as
feedback directly). While we deem these two experiments to be fairly representative of a realistic
workflow, we note anecdotally that a combination of prompt iteration and feedback via FABRIC
tends to be a consistent, intuitive way to get high-quality results with minimal effort, being more
natural and more effective than using either method on its own.

Both the experiments use a batch size of 4 and iterate for 3 rounds (resulting in 2 rounds with feedback).
After each round, one image is selected as liked and another one as disliked. We empirically find
that a feedback strength of w = 0.3 strikes a good balance between incorporating feedback while
preserving diversity (Sec. 4.3). Unless specified otherwise, we use w = 0.3 for positive feedback
and 50% of the positive weight for negative feedback (i.e. wneg = 0.15 if wpos = 0.3). We also
find qualitatively that using feedback up until the last step can sometimes give worse results, so
we only incorporate feedback during the first 80% of denoising steps. Unless denoted otherwise,
FABRIC is applied on top of Dreamlike Photoreal. More details on generation parameters are given
in Appendix A.3.

4.1 PREFERENCE MODEL-BASED FEEDBACK SELECTION

The first experiment aims to evaluate FABRIC by assessing how humans generally perceive generated
images through a universal preference score. Therefore, this experiment operates under the assumption
that all humans have the same preference when providing feedback, which in general may not always
hold and is challenged in the second experiment.

In practice, the experiment is conducted as follows. First, a random set of 1000 prompts is sampled
from the HPS dataset (Wu et al., 2023b). Starting with no initial feedback, we simulate a 3-round
interaction between the model and the user. In each round we use the PickScore as a proxy for
human feedback4, select the highest/lowest-scoring image and add it to the positive/negative feedback
respectively. For each batch of generated images we measure the PickScore as well as the average
CLIP similarity to both positive and negatives feedback.

The results from our experiments are depicted in Figure 3. In Figure 3a we address the concern
that simply running multiple rounds will tend to produce increasingly better results by pure chance
(more samples have a better chance of getting lucky), which may lead to an increase in the maximum
PickScore. FABRIC outperforms each respective baseline in this regard, and FABRIC (without HPS
LoRA) even surpasses HPS LoRA, a model specifically trained to maximize human preference. In
Figure 3b we observe that starting from the second round our method outperforms its respective
baseline not only in terms of maximum PickScore but also in terms of the average and minimum

4In earlier experiments we used HPS and found similar results, namely that FABRIC also surpassed HPS
LoRA on that metric.
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Figure 4: Results of target image-based feedback selection.

value, indicating an overall enhancement in the quality of generated images. In Figure 3c we evaluate
the similarity of generated images to positive and negative feedback. We observe that even after just
one round, the CLIP similarity score is higher for the positive samples and lower for the negatives
compared to the respective baseline. This confirms that FABRIC effectively conditions the direction
of generation based on the provided feedback.

4.2 TARGET IMAGE-BASED FEEDBACK SELECTION

In this experiment, we challenge the assumption from the previous setup that all humans have the
same preference according to which they select liked/disliked images. Instead, we assume that the
user has some target image in mind, some imagined picture that they would like to express. To reflect
this scenario, we manually gather a dataset of prompt-image pairs from the AI-art-sharing platform
prompthero.com where users post their favorite generations along with the prompt that was used
to generate it. Due to this survivorship bias, we assume that shared images express the respective
user’s creative vision for the given prompt or, more generally, correspond to the user’s preference.
We manually clean the prompts, removing any UI-specific syntax (e.g. prompt-weighting).5 The
dataset consists of 135 prompt-image pairs and is provided in our public GitHub repository.6

The experiment setup is analogous to the preference-model based setup, with the exception of the
feedback proxy: This time we select feedback images based on the highest/lowest CLIP-similarity to
the target image associated with the prompt. We compare the baselines with FABRIC in terms of
CLIP similarity to the target image in Figure 4. We find that FABRIC outperforms each respective
baseline, improving best-case and significantly improving average and worst-case outcomes in rounds
2 and 3. Especially the per-round minimum similarity drastically improves over the baseline as soon
as feedback is introduced. Appendix A.5 contains a more detailed analysis about the effect of the
feedback schedule on this task.

We encourage the reader to also look at the qualitative results from this experiment in Appendix A.1,
as they are very illustrative of how FABRIC works.

5https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#
attentionemphasis

6https://anonymous.4open.science/r/fabric-FE32/README.md
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Figure 5: The effect of feedback strength on generated images. Increasing feedback weight lowers
diversity, which adversely affects exploration. Hence, PickScore is optimal for intermediate strengths.

4.3 TRADING OFF DIVERSITY AND QUALITY

The trade-off between quality and diversity is omnipresent in the context of image generation. For
example, fine-tuning a model on a small dataset of curated images can drastically increase the quality
but usually comes at the cost of diversity in generated images. In the case of FABRIC, increasing the
feedback strength produces images that more strongly adhere to the feedback while also decreasing
diversity. In an ideal world, one would like to maximize both quality and diversity simultaneously,
but maximizing one usually comes at the detriment of the other. To study the effect of feedback
strength on this trade-off, we conduct the preference-model based experiment with varying feedback
weights ranging from 0.1 to 1.0. The results in terms of PickScore and image diversity are illustrated
in Figure 5. Note that the first round of FABRIC is equivalent to Dreamlike Photoreal, since no
feedback has been added yet. We see the aforementioned trade-off in action, with the SD 1.5 base
model having the highest diversity but lowest PickScore. Conversely, Dreamlike Photoreal and HPS
LoRA trade some of the diversity for increased PickScore, with HPS LoRA having the highest score
but lowest diversity out of the baselines. FABRIC exhibits similar behavior: While increasing the
feedback strength strictly decreases in-batch diversity, the same does not hold for quality, which
peaks around a strength between 0.2 and 0.3.

We also investigate the cost of increasing quality by asking the following question: How much
quality can be gained by paying the same decrease in diversity for different models and feedback
strengths? To quantify this trade-off, we estimate a conversion rate between diversity and PickScore
by computing the linear least squares fit to the relation

∆PickScore = α · (−∆IBDCLIP) (6)

where ∆PickScore and ∆IBDCLIP denote the change in PickScore and in-batch diversity respec-
tively. The diversity conversion coefficient α denotes the rate at which sacrifices in diversity get
converted to increased quality. We compare FABRIC with varying feedback strengths to two different
interventions. Intervention A: Fine-tuning a model (comparing Dreamlike Photoreal to SD 1.5),
Intervention B: applying the HPS LoRA to Dreamlike Photoreal. We find that fine-tuning has the
lowest conversion efficiency, followed by the HPS LoRA. This could be either due to the fact that HPS
LoRA is explicitly trained on maximizing human preference or due to parameter-efficient training
preserving generalization abilities of the base model. FABRIC surpasses all baselines for all feedback
strengths except 1.0 where diversity and quality both suffer compared to lower strengths. Incidentally,
applying FABRIC on top of HPS LoRA still has the same conversion efficiency as when applied to
Dreamlike Photoreal, despite the already-diminished diversity, suggesting that the trade-off efficiency
of FABRIC is robust with respect to different models.

5 RELATED WORK

Textual Inversion and Style Transfer. A popular method for personalizing text-to-image diffusion
models is textual inversion (Gal et al., 2023; Ruiz et al., 2023), a technique for learning semantic
text embeddings of a concept depicted in a set of images. This enables the synthesis of new images
that express the learned concept. Textual inversion methods often require multiple images of the
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same concept and additional training to learn the concept embedding. Null-text inversion (Mokady
et al., 2022) is a very accurate inversion technique, enabling text-based real-image editing capabilities
through pivotal inversion and null-text optimization. Xu et al. (2023) introduce a novel approach
to condition on a user-provided reference image instead of natural language. A Semantic Context
Encoder (SeeCoder) transforms the input image into semantic visual embeddings, which replace
the text conditional inputs to a Text-to-Image (T2I) model. StyleDrop (Sohn et al., 2023) is able to
synthesize images that adhere to a specific style. A T2I model is adapted to generate images in a
user-provided style through iterative training with either human or automated feedback.

Human Preference Modelling. Recently, modeling human preferences in generative models
experienced increased attention. In the domain of T2I models, initial work by Wu et al. (2023b)
released a dataset of prompts and images, along with human preference annotations. The authors
train a CLIP-based classifier (Radford et al., 2021) on human preference prediction, giving rise to
the Human Preference Score (HPS), as well as a LoRA (Hu et al., 2021) of Stable Diffusion that
significantly improves image quality in terms of HPS. They update their dataset in Wu et al. (2023a).
Kirstain et al. (2023) introduce Pick-a-Pic, a large-scale dataset of user preferences for text-to-image
generation collected from real users, containing 583,747 rankings and achieving state-of-the-art
results on human preference prediction. Fan et al. (2023) proposes a policy gradient optimization
method called DPOK for fine-tuning text-to-image diffusion models using online reinforcement
learning, outperforming supervised fine-tuning techniques. Concurrent work by Deckers et al. (2023)
integrate users preferences by navigating the prompt embedding space towards nearby variants,
guided by gradients on a target metric, by user feedback, or by similarity to a reference image.

Image Editing. Instead of incorporating human preferences into newly generated images, capable
image editing techniques can help an artist to modify existing images towards their preference. In
Prompt-to-Prompt (Hertz et al., 2022), the cross-attention between pixels and the language prompt
is changed to modify the image generation. Compared to this cross-attention injection, our method
instead focuses on image-to-image self-attention of a diffusion model (see Section 2). Imagic (Kawar
et al., 2023) instead interpolates between a text encoding optimized to recreate the reference image
and the real target prompt to edit an image towards the target prompt. DiffEdit (Couairon et al., 2022)
encodes an image to a timestep and decodes within a generated mask with a new prompt. One can
also finetune a diffusion model (on Prompt-to-Prompt data) to follow editing instructions, as done by
(Brooks et al., 2023). The authors condition on the reference image by concatenating it to the first
convolutional layer in the diffusion model (as opposed to our training-free self-attention injection).

Iterative Feedback. The T2I workflow commonly consists of thinking of a prompt and iteratively
improving it until the desired result is achieved. In order to alleviate some of this burden from the
user, Tang et al. (2023) propose a zeroth-order optimization algorithm with theoretical guarantees for
problems with ranking oracles and demonstrate its effectiveness by optimizing the initial seed for a
fixed text prompt, using iterative human feedback as a ranking oracle.

To summarize, the literature of the field has predominantly focused on concept learning, style transfer
from reference images, and modeling human preferences to fine-tune models accordingly. However,
these methods require further training of the model and the iterative nature of how T2I models are
used in practice has been left relatively unexplored.

6 LIMITATIONS AND FUTURE WORK

While FABRIC works well in our experiments, some limitations apply. We noticed that FABRIC is
effective at constraining the generative distribution to a subset of preferable outcomes, but it struggles
to expand the distribution beyond the initial text-conditioned distribution. Further, since we sample
feedback images from previously generated images, the diversity tends to converge to a single mode
for increasing numbers of feedback images and feedback strength. Albeit left unaddressed in our
experiments, there are some simple remedies to combat this limitation: Varying the textual condition
by adding character noise to the prompt (Deckers et al., 2023) or by automatically rephrasing the
prompt via paraphrasing can help increase the diversity of the conditional distribution and by sampling
feedback images not only from the model but also from an external feedback corpus Chen et al.
(2022) can help to both delay convergence and increase the diversity beyond the initial distribution.
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Another limitation lays in the way the feedback is collected. Currently, users can only provide binary
preferences over images, which makes it impossible to only include certain aspects about a given
image or to give scalar ratings. While left unexplored in this work, FABRIC is amenable to simple
extensions that enable more detailed forms of feedback: By scaling the feedback strength according
to the user’s rating, continuous-scale feedback can be implemented. Further, while we fix the prompt
for feature extraction from feedback images to the null prompt, a textual description of the feedback
could be used instead in order to guide the feature extraction process. Finally, similarly to inpainting,
attention masking could be used to constrain the feedback to certain parts of the image.

A distinct advantage of FABRIC is that it is easily extensible and orthogonal to most other Stable
Diffusion variations, like fine-tuning, LoRA training or modifying the text conditioning (Xu et al.,
2023), while achieving significant improvements on top of them (see FABRIC + LoRA). Also,
extensions such as liking or disliking arbitrary masks (which is inherently supported by the attention
injection) could increase the control of the artist. In addition, FABRIC provides a well-defined action
space with various parameters that can affect the generated results. This opens up the possibility
for performing Bayesian optimization on an arbitrary objective (e.g., direct user feedback or a score
given by a preference model).

7 CONCLUSION

We present FABRIC, a training-free method that incorporates iterative feedback into the generation
process of text-to-image models, leveraging attention-based reference image conditioning. Our
experimental findings suggest that FABRIC is capable of implicitly optimizing a variety of objective
functions such as human preference and similarity to a designated target image.

These objectives noticeably improve with more feedback rounds, demonstrating that FABRIC’s
effectiveness significantly exceeds merely sampling more images without providing additional
feedback. Remarkably, even without training or hyperparameter tuning, FABRIC can outperform the
HPS LoRA (a model explicitly trained to optimize human preference) on the relevant metric.

While FABRIC tends to trade diversity for increased quality, it does so in a controllable and predictable
manner and provides a better trade-off efficiency than other quality-enhancing interventions such
as fine-tuning or LoRA training. FABRIC still struggles with going beyond the model conditional
distribution, requiring other methods to facilitate exploration.

The iterative setting is paramount to how generative visual models are used in practice. Despite
this, recent research on aligning text-to-image models has left it largely unexplored. We believe that
this study contributes towards the formation of a framework that aids in devising and evaluating
methodologies intended to address this setting.

ETHICAL IMPLICATIONS

Text-to-image models have the potential to make creative visual expression more accessible to
everyone by allowing individuals without artistic skills or technical expertise to generate visually
appealing content. Our proposed method aims to further enhance the accessibility and personalization
of these models by incorporating user preferences into the image generation process. This is achieved
through the utilization of positive and negative feedback, allowing users to provide natural and
intuitive guidance based on prior images or previously generated ones.

By adopting our approach, users gain increased control over the generated content, promoting ethical
usage. However, this heightened control also raises concerns regarding the potential for misuse or
abuse of the system. To address these concerns, it becomes crucial for the community as well as
society at large to establish clear guidelines regarding the legal and ethical utilization of such systems.
By placing responsibility on individual users to ensure responsible and ethical usage, we can mitigate
the risks and foster a positive and constructive environment for creative expression.
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A APPENDIX

A.1 TARGET IMAGE-BASED FEEDBACK SELECTION EXAMPLES

We provide some example feedback-trajectories from the Promthero dataset in Figure 6. Liked and
disliked images are selected by the highest and lowest CLIP similarity to the target image respectively
(note that this does not necessarily agree with human judgement of similarity).

Target Image Round 1 Round 2 Round 3

Figure 6: Examples of feedback rounds from our target-image-based experiment. Liked images are
circled in green and disliked images in red.

A.2 METHOD DETAILS

Here we provide the pseudocode of the FABRIC algorithm (see Algorithm 1). Weighted attention
is defined for Q ∈ RN×dand K,V ∈ RN+C×d where N and C are the number of tokens in the
generated image and reference images respectively:

12
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Figure 7: PickScores and in-batch diversity for up to 8 iterative feedback rounds. Average and
worst-case outcomes keep improving throughout, but diversity also keeps decreasing.

WeightedAttentionw(Q,K, V ) =

(
W ⊙ softmax

(
QK⊤)

∥W ⊙ softmax (QK⊤)∥1

)
V (7)

where

W =

1, ..., 1, w, ..., w...
1, ..., 1, w, ..., w

 ∈ RN×N+C

i.e. the first N columns of W weight attention scores of query-key pairs from the generated image
with 1 and the last C columns weight attention scores from reference keys with w.

A.3 GENERATION PARAMETERS

Unless specified otherwise, the parameters specified in Table 2 were used for all baseline and FABRIC
runs.

Base model DreamlikePhotoreal 2.0

Batch size 4

Num. rounds 3

CFG scale 6.0

Denoising steps 20

Sampling schedule Ancestral Euler

Feedback strength 0.3

Negative feedback scale 50%

Feedback start 0.0

Feedback end 0.8

Table 2: Default generation parameters that were used throughout the experiments

A.4 CONVERGENCE BEHAVIOR FOR MANY ITERATIONS

To examine the behavior of FABRIC for increasing numbers of feedback images, we conduct
additional runs for FABRIC and HPS LoRA + FABRIC using the preference model-based setup for 8
rounds. Due to computational limitations, only two runs were conducted with a sample size of 375
prompts. The results in Figure 7 shows that while the best-case image in each round converges after

13
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Algorithm 1 FABRIC: Feedback via Attention-Based Reference Image Conditioning

Require: Let N be the number of feedback rounds, n be the batch size of generated images in each
round and model be a diffusion model capable of reference-conditioning.

1: procedure FABRIC
2: pos, neg← [], []
3: for i ∈ {1, . . . , N} do
4: prompt← get prompt(i)
5: images← [GENERATE(prompt, pos, neg) for n times]
6: xpos, xneg ← get feedback(images) ▷ we focus on one like and one dislike
7: pos.put(xpos)
8: neg.put(xneg)
9: end for

10: end procedure
11: function GENERATE(prompt, positives, negatives)
12: zT = initial noise()
13: for t ∈ {T, . . . , 1} do
14: hiddens← {}
15: for xref ∈ {. . . positives, . . . negatives} do
16: zref ←

√
ᾱt · xref +

√
1− ᾱt · ϵ(t)ref ▷ forward diffusion noising, ϵ(t)ref ∼ N (0, I)

17: h← PRECOMPUTEHIDDENSTATES(zref , t)
18: hiddens.put(h)
19: end for
20: compute w

(t)
pos and w

(t)
neg according to the feedback settings

21: ϵcond,t−1← MODIFIEDUNET(zt, t, get positive(hiddens), w(t)
pos)

22: ϵuncond,t−1← MODIFIEDUNET(zt, t, get negative(hiddens), w(t)
neg)

23: zt−1← step with cfg(zt, ϵcond,t, ϵuncond,t) ▷ ancestral Euler sampling in our case
24: end for
25: return z0
26: end function
27: function PRECOMPUTEHIDDENSTATES(z, t)
28: hiddens← []
29: for i-th layer in the Unet do
30: apply ResNet block(s) to z
31: hiddens.put(i, z) ▷ just before self-attention
32: apply self-attention to z
33: apply cross-attention and FFN to z
34: end for
35: return z
36: end function
37: function MODIFIEDUNET(z, t, hiddens, w)
38: for i-th layer in the Unet do ▷ for hiddens = ∅ this function is a standard U-Net
39: h← hiddens.at(i)
40: apply ResNet block(s) to z

41: Q←W
(i)
Q · z

42: K ←W
(i)
K · concat(z, h)

43: V ←W
(i)
V · concat(z, h)

44: z←WeightedAttentionw(Q,K, V )
45: apply cross-attention and FFN to z
46: end for
47: return z
48: end function
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Figure 8: The effect of feedback schedule on generated images on diversity and CLIP similarity to
target image. Applying feedback the first during the first half gives highest CLIP similarity to target,
but feedback during thee middle half has the best trade-off efficiency.

4-5 iterations, the average quality and worst case outcomes keep improving up to round 8. However,
diversity also continually decreases as more and more feedback images are added.

A.5 FEEDBACK SCHEDULE

In addition to the experiments reported in the main part, we investigated the adaptation of the feedback
schedule. The default configuration of FABRIC adds feedback in the first 80% of denoising steps.
Here we investigate different schedules on the target image-based setup, i.e. using feedback during
only 25% or 50% of denoising steps. We find that the feedback timing can make a big difference
on both diversity and quality (in terms of similarity to the target image) and that our default setting
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Figure 9: Density plots of the relation between increase in PickScore against decrease in diversity.
While the distribution generally shifts to the right for increasing feedback strengths, the conversion
slope has a local maximum around 0.3.

might not be ideal for every scenario. The results in Figure 8 show that using feedback in the middle
half provides a good trade-off between diversity and CLIP similarity.

A.6 QUALITY-DIVERSITY TRADE-OFF

Figure 9 shows the relationship between PickScore and in-batch diversity for different feedback
strengths as well as the linear least squares fit for the conversion rate between quality and diversity. A
single point is obtained by the mean PickScore and the in-batch diversity for any given round.
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