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Abstract

Motivated by the recent successes of neural networks that have the ability to
fit the data perfectly and generalize well, we study the noiseless model in the
fundamental least-squares setup. We assume that an optimum predictor perfectly
fits the inputs and outputs 〈θ∗, φ(X)〉 = Y , where φ(X) stands for a possibly
infinite dimensional non-linear feature map. To solve this problem, we consider
the estimator given by the last iterate of stochastic gradient descent (SGD) with
constant step-size. In this context, our contribution is twofold: (i) from a (stochastic)
optimization perspective, we exhibit an archetypal problem where we can show
explicitly the convergence of SGD final iterate for a non-strongly convex problem
with constant step-size whereas usual results use some form of average and (ii)
from a statistical perspective, we give explicit non-asymptotic convergence rates in
the over-parameterized setting and leverage a fine-grained parameterization of the
problem to exhibit polynomial rates that can be faster than O(1/T ). The link with
reproducing kernel Hilbert spaces is established.

1 Introduction

As soon as large-scale statistics and optimization need to work together, stochastic gradient descent
(SGD) is the core algorithm everybody tries to build upon [7]. Its versatility, practicability and
adaptability make it the workhorse of almost every supervised machine learning problem. Yet, its
outstanding efficiency remains mysterious, or at least surprising on certain aspects. Furthermore, the
recent successes of deep neural networks (DNN) brought a new paradigm to the classical supervised
learning setting with the ability to fit the data perfectly and to generalize well [5]. Following this
idea, the old statistical modelling where the model suffers from problem-dependent noise has to be
revisited: there is a need of analyzing stochastic algorithms in this new light [18]. Whether we call it
over-parameterization to put emphasis on the large number of neurons needed in DNNs, interpolation
as in approximation theory or noiseless model to stress the absence of noise in this statistical model,
all these terminologies refer to the same idea. This regime brings with it new insights that reflect
better the current machine learning setup.

Hence, the main question: how would SGD profit from this noiseless model? At first glance, the story
seems clear: the old problem of variance at optimum making the SGD iterates oscillate asymptotically
now disappears. Thus, should also disappear techniques that prevent from this, namely, averaging
and decaying step sizes: one should be able to study the convergence of the SGD final iterate with
constant step-size.
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However, the study of the last iterate of SGD has always caused some technical problems preventing
from a clear theory in this case [26]. Indeed, the convergence of the final iterate is much more difficult
to prove than the convergence of the average of the iterates [27, 13, 15]. This counter-intuitive
difficulty can be explained by the fact that the interactions coming from the sampling noise of
SGD prevent the loss of the final iterates from decreasing. Therefore standard Lyapounov strategies
often failed in such a setting. Besides, even if averaged SGD has shown theoretically some good
convergence properties, the final iterate is commonly used in practice. Finally, averaging techniques
always suffer from saturation coming from the slow forgetting of initial conditions.

To tackle these questions, we consider the simplest setting of the linear regression over features φ(X)
in a Hilbert space H. In this context, the setup corresponds to the existence of linear relationship
between the output and the input: Y = 〈θ∗, φ(X)〉. Note that this setting is rich as the features
can be a non-linear transformation of the inputs, as it is commonly the case when they are defined
through a positive-definite kernel K(X,X ′) [25, 28]. Note also that our analysis will, unless stated
explicitly, be conducted in a non-parametric and dimensionless fashion, enabling the features to come
from a infinite dimensional reproducing kernel Hilbert space. In this perspective, the problem we are
considering is not strongly convex.

Main contributions. The aim of the present article is to answer at once the two following problems:
(i) from a (stochastic) optimization perspective, the goal is to exhibit an archetypal problem where
we can show explicitly the convergence of SGD final iterate for a non-strongly convex problem with
constant step-size and (ii) from a statistical/machine learning perspective, the aim is to push deeper
the study of the over-parameterized setting for the non-parametric least-squares problem. Contrary to
the noisy setting, where (almost) everything is known, the noiseless model suffers from a certain lack
of understanding. More precisely, our contributions are the following:

• We show that the final iterate of constant step-size SGD achieves a convergence rate of
O(ln(T )/T ) under minimal assumptions. With a slightly stricter hypothesis we improve this
convergence rate to O(1/T ).

• Going further, we assume the usual non-parametric capacity and source conditions respectively
on the spectrum of the covariance and the optimum, and derive bounds for this fine-grained model.
In this setup, we show the SGD fast rates of O(1/T 1+α).

• We derive an explicit recursion on the eigenspaces of the covariance matrix that is of its own
interest. Indeed, it is the cornerstone of our analysis and could be very useful in the future to
understand important properties of SGD.

From a technical standpoint, going from the average to the last iterate is far from anodyne for constant
step-size SGD even in the interpolation regime. Indeed, in a similar setting, D.Aldous considered
it an open problem [1, Sec. 3.3, Open problem (i)]. Prior to our result, how to directly deal with
the fluctuations induced by the stochasticity of the gradients without any variance reduction was
not known. Our work presents a direct Lyapunov technique that handles them without any explicit
variance reduction methods like averaging or step-size decay.

1.1 Related Work

As recalled earlier, it is often easier to show convergence for the averaged iterates of SGD than
for the final one. However, there has been a huge effort by the optimization and machine learning
communities to work on the final iterate. We report here the different works and contexts for which
such results are shown. All the results stated below are for convergence in function value.

Last versus averaged iterates. First, for non-smooth functions (and variance of the SGD-gradients
uniformly bounded), it is easy to show, with proper decrease of the step sizes, that the averaged
iterates converge at rate O(1/

√
T ) in the non-strongly convex case and O(1/T ) when the function

is strongly convex. On the other side, convergence of the last iterate has been first addressed by
[35, 27] who showed convergence rates of O(log(T )/

√
T ) for non-strongly convex objectives and

O(log(T )/T ) for strongly convex objectives. These rates have recently been shown to be tight by
[13] (the log term cannot be suppressed for the last iterate). Secondly, for smooth functions (gradient
Lipschitz and variance bounded only at optimum), [2] showed in the non-strongly convex case that
smoothness does not help; results on the averaged iterate are the same O(1/

√
T ) and results on the

last iterate are actually worse: O(T−1/3). In the strongly convex setting, the optimal rate O(1/T )
rate is obtained both by the averaged and last iterates. However the averaged iterates are preferred
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since they lead to the optimal covariance and the step size is independent of the strong convexity
constant [23]. Finally, the final iterate of SGD, despite its ubiquitous use in machine learning, never
theoretically performs as well as the averaged, except when used with a geometrically-decaying
learning-rate [15, 12].

Over-parameterized setting. As recalled earlier, SGD in the over-parameterization regime corre-
sponds to the assumption that all the function gradients vanish at optimum. It has been first studied
by [24] who assumed furthermore a strong growth condition (SGC) (first introduced by [29, 32])
but often too stringent to match the machine learning practical set-up. Up to our knowledge, [18]
was the first to point out that this interpolation regime was particularly relevant in the recent deep
learning framework and to show linear convergence in the strongly-convex setting. In the non-strongly
convex case, O(1/T )-convergence has been shown by [33] for the averaged iterates. Consequently,
there has been many papers discussing this setting, proving convergence rates in different contexts:
Polyak-Lojasiewicz [4], accelerated [33, 17], second-order [19], line-search [34]. However, no rate
for the final iterate has been shown in the non-strongly convex setting for the last iterate as the only
convergence rates achieved, O(1/T ), corresponds in all these works to the averaged iterates.

The Quadratic Case. More specifically, the quadratic case has been widely studied as a central model
in the machine learning literature. As explained above, on the one hand, in the usual noisy setting,
averaging or decaying step sizes have been considered, showing well-known O(1/T ) convergence
rates [3]. The final iterate convergence of SGD for the noisy quadratic case is studied in [12] where
they show a O(d log T/T ) rate and advocate the primacy of exponential step decay. On the other
hand, the SGD in over-parameterized setting has been considered only lately by [18, 6, 36]. The first
work corresponds to the strongly convex case, where the final iterate provably converges whereas
our work is more aligned to [6, 36] where the non-strongly convex case is considered. In [21], the
authors also studied the noiseless setting and provide worst and average cases asymptotic rates for
the non-strongly convex case in the n, d→∞ regime. In [6], among other results, it is shown that
only the minimum of the function value iterates converge at rate O(1/T ) and up to O(1/T 1+α) for
α > 0 when usual capacity and source conditions are assumed for the problem [8, 30]. A part of
our work can be seen as a continuation of [6], strengthening its result by proving that the final iterate
converges instead of the min or some average.

2 Problem Set-up: Stochastic Gradient Descent on the Least-squares
Problem

The setting is classical for stochastic gradient descent for linear least-squares in a Hilbert spaceH.
The function we would like to minimize over θ ∈ H is

R(θ) = 1

2
Eρ (〈θ, φ(X)〉 − Y )

2
, (1)

when ρ is the joint law over input/outputs (X,Y ) ∈ X × R and φ is a feature map from X toH. For
the sake of simplicity, the reader can assume thatH is a finite-dimensional Euclidean space. However,
we take a special care that all the quantities and definitions could be valid whenever H is infinite
dimensional. Hence, all the theorems are valid in a Reproducing Kernel Hilbert Spaces (RKHS)
framework. Without any loss of generality, and to avoid heavy notations, we assume that φ(X) = X ,
and as soon as we refer the the finite dimensional case, we setH = Rd.

Covariance matrix. We define the covariance operator on H: H := Eρ[X ⊗ X]. This positive
semi-definite operator is diagonalizable and plays a central role in our analysis. Hence, let us denote
λi its non-negative eigenvalues sorted in non-increasing order and vi its corresponding eigenvectors.
In finite dimension, the covariance operator is simply a d× d matrix H = Eρ[XX>] but, once again,
notice that the analysis can also afford being infinite dimensional. In either case we denote λmax the
largest eigenvalue of H . In the finite dimensional case λmin > 0 is always correctly defined but can
be arbitrarily small. On the opposite, a standard and important consequence of the infinite dimension
is that, in most cases (especially when TrH < +∞), the infinite sequence of eigenvalues is no longer
lower bounded as it converges to 0: H is no longer invertible and the problem is non-strongly convex.

Noiseless model. We assume that the model does not suffer from any noise: there exists θ∗ ∈ H
such that, ρ-almost surely, 〈θ∗, x〉 = y. This means that the model is well specified and that there is
no noise at optimum. Due to this noiseless condition, we expect our iterates to go to the optimum
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without decaying step-sizes or averaging. We can also rewrite the Risk in Eq. (1):

R(θ) = 1

2
(θ − θ∗)>H (θ − θ∗) =

1

2
Tr
[
(θ − θ∗) (θ − θ∗)>H

]
. (2)

Link between Noiseless model and Interpolation. Interpolation corresponds to the case where our
predictor can fit a finite set n of training data i.e., 〈θ∗, xi〉 = yi for i ≤ n. Note that this setting
is naturally included in our model replacing the test risk R(θ) with the training loss whose finite
sum structure can be rewritten Eρ̂ (〈θ, x〉 − Y )

2 where ρ̂ is the empirical distribution of the data.
Consequently our result on the final iterate convergence holds in this model for the training loss.

SGD with constant step-size. To minimize the functionR defined in Eq. (1), we do not have access
to the distribution ρ but to a stream of i.i.d. observations (xt, yt)t>1 sampled from it. We hence
perform a gradient descent in the direction given by one sample at a time with constant stepsize
γ > 0. Throughout all this paper, the initial condition is always set to θ0 = 0 and for t > 1,

θt+1 = θt − γ (〈θt, xt〉 − yt)xt. (3)

The impossibility of linear rates. We stress that the least-squares setup we consider is a non-
strongly convex problem. Indeed, in finite dimension d, λmin > 0, and SGD converges at linear
rate ∼ e−γλminT [18, Theorem 1], this asymptotic regime occurring after a time scale τ ∼ 1/(γλmin).
However, this apparent strong convexity is a lure, since the large (or infinite) dimension makes
this convergence rate vacuous for an arbitrarily small λmin. Hence we focus on the non-parametric
non-strongly convex setup where we prove non-asymptotic polynomial rates. Yet in finite dimension,
it is always possible to see the linear regime after time 1/(γλmin) as shown in Figure 1, even if this
time can be arbitrarily long.

3 Convergence rates of the final iterate of SGD

In large dimension, two quantities govern principally the rates of convergence of least-squares
estimators: (i) the spectrum of the covariance matrix, and (ii) how the solution, θ∗, projects on the
eigenbasis of the covariance matrix. In this section, we state refined assumptions on the spectrum of
the covariance matrix and the decomposition of θ∗ over its eigenbasis. Note that in finite-dimension,
all these quantities are always finite, but can be extremely large compared to the sample size T . This
is why the reader can see these more as a fine-grained parameterization of the problem rather than
restrictive assumptions. The assumptions we make always go in pairs, (i) one for the features through
the covariance matrix (Assumptions 1, 3 and 5) and (ii) one for the target solution (Assumptions 2, 4
and 6).

Summary on the results. As assumptions go stricter, the convergence rates go faster. Every theorem
is a bound on the expected risk given by the last iterate of the SGD recursion with constant step size
γ, started at θ0 = 0. Only for Theorem 1, for which the assumptions are the weakest, we allow the
step-size to depend on the finite horizon T (through its logarithm). All the theorems are stated with
respect to finite constants defined thanks to the different assumptions. The reader can refer to Table 1
for a concise summary of them. Note also that we put a particular effort for the clarity of the bounds,
and hence, some numerical constants might appear large. These are simple artifacts on the proofs and
could be lowered, but at the price of less clear results. A more detailed summary of our results can be
found in Appendix 7. All the proofs are deferred to Appendix 9.

3.1 Standard Least-Squares setting

As often, when we analyze SGD, we make a 4-th order assumption on the distribution of the features.

Assumption 1 (Fourth Moment Condition) There exists a finite constant R ≥ 0, such that

E
[
‖X‖2 XX>

]
4 RH (4)

The assumption holds in the case of bounded features, i.e. when ‖X‖2 6 R, ρX -almost surely. It
also holds more generally for features with infinite supports, such as sub-Gaussian data, and canonical
basis distributions (i.e. x = ei with probability pi). This is a standard assumption when analysing
SGD for least squares [3, 14, 12] which is weaker than what is assumed in [10, 11, 36].
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Theorem Assumption Condition Rate

Theorem 1 A. 1 E
[∥∥X∥∥2 XX>] 4 RH ln(T )

TA. 2 ‖θ∗‖H < +∞
⇑ ⇑

Theorem 2 A. 3 E
[〈
X, ln (H−1)X

〉
XX>

]
4 RlnH 1

TA. 4 Tr(M0 ln(H
−1)) < +∞

⇑ ⇑

Theorem 3 A. 5 E
[∥∥H−α/2X∥∥2 XX>] 4 RαH, α ∈ (0, 1) 1

T 1+α∧βA. 6 Tr(M0H
−β) < +∞, β > 0

Table 1: Table showing the main results of the article: different upper-bounds for the convergence of
the SGD final iterate determined by different assumptions.

Assumption 2 (Attainable case) The target solution θ∗ lies in the spaceH. This ensures that it has
a finite norm ‖θ∗‖H < +∞.

While this is always true in finite dimension, this assumption draws the attention on the fact that the
norm of the optimum θ∗ could be very large in high-dimension. As a limit, in infinite-dimensional
spaces, θ∗ could not belong toH and hence would have an infinite norm. This is why we refer to this
assumption as the attainable case. Under these two assumptions we have the following result.

Theorem 1 Assume Assumptions 1, 2. Then, for T > 2, if we set γ = (4R ln(T ))−1, we have the
following bound for the expected risk of the estimator given by the T th iterate of SGD:

ER(θT ) 6 3R‖θ∗‖2H
ln(T )

T
. (5)

Let us comments upon this result proven in Appendix 9.1. The theorem above states that, under
mild assumptions, if we allow the step-size to depend on the time horizon, we have a O(ln(T )/T )
convergence rate for the final iterate. First, removing the dependence on finite horizon T for the
step-size by considering decaying step-sizes γt ∝ 1/ ln(t) could be done, but we decided to keep this
way as we have focused on constant step-size in this paper. Furthermore, Theorem 2 of [6] shows
that this bound is optimal up to log(T ) for a SGD. This rate can also be compared to the classical
optimization results for the non-strongly convex objective (our case). It is well known that gradient
descent and averaged SGD (even for non-quadratic objectives) achieve a O(1/T ) rate with constant
step size. Similarly [6] achieves a convergence rate of O(1/T ) rate with constant step size for the
min of the function value along the iterates. However, the rate of convergence of SGD last iterate
was an open problem [see 6, Remark 1]. Note however that our bound suffers from a log(T ) both in
function value and for the step-size. Whether this term is necessary is an open question for us. The
purpose of the following development is to first remove these log(T ) dependence at the price of a
log-scale refinement of the assumptions.

3.2 A logarithm-scale refinement

This second sequence of assumptions is slightly stronger. They reinforce assumptions 1 and 2 at the
log-scale. Once again, there is one on the features and the other one is on the target.

Assumption 3 (log-regularity of the features) There exists constant λo > 0 and Rln such that the
covariance matrix H satisfies the following condition:

E
[〈
X, ln

(
λoH

−1)X〉 XX>] 4 RlnH.

Note that λo is a just a reference which lets us present cleaner results. We choose λo such that
7Rln 6 λo. This is always possible as Rln scales linearly with lnλo (see details in 7.1). This
condition implies in fact Tr

(
H ln(λoH

−1)
)
6 Rln, which consequently implies the following

eigenvalue decay: λi 6 O(1/(i ln i)) (see details in 7.1). This is the reason why we say that this
assumption refines Assumption 1 at a log-scale.
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Assumption 4 (log-regularity of the optimum) The covariance matrix at optimum M0 = θ∗θ
>
∗

satisfies the following condition:

Tr
(
M0 ln

(
H−1

))
< +∞.

We define Cln :=
∑
im

0
i ln(λo/λi), with the same reference λo. To give an order of magnitude in

finite dimensions, when the spectrum of the covariance matrix in lower bounded by λmin > 0, Cln

can be estimated as Cln 6 ‖θ∗‖2H lnλo/λmin ∼ a‖θ∗‖2H ln d even if λmin is as small as 1/da. When
the dimension is not too big (even at the log-scale), this constant Cln is comparable with ‖θ∗‖2H up to
log factors. Under these two assumptions we have the following convergence result.

Theorem 2 Assume Assumptions 3,4. Then, for T > 3, if we set γ = (14Rln)
−1, we have the

following bound for the expected risk of the estimator given by the T th iterate of SGD:

ER(θT ) 6
10RlnCln

T
. (6)

This theorem, proven in Appendix 9.2, states that at the price of a log-scale refinement on the
features and optimum, the SGD-convergence rate is O(1/T ). This naturally restricts the class
of problems that suffers from a log(T ) (see Theorem 1) to a very small class: roughly speaking,
it is the class of problems for which the eigenvalue decreasing rate is strictly squeezed between:
O(1/(i ln i)) < λi < O(1/i). The role of the assumptions is fundamental here: Assumption 3
allows to remove the ln(T ) for the step-size and Assumption 4 allows to remove the ln(T ) for the
convergence rate. The proof technique is the same as for the previous theorem, the only difference is
that the assumptions allow to control more precisely the bias and the variance in the SGD recursion.

3.3 A fine-grained parameterization of the problem: capacity and source conditions

The final set of assumptions have been introduced by [8]. They are in the same vein as above
assumptions and are often called capacity and source conditions in the reproducing kernel Hilbert
spaces community.

Assumption 5 (capacity condition: α-regularity of the features)) The covariance matrix H is
such that there exists α > 0 and a finite constant Rα > 0 verifying

E
[〈
X,H−αX

〉
XX>

]
4 RαH.

Note that Assumption 5 is strictly more demanding than Assumption 3 and has been named regularity
of the features in [6, Remark 3]. Note also that α→ 0+ corresponds to Assumption 1 and the larger
the α the stricter the assumption is. The capacity condition stated above implies Tr

(
H1−α) 6 Rα.

which consequently implies an eigenvalue decay as a power law for the sequence of eigenvalue of
H: λi = O(1/i

1
1−α ) (see details in 7.1). It is also often related to the effective dimension of the

problem [8]. Finally, as a limiting case, when α → 1, Rα → Tr(Id) = d and the assumption is
only valid in finite dimension. Hence, it is expected that the bound would blow in large dimension
when α grows to one. For this reason, in the literature [8, 30], the bound is often reparameterized as
α′ = (1− α)−1 to push this singularity at infinity. We decide to keep our parameterization for the
clarity of the result. The same type of assumption can be stated for the optimum.

Assumption 6 (source condition: β-regularity of the optimum)) The covariance matrix at opti-
mum M0 = θ∗θ

>
∗ is such that there exists β > −1 such that Tr(M0H

−β) < +∞. Here, we define

Cβ := Tr
(
H−βM0

)
=
∑
i

λ−βi m0
i .

Here are important remarks on this assumption. First note that

Tr(M0H
−β) = Tr(θ∗θ

>
∗ H

−β) = θ>∗ H
−βθ∗ = ‖H−β/2θ∗‖2H.

Hence, β = 0 corresponds to Assumption 2 which is the attainable case. It is worth noting that
for β ∈ (−1, 0), this assumption takes into account the fact that θ∗ does not necessarily belong toH.
In such a case, it is still possible to define properly θ∗ as the infimum overH of the risk R defined in
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Eq.(1). However, for sake of clarity and to avoid cumbersome technicalities, we refer to [9, p.1395]
for the extension of the analysis is this case. As before, the larger the β the stricter the assumption is.
Finally as a limiting case, β → +∞ corresponds to the fact that θ∗ belongs to a finite dimensional
space. This hypothesis is often called the source condition in the literature because it quantifies the
complexity of the optimum [see 8, 30, 20, for further details]. Once again, parameterization has not
yet been fixed by the literature and one often uses the parameter r that corresponds to r = β+1

2 . We
have the following theorem under these capacity and source conditions.

Theorem 3 Assume Assumptions 5, 6 with constants α ∈ (0, 1) and β > −1 respectively. Then,
for T > 3, we have the following bound for the expected risk of the T th iterate of SGD:

ER(θT ) 6 2Cβ

(
1 + β

γ

)1+β
1

T 1+α∧β , (7)

where γ1−α 6 (32ξαRα)
−1 and ξα =

∑
n>1

1

n1+α
.

Let us comment this result. Its proof can be found in Appendix 9.3.

Discussion on the limit cases for α and β. Let us note a few observations on the two parameters α
and β. Firstly, it is observed in [6] that the rate 1/T 1+α∧β is optimal in terms of power law for SGD.
Second, the convergence rate depends on the minimum of the two. It implies that either the regularity
of the features, or the one of the optimum, is a bottleneck for the convergence of SGD. More precisely
if α < β, the features are not regular enough to counter the multiplicative noise of SGD. Conversely,
when the optimum is the bottleneck, there is no difference between SGD and Gradient Descent (GD),
as T 1+β is the rate of convergence of GD. Note that α→ 0 corresponds to the setting of Theorem 1
where a log(T ) appears. Hence, it is normal that our bound does not hold in this limit: indeed, we
remark that the step-size shrinks to 0 as ξα goes to infinity. Another interesting limit is the case where
α→ 1: as said before this cannot occur in infinite (or large) dimension as Rα →“d ”. Therefore the
bound blows up in this limit also. The fact that the step-size depends on α is a weakness of our result
and is due to the mixing power of the covariance eigenspaces. This dependence could be eliminated
with an extra assumption on a lower bound on the decrease rate of the spectrum of the covariance
matrix as made by [8]. Finally note that the rate of convergence is always strictly better than 1/T for
β > 0 and is remarkably adaptive to the possible misspecification of the problem β ∈ (−1, 0).
Comparison with the literature. We can first compare to the results on the noisy setting studied
by [9]. Naturally, when some additive noise is assumed, averaging is necessary, and the results are
weaker: γ is not adaptive to the problem, depends on the time-horizon and the rates are always
slower than O(1/T ). However, when the noise is 0, the averaged iterates achieves the exact same
convergence rate as in our theorem. The closest results to our theorem are in [6], where the same
rates are shown. The important difference is that their results are given for the min of the function
value and not the final iterate: our theorem solves an open problem stated in the aforementioned
paper. Remark however that one superiority of [6] is that the step-size does not depend on α showing
some adaptivity with this parameter. As noted in the previous paragraph, we could fix this difference
with an extra assumption on the spectrum of the covariance matrix. Finally, rates of convergence for
the noiseless setting have been addressed by [16] with some truncated version of the kernel ridge
estimator. It was an open problem stated by the author to understand whether SGD could achieve
these non-parametric rates. As for the min, this problem seems to be properly solved now. A main
difference is that the bounds of [16] suffer from some saturation in the well specified setting, when
β > 0, whereas our estimator does not. When α − 1 6 β 6 0, then the bounds match, but when
the problem is really misspecified, for β 6 α− 1, the bound of [16] is strictly better than ours. As
we know that our result is optimal for SGD, it raises the interesting question whether some form of
acceleration [10] or multiple passes over the data [22] could reach these rates.

Link with kernel regression. These capacity and source conditions are classical in the reproducing
kernel Hilbert spaces community. For sake of clearness, we did not mention any specificity on the
features. However, as it has been done in [31, 9], SGD can be “kernelized” and the descent becomes
an optimization algorithm in the RKHS space of functions. In this context, the capacity and source
conditions take on their full meaning: when RKHS are Sobolev spaces, they represent a smoothness
condition on the features and the optimum respectively. The coefficient α would be the degree of
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regularity that we choose for the kernel, and β the prior we have on the optimum solution. For more
details, we refer to section 4 of [22] or section 3.1 of [6].

4 Development of the SGD recursions and proof outline

In this section we provide an overview of the arguments that comprise the proof of our results.

Recursions for multiplicative noise. We can rewrite the SGD recursion Eq. (3) for the deviation to
the optimum ηt := θt − θ∗ as a descent on the risk plus a multiplicative noise term. For t > 1,

ηt+1 =
(
I − γxtx>t

)
ηt = (I − γH) ηt + γ

(
H − xtx>t

)
ηt. (8)

We can also write the recursion satisfied by the covariance of the iterates, Mt := E
[
ηtη
>
t

]
:

Mt+1 = (I − γH)Mt (I − γH) + γ2E
[(
H − xtx>t

)
Mt

(
H − xtx>t

)]
. (9)

Note a main difference between the two recursions, Eq. (9) is a deterministic recursion over operators
whereas Eq. (8) is a stochastic recursion on vectors.

Deviations sequence and initial conditions. We emphasis that ηt and Mt represent deviations to
the optimum θ∗. This is why proving that θt goes to θ∗ corresponds to ηt and Mt going to 0. As the
initial point of the SGD recursion is θ0 = 0, the initial conditions ηt=0 and Mt=0 represent, in fact,
respectively the optimum and the covariance at optimum.

Eigenspaces of the covariance. The core of the analysis rests on a reformulation of our problem in
the eigenspaces of the covariance operator. Recall that (λi, vi)i are the sorted eigenelements of H
and define the decomposition of Mt in the basis of viv>j , Mt :=

∑
im

t
iviv

>
i +

∑
i 6=jm

t
ijviv

>
j . We

can write the expected risk of the estimator given by the t-th iterate of SGD, that we denote by ft:

ft := ER(θt) =
1

2
Tr (MtH) =

1

2

∑
i

λim
t
i. (10)

It is quite remarkable that the (mij)i 6=j do not play any role in the recursions. The aim now is to
write a recursion for (mt

i)i that leads to a recursion for the function value ft through Eq. (10). This is
the purpose of the following and central lemma, whose proof can be found in Appendix 8.1.

Lemma 4 (Recursion on the covariance of iterates) Define fti := E
[
〈vi, X〉2X>MtX

]
.

For t > 1, we have the following recursion on the covariance of the iterates of SGD, ∀i,
mt+1
i = mt

i − 2γλim
t
i + γ2fti , (11)

mt+1
i = (1− 2γλi)

t
m0
i + γ2

t∑
k=0

(1− 2γλi)
t−k fki , . (12)

Let us make comments on this important lemma. First, note that the only difference with the
deterministic recursion (gradient descent) is the presence of the “mixing terms” (fti )i. In fact, these
terms affect dramatically the dynamics. Indeed, there is no reason that the iterates decrease along the
iterations: this is what makes the analysis more tedious for the final iterate. On the contrary, the usual
convergence rate for the averaged iterates is easily obtained by summing Eq. (11) and comparing
the terms. Note finally that the strength of Eq. (11) lies in the fact that the different eigenspaces
(e.g. mt

i and mt
j for i 6= j) interact only through fti and ftj . By summing Eq. (12), and appropriately

controlling sums of fti ’s with Assumptions 1, 3 or 5, we can get recursive inequalities on ft. These
show that ft is in fact a Lyapunov function; going further, we use discrete versions of Gronwall-type
inequalities to finally upper-bound it. To exemplify this reasoning, we present, in the following
lemma, a Lyapunov control on ft using Assumptions 1. Its proof can be found in Appendix 8.2.

Lemma 5 (Recursion on ft) Under Assumption 1, assume γ 6 (4λmax)
−1. For t > 1 we have the

following recursion on the function value ft. For all i,

ft 6
Tr(M0)

4γt
+ γ R

t−1∑
k=0

fk
t− k

(13)
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Figure 1: Least-squares regression. Left: α = 0.5 and β = 0. The vertical dashed line marks the
transition to the linear convergence regime. Right: α = 0.75 and β = 1. The orange dashed line
represents the curve 1/T 1+α∧β predicted by Theorem 3.

The decrease of the function value ft is controlled by the sum of a bias term –characterizing how
fast the initial conditions m0

i are forgotten–, and a variance term –characterizing how the noise
reverberates through the iterates. All the theorems are proven using the same technique: the aim
is to use the inequality recursively to control the variance term. The different Assumptions 1, 3, 5
lead to different variance term. Trying to factorize the proofs in one general bound does not allow
for a clear presentation of the results. This is why, despite the apparent redundancy of the proof
technique, for the sake of clarity and easy reading, we preferred to split the different proofs of the
theorem and factorize only certain technical lemmas. All the proofs of Theorems 1, 2, 3 can be found
in Appendix 9, respectively in Sections 9.1, 9.2, 9.3.

5 Experiments

We illustrate our theoretical results on a synthetic least-squares problem using the SGD algorithm
defined in Eq. (3). For d = 300 we consider a stream of normally distributed inputs (xn)n whose
covariance matrix H has random eigenvectors vi and eigenvalues 1/i1/(1−α) for i = 1, . . . , d. The
optimum is chosen randomly: θ∗ =

∑
1/i

1−β/(1−α)
2 vi. This allows to reproduce the setting where

the coefficient α and β of the capacity and source conditions are perfectly controlled. The outputs
(yn)n are generated through yn = 〈θ∗, xn〉. We take a step-size γ = 1

2TrH . All results are averaged
over ten repetitions. We compare the performance of the last iterate and the averaged iterate of SGD
on two different problems: one corresponding to α = 0.5 and β = 0 and the other to α = 0.75 and
β = 1. For those problems, the predicted convergence is given by Theorem 3: O(1/T 1+α∧β). Hence
we expect a 1/T convergence in the first example and a fast 1/T 1.75 rates for the second.

First note that the bound of Theorem 3 is perfectly matched by these two examples. Second, we
can see that, the averaged SGD and the final iterate show the same behavior quite accordingly to the
theory (see comments on Theorem 3) even if we can notice a slight -but real- better performance
(result are shown in log-scale) from the final iterate. However, the main difference is that, as the
averaged iterates show some saturation, the final iterate meets a point where it changes to a linear
convergence regime (left plot in Figure 1). This adaptivity of the final iterate appearing after time
scale τ ∼ 1/(γλmin) represents a true asset in choosing the final iterate versus the averaged one.
Finally notice that the linear rate regime cannot be seen in the right plot as the maximum number of
iterations shown, n = 106, is negligible when compared to τ ∼ d1/(1−α) = 3001/(1−0.75) ∼ 1010.

6 Conclusion and Perspectives

In this paper, we proceed to a detailed analysis of the convergence rates of SGD in the noiseless
least-squares setting. We derive a systematic study of the SGD last iterate that leverages a sequence
of fine-grained assumptions allowing us to exhibit fast polynomial rates. The absence of additive
noise changes dramatically the behavior of SGD: no decaying step sizes or averaging are needed for

9



convergence as constant step-size SGD naturally adapts to the problem. The development of the SGD
recursion as an interacting particle systems open many perspectives: can it be used to analyze SGD
accelerations? multiple passes over the data? Another significant result is that, from an optimization
perspective, we give a prototypal example where the last iterate of constant step-size SGD provably
converges in the non-strongly convex case. This raises the following fundamental question: can we
extend our method to show the convergence of SGD last iterate in the general non-strongly convex
case?
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