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Abstract
Previous experiments revealed that the human 
brain represents many different navigational fea-
tures. However, because most fMRI experiments 
study individual representations in isolation, the 
relative importance of these many different fea-
tures to navigation remains unclear. To compare 
these representations, we recorded BOLD activ-
ity while subjects performed a taxi driver task in a 
large, realistic virtual world. Voxelwise modeling 
was performed with 21,283 stimulus- and task-re-
lated features that encompass 33 different types of 
information that might be represented during nat-
uralistic navigation. The fit models show that navi-
gational information is represented broadly across 
the cortex, including in many areas outside known 
navigation-related ROIs. Among navigational mod-
els, goal-directed representations account the most 
variance, while passive perceptual representations 
account for much less variance. These data sug-
gest that representations during active naturalistic 
navigation are predominantly goal-directed.
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Introduction
Previous experiments have revealed that the brain rep-
resents many different types of navigationally-relevant 
information. Anterior visual regions represent scene 
identity in PPA (Epstein and Kanwisher 1998), scene 
geometry in RSC (Marchette et al. 2014) and OPA 
(Lescroart and Gallant 2019), affordances in OPA (Bon-
ner and Epstein 2017) and head direction in RSC (Vass 
and Epstein 2013). Medial temporal structures provide 
a representation of an abstract cognitive map in the hip-
pocampus (O’Keefe and Dostrovsky 1971) and distance 
in the entorhinal cortex (Fyhn et al. 2004). The prefron-
tal cortex likely represents navigational goals (Brown 
et al. 2016) and planed routes(Javadi et al. 2017). 
The parietal cortex represents information for visual-
ly-guided navigation (Gourtzelidis et al. 2005) and tracks 

progress towards a goal (Alexander and Nitz 2015).
Previous studies have examined these representa-

tions in isolation and in simplified, constrained tasks. 
Doing so creates two unresolved issues. First, the 
brain is nonlinear and behaves differently under sim-
plified conditions than under naturalistic conditions 
(Wu, David, and Gallant 2006; Matusz et al. 2019). 
Thus, it is still unclear how the brain represents nav-
igational information during more naturalistic navi-
gation tasks. Second, it is difficult to compare results 
from experiments that used different tasks and stim-
uli. Thus, it is unclear whether all navigation informa-
tion are equally represented in brain activity, or if some 
representations account for more variance than others.

Methods
To determine now the brain represents navigational 
information during active navigation, and to determine 
the variance in brain activity that can be accounted 
by different navigational representations, we devel-
oped an experiment in which subjects drove in a vir-
tual world while brain activity was recorded with fMRI.

Experiment  We used Unreal Engine 4 and Carla 
(Dosovitskiy et al. 2017) to build a 2×3 km virtual city 
populated by dynamic AI pedestrians and vehicles. 
Subjects drove a virtual car using a set of MR-com-
patible steering wheel and pedals. Prior to scanning, 
subjects learned the layout of the world. In the scan-
ner, three subjects performed a taxi-driver task. Each 
trial began with a cue that prompted the subject to nav-
igate to a destination. The subject then drove to the 
destination, following all traffic rules. Once the sub-
ject arrived, a new trial began with a new destination. 
We used the game engine and OBS Studio to produce 
a ground-truth record of all events in the experiment.

MRI data were acquired on a 3T Siemens Trio with a 
32-channel head coil. BOLD data were acquired using 
a T2*-weighted gradient-echo EPI sequence. Person-
alized headcases (caseforge, Power et al. 2019) were 
used to stabilize the head. Data were collected in 11-min-
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ute runs (110 mins total for S1, 180 mins for S2 and S3). 
Eyetracking data were collected at 60 Hz. Anatomical 
images and functional localizers were collected sepa-
rately to reconstruct the cortical surface and define ROIs. 

Modelling From the game recordings, we extracted 
21,283 features across 33 feature spaces. These fea-
ture spaces included low-level visual features such as 
motion-energy, motor outputs such as the steering wheel 
and accelerator values, passive perceptual navigational 
features such as head direction and affordances, and 
goal-directed navigational features such as route pro-
gression and a vector to the destination. Banded ridge 
regression (Nunez-Elizalde, Huth, and Gallant 2019) 
was used to simultaneously fit voxelwise encoding 
models with all feature spaces to the brain data. Model 
prediction accuracy was evaluated by predicting brain 
activity in a held-out dataset not used in model fitting.

Results
To understand how the brain represents navigational 
information in an active task and to determine how dif-
ferent navigational features account for variance in 
brain activity, we applied voxelwise modeling (VM) to 
data from subjects performing a taxi-driver task. We 
jointly fit 33 models with feature spaces that encom-
passed a variety of visual, motor, and navigation fea-
tures (see Methods). In this active navigation task, the 
voxelwise models explain significant amounts of activ-
ity variance in 40.3% ± 7.8% of cortical voxels (mean 
± std across subjects) voxels (p < 0.01) in each sub-

ject. (Fig. 1A). Significant model predictions are found 
in many regions within and beyond known naviga-
tion-related ROIs, suggesting that active navigation is 
supported by broadly distributed networks in the brain.

To determine the relative importance of different rep-
resentations, we determined the amount of variance 
explained by each of the 33 models (Fig. 1B). We find 
that visual and motor models account for over half 
the total explained variance (51.4%). In the naviga-
tional models, goal-directed representations account 
for the most variance. For example, the “future path” 
model accounts for 14.3 ± 6.0% (mean ± std across 
subjects) of the total explained variance. On the other 
hand, passive perceptual navigational representations 
explain vanishingly small amounts of the variance in 
voxel activity. For example, the “head direction” model 
accounts for 0.3% ± 0.6% of total explained variance.  
These results show that while many different naviga-
tion-related features are represented simultaneously 
in navigational cortical networks, goal-directed fea-
tures account for the most variance in these networks.

Discussion
To determine the relative importance of different naviga-
tional features to brain activity during active navigation, 
we developed an immersive and interactive navigation 
experiment for fMRI, and simultaneously fit 33 visual, 
motor, and navigational models to the data. Voxelwise 
models fit to multiple navigation-related feature spaces 
enabled us to directly compare many navigational rep-
resentations in the same setting. We find that when sub-

Figure 1: To examine the relative contributions of different navigational representations to brain activity, we simulta-
neously fit 33 visual, motor and navigational models to data from subjects performing a taxi-driver task in a natural-
istic virtual world. A) Models explain significant amounts of brain activity in 40.3% ± 7.8% of cortical voxels (mean ± 
std across subjects, p < 0.01). Significant predictions are found within and beyond known navigation-related ROIs, 
suggesting that active navigation is supported by broadly distributed networks. B) To understand the relative impor-
tance of different representations, we partitioned the total variance explained among the 33 individual models. Mod-
els for visual and motor information account for over half the total explained variance. Among models for naviga-
tion-related information, goal-directed representations account for the greatest amount of variance. On the other 
hand, passive perceptual representations account for only a small fraction of response variance. These results sug-
gest that during active navigation, navigational representations in the brain are primarily goal-directed.



jects navigate actively, most navigational variance can 
be accounted for by goal-directed models. These mod-
els capture representations such planned future paths, 
distance remaining to the destination, path integration, 
and progression along the planned route. On the other 
hand, models for passive perceptual navigation rep-
resentations, such as the direction that the subject is 
facing or a grid cell representation of space, account 
for much less variance in brain activity. These results 
suggest that during active navigation, navigational rep-
resentations in the brain are primarily goal-directed. 

We note that in these results, the affordance model 
accounts for a large portion of variance (15.4%) even 
though affordances are not a goal-driven representa-
tion. However, affordances are a very salient feature 
when driving, as subjects must stay on the road and 
avoid obstacles. Thus, the importance of affordances 
during naturalistic navigation may explain the large con-
tribution of this feature space. It is likely that the 33 fea-
ture spaces used here do not encompass all possible 
features, and more models will reveal more fine-grained 
distinctions in their relative importance. Nevertheless, 
this study provides the most comprehensive description 
available currently of navigational representations in 
the human brain during active navigation. Because the 
VM framework provides a principled method for post-
hoc hypothesis testing, these data can be used to eval-
uate other potential navigation-related representations.
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