
Know Thyself by Knowing Others: Learning Neuron
Identity from Population Context

Vinam Arora
University of Pennsylvania

Philadelphia, PA, USA
vinam@upenn.edu

Divyansha Lachi
University of Pennsylvania

Philadelphia, PA, USA
div11@upenn.edu

Ian J. Knight
University of Pennsylvania

Philadelphia, PA, USA
ijknight@upenn.edu

Mehdi Azabou
Columbia University
New York, NY, USA

ma4766@columbia.edu

Blake Richards
McGill University, Mila
Montréal, QC, Canada

blake.richards@mila.quebec

Cole Hurwitz
Columbia University
New York, NY, USA

ch3676@columbia.edu

Joshua H. Siegle
Allen Institute for Neural Dynamics

Seattle, WA, USA
joshs@alleninstitute.org

Eva L. Dyer
University of Pennsylvania

Philadelphia, PA, USA
eva.dyer@upenn.edu

Abstract

Identifying the functional identity of individual neurons is essential for interpreting
circuit dynamics, yet it remains a major challenge in large-scale in vivo recordings
where anatomical and molecular labels are often unavailable. Here we introduce
NuCLR, a self-supervised framework that learns context-aware representations of
neuron identity by modeling each neuron’s role within the broader population.
NuCLR employs a spatio-temporal transformer that captures both within-neuron
dynamics and across-neuron interactions. It is trained with a sample-wise con-
trastive objective that encourages temporally-stable and discriminative embeddings.
Across multiple open-access datasets, NuCLR outperforms prior methods in both
cell type and brain region classification. Critically, it exhibits strong zero-shot
generalization to entirely new populations, without any retraining or access to
stimulus labels. Furthermore, we demonstrate that our framework scales effec-
tively with data size. Overall, our results demonstrate that modeling population
context is crucial for understanding neuron identity and that rich signal for cell-
typing and neuron localization is present in neural activity alone. Code available at
https://github.com/nerdslab/nuclr.

1 Introduction

Identifying the cell type and anatomical location of individual neurons is critical for understanding
how neural circuits give rise to behavior [6, 35, 44], guiding closed-loop neurotechnologies [16],
and tracking changes during learning or disease progression [5, 33]. While transcriptomic profiling,
molecular labels, or morphological reconstructions can provide cell-type and region information post
hoc [27, 32, 43], these techniques are resource intensive and rarely feasible in chronic or human
recordings [14, 26, 18]. As a result, there is increasing interest in learning representations of neurons
directly from their activity—representations that reflect functional identity and can support in vivo
classification without external labels.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/nerdslab/nuclr

Recent work has shown that features intrinsic to each neuron—such as waveform shape, spike timing,
or interspike intervals—can be used to train models that classify neurons into cell types or brain
regions [28, 4, 42]. However, these approaches typically treat neurons independently, ignoring the
broader population context in which each neuron operates. Yet a neuron’s functional role is inherently
relational, defined not just by its individual activity, but by its coordination and interaction with other
neurons in the circuit. Some methods have attempted to include population-level structure [24, 40],
but only via fixed, low-dimensional summaries of the surrounding activity. Additionally, the design
of these methods prevents generalization to novel populations without self-supervised finetuning,
which can be infeasible for in vivo clinical settings.

To address these limitations, we introduce NuCLR, a self-supervised framework that learns time-
invariant, population-aware representations of individual neurons directly from neural activity. The
core insight of NuCLR is that a neuron’s functional identity can be inferred more reliably when
considered within the context of the surrounding population and across time. To achieve this,
we design a spatiotemporal transformer architecture that operates over the population of neurons
recorded within a window of time, capturing both neuron-specific dynamics and across-neuron
interactions. Each neuron’s activity is treated as a sequence of temporal tokens, and the model uses
attention mechanisms to integrate population-level structure without requiring fixed neuron ordering
or session-specific alignment.

Training is guided by a sample-wise contrastive objective: representations of the same neuron
observed at different times are treated as positives, while those from other neurons in the same
population serve as negatives. This encourages the model to learn embeddings that are stable over
time but discriminative across neurons, even under trial-to-trial variability and incomplete population
observations. We additionally introduce neuron dropout during training, randomly masking neurons
in each batch to promote robustness to changes in population composition.

Importantly, NuCLR is designed to generalize across sessions, animals, and experimental conditions.
Unlike prior approaches that rely on stimulus labels, trial timing, or fixed population summaries,
our method supports zero-shot classification in entirely new populations, enabling robust decoding
of cell type or brain region identity without retraining or access to auxiliary metadata. This makes
NuCLR well-suited for in vivo application where finetuning is infeasible and labeled data is sparse or
unavailable.

Our core contributions are as follows:

• We present NuCLR, a self-supervised learning framework for learning neuron-level representations
directly from raw neural population activity. The model captures population context and supports
zero-shot generalization to unseen populations, without requiring retraining or behavioral labels.

• We show that NuCLR outperforms state-of-the-art supervised and self-supervised baselines on
both cell type and brain region classification tasks. Our evaluations span multiple open-access
datasets and test generalization across both transductive (within-session) and inductive (across-
session/subject) settings.

• We investigate how performance scales with the amount of unlabeled pretraining data and
label availability. Our results show that increasing the size of pretraining data consistently
improves zero-shot decoding accuracy, highlighting the importance of large-scale, unsupervised
representation learning for neuron identity inference.

2 Methods

The goal of this work is to design and train deep learning models that, given the activity of a population
of neurons, produce a latent embedding for each neuron that captures its functional identity (i.e., cell
type, anatomical location, functional tuning) within the population. Our approach is grounded in two
core principles:

1. To correctly identify a neuron’s cell type and anatomical location from activity alone, it is important
not only to consider its individual activity but also the activity of the population, which provides
critical contextual information.

2. The cell type and functional role in a circuit of a neuron remain stable over time, such that embed-
dings learned from population activity in one session should be transferable to new recordings.

2

A

B

Spatiotemporal

Encoder

Spatiotemporal

Encoder

Neuron representations

Sample-wise

Contrastive Loss

Temporal

Attention

Temporal

Attention

Temporal

Attention

Temporal

Attention

Spatial

Attention

Spatio-temporal

Layers

Average

Pooling

Temporal

Layers

Activity

Tokens

Neural Activity

(binned & patched)

Li
ne

ar

Temporal

AttentionLi

ne
ar

Temporal

AttentionLi

ne
ar

DROP
DROP

DROP

Figure 1: Overview of the NuCLR architecture. (A) The model takes as input the activity of a neural
population over a fixed context window. Each neuron’s activity is treated as a patched-token sequence and
encoded across time using temporal transformer blocks. These temporally encoded tokens are then passed
through spatio-temporal transformer layers that attends across neurons to incorporate population context. Finally,
the model outputs one embedding for each neuron in the population. (B) The resulting representations are trained
with a sample-wise contrastive objective, where positive pairs are derived from the same neuron across two
windows of a neural recording, and negatives are drawn from other neurons in the same population. Neurons are
also randomly dropped before encoding to build robustness to partial observations. The produced representations
are encouraged to be stable across time and support downstream neuron-level classification tasks including
zero-shot cell type and brain region decoding.

Designing models that can effectively incorporate rich population context is difficult, though, because
the number of recorded neurons can vary widely across samples—across experiments, individuals,
and sessions. This makes it non-trivial to define a consistent input structure or population-level
operation. As well, recordings typically span experimental conditions, including varying stimuli and
behaviors, which makes it hard for a model to generalize across recording sessions. These sources of
variability can make it challenging to learn general embeddings that transfer to new recordings.

We address these sources of variability through a principled design of both the model architecture
(Section 2.1) and the training objective (Section 2.2) that we describe below.

2.1 Model architecture

We aim to learn a function that maps the collective activity of a neural population to individual
neuron-level embeddings that accurately reflect those neurons cell types and functional roles within
the circuit. To support learning across recordings from different animals—each with a varying number
of neurons—this function must be applicable to populations of arbitrary size. Moreover, we do not
assume any relational bias between neurons, and treat them as a permutation-equivariant set where
all neuron-neuron interactions are modeled. Finally, to enable embeddings that reflect a neuron’s
role within the circuit, the function should allow for information exchange among neurons, allowing

3

each one to contextualize its activity relative to the population. We formalize this as a set-to-set
transformation: {

y1,y2, . . . ,yN

}
= F

({
X1, X2, . . . , XN

})
, (1)

where Xn denotes the spike-train sequence of the n-th neuron, and yn is its corresponding embedding.
We implement F using attention-based transformer blocks (Figure 1A), which naturally support
set-to-set mappings through their permutation-equivariant structure [20].

Given spike trains of a population of N neurons over a temporal context window Tctx, we begin
by binning the spike train1, and partitioning the bins into non-overlapping temporal patches of
length Tpatch. The resulting binned-and-patched activity of n-th neuron is a sequence of vectors
Xn =

(
xn,1,xn,2, . . . ,xn,P

)
, where P = Tctx/Tpatch is the number of patches. Each patch is linearly

projected into a D-dimensional latent space, yielding a token sequence Z
(0)
n =

(
z
(0)
n,1, . . . , z

(0)
n,P

)
for

each neuron.

These latent tokens are first processed independently per neuron using LT layers of self-attention,
which we refer to as temporal transformer layers. Each temporal layer Ttemp operates on the patch
sequence of a single neuron:(

z
(l+1)
n,1 , . . . , z

(l+1)
n,P

)
= Ttemp

((
z
(l)
n,1, . . . , z

(l)
n,P

))
, ∀ n ∈ [N]. (2)

Within these layers, the temporal structure is maintained by the use of rotary position embeddings
[31, 1], which encode the relative timing of each patch without requiring absolute positional indices.

Following the stack of temporal layers, we apply LST layers of spatio-temporal transformer layers,
which alternate between spatial and temporal attention (Figure 1A). In the spatial transformer layer,
tokens at the same time index interact across the population via a shared transformer Tspatial:{

z
(l+1)
1,p , . . . , z

(l+1)
N,p

}
= Tspatial

({
z
(l)
1,p, . . . , z

(l)
N,p

})
∀ p ∈ [P]. (3)

To maintain permutation-invariance across the population, no positional embeddings are used in the
spatial blocks. The temporal blocks in these layers reuse the structure defined in Equation (2).

Finally, to obtain a fixed-dimensional embedding for each neuron, we apply mean pooling over the
temporal axis:

yn =
1

P

P∑
p=1

zfinal
n,p ∀ n ∈ [N]. (4)

The core idea behind this architecture is to first build a temporally informed representation of each
neuron based solely on its own activity. This is accomplished through the initial stack of temporal
transformer layers, which process each neuron’s token sequence independently. The resulting latent
sequence captures the internal dynamics of each neuron over time 2. Next, the spatial transformer
layers allow neurons to exchange information at each timepoint, injecting population-level context
into each neuron’s representation. By alternating spatial and temporal layers, information received
from other neurons at a given timepoint can be distributed to all other timepoints, creating more
informed tokens to query the population again through the next spatial layer.

This architecture can also be readily adapted for calcium imaging data, with minimal modifications
(see Appendix B.3). Additional details are provided in Appendix B.

What is considered a population? For electrophysiology datasets, we treat each probe insertion
as a distinct population—both for the spatial transformer layers and for the contrastive loss, where
negative pairs are limited to neurons recorded on the same insertion (i.e. a single Neuropixels [29]
probe). In early experiments, we observed that allowing interactions across insertions led the model
to cluster neurons based on probe identity rather than biologically meaningful properties. This is
undesirable, as our goal is to produce embeddings that reflect intrinsic neuronal attributes such as

1We use a fixed bin-size of 20ms, and also present a sweep over this value in Appendix A.1. We also
attempted a spike-tokenization based approach, and discuss it in Appendix A.2.

2The initial temporal-only layers, while not essential for performance, contribute to improved computational
efficiency. Please see Appendix A.5 for a longer discussion.

4

brain region and cell type—not experimental artifacts. Restricting spatial interactions to within-
insertion populations also yields computational benefits, since the spatial transformer’s compute cost
scales quadratically with the number of neurons in a population.

2.2 Self-supervised training objective

Our goal is to learn the transformation F in Equation (1) such that it produces neuron-level embed-
dings that capture biologically meaningful properties such as cell type and brain region. Since such
labels are costly and difficult to obtain at scale, we adopt a self-supervised approach. NuCLR leverages
natural spatial and temporal structure in neural population activity and applies a contrastive learning
objective to train F without requiring any explicit labels.

We begin by sampling two Tctx-long windows (or “views”) of neural population activity within
∆Tmax of each other (Figure 1B). Because neuron-level properties such as cell type or brain region
remain stable over time, we can encode this invariance using a contrastive loss that encourages
corresponding neurons across the two views to produce similar representations.

To promote robustness to partial observations and prevent overfitting to specific populations, we apply
neuron dropout independently to each view—randomly removing up to 50% neurons per view. As a
result, the number of neurons present in each view usually differs, and only a subset of neurons in
one view have a corresponding neuron in the other view. We define the indices of neurons presented
in both views as

M = {(n,m) | neuron n in view 1 corresponds to neuron m in view 2}, (5)

which identifies all valid positive pairs for contrastive training.

Let X̃ 1 = {X1
1 , . . . , X

1
N1

} and X̃ 2 = {X2
1 , . . . , X

2
N2

} denote the two augmented views after neuron
dropout. The encoder maps these views into corresponding sets of embeddings:

F(X̃ 1) = {y1
1, . . . ,y

1
N1

} and F(X̃ 2) = {y2
1, . . . ,y

2
N2

}. (6)

Similar to SimCLR [9], these embeddings are passed through a projection head g(·)—a one-hidden-
layer MLP—to obtain projected vectors pv

n = g(yv
n), where v ∈ {1, 2} indexes the view. We then

apply an InfoNCE-based contrastive loss over the set of valid positive pairs M:

L(F , g | X̃ 1, X̃ 2) =
∑

(n,m)∈M

− log
(exp

(
⟨p1

n,p
2
m⟩/τ

)∑
n′ ̸=n

exp
(
⟨p1

n,p
1
n′⟩/τ

)
+

∑
(n,k)/∈M

exp
(
⟨p1

n,p
2
k⟩/τ

))

+ symmetric term for view 2 to 1 (7)

where ⟨·, ·⟩ denote cosine-similarity, and τ is a temperature hyperparameter. This loss encourages
embeddings of the same neuron to be close across views while pushing apart those of different
neurons within the same population. As a result, the model learns neuron-level representations that
are temporally stable and discriminative with respect to their functional roles.

A key distinction from standard SimCLR [9] lies in how we handle the minibatch setting. In
NuCLR, the contrastive loss is computed independently within each view pair. That is, when training
on minibatches containing samples from different animals or sessions, we do not treat neurons
across samples as negatives. This design choice avoids an overabundance of easy negatives in
the denominator of Equation (7), which can degrade contrastive learning performance [15]. As
a result, the number of negatives per sample is limited to the neurons within a single recording
(typically in the hundreds). This motivates our omission of positive-pair similarity terms from the
denominator—following the decoupled contrastive loss (DCL) [41]—which has been shown to
improve performance in regimes with few negatives.

In practice, for a minibatch containing B independently sampled view pairs (potentially from different
recordings), the overall loss is computed as a weighted average across samples:

Lbatch(F , g) =
1∑B

b=1 Nb

B∑
b=1

Nb · L(F , g|X̃ 1
b , X̃ 2

b), (8)

5

where X 1,2
b is the b-th view pair, and Nb is the number of valid positive pairs (i.e., neurons present in

both views after dropout). The inclusion of the Nb terms helps to deal with the imbalance otherwise
created between views with very different numbers of valid positive pairs. We provide additional
details about the model, hyperparameter choices, and other training details in Appendix B.

3 Results

We pre-train our spatio-temporal transformer (Section 2.1) using our self-supervised objective
(Section 2.2) on a variety of open-access neural datasets spanning both electro- and optophysiology,
and then evaluate the resulting neuron representations (averaged across the recordings) on two tasks:
decoding the cell type and brain region of neurons from activity alone.

Evaluation strategies. For each task, we assess performance with a linear classifier across three
generalization settings: (1) Transductive, where the testing populations are seen during self-supervised
pretraining, and partial labels from these populations are used to train the classification head;
(2) Transductive zero-shot, where the test populations are present during pretraining, but no labels
from them are used when training the classifier; and (3) Inductive zero-shot, where the test populations
are entirely unseen during pretraining, and no fine-tuning is performed on the encoder or classifier
before evaluation. For all three settings, we use a linear head on the output embeddings for the
classification probe.

Settings (1) and (2) emulate offline (or post-hoc) analysis of neural recordings, where pretraining
is allowed on the test populations. Setting (1) reflects a scenario where a subset of neurons in a
recording is labeled, and the goal is to infer labels for the rest. Setting (2) captures the case where the
test population is collected but is not labeled, so it used for self-supervised pretraining but cannot
be used to train the classification probe. Setting (3) corresponds to the online use-case, where a
pretrained model must operate on completely new neural populations without any retuning—an
“out-of-the-box” deployment scenario that reflects the intended practical use of neuron-type classifiers.
This final setting is the most stringent and directly tests the model’s ability to generalize in a truely
out-of-the-box fashion.

Baseline methods. We compare NuCLR to several baselines: NeuPRINT [25], a population-context
model that uses summary statistics of neighboring neurons and the recorded behavior; NEMO [42], a
CLIP-style contrastive approach that encodes individual neurons using their activity autocorrelograms
and waveform templates; and LOLCAT [28], a supervised model that focuses on temporal features
of individual neurons and leverages trial structure in the recording. We refer the reader to Appendix E
for further details on our implementation of these methods. Our main metric is the macro F1-score,
which is robust to class imbalance and enables fair comparison across datasets with varying label
distributions 3.

We note that not all methods can be tested across all settings: NeuPRINT learns neuron embeddings
through back-propagation so it cannot be tested inductively without re-training the model. NEMO is
designed only for electrophysiology data so it cannot be applied to Bugeon et al. which consists of
calcium imaging recordings. Finally LOLCAT is a supervised method so the transductive zero-shot
setting is not possible. The performance of baseline methods in such cases will be reported as “N/A”.

3.1 Cell type decoding

To assess the quality of NuCLR’s neuron representations, we evaluate performance on two datasets with
ground-truth cell type annotations. Our primary goal is to test how well NuCLR supports generalization
across animals and sessions, particularly in zero-shot settings where no labeled data from the target
population is used for training.

We first use the Allen Brain Observatory Visual Coding (VC) Neuropixels dataset, which contains
58 sessions from unique mice. Of these, 16 sessions include optotagged inhibitory neurons labeled
as one of 3 subclasses: Pvalb, Sst, or Vip. Since all labeled neurons within a session belong to the

3We attempted to compare with a recent method NeurPIR [40] but were not able to receive code from the
authors to reproduce their method.

6

same subclass, we evaluate performance only in the two zero-shot settings 4. In the transductive
zero-shot setting, all sessions are used during pretraining (including labeled ones), but the decoder is
trained and tested on neurons from non-overlapping subsets of mice. In the more stringent inductive
zero-shot setting, pretraining is restricted to unlabeled sessions only. Further details on our data splits
and validation methodology are provided in Appendix D.

We also evaluate on the Bugeon et. al. [7] spatial transcriptomics dataset, which consists of calcium
imaging recordings from 17 sessions across 4 mice, with cell types labeled as excitatory (E) or
inhibitory (I), and inhibitory neurons further divided into 5 subclasses (Lamp5, Pvalb, Vip, Sncg, Sst).
We test both binary classification (E vs. I) and five-way subclass classification.

As shown in Table 1, NuCLR achieves strong performance across both datasets and consistently
outperforms all baselines in zero-shot settings. On the Allen VC dataset, NuCLR achieves a macro
F1-score of 0.7218 in the transductive zero-shot setting and 0.7200 in the inductive setting—more
than 0.29 F1 higher than the next best method (NEMO) in the inductive case. On the Bugeon dataset,
NuCLR achieves a macro F1 of 0.701 on inductive zero-shot E vs. I classification and 0.444 on the
more challenging five-way subclass task on a held-out subject. These results demonstrate that NuCLR
produces stable, transferable neuron representations that generalize to previously unseen populations
without retraining, enabling accurate zero-shot decoding of cell type identity across diverse datasets
and experimental conditions.

Table 1: Macro F1-score for cell type classification across different generalization settings. Reported as
mean ± std. dev. across 5 training seeds. N/A indicates the method cannot operate in that evaluation setting.

Dataset # Classes Setting NuCLR NeuPRINT NEMO LOLCAT

Allen VC
4

3 Transductive zero-shot 0.7218± 0.0113 0.4020± 0.0238 0.4256± 0.0114 N/A
Inductive zero-shot 0.7200± 0.0267 N/A 0.4194± 0.0099 0.4121± 0.0800

Bugeon et. al. (E vs. I) 2
Transductive 0.8110± 0.0035 0.6658± 0.0090 N/A 0.7205± 0.0127

Transductive zero-shot 0.6826± 0.0293 0.6362± 0.0073 N/A N/A
Inductive zero-shot 0.6738± 0.0563 N/A N/A 0.7463± 0.0095

Bugeon et. al. (Subclass) 5
Transductive 0.6101± 0.0249 0.4952± 0.0222 N/A 0.2900± 0.0388

Transductive zero-shot 0.4014± 0.0268 0.3529± 0.0194 N/A N/A
Inductive zero-shot 0.3938± 0.0556 N/A N/A 0.2418± 0.0078

Please refer to Appendix A.6 for confusion matrices. We present performance comparisons on an
11-class label set of Bugeon et. al. dataset in Appendix A.7. We also compared against POYO+ [2], a
recent large-scale multi-task decoding method that learns neuron-level embeddings, and found that
NuCLR outperforms these embeddings by a strong margin (Appendix A.4).

3.2 Brain region decoding

For brain region identification, we evaluate on two electrophysiological datasets with well-curated
anatomical annotations: the International Brain Laboratory (IBL) Brain-wide Map [13] and the
Steinmetz et. al. 2019 dataset [30]. The IBL dataset comprises recordings from 139 mice across
approximately 700 probe insertions. Following the evaluation setup used by NEMO, we perform
classification across 10 brain regions (Figure 2A). The Steinmetz et. al. dataset includes 39 recordings
from 10 mice, with classification over 4 regions: HPF, MB, TH, and VIS. Zero-shot test populations
correspond to entirely unseen experimental sessions (and thus unseen probe insertions) in the IBL
dataset, and to unseen subjects in the Steinmetz et. al. dataset. Further details on our evaluation
methodology and data folds are provided in Appendix D.

As shown in Table 2, NuCLR achieves the highest macro F1-scores across all evaluation settings.
Notably, in the inductive zero-shot regime, NuCLR outperforms NEMO by 0.15 F1 on the IBL dataset.
As we will see in Section 3.4, this performance gain can be majorly attributed to the presence of the
spatial-attention layers in our model. We can also see in Figure 2A that the embeddings produced by
NuCLR indeed are organized based on the brain region of neurons for the IBL dataset. We provide
embedding visualization analysis for the remaining datasets in Appendix C.

4The transductive setting cannot allow for proper testing in this case, as a “perfect” classifier only has to
infer which of the previously seen sessions does the neuron belong to and the cell-type corresponding to that
session.

7

Table 2: Macro F1-scores for brain region classification across different generalization settings. Reported
as mean ± std. dev. across 5 training seeds. N/A indicates the method cannot operate in that evaluation setting.

Dataset # Classes Setting NuCLR NeuPRINT NEMO LOLCAT

IBL 10
Transductive 0.6686± 0.0034 0.2734± 0.0153 0.4188± 0.0041 0.2851± 0.0008

Transductive zero-shot 0.5343± 0.0115 0.2531± 0.0137 0.3804± 0.0011 N/A
Inductive zero-shot 0.5295± 0.0040 N/A 0.3793± 0.0011 0.2532± 0.0016

Steinmetz et. al. 4
Transductive 0.9594± 0.0027 0.4476± 0.0166 0.6989± 0.0044 0.3205± 0.0055

Transductive zero-shot 0.7338± 0.0226 0.4122± 0.0326 0.6681± 0.0016 N/A
Inductive zero-shot 0.5810± 0.0110 N/A 0.5595± 0.0048 0.3191± 0.0311

3.3 Data scaling and label efficiency

We study how zero-shot performance scales with the amount of unlabeled pretraining data and the
availability of labeled neurons for training the classification probe (Figure 2B). As one would expect,
classification accuracy increases with more labeled data at a fixed pretraining data scale. We simulate
varying supervision levels by subsampling the labeled neurons used to train the linear classifier
(shown as “label ratio”).

Interestingly, we find that for the Allen VC dataset, increasing the number of unlabeled pretraining
sessions leads to a dramatic improvement in cell type classification performance. In fact, in some
cases, doubling the amount of pretraining data is significantly more beneficial than doubling the
number of labeled neurons, as annotated in Figure 2B. For the IBL dataset, we observe similar trends:
brain region decoding performance continues to improve with additional pretraining data, although
the gains are more modest. This is likely due to the already large size of IBL, suggesting that in this
range (250–350 sessions), increasing labeled data may offer greater benefits.

Notably, even with only 25% of the labeled data, NuCLR significantly outperforms all other baselines
with 100% of training examples on both IBL and Allen VC datasets. This demonstrates that our
approach is both label-efficient and highly scalable, capable of leveraging large unlabeled datasets to
improve downstream performance with minimal supervision.

label ratio

IBL Brainwide Map

Num. pretraining

 sessions

362
272
179

2x pretraining

data

2x labeled

data

label ratio

Allen Visual Coding Neuropixels

Num. pretraining

 sessions

42
20
6

te
st

 F
1

sc
or

e

BA

Figure 2: Scaling the amount of pretraining and labeled data. (A) A 2-D UMAP visualization of IBL neurons
colored by brain region. (B) Inductive zero-shot cell type and brain region decoding performance improves with
more pretraining data. In many cases, increasing the amount of unlabeled pretraining data is more effective than
increasing the amount of labeled data.

3.4 Ablations

We performed a series of ablations to evaluate the importance of different architectural and training
components in our model (Table 3). First, removing the spatial attention layers, which enable
population-level interactions across neurons, resulted in the large performance drops on both Allen
VC and IBL datasets. In this ablation, we replaced the spatial layers with temporal layers, maintaining
the parameter count and depth of the model. This highlights the importance of spatial context:
incorporating information from other neurons in the population provides complementary signals to a
neuron’s intrinsic activity, improving the model’s ability to distinguish neuron types and functional
roles.

8

We also evaluated the effect of neuron dropout, a regularization technique that randomly masks a
subset of neurons during training. This component led to a clear improvement on the Allen Visual
Coding dataset but had minimal effect on IBL. We attribute this to dataset scale: the Allen VC training
set contains only 42 unique populations, making it more sensitive to regularization, whereas IBL
includes over 600 populations and is less prone to overfitting.

Table 3: Ablation study on the Allen Visual Coding and IBL datasets. We test the impact of spatial attention
layers and neuron dropout on the Macro-F1 score. Values are reported as mean ± std. dev. across 5 seeds.

Model Variant Allen VC IBL
Full NuCLR 0.7200± 0.0267 0.5295± 0.0040

w/o neuron dropout 0.6181± 0.0252 0.5248± 0.0164

w/o spatial attention layers 0.5550± 0.0796 0.3573± 0.0019

4 Related Work

Cell type classification. Cell type classification seeks to assign neurons to meaningful biological or
functional classes using structural, molecular, or physiological information [23, 43]. Transcriptomic
approaches such as single-cell RNA sequencing [32] and spatial transcriptomics [7] provide high-
resolution cell type labels, but these methods require extensive experimental infrastructure and are
difficult to apply in chronic, large-scale, or in vivo recordings. Morphology-based approaches, such
as self-supervised graph learning on neuronal reconstructions [38], and multimodal in vitro studies
that integrate morphology, electrophysiology, and transcriptomics [11], provide complementary views
of neuronal identity.

A major goal in recent work has been to infer functional cell types directly from large-scale physio-
logical recordings, bypassing the need for extensive molecular and morphological profiling. Early
approaches relied on hand-engineered features derived from electrophysiological signals, such as
extracellular waveforms, autocorrelograms (ACGs), and peri-stimulus histograms as proxies for
cell identity [10]. Subsequent methods incorporated stimulus-driven tuning properties, either by
extracting features from responses to specific stimulus sets or by synthesizing maximally exciting or
most discriminative inputs for classification [8, 37]. Large-scale functional characterization studies
have further revealed substantial neuron-level diversity relevant to defining functional cell types,
including work on tuning organization in primate V4 [39], chromatic feature detectors in retina
[12], feature landscapes in visual cortex [34], and combinatorial codes in mouse V1 [36]. These
studies show that functional cell types can be distinguished not only by static structural or molecular
signatures, but also by patterns of tuning, feature selectivity, and population codes. While effective in
controlled paradigms, stimulus-dependent approaches are inherently tied to the availability of specific
stimuli and may fail to generalize across diverse experimental contexts.

Recent advances have shifted toward learning stimulus-agnostic, neuron-level embeddings that
capture intrinsic activity dynamics. LOLCAT [28] learns trial-level representations and attends to
subsets of trials to build a prediction of cell type over many trials, training in a supervised manner
to classify individual neurons. NEMO [42] uses a CLIP-style contrastive loss between waveform
and auto-correlogram views, while PhysMAP [19] and VAE-based models [4] combine multiple
physiological signals into shared latent spaces.

NeuPRINT [24] and NeurPIR [40] aim to learn time-invariant or intrinsic representations for individ-
ual neurons from population dynamics using reconstruction and VICReg objectives [3], respectively.
However, these methods include population structure only via fixed, low-dimensional summaries of
the surrounding activity.

Channel-level transformer architectures and functional embeddings. Channel-level transformer
architectures and related models such as POYO+ [2], POYO [1], NEDS [45], EIT [21], and STNDT
[17] also generate neuron-level embeddings or tokens, but are not explicitly designed for neuron-level
cell type or brain region readouts. POYO, POYO+, and EIT are trained primarily on supervised
decoding tasks, while NEDS uses both encoding and decoding objectives. STNDT is trained with
a masked modeling objective and uses a combination of neuron-level and population-level tokens
to demonstrate strong performance on behavioral reach decoding tasks. We note that while POYO+

9

provides results for classification of different Cre-lines and brain regions, it is performed at the session
level on averaged latent representations, rather than directly on embeddings of individual neurons.

5 Discussion

In this work, we introduced a self-supervised framework for learning population-aware, temporally-
stable representations of individual neurons from spiking activity alone. By modeling both spatial
and temporal relationships in population activity using a spatio-temporal transformer, and training
with a sample-wise contrastive loss, our method produces biologically-meaningful representations
that are generalizable across sessions and animals, and transferable to downstream decoding tasks.
Importantly, our approach enables zero-shot decoding of cell types and brain regions on novel subjects,
outperforming prior methods that rely on supervised labels or session-specific tuning.

A central insight of our model is that neuron identity (e.g. a neuron’s cell type and/or brain region) is
not only reflected in its intrinsic firing properties, but also in how it interacts with the surrounding
population. Prior models either completely ignore this context or compress it into less informative
low-dimensional features. Our results show that attention-based architectures can effectively leverage
this population context, even when the number and identity of co-recorded neurons varies across
recordings.

Our scaling analysis further demonstrates that the model continues to improve as more unlabeled
data is introduced, and that it performs reliably even with limited labeled data. This data scaling
trend makes NuCLR an ideal candidate for pretraining on multiple datasets and modalities for further
improving the downstream classification performance.

While our approach demonstrates strong generalization across datasets and tasks, it has two notable
limitations. First, when working with electrophysiological data, the model operates on binned neural
activity and does not exploit the full temporal precision available in raw spike times, potentially
discarding fine-grained timing information. Second, it requires modality-specific hyperparameters as
calcium imaging and electrophysiology differ in timescales and signal properties, making it difficult
to train a unified model across modalities.

More broadly, our work demonstrates the feasibility of building generalizable representations of
neural identity from activity alone. This opens new opportunities for functional cell typing in the
absence of ground truth labels, improving data harmonization across labs, and making progress
towards achieving robust neuron classification in experimental or clinical settings. Future directions
include integrating multi-modal inputs, extending to larger-scale populations, and applying these
embeddings in closed-loop or adaptive neurotechnologies.

6 Acknowledgments and Disclosure of Funding

Thanks to Shivashriganesh P. Mahato for insightful discussions and feedback on this manuscript.
This project was supported by NIH award 1R01EB029852-01, NSF award IIS-2146072 as well as
generous gifts from the CIFAR Azrieli Global Scholars Program and The Hypothesis Fund.

References
[1] M. Azabou, V. Arora, V. Ganesh, X. Mao, S. B. Nachimuthu, M. J. Mendelson, B. A. Richards,

M. G. Perich, G. Lajoie, and E. L. Dyer. A unified, scalable framework for neural population
decoding. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[2] M. Azabou, K. X. Pan, V. Arora, I. J. Knight, E. L. Dyer, and B. A. Richards. Multi-session,
multi-task neural decoding from distinct cell-types and brain regions. In The Thirteenth
International Conference on Learning Representations, 2025.

[3] A. Bardes, J. Ponce, and Y. LeCun. VICReg: Variance-invariance-covariance regularization for
self-supervised learning. In International Conference on Learning Representations, 2022.

[4] M. Beau, D. J. Herzfeld, F. Naveros, M. E. Hemelt, F. D’Agostino, M. Oostland, A. Sánchez-
López, Y. Y. Chung, M. Maibach, H. N. Stabb, et al. A deep-learning strategy to identify cell
types across species from high-density extracellular recordings. Cell, 2025.

10

[5] H. Braak, K. del Tredici, C. Schultz, and E. Braak. Vulnerability of select neuronal types to
alzheimer’s disease. Annals of the New York Academy of Sciences, 924(1):53–61, 2000.

[6] S. P. Brown and S. Hestrin. Cell-type identity: a key to unlocking the function of neocortical
circuits. Current opinion in neurobiology, 19(4):415–421, 2009.

[7] S. Bugeon, J. Duffield, M. Dipoppa, A. Ritoux, I. Prankerd, D. Nicoloutsopoulos, D. Orme,
M. Shinn, H. Peng, H. Forrest, A. Viduolyte, C. B. Reddy, Y. Isogai, M. Carandini, and
K. D. Harris. A transcriptomic axis predicts state modulation of cortical interneurons. Nature,
607(7918):330–338, July 2022.

[8] M. F. Burg, T. Zenkel, M. Vystrčilová, J. Oesterle, L. Höfling, K. F. Willeke, J. Lause, S. Müller,
P. G. Fahey, Z. Ding, K. Restivo, S. Sridhar, T. Gollisch, P. Berens, A. S. Tolias, T. Euler,
M. Bethge, and A. S. Ecker. Most discriminative stimuli for functional cell type clustering. In
The Twelfth International Conference on Learning Representations, 2024.

[9] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597–1607.
PmLR, 2020.

[10] S. E. J. de Vries, J. A. Lecoq, M. A. Buice, P. A. Groblewski, G. K. Ocker, M. Oliver, D. Feng,
N. Cain, P. Ledochowitsch, D. Millman, and et al. A large-scale standardized physiological
survey reveals functional organization of the mouse visual cortex. Nature Neuroscience,
23(1):138–151, Dec. 2019.

[11] N. W. Gouwens, S. A. Sorensen, F. Baftizadeh, A. Budzillo, B. R. Lee, T. Jarsky, L. Al-
filer, K. Baker, E. Barkan, K. Berry, and et al. Integrated morphoelectric and transcriptomic
classification of cortical gabaergic cells. Cell, 183(4):935–953.e19, Nov. 2020.

[12] L. Höfling, K. P. Szatko, C. Behrens, Y. Deng, Y. Qiu, D. A. Klindt, Z. Jessen, G. W. Schwartz,
M. Bethge, P. Berens, K. Franke, A. S. Ecker, and T. Euler. A chromatic feature detector in the
retina signals visual context changes. eLife, 13, Oct. 2024.

[13] IBL, B. Benson, J. Benson, D. Birman, N. Bonacchi, M. Carandini, J. A. Catarino, G. A.
Chapuis, A. K. Churchland, Y. Dan, et al. A brain-wide map of neural activity during complex
behaviour. bioRxiv, pages 2023–07, 2023.

[14] A. L. Juavinett, G. Bekheet, and A. K. Churchland. Chronically implanted neuropixels probes
enable high-yield recordings in freely moving mice. Elife, 8:e47188, 2019.

[15] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus. Hard negative mixing
for contrastive learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 21798–21809.
Curran Associates, Inc., 2020.

[16] E. Krook-Magnuson, J. N. Gelinas, I. Soltesz, and G. Buzsáki. Neuroelectronics and biooptics:
closed-loop technologies in neurological disorders. JAMA neurology, 72(7):823–829, 2015.

[17] T. Le and E. Shlizerman. STNDT: Modeling neural population activity with spatiotemporal
transformers. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[18] A. T. Lee, E. F. Chang, M. F. Paredes, and T. J. Nowakowski. Large-scale neurophysiology and
single-cell profiling in human neuroscience. Nature, 630(8017):587–595, 2024.

[19] E. K. Lee, A. E. Gül, G. Heller, A. Lakunina, S. Jaramillo, P. F. Przytycki, and C. Chan-
drasekaran. Physmap-interpretable in vivo neuronal cell type identification using multi-modal
analysis of electrophysiological data. BioRxiv, pages 2024–02, 2024.

[20] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A framework for
attention-based permutation-invariant neural networks. In Proceedings of the 36th International
Conference on Machine Learning, pages 3744–3753, 2019.

11

[21] R. Liu, M. Azabou, M. Dabagia, J. Xiao, and E. L. Dyer. Seeing the forest and the tree: Building
representations of both individual and collective dynamics with transformers. In A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing
Systems, 2022.

[22] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

[23] R. H. Masland. Neuronal cell types. Current Biology, 14(13):R497–R500, 2004.

[24] L. Mi, T. Le, T. He, E. Shlizerman, and U. Sümbül. Learning time-invariant representations
for individual neurons from population dynamics. Advances in Neural Information Processing
Systems, 36, 2023.

[25] L. Mi, T. Le, T. He, E. Shlizerman, and U. Sümbül. Learning time-invariant representations
for individual neurons from population dynamics. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing
Systems, volume 36, pages 46007–46026. Curran Associates, Inc., 2023.

[26] C. P. Mosher, Y. Wei, J. Kamiński, A. Nandi, A. N. Mamelak, C. A. Anastassiou, and
U. Rutishauser. Cellular classes in the human brain revealed in vivo by heartbeat-related
modulation of the extracellular action potential waveform. Cell reports, 30(10):3536–3551,
2020.

[27] J.-F. Poulin, B. Tasic, J. Hjerling-Leffler, J. M. Trimarchi, and R. Awatramani. Disentangling
neural cell diversity using single-cell transcriptomics. Nature neuroscience, 19(9):1131–1141,
2016.

[28] A. Schneider, M. Azabou, L. McDougall-Vigier, D. F. Parks, S. Ensley, K. Bhaskaran-Nair,
T. Nowakowski, E. L. Dyer, and K. B. Hengen. Transcriptomic cell type structures in vivo
neuronal activity across multiple timescales. Cell reports, 42(4), 2023.

[29] N. A. Steinmetz, C. Aydin, A. Lebedeva, M. Okun, M. Pachitariu, M. Bauza, M. Beau, J. Bhagat,
C. Böhm, M. Broux, S. Chen, J. Colonell, et al. Neuropixels 2.0: A miniaturized high-density
probe for stable, long-term brain recordings. Science, 372(6539), Apr. 2021.

[30] N. A. Steinmetz, P. Zatka-Haas, M. Carandini, and K. D. Harris. Distributed coding of choice,
action and engagement across the mouse brain. Nature, 576(7786):266–273, Nov. 2019.

[31] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding, 2023.

[32] B. Tasic, Z. Yao, L. T. Graybuck, K. A. Smith, T. N. Nguyen, D. Bertagnolli, J. Goldy, E. Garren,
M. N. Economo, S. Viswanathan, et al. Shared and distinct transcriptomic cell types across
neocortical areas. Nature, 563(7729):72–78, 2018.

[33] S. Temple. Advancing cell therapy for neurodegenerative diseases. Cell stem cell, 30(5):512–
529, 2023.

[34] R. Tong, R. da Silva, D. Lin, A. Ghosh, J. Wilsenach, E. Cianfarano, P. Bashivan, B. Richards,
and S. Trenholm. The feature landscape of visual cortex. bioRxiv 2023.11.03.565500, Nov.
2023.

[35] R. Tremblay, S. Lee, and B. Rudy. Gabaergic interneurons in the neocortex: from cellular
properties to circuits. Neuron, 91(2):260–292, 2016.

[36] I. Ustyuzhaninov, M. F. Burg, S. A. Cadena, J. Fu, T. Muhammad, K. Ponder, E. Froudarakis,
Z. Ding, M. Bethge, A. S. Tolias, and A. S. Ecker. Digital twin reveals combinatorial code of
non-linear computations in the mouse primary visual cortex. bioRxiv 2022.02.10.479884, Feb.
2022.

[37] E. Y. Walker, F. H. Sinz, E. Cobos, T. Muhammad, E. Froudarakis, P. G. Fahey, A. S. Ecker,
J. Reimer, X. Pitkow, and A. S. Tolias. Inception loops discover what excites neurons most
using deep predictive models. Nature Neuroscience, 22(12):2060–2065, Nov. 2019.

12

[38] M. A. Weis, L. Pede, T. Lüddecke, and A. S. Ecker. Self-supervised graph representation
learning for neuronal morphologies. Transactions on Machine Learning Research, 2023.

[39] K. F. Willeke, K. Restivo, K. Franke, A. F. Nix, S. A. Cadena, T. Shinn, C. Nealley, G. Rodriguez,
S. Patel, A. S. Ecker, F. H. Sinz, and A. S. Tolias. Deep learning-driven characterization
of single cell tuning in primate visual area v4 unveils topological organization. bioRxiv
2023.05.12.540591, May 2023.

[40] W. Wu, C. Liao, Z. Deng, Z. Guo, and J. Wang. Neuron platonic intrinsic representation from
dynamics using contrastive learning. arXiv preprint arXiv:2502.10425, 2025.

[41] C.-H. Yeh, C.-Y. Hong, Y.-C. Hsu, T.-L. Liu, Y. Chen, and Y. LeCun. Decoupled contrastive
learning. In S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, editors, Computer
Vision – ECCV 2022, pages 668–684, Cham, 2022. Springer Nature Switzerland.

[42] H. Yu, H. Lyu, Y. Xu, C. Windolf, E. K. Lee, F. Yang, A. M. Shelton, O. Winter, I. B. Laboratory,
E. L. Dyer, C. Chandrasekaran, N. A. Steinmetz, L. Paninski, and C. L. Hurwitz. In vivo cell-
type and brain region classification via multimodal contrastive learning. In The Thirteenth
International Conference on Learning Representations, 2025.

[43] H. Zeng. What is a cell type and how to define it? Cell, 185(15):2739–2755, 2022.

[44] H. Zeng and J. R. Sanes. Neuronal cell-type classification: challenges, opportunities and the
path forward. Nature Reviews Neuroscience, 18(9):530–546, 2017.

[45] Y. Zhang, Y. Wang, M. Azabou, A. Andre, Z. Wang, H. Lyu, I. B. Laboratory, E. L. Dyer,
L. Paninski, and C. L. Hurwitz. Neural encoding and decoding at scale. In Forty-second
International Conference on Machine Learning, 2025.

13

Appendix

A Additional Results

A.1 Effect of bin-size

The encoder used in this work assumes the neural activity is binned with a finite bin-size, which sets
the minimum time resolution at which the encoder can views the data itself. A fair hypothesis would
be that certain cell-types or neurons from certain brain-regions would be more (or less) identifiable at
a certain bin-size setting.

We test this by performing a sweep over the bin-size, and measuring the class-wise and macro
F1-scores. As we see in Figure 3, some kinds of neurons do indeed prefer certain bin-sizes, however,
the overall effect of this hyperparameter is surprisingly small. In other words, the overall classifier
performance is relatively robust to the choice of bin-size.

Allen Visual Coding Neuropixels IBL Brainwide Map

te
st

 F
1

sc
or

e

bin size bin size

Figure 3: Results of bin-size sweep. Classification performance variation for different classes upon sweeping
the bin-size hyperparameter of the encoder. “Aggregate” refers to the overall macro-F1 score. Error polygons
represents standard error of mean (SEM) measured across 3 pretraining seeds.

A.2 Experiments with a spike-based encoder

We also explored a spike-tokenization strategy inspired by POYO [1]. Unlike POYO, our model
aims to produce neuron-level embeddings at its outputs, and therefore cannot assume or learn neuron
identities through separate “unit embeddings.” Instead, we assign the same learnable embedding to
all neurons, so that each spike token consists only of its timestamp and this shared embedding. Each
neuron’s spike train is processed using perceiver-style cross-attention layers, which are queried by
learnable vectors placed at linearly spaced timestamps—using a spacing equal to the patch length
in our main model. The shared embedding serves only to enable cross-attention over the spike
sequence and does not encode any neuron-specific information. The resulting set of tokens is then
treated as activity tokens (as shown in Figure 1A) and passed through the spatio-temporal transformer
identically to our main architecture. A schematic of this spike-tokenization design is shown in
Figure 4A.

We find that this spike-based encoder performs significantly worse on the Allen VC cell-type classifi-
cation task, while achieving nearly comparable performance on the IBL brain-region classification
task (Table 4). We also note that the training stability and convergence speed is much better in the
binned-and-patched version of the model, as shown in Figure 4B. Alternative implementations of
spike tokenization may yield improved results, however, we leave that for future work.

Table 4: Spike-tokenization ablation. Values are reported as mean ± std. dev. across 5 seeds for the 20ms
binning model (main NuCLR), and 3 seeds for the spike tokenization based model.

Model Variant Allen VC IBL
20ms binning (main NuCLR) 0.7200± 0.0267 0.5295± 0.0040

Spike-tokenization based 0.6665± 0.0167 0.5268± 0.0136

14

training step

va
lid

at
io

n
m

ac
ro

-F
1

training step

tr
ai

ni
ng

 lo
ss

Cross

Attention

t1 t2 t3 t4

Activity tokens
for neuron n

Learnable query tokens  
(same for all neurons)

Spike times for neuron n

A B

Figure 4: Spike-tokenization based encoder. (A) A spike-tokenization layer for the NuCLRencoder. (B)
Pretraining-time metrics comparison for spike-tokenization version and binning version of NuCLR. These plots
are for pretraining on the IBL dataset.

A.3 Probing intermediate layer representations

In all our experiments, we used a 6-layer implementation of NuCLR, with the first two layers being
temporal-only layers followed by two spatio-temporal layers (each having 2 transformer blocks). In
Figure 5 we measure the cell-type and brain-region decoding accuracies of the embeddings obtained
at all 6 layers. The results show a general improvement of classification performance as we go deeper
in the network, with major performance jumps being observed whenever the representation passes
through spatial layers. This is another confirmation of the importance of spatial layers, as shown in
Section 3.4.

Allen Visual Coding Neuropixels IBL Brainwide Map

te
st

 F
1

sc
or

e

layer number layer number

Figure 5: Classification performance of intermediate layer representations. Plots present the classification
performance at the output of all layers in our 6 layer model for a single seed.

A.4 Comparison with POYO+ on Allen VC

POYO+ [2] is a multi-task behavior decoder model that can be trained simultaneously on multiple
recordings. It has been shown to perform well on a Cre-line classification task on the Allen Brain
Observatory calcium imaging dataset, using the session-averaged latent outputs of its encoder. This
is possible since each recording (session) in that dataset has neurons with only one cell-type. This
analysis method used in the POYO+ manuscript is not directly applicable here since we aim to produce
neuron-level embeddings that can identify different types of neurons within a given population.

However, POYO+ learns a “unit embedding” for each neuron, which can, in theory, be used for the
purpose of decoding neuron-level properties. We use this strategy to compare POYO+ with NuCLR.
We train POYO+ on the Allen VC dataset for decoding the following behaviors: Drifting Gratings
Orientation, Drifting Gratings Temporal Frequency, Gabor Orientation, Gabor Position, Natural
Scenes, Running Speed, and Static Gratings Orientation.

Since POYO+ can only be tested under transductive evaluations, we choose the transductive zero-shot
regime for our comparison, and find that NuCLR outperforms the learned unit embeddings of POYO+
by a strong margin (Table 5).

15

Table 5: Comparing POYO+ with NuCLR and other methods. Evaluation done in transductive zero-shot
setting on the Allen VC dataset, with result being macro-F1 scores represented as mean ± std. dev. over 5 seeds.

POYO+ NuCLR NeuPRINT NEMO
0.3521± 0.0233 0.7218± 0.0113 0.3999± 0.0312 0.4256± 0.0114

Pretraining POYO+ required an average of 7.5 hours on 4 NVidia B200s to converge (about 100
epochs), while NuCLR requires only about 1.5 hours on the same hardware. We used the main training
configuration from the example provided by the authors5. We also report the behavior decoding
performance achieved by POYO+ after training across five random seeds:

• Drifting Gratings Orientation Accuracy: 93.07%± 1.76% (Chance: 12.5%)

• Drifting Gratings Temporal Frequency Accuracy: 93.40%± 1.36% (Chance: 20%)

• Gabor Orientation Accuracy: 56.12%± 1.18% (Chance: 25.0%)

• Gabor Position (2D) R2: 0.6888± 0.0487

• Natural Scenes Accuracy: 53.23%± 10.18% (Chance: 0.84%)

• Running Speed R2: 0.7681± 0.0115

• Static Gratings Orientation Accuracy: 75.99%± 0.97% (Chance: 12.5%)

A.5 Ablating temporal-only attention layers

To assess the importance of dedicated temporal-only attention layers, we replace them with an
equivalent number of spatio-temporal layers. Specifically, the first two temporal-only layers in the
original model were substituted with one spatio-temporal layer to maintain a similar model capacity.

As shown in Table 6 the inclusion of dedicated temporal-only layers appears to be a relatively
inconsequential design decision, as performance does not change significantly between the two model
configurations. However, a benefit of retaining the temporal-only layers is computational efficiency.
Given that the number of temporal patches (∼ 10) is typically much smaller than the number of
neurons (∼ 100), a temporal layer has less computationally expensive than a using separate temporal
layers reduces the overall computational complexity, as attention mechanisms scale quadratically
with the number of tokens in a sequence.

Table 6: Ablation study for temporal-only layers. Values are reported as mean ± std. dev. across 5 seeds for
full NuCLR , and 3 seeds for the ablated model.

Model Variant Allen VC IBL
Full NuCLR 0.7200± 0.0267 0.5295± 0.0040

w/o temporal attention layers 0.7184± 0.0124 0.5259± 0.0089

A.6 Confusion matrices

Please refer to Appendix A.6 for confusion matrices. We present the confusion matrices achieved by
NuCLR in Figure 6 for all datasets evaluated in the inductive zero-shot setting.

A.7 Additional results on Bugeon et. al. dataset

We evaluate the representations of NuCLR and baseline models on an 11-class label set of the Bugeon
et. al. dataset. This label set consists of the classes: Lamp5-Chrna7, Lamp5-Npy, Lamp5-Tmem182,
Pvalb-Tac1, Pvalb-Vipr2, Sncg-Pdzrn3, Sncg-Vip, Sst-Reln, Sst-Tac1, Vip-Cp, Vip-Reln. As seen in
Table 7, NuCLR outperforms both NeuPRINT and LOLCAT baselines on this labelling of neurons.

5https://github.com/neuro-galaxy/torch_brain/tree/main/examples/poyo_plus

16

https://github.com/neuro-galaxy/torch_brain/tree/main/examples/poyo_plus

Steinmetz et. al.

IBL Brainwide Map

Allen Visual Coding Bugeon et. al. (E vs. I) Bugeon et. al. (subclass)

Figure 6: Confusion matrices achieved by NuCLR on inductive zero-shot evaluation.

Table 7: Macro F1-score for cell type classification on the 11-class label set of Bugeon et. al. Reported as
mean ± std. dev. across 5 training seeds. N/A indicates the method cannot operate in that evaluation setting.

Dataset # Classes Setting NuCLR NeuPRINT LOLCAT

Bugeon et. al. (11-class) 11
Transductive 0.4056± 0.0425 0.2748± 0.0131 0.1559± 0.0318

Transductive zero-shot 0.2333± 0.0129 0.1825± 0.0158 N/A
Inductive zero-shot 0.1990± 0.0591 N/A 0.1482± 0.0256

B Additional method details

B.1 View-pair sampling

We sample view pairs during pretraining in three steps:

1. First view. The first view is sampled using the RandomFixedWindowSampler found in
torch_brain6. This sampler divides each recording into non-overlapping windows of length
Tctx and randomly samples one window (without replacement throughout an epoch). Across
epochs, a shared random jitter to the window start times at the beginning of every epoch. This
emulates uniform sampling while ensuring complete data coverage each epoch.

2. Second view. The second view is sampled relative to the first. Its start time is drawn uniformly
from a range constrained by the ∆Tmax setting, ensuring the two views come from nearby temporal
contexts.
6https://github.com/neuro-galaxy/torch_brain

17

https://github.com/neuro-galaxy/torch_brain

3. Neuron dropout. To increase robustness to partial observations, we apply neuron dropout
independently to each view. Given a view with N neurons, we first sample the number of neurons
to drop from a uniform distribution: Ndrop ∼ U(0, 0.5N). We then randomly select Ndrop neurons
and exclude them from the view during that training step.

B.2 Model implementation details

Transformer. We use standard scaled-dot-product attention as implemented in xformers7, pre-
normalization using LayerNorm. Our feedforward network (FFN) uses the GEGLU activation
function, with its hidden dimension being 4x the dimension of the tokens (D). In the temporal
transformer layers, we use Rotary Embeddings to incorporate timing information, as described below.

Rotary Time Embeddings. We use rotary time embeddings following the formulation in Section
A.1 of [1], which includes the use of value rotation in addition to query-key rotation. The only
difference in our implementation lies in the choice of temporal scaling parameters. Because our input
tokens are uniformly spaced with a stride of Tpatch, we set Tmin = Tpatch and Tmax = 8× Tctx.

B.3 Adapting to Calcium Imaging Data

To adapt NuCLR’s spatio-temporal transformer to calcium imaging data, we replace the binning-and-
patching step used for spike trains with a temporal patching operation applied directly to the calcium
fluorescence time series (i.e. the ∆F/F signal). This modification affects only the input stage of
the model; the architecture and training procedure remain unchanged. Unlike electrophysiology,
calcium imaging does not involve physical probes or insertions. Therefore, we treat all simultaneously
recorded neurons within a session as a single population—both for the spatial transformer layers and
for contrastive loss computation.

B.4 Hyperparameters

We use the AdamW [22] optimizer with a linear learning rate warm-up over the first epoch, followed
by cosine decay until end of training. All relevant hyperparameters for training NuCLR are listed in
Table 8. These values were mainly selected via manual line searches on the IBL development set
(for ephys data, Appendix D.2) and the Bugeon et al. development set (for calcium imaging data,
Appendix D.4). Across all datsets, we pretrain the model for 50,000 steps and use the bfloat16
number format throughout. Pretraining takes approximately 3 hours on a machine with 4 × NVidia
H100 GPUs.

Table 8: Key hyperparameters for NuCLR.

Parameter Value for Ephys. Value for Ca+2 (diff. only)

Tctx 10s 30s
Tpatch 1s
∆Tmax 30s 240s
Bin size 20ms N/A

LT 2
LST 2
D 256
Num. attention heads 4

Linear dropout 0.2
Attention dropout 0.0
Max. neuron dropout 50%

Num. training steps 50,000
Batch size 128 16
Max learning rate 5× 10−4 1.25× 10−4

Weight decay 0.01 (default)
β1 0.9 (default)
β2 0.999 (default)

7https://github.com/facebookresearch/xformers

18

https://github.com/facebookresearch/xformers

Allen Visual Coding

Bugeon et. al.

Steinmetz et. al.

Cell-Type

Subclass Subject ID

Recording IDSubject ID

Brain-Region

Excitatory/Inhibitory

Brain Region

Figure 7: UMAP visualizations of NuCLR’s embeddings colored by various properties.

C Embedding Visualizations

We present UMAP-based visualizations of NuCLR’s output representations in Figure 7. For the Allen
VC dataset, which includes a large number of subjects, the embeddings exhibit clear density modes
that align most strongly with brain-region information.

In contrast, the Bugeon et al. and Steinmetz et al. datasets are relatively small, containing only 4
and 10 subjects respectively, with limited total number of recordings. For these datasets, NuCLR’s
embeddings cluster primarily by subject or session identity. However, within these clusters, we still
observe meaningful density modes corresponding to cell-type and brain-region structure. Embeddings
for the IBL dataset, shown in Figure 2A, reveal strong region-based organization without noticeable
clustering by subject or session.

The subject- and session-specific clustering observed in smaller datasets (Bugeon et al. and Steinmetz
et al.) may hinder data-driven discovery, as it suggests entanglement with recording-specific factors.
While this effect appears only in small datasets, mitigating it remains an important direction for future
work.

19

D Details on datasets and evaluation methodology

This section contains description of each dataset, and details our train-test splits for all evaluation
settings. Additionally, our code-base8 includes all preprocessing, split preparation, and evaluation
scripts.

D.1 Allen Visual Coding

The Allen Visual Coding (VC) dataset consists of 58 Neuropixels recordings, each from a unique
mouse. Each recording spans approximately two hours, during which various visual stimuli are pre-
sented. Of these recordings, 16 contain optotagged neurons,9 with each labeled recording containing
neurons from only one of the three inhibitory cell types: Pvalb, Vip, or Sst. Since reliable cell-type
labels are only available for neurons in the visual cortex, we restrict all models—including NuCLR
and baselines—to use only neurons from the VIS region during pretraining.

For zero-shot classifier evaluation, we follow a leave-one-subject-out strategy. Specifically, there are
16 test folds corresponding to the 16 labeled subjects. In each fold, one subject is held out for testing,
and the remaining 15 are used for training. Within the training set, we perform 4-fold cross-validation
(subject-wise) to select the best training epoch. The final test score is reported from a classifier trained
on all 15 subjects using the selected epoch. We did not test classifier performance on this dataset in
the transductive setting as a “perfect” classifier only has to infer which of the previously seen sessions
does the neuron belong to, and the cell-type corresponding to that session.

D.2 IBL Brainwide Map

The IBL Brainwide Map dataset consists of 439 recordings from 139 unique mice, with each recording
performed using one or two Neuropixels insertions. While performing zero-shot evaluations (both
inductive and transductive), we construct train–test splits at the recording level, ensuring that no
co-recorded neuronal populations appear in both sets. In total, 93 recordings are designated for the
test set, and the remaining 346 are used for training and validation. Of the training set, 91 recordings
are used as a development set for tuning hyperparameters specific to electrophysiology data. During
classification, these same 91 recordings also serve as a validation set for selecting the best training
epoch. Final performance metrics are reported using a model trained on all 346 training recordings,
evaluated on the held-out test set.

For non-zero-shot evaluation, we create a neuron-wise stratified test-train split with a test size of 20%.
The validation set for finding the best epoch is created from the train fold with a size of 20%.

D.3 Steinmetz et al.

The Steinmetz et al. dataset consists of 39 Neuropixels recordings from 10 unique mice, with each
recording comprising 2 or 3 probe insertions. For non-zero-shot evaluation, we create train–test splits
following the same procedure as described for the IBL dataset (Appendix D.2).

For transductive zero-shot evaluation, we use a 10-fold leave-one-subject-out strategy. In each fold,
one subject is held out for testing, and the remaining nine are used for training. We select the best
training epoch by performing a stratified 80/20 train–validation split within the training set. For
inductive zero-shot evaluation, we hold out 3 subjects for testing and pretrain on the remaining 7. To
select the best classifier epoch, we perform 4-fold subject-wise cross-validation within the training
subjects.

D.4 Bugeon et al.

The Bugeon et al. dataset contains 17 spatial transcriptomic calcium imaging recordings from 4
unique mice. We train on all stimulus-specific sub-recordings within these sessions. Since this is
the only optophysiology dataset in our evaluation, we adjusted several hyperparameters specifically
for calcium activity. During development, we held out 4 recordings—one from each subject—as a

8https://github.com/nerdslab/nuclr
9We use the same set of labeled neurons as in the original LOLCAT publication [28].

20

https://github.com/nerdslab/nuclr

validation set for tuning model hyperparameters. These recordings are never included in the test set
when reporting final performance.

For non-zero-shot evaluation, we create neuron-wise train–test splits following the same protocol
as in the IBL dataset (Appendix D.2). For transductive zero-shot evaluation, we adopt a 4-fold
leave-one-subject-out strategy. In each fold, we perform 3-fold subject-wise cross-validation within
the training subjects to select the best epoch. For inductive zero-shot evaluation, we hold out one
subject (SB028) for testing and pretrain on the remaining three. As in the transductive case, we
perform 3-fold subject-wise cross-validation on the training set to select the best model epoch.

E Implementation details for baseline models

E.1 NeuPRINT

Calcium Imaging (Bugeon et al.). For the Bugeon dataset, we used the publicly available Ne-
uPRINT implementation and followed a transductive evaluation setup consistent with the original
codebase. The model was first pretrained on the full dataset. For evaluation, the embedding table was
reinitialized and optimized again using the self-supervised loss, while keeping the backbone encoder
frozen. The resulting neuron embeddings were then used for downstream classification.

Electrophysiology Datasets. For electrophysiology datasets, we modified NeuPRINT’s training
loop and epoch structure to accommodate the larger scale and greater diversity of these datasets. In
the original implementation, there is no true notion of an epoch—batches are drawn from individual
sessions without ensuring full dataset coverage, and the sampling strategy is manually biased toward
neurons with labeled cell types. This setup does not translate well to larger datasets such as Steinmetz
et. al., IBL, and Allen VC.

We instead adopted the standard definition of an epoch, which is a full pass through all training data,
and trained for 300 epochs. We also replaced the session-specific sampling strategy in the original
implementation with uniform sampling across all sessions to ensure unbiased data coverage.

Furthermore, because these electrophysiology datasets are substantially larger than Bugeon et al.
we did not re-initialize and relearn the embedding table during evaluation. The original NeuPRINT
protocol is tailored for the Bugeon et al. dataset, where such re-initialization is computationally
feasible. However, for large-scale datasets like Steinmetz, IBL, and Allen VC, this procedure becomes
too computationally expensive. Therefore, we adopted a more scalable and simpler protocol that just
uses learned embeddings from pretraining for downstream evaluation.

All hyperparameters were retained from the original NeuPRINT setup, except for the learning rate,
which we set to 1× 10−2, and the backward context window, which was set to 10.

NeuPRINT relies on behavior features being provided along with the mean and standard deviations for
the population activity. The behavioral features used for electrophysiology dataset were as follows:

• Steinmetz et al.: face motion, pupil area, and wheel velocity

• IBL: wheel velocity

• Allen VC: running speed

E.2 NEMO

We evaluated NEMO using the official implementation provided by the original authors upon request.
When adapting the method to new datasets, we retained all hyperparameters from the original
paper, with the exception of the waveform template dimensionality, which we adjusted to match the
characteristics of each dataset.

E.3 LOLCAT

We evaluated LOLCAT using the official implementation provided by the original authors upon
request. For all experiments (unless otherwise stated below), we used a batch size of 64, a learning
rate of 1× 10−3, a weight decay of 1× 10−5, and a dropout rate of 0.5. The MLP hidden dimensions

21

were set to [64, 32, 16], and 4 attention heads were used. The snippet dropout rate during training
was 0.45. We trained the models for 300 epochs with the optimizer outlined in the paper. These
default parameters were chosen based on manual exploration of the “reduced” hyperparameter search
range and explicit prescriptions in the LOLCAT paper.

• Allen VC: We used the same final hyperparameter selection as the paper with new results on our
split of the data.

• IBL: We used the same hyperparameters as Allen VC.
• Steinmetz transductive: Batch size was increased to 1024, and the epochs were set to 1000.
• Steinmetz inductive: The minimum factor was set to 0.01, and we initialized the classes

undersampling factors to [8 (HPF), 8 (MB), 0.01 (TH), 0.01 (VIS)].
• Bugeon subclass: The classes undersampling factors were initialized to [0.01 (Lamp5), 0.01

(Pvalb), 8 (Sncg), 8 (Sst), 8 (Vip)] and the minimum factor to 0.01.
• Bugeon E vs. I: Class undersampling factors were initialized to [0.01 (E), 8 (I)] and the minimum

factor to 0.01.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims made have been confirmed in the results section Section 3, to the
best of our ability.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

23

Justification: No new theoretical results have been introduced in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described our model architecture and training methodology clearly
and fully in Section 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24

Answer: [Yes]
Justification: We will release our code along with rest of the supplementary material for this
submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe all the training and hyperparamter details in Appendix B, and
describe datasets and train-test split methodologies in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We use SEM as our error reporting method, and mention it in all our results
tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details of computational resources required for reproducing
the our experimets in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read through the guidelines and confirm that our research conforms
to those guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is aimed at developing a fundamental tool for neuroscience research,
advancing the field. While many potential and futuristic downstream societal consequences
of advancing the field of neuroscience, we feel these do not need to be specifically highlighted
in this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is about the design of a neuroscience research tool, which do not
pose any such risks directly.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The code provided in supplementary material is original work, and does not
use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Attached code is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No studies with human subjects were involved in this research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No studies with human subjects were conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used only for writing, editing, or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methods
	Model architecture
	Self-supervised training objective

	Results
	Cell type decoding
	Brain region decoding
	Data scaling and label efficiency
	Ablations

	Related Work
	Discussion
	Acknowledgments and Disclosure of Funding
	Additional Results
	Effect of bin-size
	Experiments with a spike-based encoder
	Probing intermediate layer representations
	Comparison with POYO+ on Allen VC
	Ablating temporal-only attention layers
	Confusion matrices
	Additional results on Bugeon et. al. dataset

	Additional method details
	View-pair sampling
	Model implementation details
	Adapting to Calcium Imaging Data
	Hyperparameters

	Embedding Visualizations
	Details on datasets and evaluation methodology
	Allen Visual Coding
	IBL Brainwide Map
	Steinmetz et al.
	Bugeon et al.

	Implementation details for baseline models
	NeuPRINT
	NEMO
	LOLCAT

