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Abstract

This work studies concept-based interpretability in the context of multi-agent
learning. Unlike supervised learning, where there have been efforts to understand a
model’s decisions, multi-agent interpretability remains under-investigated. This
is in part due to the increased complexity of the multi-agent setting—interpreting
the decisions of multiple agents over time is combinatorially more complex than
understanding individual, static decisions—but is also a reflection of the limited
availability of tools for understanding multi-agent behavior. Interactions between
agents, and coordination generally, remain difficult to gauge in MARL. In this
work, we propose Concept Bottleneck Policies (CBPs) as a method for learning
intrinsically interpretable, concept-based policies with MARL. We demonstrate that,
by conditioning each agent’s action on a set of human-understandable concepts,
our method enables post-hoc behavioral analysis via concept intervention that
is infeasible with standard policy architectures. Experiments show that concept
interventions over CBPs reliably detect when agents have learned to coordinate
with each other in environments that do not demand coordination, and detect those
environments in which coordination is required. Moreover, we find evidence that
CBPs can detect coordination failures (such as lazy agents) and expose the low-
level inter-agent information that underpins emergent coordination. Finally, we
demonstrate that our approach matches the performance of standard, non-concept-
based policies; thereby achieving interpretability without sacrificing performance.

1 Introduction

Multi-agent learning techniques continue to play a crucial role in the development of scalable and
generally-capable Al systems. In addition to well-known successes in board and card games (e.g.,
Go [1], Chess and Shogi [2], Poker [3], Stratego [4], Hanabi [5]) and massively-multiplayer online
games (e.g., StarCraft [6], Dota2 [7]), multi-agent learning has enabled agents to develop a range of
coordination capabilities, such as navigating game-theoretic social dilemmas []], balancing low-level
control with high-level strategy in football [9], allocating roles and conventions [10]; and even
developing socioeconomic behaviors such as bartering [[11]] and tax policy design [[12]].

For all its success, multi-agent learning still lacks in a critical area: interpretability. Understanding
emergent multi-agent behavior is challenging—for one, it is difficult to decipher the nature of a
learned coordination strategy (or whether agents have learned to coordinate at all)—and these issues
are only compounded by the inherent opacity of neural networks, which state of the art multi-
agent methods rely upon heavily. For this reason, recent work has shifted focus from traditional
measures of performance (reward, evaluations against human experts, etc) to better understanding
emergent behaviors [13]]. Related methods perform behavioral analysis in a post-hoc manner, either by
visualizing trajectories [14], quantifying basic statistics related to agent behavior [9], or measuring the
predictability of game-related concepts from a network’s activations [[15]. In the supervised learning
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Figure 1: Concept bottleneck models force neural network classifiers to make decisions through
an intermediate set of human-understandable concepts. Concept Bottleneck Policies increase the
interpretability of emergent multi-agent behavior in a similar manner—distilling agent strategies into
concepts—yielding interpretable, concept-based policies for MARL. CBPs also enable post-hoc be-
havioral analysis via concept intervention, which reveals the inter-agent factors driving coordination.

literature, an alternative to post-hoc analysis is intrinsic interpretability, in which a model’s decisions
incorporate human-understandable concepts directly, rather than extracting them from models after
training. Intrinsically interpretable models can be preferable when concept-based explanations cannot
be learned automatically, or if extracted concepts are unreliable [[16]. Of particular relevance is the
work of Koh et al. [17], which showed that it is possible to train an end-to-end neural network that is
“bottlenecked" by human-understandable concepts, enabling intrinsic, concept-based interpretability
while maintaining high performance in image classification tasks.

In this work, we bridge the multi-agent learning and concept-based interpretability domains by
introducing Concept Bottleneck Policies (CBPs)—a class of intrinsically-interpretable, concept-
based models for MARL. CBPs force agents to make decisions by first predicting an intermediate
set of human-understandable concepts, then using those concepts to select actions. CBPs increase
interpretability while also targeting important facets of the multi-agent learning problem. For example,
if a subset of the concepts available to each agent correspond to other agents in the environment,
learning through a concept bottleneck incentivizes agents to model each other, which has been shown
in prior work to benefit performance 18} [19]. Moreover, by intervening on concepts related to other
agents, we can obtain in-depth analysis of emergent multi-agent behaviors, and specifically learned
coordination, that is much more difficult to attain from reward or qualitative analysis alone.

In our experiments, we show that concept intervention reveals key information underlying learned
multi-agent coordination. Specifically, concept interventions can distinguish agents who have learned
to coordinate from those that act independently, expose the distinct inter-agent factors that drive
coordination between agents (when it emerges), and even diagnose common multi-agent failure modes
such as lazy agents. Finally, beyond behavioral analysis, we demonstrate experimentally that Concept
Bottleneck Policies perform comparably to non-concept based policies on difficult coordination tasks;
meaning that CBPs achieve concept-based interpretability without sacrifing performance.

In sum, our contributions are as follows: (i) We introduce Concept Bottleneck Policies as an
interpretable, concept-based learning architecture for MARL; (ii) We highlight the role CBPs can play
in better understanding multi-agent behavior (and specifically coordination); (iii) We show that CBPs
can learn effective policies that match the performance of non-concept-based network architectures.

2 Related Work

Our work lies at the intersection of interpretability and MARL. In interpretability, computer vision
works have used saliency maps to help provide local explanations (at the pixel level) for model
predictions [20+23]]. Interpretability using grounded concepts has been previously explored to
provide more meaningful, human-understandable explanations of model decisions [24-30]. As
described earlier, concept bottleneck models [17] constrain the networks through such grounded
concepts to enable direct interpretability of the model itself.



RL interpretability techniques have included those that either directly increase agents’ model trans-
parency [31}132], where we take transparency loosely to mean the ability of a human observer to
understand the underlying decision-making process of the agent; or analyze agent behaviors from a
post-hoc perspective [13} 15, 133H38]]. Approaches that directly increase transparency include those
that use model compression in combination with decision trees to yield more interpretable agent
policies [31], or rely upon causal decision trees with limited depth to explore causality of agent
decisions [32], However, these approaches have not yet been extended to MARL settings involving
complex observations (e.g., images), where function approximators are typically needed to solve
underlying tasks. Post-hoc RL interpretability methods have used computer vision-based saliency
techniques to better attribute decisions to image observation regions [33], highlighting states that lead
to major differences in agent behaviors [34], and summarize key agent behaviors using measures
such as action uncertainty [35]. Increasingly, techniques making use of natural language have been
used to enable human understanding of agents through instructions [39] or policy explanations [40].

Interpretability of MARL agents has received limited attention in prior works, with primary investi-
gations gauging agents’ internal representations by making predictions about future outcomes [36],
visualizing latent clusterings of agents’ neural activation vectors [37,41]], visualizing emergent role
assignments [42], and most recently using offline behavioral analysis to learn behavioral spaces
over agents [13]. Recent works have also conducted analysis of decision-making in two-player
games such as Chess [15]], and Hex [38]. In contrast to our work, these approaches focus on post-hoc
interpretability, whereas ours makes agent decisions directly transparent, thus enabling causal analysis
of their decisions (as illustrated in our experiments).

3 Background

Partially-Observable Markov Games A partially-observable Markov game [43] of [NV agents is
defined by the tuple M = (S, A4, T, R,Q, O) where S, 2, and A define the game’s global state-
space, joint observation-space, and joint action-space, respectively. In each state, each agent ¢ selects
an action a; € A;, yielding a joint action @ = (a1, ..., ay) for all agents. Following action selection,
the environment transitions to a new state according to the transition function 7 : S x A — S,
produces new observations for each agent according to the observation function O : § x A — €,
and emits a reward to each agent defined by the reward function R : S x A — R¥. The action
selection of each agent is dictated by a policy 7; : ; — A; and the collection of all individual
policies w = (1, ..., m ) is referred to as the joint policy.

Concept Bottleneck Models Concept bottleneck models refer to a class of intrinsically-
interpretable neural network architectures for supervised learning [[17]. The network makes predic-
tions by first estimating a set of human-understandable concepts, then producing an output based on
those concept estimates—i.e. the network is “bottlenecked" by concepts. Formally, given a dataset
{(z), y@), c(j))}?:1 consisting of inputs z € R?, outputs y € R, and human-understandable

concepts ¢ € R¥ (where k is the number of unique concepts), a concept bottleneck model learns two
mappings — f : R? — R¥ from input-space to concept-space, and g : R¥ — R from concept-space to
output-space. The model can then make predictions § = f(g(x)) as a composition of those mappings.

Figure |1a highlights the increased interpretability achieved by concept bottlenecks in the context
of the arthritis classification task posed by Koh et al. [17]]. Unlike standard networks that learn
an uninterpretable mapping from MRI images to arthritis severity labels, the concept bottleneck’s
output is conditioned on an intermediate set of human-understandable concepts. Since these concepts
correspond to real-world features—e.g., the presence of bone spursin the arthritis task—they can be
used by human observers to understand model failures or misclassifications. Moreover, because the
model’s predictions are conditioning on these concepts, we can manually change the model’s output
(without retraining or fine-tuning) by intervening on its concept estimates.

4 Concept Bottleneck Policies for MARL

In this section, we introduce Concept Bottleneck Policies as an intrinsically interpretable, concept-
based policy learning method for MARL. First, we bridge concept-based interpretability and MARL
by extending the Markov game formalism to include the components necessary for concept-based



learning. Then, we introduce the concept bottleneck architecture and show how it can be learned
within any existing policy learning scheme. Finally, we demonstrate our method’s potential as
a tool for interpreting emergent multi-agent behavior. In particular, we introduce a behavioral
analysis technique using concept intervention and show that, using this technique, we can both detect
successful coordination and expose coordination failures (e.g., lazy agents).

4.1 Concept-based Markov Games

To support concept learning, we extend the definition of Markov games from Section 3]in two impor-
tant ways. First, we assume that, in addition to its state space S, the environment maintains an inter-
pretable concept-state space C, where each concept-state c€C is a vector of human-understandable
concepts that are extracted from the environment and describe key features of the environment, such
as the position of agents or objects (we note that this assumption holds in popular RL settings like
Atari [44]] and the multi-agent games we study here). Second, though agents never observe all of
c directly (only the concepts related to themselves), we allow them to generate estimates ¢ of the
environment’s underlying concept state. Thus, at each time-step ¢, the environment is described
by both its state s; and concept-state c;, and each agent i produces both an action a; ; and a set of
concept estimates c; ;.

4.2 Concept Bottleneck Architecture

In principle, there are a number of ways in which an agent’s concept estimates ¢ can be modeled
within the RL framework. Inspired by concept bottleneck models, we are most interested in examining
policy architectures in which an agent’s action is conditioned entirely on it’s own concept estimates.
To this end, we factorize an agent 4’s policy 7; (a;|0;) into two sub-policies: 7" : O; — C; mapping
observations o; to concept estimates &;; and 72" : C; — A; mapping concept estimates é&; to actions
a;. The composition of 7$°* and 72 yields a standard policy mapping observations to actions:
miailog) = m (m™ (-|os))

More concretely, given an observation o; ; for some agent 7 and time-step ¢, the concept bottleneck first
produces concept estimates &; ;~m$°", then uses those estimates alone to select an action a; ;~m3".
Importantly, structuring the policy network such that actions are conditioned on concept estimates
creates an intrinsically interpretable policy—the policy is forced to provide a human-understandable
rendering of the factors driving its own decision making. Figure [Ib]shows the proposed architecture.

Importantly, é can be thought of as an agent’s beliefs about the underlying game state, which has
implications for behavioral analysis. For example, if two agents ¢ and j collide while moving in
the environment, we can examine both &; ; and €; ; to identify which of the two agents incorrectly
modeled the location its teammate.

4.3 Concept Bottleneck Learning

Under the concept bottleneck framing, learning a strong but interpretable policy requires both (i)
learning how to predict concepts accurately, and (ii) learning how to select actions from those concepts
effectively. To achieve the former, we introduce the following concept loss:

Lo(e,&) =Y Lo,(cj,é5) e)
J

where each component L¢; measures the concept prediction error between the j’th predicted concept
and its concept label. Note that the definition of each L¢; is dictated by the values that both ¢; and ¢;
take on—mean-squared error if ¢; is a scalar, log loss if ¢; is binary, cross entropy if ¢; is categorical,
etc. In practice, each pair of concepts ¢ (from the environment’s concept state) and concept estimates
¢ are stored in an agent’s replay buffer during training alongside standard (s, a, r, s’) tuples.

To learn a policy from concept estimates, we can attach Equation (I) as an auxiliary loss to the
reward-based loss defined by any base RL algorithm (e.g., PPO [45], TD3 [46]], etc). In general, if
Lgy is a generic reward-based loss defined by some RL algorithm, we can construct the following
joint concept bottleneck policy (CBP) objective:

Lepp = LrL + AL, ()

where the concept loss coefficient A weights the relative importance of concept prediction. Later, we
examine \’s impact on training and, in particular, the learned behavior of a multi-agent team.



4.4 Behavioral Analysis via Concept Intervention

In addition to its intrinsic interpretability, a key feature of our method is its support of test-time
intervention analysis. Once a CBP is trained, we can freeze the policy network, roll out a trajectory,
and at each time-step replace an individual concept estimate (e.g., the j-th concept estimate ¢;) with
a replacement value ¢;. In the simplest case, we can mask out the estimate completely by setting
¢; = 0. We can then observe the effect, if any, that ¢; has on the agent’s behavior.

Such test-time intervention is a powerful tool for analyzing multi-agent behavior. In multi-agent
settings, it is often difficult to determine from reward alone if agents have learned to coordinate
or if they are simply acting independently [37]]. Using concept intervention, we propose a direct
test for coordination. For an agent ¢ to coordinate with another agent j, ¢ must condition its policy
on some information about j (either j’s position, orientation, etc). It follows that if the agents are
coordinating and we mask out ¢’s concept estimates pertaining to j, we should observe a decrease
in team performance. Conversely, if we do not see performance degrade, then ¢ and j must not be
explicitly coordinating (i.e. directly using signals from each other). By masking out the concepts
pertaining to an agent’s teammates, therefore, we can identify whether or not agents are coordinating.

Concept bottlenecks also provide a means for detecting common MARL failures, such as lazy agents.
Here we define a lazy agent as one that does not contribute to increasing team reward through its own
actions. For an agent ¢ to contribute, it must therefore be conditioning its policy on information about
its own interactions with the environment. We propose to define a lazy agent ¢ as one that has learned
a sub-optimal policy that does not encode such information, leading to unproductive behavior. We
can therefore test for the degree of laziness of an agent by masking out its concept estimates about
itself and examining the extent to which team performance degrades as a result. If team performance
remains the same with agent 7 thus incapacitated, we conclude that : is a lazy agent.

S Experiments

In this section, we evaluate the following hypotheses pertaining to Concept Bottleneck Policies:

H1: Identifying Emergent Coordination Can post-hoc concept intervention identify the level of
coordination required by an environment? To what extent can it identify emergent coordination
from policies that act independently? Moreover, if agents are coordinating, can intervention expose
the specific inter-agent features that underlie that coordination? H2: Identifying Lazy Agents Can
post-hoc concept intervention identify common failure modes such as lazy agents and, in general,
measure an agent’s contribution to the larger multi-agent system? H3: Bottleneck Performance
Can CBPs match the performance of traditional, non-concept-based neural network policies; thereby
achieving intrinsic interpretability without sacrificing performance?

Environment We use Melting Pot Collaborative Cooking as an experimental domain [10]. In
Collaborative Cooking, agents must work together to cook and deliver soups in a kitchen-like
environment. Solving the cooking task requires sophisticated coordination, involving both task
partitioning—splitting a recipe into parts—and role assignment—distributing sub-tasks among agents.
For these reasons, Collaborative Cooking is investigated in a number of prior works [47-H49]] and is
emerging as a strong benchmark for multi-agent learning. We consider four variants of the game for
N =2 agents. Each environment supports the following agent- and object-oriented concepts: (i) agent
position; (ii) agent orientation; (iii) if an agent has a tomato, dish or soup; (iv) cooking pot position;
(v) soup cooking progress; (vi) cooking pot tomato count; (vii) tomato position; (viii) dish position.
Further details are provided in Appendix [Al

Training and architecture For each of our experiments, we use PPO [45] as a backbone algo-
rithm, which has been shown to be a state-of-the-art multi-agent algorithm [50, [51]. We augment
the PPO objective with the concept loss defined in Equation (I) (we refer to this combination as
ConceptPPO moving forward). Each agent’s policy network consists of CNN and MLP encoders
(for image and position/orientation inputs, respectively), followed by a two-layer MLP and a linear
mapping that compresses the encoded inputs into concept predictions. Concept estimates are fed
through a two-layer MLP, which produces the final action. ReLU activation is used throughout
(except in the bottleneck layer itself). As a baseline, we use vanilla PPO (no concept loss) with
the same architecture. We train 10 individual policies across each of the following values of A:
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Figure 2: Does the environment require coordination? Averaging the impact of concept interven-
tion over all policies trained in an environment reveals the extent to which coordination is required by
that environment. In the impassable environment, agents cannot solve the task without coordinating,
leading to consistent performance drops under intervention. In the basic environment, policies that
coordinate (and therefore fail under intervention) are averaged with policies that act independently
(and are uninterrupted by intervention), so the overall impact of intervention is less severe.

{0.01,0.1,0.25,0.5,0.75,1.0.2.0,5.0,10.0}. Additional training details, including hyperparameter
sweeps, are provided in Appendix [AT]

5.1 H1: Identifying Emergent Coordination

We evaluate the efficacy of Concept Bottleneck Policies as a mechanism for understanding emergent
multi-agent behavior using the post-hoc intervention technique introduced in Section [4.4]

Environmental Coordination Demands For each Concept PPO and PPO policy trained in our
cooking environments, we mask out, for each agent, all of the concepts related to that agent’s
teammate. We measure the average cumulative reward attained over 100 trajectories each. The results
of this intervention test are shown in Fig.[2] The level of coordination required by the environment is
apparent from the severity of performance degradation that results from intervening on each agent’s
estimates of its teammate. Most notable is the contrast between the basic environment (blue) and the
impassable environment (purple). The impassable environment requires strict coordination—agents
can only access a subset of ingredients and must pass items to each other across the center divider. In
this case, intervention performance drops to near-zero across all policies. In the basic environment,
on the other hand, there are no obstacles and agents have access to their own supply of ingredients;
and so both policies in which agents coordinate and policies in which agents act independently are
successful. Consequently, the impact of intervention is much less severe, as the performance of
policies that coordinate (and fail under intervention) is averaged in with independent policies that are
unaffected by intervention. Altogether, these results indicate that our method accurately distinguishes
environments that require coordination from those that do not.

Identifying Coordination vs. Independent Behaviors Our next intervention test aims to disentan-
gle, within a single environment, policies that learn to coordinate from those that opt for independent
action. We hone in on the basic environment—because it most clearly supports independent policies
as a successful strategy—and plot the performance of each policy individually (rather than averaging
across all policies). As shown in Fig. [3, we again find a stark contrast between coordination and
non-coordination, but this time at the level of individual policies.

In the trajectory snapshot in Fig. [3a] we see an emergent strategy in which two agents coordinate
through role assignment. In particular, the orange agent maneuvers in the bottom-right corner of
the environment picking up tomatoes and bringing them to the cooking pot; while the blue agent
stays in the top-right corner running dishes to and from the cooking pot to deliver soup. As expected,
intervention over this strategy leads to a catastrophic drop in performance. Each agent’s coordination
hinges on an accurate modeling of its teammate. In the trajectory snapshot in Fig.[3b] we find a much
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Figure 3: Identifying and Understanding Coordination. In the basic environment, the impact of
concept intervention (in terms of decreased reward) disentangles (a) policies that coordinate and (b)
policies that act independently. Moreover, intervening over each agent’s teammate-related concepts
individually identifies that inter-agent factors driving the team’s coordination strategy. Surprisingly,
teammate orientation is relied upon heavily by both agents for coordination.

different strategy in which agents complete the cooking task independently on opposite sides of the
environment. Here, intervention does not hurt performance (or hurts performance only marginally), as
neither agent needs to closely monitor its teammate to complete the task. Finally, because intervention
does not impact performance when agents are not coordinating, this result provides further evidence
that coordination detection through intervention is accurate and reliable.

Factors of Coordination Next, we examine the policies that have learned to coordinate and attempt
to pinpoint the specific inter-agent features that drive their coordination. To this end, rather than
intervening over all concepts pertaining to an agent’s teammate at once, we iterate over each of them
individually. As we hypothesize, if we know that the agents are coordinating, then intervening over
concepts related to the other agent should result in a sharp drop in performance. The results of this
intervention test are shown in Fig.

Interestingly, performance only drops when intervening over the orientation concept, indicating that
agents are primarily using the orientation of the other agent as a signal to drive coordination. This
is curious, as we would expect coordination to involve multiple individual sources of inter-agent
information; or combinations thereof. We emphasize that identifying the specific factors that underlie
an agent’s coordination strategy would be much more difficult without the concept intervention
enabled by our concept bottleneck policies.

For completeness, we conduct two additional experiments to support this analysis. First, we rule
out the possibility that intervening with a fixed mask to zero-out orientation creates an OOD (or
otherwise adversarial) input that the agents’ policies cannot handle. We do this by manufacturing
intervention masks that are both in- and out-of-distribution, using an empirical sample of the orien-
tations experienced by each agent at test-time; and show that our results are consistent across both
cases. Second, we train a new set of ConceptPPO policies without orientation as a concept and re-run
this iterative intervention over concepts pertaining to each agent’s teammate. These results show that,
without orientation, agent coordination latches on to another single concept estimate as its driving
signal. Detailed discussion of these supporting results is provided in Appendix [B]

5.2 H2: Identifying Lazy Agents

In addition to coordination successes, the concept intervention technique enabled by our method
allows us to test for coordination failures. Here we test for the presence of lazy agents by masking
out each agent’s concept predictions about itself—including the agents own position, orientation,
etc. According to our hypothesis, if an agent is acting productively in the environment, removing
this information will greatly hinder that agent’s performance; and team performance as a whole. If
performance does not decrease, the agent likely isn’t contributing to the task.

Figure d shows the results of this lazy agent test for four policies, each differing in the strength of
their contribution to the team. As predicted by our hypothesis, the productivity of an agent can be
exposed through the impact of the intervention test. When agents are both contributing to the task
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Figure 4: Identifying Lazy Agents Intervening on an agent’s concepts pertaining to itself exposes
its level of involvement in the task. In cases where coordination is either (a) strong or (b) moderate,
intervention has a large negative impact on the performance of both agents. In cases where an agent
is (c) not coordinating or (d) not moving at all, intervention has a negligible impact on performance.

(top row), concept intervention has a strong negative impact on performance for both agents. When
an agent is not contributing to the task (bottom row), concept intervention has a much smaller impact
on performance. In the extreme case in which one agent does not move at all over the course of a
trajectory (bottom right), performance is not impacted at all by intervention.

Crucially, the magnitude of performance degradation is a direct function of the productivity of each
agent. Thus, these results not only demonstrate that our method can reliably diagnose lazy agents, but
also suggest that it can quantify the degree of laziness as a function of performance degradation under
intervention. We stress that diagnosing lazy agents and the degree to which an agent contributes to a
multi-agent strategy would be more difficult without our concept bottleneck architecture.

5.3 H3: Bottleneck Performance

To evaluate the general performance of our method, we compare the performance of Concept PPO to
the non-concept PPO baseline. We measure performance as the average cumulative reward obtained
over 100 test-time trajectories (and five random seeds each). Figure [5] provides an overview of these
results. We find evidence that ConceptPPO can match the performance of PPO across each of our
environments for small values of the concept cost coefficient (A <= 0.5). This is an important
result from the perspective of interpretability. It demonstrates that, if A is tuned appropriately, it is
possible to train intrinsically-interpretable policy networks—where, notably, decisions are expressed
in human-understandable concepts—without sacrificing in task performance.

Figure[5 also shows, though, that over-valuing the concept prediction loss causes performance to
degrade. In particular, performance falls for A > 0.75 and, in all but the basic environment, collapses
to zero for larger values (A > 5.0). In these cases, agent policies begin to overvalue concept prediction
accuracy relative to reward, which changes the nature of their emergent coordination strategy. As A
increases, agents are more incentivized to place themselves in areas of the state-space where they
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Figure 6: State visitation results. As concept cost coefficient A increases, agents visit smaller regions
of the state space. Eventually, behavior collapses and agents opt not to move at all.

can accurately predict concepts, including those related to the other agent. We hypothesize that this
causes agents to develop behaviors that are less efficient from a reward perspective, but more effective
from a predictability perspective, such as clustering themselves together spatially.

State Visitation Analysis To illustrate the behavioral changes induced by A, we measure the
distribution of states visited by each agent across a subset of the A values used during training. The
results for each agent are plotted as a heatmap in Fig.[6] As expected, we find that agents visit smaller
and smaller regions of the state space as \ increases until, finally, behavior collapses. In the most
extreme cases (e.g., A = 10.0 in the impassable environment) agents opt not to move at all—after all,
the easiest way to predict concepts accurately is to not change anything in the environment.

6 Conclusion

We proposed Concept Bottleneck Policies as an intrinsically interpretable, concept-based policy
learning method for MARL. We demonstrated that our method is effective for understanding emer-
gent multi-agent behavior. In particular, Concept Bottleneck Policies support test-time concept
intervention, which can be used to identify when a multi-agent team has learned to coordinate, what
inter-agent features drive that coordination, and to what extent coordination is required in a particular
environment. Moreover, concept intervention can help diagnose coordination failures like lazy
agents. Experimental results also show that our method achieves comparable levels of performance
to traditional non-concept-based policy learning methods.
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