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ABSTRACT

A promising approach to solving challenging long-horizon tasks has been to ex-
tract behavior priors (skills) by fitting generative models to large offline datasets
of demonstrations. However, such generative models inherit the biases of the un-
derlying data and result in poor and unusable skills when trained on imperfect
demonstration data. To better align skill extraction with human intent we present
Skill Preferences (SkiP), an algorithm that learns a model over human preferences
and uses it to extract human-aligned skills from offline data. After extracting
human-preferred skills, SkiP also utilizes human feedback to solve downstream
tasks with RL. We show that SkiP enables a simulated kitchen robot to solve com-
plex multi-step manipulation tasks and substantially outperforms prior leading RL
algorithms with human preferences as well as leading skill extraction algorithms
without human preferences.

1 INTRODUCTION

Deep reinforcement learning (RL) is a framework for solving temporally extended tasks that has
resulted in a number of breakthroughs in autonomous control including mastery of the game of
Go (Silver et al., 2018} [2017)), learning to play video games Mnih et al.| (2015); |(OpenAll (2018));
Vinyals et al.| (2019)), and learning basic robotic control (Akkaya et al.l 2019; Kalashnikov et al.,
2018). However, today’s RL systems require substantial manual human effort to engineer rewards
for each task which comes with two fundamental drawbacks. The human effort required to de-
sign rewards is impractical to scale across numerous and diverse task categories and the engineered
rewards can often be exploited by the RL agent to produce unintended and potentially unsafe con-
trol policies (Hadfield-Menell et al.| [2017; |/Amodei et al., 2016} Turner et al., 2020). Moreover, it
becomes increasingly difficult to design reward functions for the kinds of complex tasks with com-
positional structure often encountered real-world settings. In this work, we are interested in the
following research question - how can we learn robotic control policies that are aligned with human
intent and capable of solving complex real-world tasks?

Human-in-the-loop RL |Christiano et al.[ (2017)); Ibarz et al.| (2018)); [Lee et al.| (2021) has emerged
as a promising approach to better align RL with human intent that proposes an alternate approach
to traditional RL algorithm design. Rather than manually engineering a reward function and then
training the RL agent, human-in-the-loop RL proposes for humans to provide feedback interactively
to the agent as it is training. This paradigm shift sidesteps reward exploitation by providing the RL
algorithm immediate feedback to align it best with human intent and, if efficient in terms of human
labels required, has the potential to scale RL training across a diverse variety of tasks more reliably
than reward engineering.

So far human-in-the-loop RL systems have been used to play Atari games [Ibarz et al.|(2018)), solve
simulated locomotion and manipulation tasks [Christiano et al.| (2017); |[Lee et al.| (2021}, and bet-
ter align the output of language models [Ziegler et al.| (2019). While these initial results have been
promising, human-in-the-loop methods are still out of reach for the kinds of long-horizon composi-
tional tasks that are desired for real-world robotics. The primary reason is that current methods do
not scale efficiently with respect to human labels for more challenging tasks. As task complexity
increases, the number of human feedback interactions required to attain a suitable policy becomes
impractical.
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Figure 1: Our method - Skill Preferences (SkiP) - consists of two phases. During the skill extractions
phase, human feedback is used to learn skills. During the skill execution phase, human feedback is
used to finetune the skills to solve various downstream tasks. First, skills are extracted from a noisy
offline dataset with human feedback. Second, skills are executed with RL in the environment with
task-specific human feedback.

To address the ability of RL algorithms to scale to more complex long-horizon tasks, a number of
recent works Pertsch et al.[(2020); |Singh et al.| (2021)); |Ajay et al.| (2021)) have proposed data-driven
extraction of behavioral priors, which we refer to as skills. In these methods, a behavioral prior is fit
to an offline dataset of demonstrations and is then used to guide the RL policy to solve downstream
tasks by regularizing it to stay near the behavioral distribution. Such methods have been shown
to successfully solve tasks such as diverse object manipulation Singh et al. (2021) and operating
a kitchen with a robotic arm [Pertsch et al.| (2020). However, they still require engineered rewards
for the downstream tasks and, more importantly, assume access to a clean offline dataset of expert
demonstrations that are specifically relevant to the downstream tasks. In real-world scenarios, such
clean datasets are highly unlikely to exist. We desire skill extraction methods that are robust to noisy
datasets, collected by a range of policies, with highly multi-modal structure.

In this work, we introduce Skill Preferences (SkiP), an algorithm that integrates human-in-the-loop
RL with data-driven skill extraction. Our main insight is that human feedback can be incorporated
not only for downstream RL, as is done in prior work, but also for extracting human-aligned skills.
SkiP learns a human preference function and uses it to weigh the likelihood of trajectories in the
offline dataset based on their degree of alignment with human intent. By incorporating human feed-
back during skill extraction, SkiP is able to extract structured human-preferred skills from noisy
offline data and addresses the core limitation of prior skill extraction approaches - the dependence
on curated expert datasets. SkiP is both capable of efficiently extracting skills and solving different
downstream tasks with respect to human labels. Similar to how prior work in human-in-the-loop
RL suggested replacing manually engineered reward functions with human feedback, our work sug-
gests to replace the manual effort needed to curate clean offline datasets with human feedback. We
summarize our main contributions below:

1. We introduce Skill Preferences (SkiP), an algorithm that incorporates human feedback to
extract skills from offline data and utilize those skills to solve downstream tasks.

2. We show that, unlike prior leading methods for data-driven skill extraction, SkiP is able to
extract structured skills from noisy offline datasets.

3. We show that SkiP is able to solve complex multi-step manipulation tasks in robotic kitchen
environment substantially more efficiently than prior leading human-in-the-loop and skill
extraction baselines.

2 BACKGROUND

Reinforcement Learning: As is common with RL methods, we assume that the control process is
a Markov Decision Process (MDP) with discounted returns. Such MDPs are defined by the tuple
M = (8, A, R, po,) consisting of states s € S, actions a € A, rewards R = R(s, a), an initial
state distribution sg ~ po(-), and a discount factor v € [0,1). A control policy maps states to
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actions within the MDP and usually takes the form of a probability distribution — a ~ 7(+|s). The
value function V™ (s) and action-value function Q7 (s, a) describe the value with respect to future
expected returns with respect to an initial state or state-action pair.

V™(s) :==FEm thR(shat) | so=s|, Q"(s,a) := R(s,a) + VEsr(|s,a) [V (s)],
t=0

where the first expectation E 4, denotes actions are sampled according to 7 and future states are
sampled according to the MDP dynamics. The goal in RL is the learn the optimal policy:

7 € argmax J(m, M) :=Ep, [V ()]

In addition to the standard MDP setting, our method will also learn skills z € Z which consist
of an encoder that maps state-action sequences to a skill ¢'°)(z|s;, ay, ..., Sipm—1,a4+—1) and a
decoder that maps state-skill pairs to atomic actions g4 (a1, a9, ...,am|s, 2).

3 METHOD

The two primary contributions of SkiP are (i) introducing human feedback during the skill extraction
process to learn structured skills from noisy data and (ii) utilizing human preferences over skills
for downstream RL training. Our approach shown schematically in Fig. [I| and detailed in full in
Algo. [I] Due to utilizing human feedback to learn the behavioral prior, unlike prior approaches of
skill extraction from offline data |Ajay et al.| (2021); |Singh et al.| (2021); [Pertsch et al.| (2020), our
method is robust to suboptimal or noisy data.

The SkiP Algorithm: We first summarize the algorithm and then proceed with its derivation. Shown
in Algo. [T} SkiP consists of two phases - (i) skill extraction and (ii) skill execution. A human teacher
provides feedback during both phases. During skill extraction, a human teacher labels whether
a trajectory is preferred or not (for details see Sec. [) to train a preference classifier. A behavioral
prior is then fit to the offline data with a weighted human preference function. During skill execution,
the learned skills are rolled out by an RL agent - a Soft Actor-Critic (SAC) Haarnoja et al.| (2018)) -
that is trained with task-specific human preferences. As such, human feedback is used during both
phases of the algorithm. We proceed to define notation and provide a derivation.

Preliminaries and Notation: Our method is composed of two phases - (i) the skill extraction
phase and (ii) the skill execution phase. During the skill extraction phase, we are given an of-
fline dataset D which consists of task-agnostic, multi-modal, and potentially noisy demonstra-
tions. We denote trajectory sequences as 7 = (S¢,a¢,...,St+H—1,dt+H—1), action sequences
as a; = (a¢,...,ar+H—1), and skills which decode into action sequences as z € Z.

Learning Behavioral Priors with Human Feedback (Skill Extraction): Our main insight is to use
human preferences in order to fit a weighted behavioral prior over an offline dataset of (potentially
noisy) demonstrations. Our method builds on prior work for behavioral extraction from offline data
via expected maximum likelihood latent variable models |Ajay et al| (2021)); |Singh et al.| (2021));
Pertsch et al.| (2020).

Specifically, prior work |Ajay et al.| (2021); |Singh et al.| (2021)); [Pertsch et al.| (2020) considers a
parameterized generative model p,, (a;|s;) over action sequences where a; = (ay, . .., a;rg—1) that
represents a behavioral prior and is trained to replicate the transition statistics in the offline dataset:

Pa € argmax E;p lz log (m(ma))] : (D

t=0

In our approach, we consider an adaptive behavioral prior that is biased towards trajectories that
achieve higher rewards according to the human preference function. This can be particularly useful
in diverse datasets collected with suboptimal or noisy policies or multiple policies of varying exper-
tise. For example, one could imagine multiple humans collecting demonstrations or multiple robots
exploring their environment. Similar to|Siegel et al.|(2020), we seek a behavioral prior that is biased
towards the high reward trajectories in the dataset while also staying close to the average statistics
in the dataset. However, unlike prior work on weighted behavioral priors [Siegel et al.| (2020); Peng
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Algorithm 1 SkiP: Skill Preferences
==== SKkill Extraction Phase ====
INPUT: offline dataset B
Initialize prior p, skill encoder g, and skill decoder py, . Initialize learned preference classifier Py,
A human provides labels (y1,y2, ...) for 10% of the trajectories in 3 and stores them in a new buffer D
for each iteration do
Update ¢ by maximizing E, ) 5[y - logPy(7) + (1 —y) - log(1 — Py(7))]
for each iteration do ‘
Update p, q4,, P, by optimizing L£P"°" {Update preference weighted behavioral prior}
==== SKill Execution Phase ==== .
Initialize parameters of actor mg1, critics Qo2 and QQg» and reward model R,
Initialize a dataset of preference D <— () and a dataset of transitions 3 < ()
for Each iteration do
for Each environment step do
ze ~ m(2t|8¢), Se4m ~ P(stm|st, zt), B < BU (s, 2¢, Ry (st 2t), St4-1)
if iteration % K == 0 then
for stept=1...M do
(7, 78)) ~ B, query human for label y, D + D U (7, 7%
for each gradient step of R,, do
Sample (737, 7{*), y) ~ D, update R, with min £"¢**"% li {Update preferences}
Relabel entire replay buffer 5 with R,
for each gradient step of agent do
Sample (s, a, s’, R) ~ B, update 7, by optimizing £54S. (Appendix B.1) {Update agent}
Update Qg2 and Qg by optimizing £545. (Appendix B.1)

,Y) {Get preference labels}

et al.[(2019); Wu et al.| (2019) the weight is determined through the human preference function and
we aim to maximize action-sequence likelihood as opposed to single-timestep actions.

We formulate this as:

I7|

Pa € argmax E;vp Zw(n) - palaglsy) | suchthat E.op [Drr (pallp)] <6,  (2)
t=0

where p denotes the empirical behavioral policy and w(s;, a;) is the weighting function. The non-
parametric solution to the above optimization is given by:

pa(ar|st) o plaglst) - exp (w(re)/n)

where we have used o to avoid specification of the normalization factor, and 7 represents a tem-
perature parameter that is related to the constraint level §. The above non-parametric policy can be
projected into the space of parametric neural network policies as [Peng et al.| (2019); |Siegel et al.
(2020):

I7|

Po € argmax Erp | Y exp (w(r)/T) - 1og (paladls) ) | - 3)
) t=0

For the choice of the weighting function, we use the learned preference classifier Py (y|7) which
inputs a trajectory and outputs the likelihood of this trajectory being human-preferred with y € [0, 1].
P, (y|7) is learned by sampling a small subset of the offline dataset and soliciting human feedback
to label preferred versus not preferred trajectory: w(7;) := log Py (7).

In this process, we treat the temperature 7 as the hyper-parameter choice. This implicitly defines the
constraint threshold J, and makes the problem specification and optimization more straightforward.
For our practical implementation, we fit a variational autoencoder similar to |Ajay et al.| (2021);
Pertsch et al.| (2020) but softly weighted to maximize the likelihood of human-preferred transitions.
We introduce a latent variable z with a Guassian prior such that the ELBO loss is given by:

log p(at[st) > Erup 2y, (z17) 108 Py, (at]st, 2) +8 (log p(2) — log gg, (2]7)]. 4)
Lrec Lreg
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This is the standard 3-VAE loss applied to action sequence modeling where £ is a scalar controlling
the regularization strength and ¢, ¢2 are neural network parameters that are optimized during train-
ing. Note that g4, encodes trajectories into a latent vector and pg, decodes latent vectors and the
starting state back into action sequences. Our training objective weighs this loss with the preference
function. Thus, our overall skill extraction objective is to maximize:

L= arg nglE:bX ETND,Zqu,(ZlT) [Pw(T)(Erec =+ Ereg)} . ®))

Reward learning and human preferences over skills (Skill Execution): Unlike traditional RL
where the hand-engineered rewards are available, we consider the preference-based RL frame-
work (Christiano et al.l 2017; [Ibarz et al., [2018; [Lee et al., 2021} [Leike et al.| 2018)): a (human)
teacher provides preferences between the agent’s behaviors and the agent uses this feedback to per-
form the task. In order to incorporate human preferences into deep RL, |Christiano et al.| (2017)
proposed a framework that learns a reward function 2, from preferences. In this work, we modify
the preference framework to operate not over atomic state-action transitions but rather state-skill
transitions that have substantially longer time spans.

Formally, we assume access to an offline dataset (the agent’s replay buffer) B of state-action tran-
sitions and sample state-skill sequence pairs Tl(z), TQ(Z) for which a human provides a binary label
y € {0,1}, where 79) = (sy, 2, 4101y 2o i s - - - » S(t+M)H, Z(t+) i) Where H is the length of
actions the skill decodes to and M is the total number of state-skill transitions. Note how such
trajectories are H times longer than if we were to sample state-action trajectories of length M.

The reward function R therefore fits a Bernoulli distribution across sequences. In this work, we learn

a parameterized reward function 1%,, asin (Lee etal.,2021) utilizing a Bradley-Terry model Bradley
& Terry|(1952) in the following manner:
exp y-, Ry (si, 21)

Pl = 7 =

(6)

Here, the operator A > B means that A is preferred to B. ﬁn can therefore be interpreted as a
binary preference classifier where labels are provided through human feedback. The parameters n
of the neural network are updated by optimizing a binary cross-entropy loss:

LR R [y(o) log Py[r5? > 7] + y(1) log P [r? >~ TgZ>]]. 7

4 EXPERIMENTAL SETUP

Environments: For our experiments, we use the robot kitchen environment and offline dataset from
the D4RL suite [Fu et al.| (2020). This environment requires a 7-DOF (6-DOF arm and 1-DOF
gripper) robotic arm to solve complex multi-step tasks in a kitchen. Due to the 7-DOF control
and compositional long-horizon nature of the tasks, this environment cannot be solved by standard
methods such as SAC or behavior cloning |Pertsch et al.[(2020).

Offline dataset: We desire our method to work on suboptimal offline data and, unlike prior skill
extraction approaches [Pertsch et al.| (2020); |Singh et al.| (2021); |Ajay et al.| (2021) do not assume
that the offline dataset consists solely of expert demonstrations. We simulate a noisy offline dataset
by combining 601 expert trajectories and 601 noisy trajectories generated by random policy. The
expert trajectories involve various structured kitchen interactions such as opening the microwave
and operating the stove. We solicit human feedback on 10% of the total trajectories or equivalently
120 human labels .

Downstream tasks: We use 6 different downstream tasks shown in Fig. [2| that vary in difficulty to
evaluate our approach. The task suite consists of tasks that require one, two, or three subtasks to
be completed in a row in order to achieve the overall goal. We note that even the tasks with one
subtask is challenging for RL methods that operate over atomic actions and do not leverage skills,
as is shown in the experimental results.

Simulated human: Similar to prior work (Christiano et al., 2017; [Lee et al.l |2021), we obtain
feedback from simulated human teachers instead of real humans. During skill extraction, human
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provides labels whether a trajectory is noisy or structuredEl During skill execution, the simulated
human assigns positive labels to trajectory segments that have made more progress toward complet-
ing the desired task. Progress is calculated by computing ||sar.g — §||2 — ||s1 — §||2, where § is the
state when the target task is completed.

one task two tasks three tasks

microwave kettle microwave kettle
kettle burner kettle burner
burner cabinet

Figure 2: We evaluate in the robot kitchen environment from D4RL (2020), which requires
a 7-DOF robotic arm to operate a kitchen. Within this environment, we consider a variety of ma-
nipulation tasks of varying difficulty. The simplest tasks involve one subtask - opening a microwave
or moving the kettle - while more challenging tasks require the agent to compose multiple subtasks.
Overall, we consider 6 evaluation tasks that require chaining one, two, or three subtasks.

kitchen robot offline noisy dataset

expert random ] )
Human diverse skills

Feedback

Figure 3: An illustration of the skill extraction procedure within the robot kitchen environment.
Starting with a noisy offline dataset, which consists of both expert and random actions, our method
fits a behavioral prior to the offline data using human feedback to identify human-preferred motions
which results in a set of diverse skills that can then be finetuned to downstream tasks.

Baselines: In addition to our method, we compare to Atomic Preferences which we based on PEB-
BLE (2021): a state-of-the-art human preference RL method. it pretrains the SAC agent
with behavior cloning over the optimal offline dataset and trains the online SAC agent with human
preferences over atomic transitions instead of high-level skill transitions. We also compare to Flat
Prior which learns a single-step action prior on the atomic action space over the optimal dataset
and trains an online SAC agent regularized with the action prior over ground-truth reward. The
Oracle we compare to is SPiRL, a leading skill extraction with access to the ground truth (expert
demonstrations and ground truth reward) in Fig.[4]

5 EXPERIMENTAL RESULTS

For the experimental evaluation of our approach, we investigate the following questions: (a) Can
SkiP solve challenging long-horizon tasks and how does our method compare to prior leading ap-
proaches? (b) How do SkiP compare to an oracle baseline that extracts skills from perfect expert
demonstrations and has access to the ground truth reward? (c) Is it necessary to provide human feed-
back during skill extraction or is it sufficient to fit an unweighted behavioral prior over the offline
data? (d) How should we incorporate human feedback during the skill execution phase?

Main Results: We evaluate SkiP and related baselines on the 6 tasks shown in Fig. 2] and display
the learning curves in Fig. ] We observe that SkiP is the only method (except for the Oracle) that is

"Here, we remark that limited number of human labels (10% of the total trajectories) is utilized in our
experiments for skill extraction.
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Figure 4: SkiP and baselines (Sec. [)) evaluated over six tasks in the robot kitchen environment
shown in Fig.[2] SkiP outperforms both baselines across the majority of the tasks and is the only
method that is capable of matching the Oracle on most tasks. We also compare SkiP to SkiP with 3x
more human labels and find comparable performance between the two versions. SkiP solves most
tasks given 300-1000 human labels depending on the complexity of the task.

capable of solving the majority of tasks in the robot kitchen task suite and outperforms the baselines
on all environments. On 5 out of 6 tasks, SkiP is able to match the oracle baseline asymptotically
which means that it arrives at the optimal solution.

SkiP is also human-label efficient. During skill extraction, only 120 labels are required to train
the preference classifier. During skill execution, 300-1K labels are required to solve most tasks
depending on the task’s complexity. We hypothesize that human label efficiency is better during the
skill extraction phase because classifying structured and noisy skills from a static offline dataset is
easier than classifying task-specific preferences from an evolving replay buffer. Further human label
efficiency improvements pose interesting research directions for future work.

Ablation Studies: To further understand the properties of the SkiP algorithm, we investigate
whether human feedback is necessary during skill extraction as well as how the human preference
reward function compares to alternate approaches to human feedback during skill execution.

Is it necessary to provide human feedback during skill extraction or is it sufficient to fit an un-
weighted behavioral prior over the offline data? The offline dataset used throughout this paper
consists of suboptimal data that is a mixture of expert and random actions. We compare fitting a
human-feedback weighted behavioral prior as opposed to an unweighted behavioral prior that max-
imizes the likelihood of all action sequences equally. For the skill execution phase, both methods
have access to the same human preference reward function. The results shown in Fig. [5 indicate
that the method, which extracts skills without human feedback, is unable to solve any of the tasks
suggesting that human feedback is essential for skill extraction from suboptimal offline data.

How should we incorporate human feedback during the skill execution phase? Instead of prefer-
ences, a simpler approach to learning from human feedback is to provide binary feedback if a task
(or subtask) has been solved and learning a reward classifier to guide the RL agent. We implement
this by providing a positive reward of 1 for a high-level transition (s, z, s¢1 ) when a subtask has
been completed and O otherwise. Using the same number of human queries for both approaches, we
compare learning with preferences as opposed to learning from sparse rewards. For both approaches,
we use human feedback for skill extraction. As shown in Fig.[6] RL with a reward classifier for sub-
task completion is able to solve some tasks but generally performs much worse than RL with human
preferences.

6 RELATED WORK

Human-in-the-loop Reinforcement Learning: Several works have successfully utilized feedback
from real humans to train RL agents (Arumugam et al.| [2019; [Christiano et al} |2017; [Ibarz et al.,
2018; Knox & Stone, [2009; [Lee et al., 20215 MacGlashan et al., 2017; Warnell et al., 2018)). One of
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Figure 5: SkiP with human feedback vs SkiP without human feedback during skill extraction. learn-
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prior from the suboptimal dataset and were evaluated with online RL. SkiP with human feedback
outperforms SkiP without human feedback on all 6 environments
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Figure 6: SkiP with preferences vs SkiP with learned sparse reward. Learning curve with shaded
region representing standard error across three seeds. Both algorithms use the same prior. SkiP with
preferences outperforms SkiP with learned sparse reward on 5 out of 6 environments.

major directions is directly utilizing the human feedback as a learning signal (Pilarski et al.| 2011}
[MacGlashan et all, 2017; [Arumugam et al., 2019) but assumed unlimited access to human labels
which limited their practicality for more challenging tasks. To address this limitation, a number
of works proposed learning reward model from human feedback (Knox & Stonel [2009; [Warnell
et all 2018} [Pinto & Guptal, [2016; [Levine et al., 2018} [Fu et al}, 2018}, [Xie et al., 2018). Recently,
several works have successfully combined human preferences with deep RL algorithms to learn
basic locomotion skills as well as playing video games from pixels using human |Christiano et al.
(2017); Tbarz et al.| (2018)); [Cao et al.| (2020); Lee et al.| (2021). However, these methods are limited
to short-horizon or cyclic tasks and do not scale to more challenging compositional multi-step tasks.
In this work, we investigate how to scale human preferences to such challenging tasks by specifying
preferences over skills.

Data-driven Extraction of Behavioral Priors: Behavioral prior or skill extraction refers to fitting
a distribution over an offline dataset of demonstrations and biasing the agent’s policy towards the
most likely actions from that distribution. Commonly used for offline RL [Wu et al.| (2019); [Siegel|
et all| (2020); [Peng et al.| (2019)), behavioral priors learned through maximum likelihood latent vari-
able models can also been used as skills for structured exploration in RL [Singh et al.| (2021)), to
solve complex long-horizon tasks from sparse rewards [Pertsch et al| (2020); /Ajay et al.| (2021), and
regularize offline RL policies Wu et al.| (2019)); |Peng et al| (2019); Nair et al.|(2020). A limita-
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tion of these skill extraction methods is that the quality of the behavioral prior is highly dependent
on the demonstrations in the offline dataset. Since a behavioral prior models maximum likelihood
transitions in the offline dataset, suboptimal, noisy, or irrelevant transitions can degrade downstream
policy learning. In this work, we introduce human feedback into the skill extractions phase to learn a
human preferred behavioral prior which enables skill extraction methods to be robust to suboptimal
offline data.

7 CONCLUSION

We presented Skill Preferences (SkiP) an algorithm that uses human feedback for both skill extrac-
tion as well as execution, and showed that SkiP enables robotic agents to solve long-horizon com-
positional manipulation tasks. We hope that this work excites other researchers about the potential
of learning with skills and human feedback.
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