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ABSTRACT

We establish in-expectation and tail bounds on the generalization error of repre-
sentation learning type algorithms. The bounds are in terms of the relative entropy
between the distribution of the representations extracted from the training and “test”
datasets and a data-dependent symmetric prior, i.e., the Minimum Description
Length (MDL) of the latent variables for the training and test datasets. Our bounds
are shown to reflect the “structure” and “simplicity” of the encoder and signifi-
cantly improve upon the few existing ones for the studied model. We then use our
in-expectation bound to devise a suitable data-dependent regularizer; and we inves-
tigate thoroughly the important question of the selection of the prior. We propose a
systematic approach to simultaneously learning a data-dependent Gaussian mixture
prior and using it as a regularizer. Interestingly, we show that a weighted attention
mechanism emerges naturally in this procedure. Our experiments show that our
approach outperforms the now popular Variational Information Bottleneck (VIB)
method as well as the recent Category-Dependent VIB (CDVIB).

1 INTRODUCTION

One major problem in learning theory pertains to how to guarantee that a statistical learning algorithm
performs on new, unseen, data as good as it does on the used training data, i.e., good general-
ization properties. This key question, which has roots in various scientific disciplines, has been
studied using seemingly unrelated approaches, including compression-based (LW86; BEHW87;
AGNZ18; BL03; SAM`20; HJTW21; BSE`21; HK19; HKS19; BHMZ20; HK21; HKSW20;
CK22; SGRS22; SZ24), information-theoretic (RZ16; XR17; SZ20; EGI20; BZV20; HDMR21;
NDHR21; ABT`21; HRVSG21; ZTL22; LN22; HD22), PAC-Bayes (See02; LC01; Cat03; Mau04;
GLLM09; TS13; BGLR16; TIWS17; DR17; NBS18; RKSST20; NDR20; NHD`20; VGHM21),
and intrinsic dimension-based (ŞSDE20; BLGŞ21; HSKM22; LWŞ22) approaches.

In practice, a common approach advocates the usage of a two-part, or encoder-decoder, model, often
referred to as representation learning. In this approach, the encoder part of the model shoots for
extracting a “minimal” representation of the input (i.e., small generalization error), whereas the
decoder part shoots for small empirical risk. One popular such approach is the information bottleneck
(IB), which was first introduced in (TPB00) and then extended in various ways (SST10; AFDM17;
AZ19; KTW19; Fis20; RGTS20; KASK22). The IB principle is mainly based on the assumption
that Shannon’s mutual information (MI) between the input and the representation is a good indicator
of the generalization error. However, this assumed relationship has been refuted in several works
(KTVK18; RG19; AG19; GK19; DKSV20; LLS`23; SZK23). As shown in these works, the few
existing theoretical MI-based generalization bounds (e.g., (VPV18; KDJH23)) become vacuous in
most reasonable setups. Also, in practice, no consistent relation between the generalization error
and the MI has been observed experimentally so far. Rather, recent works (BL03; GK19; SZK23)
have shown that the generalization error of representation learning algorithms is related to the
minimum description length (MDL) of the latent variable and the so-called geometric compression.
Geometric compression occurs when latent vectors are designed so as to concentrate around a limited
number of representatives which form centroid vectors of associated clusters (AG19; GK19). In such
settings, inputs can be mapped to the centroids of the clusters that are closest to their associated
latent vectors (i.e., lossy compression); and this yields non-vacuous bounds at the expense of only a
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Figure 1: Studied representation learning setup.

small (distortion) penalty. The benefit of this lossy compression approach can be appreciated when
opposed to classic MI-based bounds (VPV18; KDJH23) which are known to be vacuous when the
latent vectors are deterministic functions of the inputs.

In this work, we study the problem of representation learning depicted in Fig. 1 from a generalization
error perspective. Then, we use the obtained generalization bound to design and discuss various
choices of generalization-inspired regularizers using data-dependent Gaussian mixture priors. To
the best knowledge of the authors, generalization error bounds that account suitably for the encoder-
decoder structure of the representation learning problem of Fig. 1 are very scarce; and, in fact, with
the exception of (SZK23), no non-vacuous bounds for this settings have been reported so far.

Contributions: Our main contributions in this work are summarized as follows.

• We establish in-expectation and tail bounds on the generalization error of the representation learning
algorithms. Our bounds are expressed in terms of the relative entropy between the distribution of
the representations extracted from training and “test” datasets and a data-dependent symmetric
prior Q, i.e., the Minimum Description Length (MDLpQq) of the latent variables for training and
test datasets – (Bounds that depend on MDLpQq are arguably better bounds because they capture
the structure and simplicity of the encoders in sharp contrast with IB-based approaches (BL03)).
However, our bounds are shown to be possibly tighter than those of (SZK23). For instance, while
the bounds of (SZK23) are of the order of

a

MDLpQq{n, where n designates the size of the used
training dataset, ours is of the order of MDLpQq{n for the realizable setup.

• We propose a systematic approach to finding a suitable “data-dependent” prior that we then use
to construct a judicious regularizer during training (based on our newly established bounds).
Specifically, first we observe that if the latent variables are generated according to a Gaussian
distribution then the prior Q that minimizes the empirical MDLpQq term is a Gaussian mixture
distribution. Then, using this and the known fact that Gaussian mixture distributions can ap-
proximate sufficiently well any arbitrary distribution when the number of mixture components is
large enough (DH83; GBC16; NND`22), we propose two methods for simultaneously finding a
Gaussian mixture prior and using it as a regularizer along the optimization iterations. The methods
are coined ‘lossless Gaussian mixture prior” and “lossy Gaussian mixture prior”, respectively. In
essence, the procedure consists of finding the underlying “structure” of the latent variables in the
form of a Gaussian mixture prior; and, simultaneously, steers the latent variables to best fit with
this found structure. Interestingly, in the lossy version of the approach, which is shown to generally
yield better performance, the components of the Gaussian mixture are updated using a mechanism
that is similar to the self-attention mechanism. In particular, the components are updated according
to the extent they each “attend” to the latent variables statistically.

• We validate the advantages of our generalization-aware regularizer in practice through experiments
using various datasets (CIFAR10, CIFAR100, INTEL, and USPS) and encoder architectures
(CNN4 and ResNet18). In particular, we show that our approach outperforms the popular VIB
of (AFDM17) and the recent Category-Dependent VIB of (SZK23). The reader is referred to
Section 5 and Appendix E for details on the datasets, models, and experiments.

We emphasize once more that our approach here, which measure complexity using MDL of the
involved latent variables, has two appealing features: (i) it yields generalization bounds that only
depend on the encoder part of representation type statistical learning algorithms, and (ii) the employed
lossy compression enables the yielded bounds to only take finite values, i.e., not vacuous, in reasonable
setups, by opposition to the MI bounds of (VPV18; KDJH23). The described approach and results
have to be contrasted with classes of prior-art bounds that measure complexity differently. The first
class of bounds involve the complexity of the hypothesis (model) space and it includes, e.g., MI-based,
PAC-Bayes, and some of the compression-based bounds (e.g. (AGNZ18)). Such bounds mostly
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involve “data-independent” priors on the model; and seldom use “data-dependent” priors (DR18;
PORSTS21) – see (Alq21, Section 3.3) for a detailed review. Generalization bounds that use model
complexity do not seem to be amenable to using them for regularization since, in practice, one has
only a single instance of the posterior. The second class of bounds are intrinsic dimension-based
bounds that measure the complexity of the model along the optimization trajectories. While in this
approach multiple instances of the posterior are available, measuring the trajectory complexity of
large models is not practical. The third class of bounds uses prediction complexity such as with
f-CMI (HRVSG21; HD22) - see also the related (BL03; SZK23). In such bounds, typically the
complexity appears in both the loss function and the regularizer; and this is generally not reasonable
in practice.

Notations. We denote the random variables and their realizations by upper and lower case letters and
use Calligraphy fonts to refer to their support set e.g., X , x, and X . The distribution of X is denoted
by PX ,1 which for simplicity, is assumed to be a probability mass function for a random variable with
discrete support set and to be probability density function otherwise. With this assumption, the Kull-
back–Leibler (KL) between two distributions P and Q is defined as DKLpP }Qq :“ EP rlogpP {Qqs

if P ! Q, and 8 otherwise. Lastly, we denote the set t1, . . . , nu, n P N˚, by rns.

2 PROBLEM SETUP

We consider a C-class classification setup, as described below.

Data. We assume that the input data Z, which takes value according to an unknown distribution
µ, is composed of two parts Z “ pX,Y q, where (i) X represents the feature of the input data,
taking values in the feature space X , and (ii) Y P Y represents the label ranging from 1 to C, i.e.,
Y “ rCs. We denote the underlying distribution of X and Y by µX and µY , respectively, and their
joint distribution by µ :“ µX|Y µY :“ µXµY |X .

Training dataset. To learn a model, we assume the availability of a training dataset S “

tZ1, . . . , Znu „ µbn “: PS , composed of n i.i.d. samples Zi “ pXi, Yiq of the input data. In our
analysis, we often use a test dataset (known also as ghost dataset (SZ20)) S1 “ tZ 1

1, . . . , Z
1
nu „

µbn “: PS1 , where Z 1
i “ pX 1

i, Y
1
i q. To simplify the notation, we denote the features and labels of

S and S1 by X :“ Xn „ µbn
X , Y :“ Y n „ µbn

Y , X1 :“ X 1n „ µbn
X , and Y1 :“ Y 1n „ µbn

Y ,
respectively.

Encoder-decoder model. We assume that the model (hypothesis) is composed of two parts: an
encoder and a decoder part. The encoder we P We takes as input the feature x and generates as output
the representation or the latent variable U P U , possibly stochastically. For simplicity, we assume
that U “ Rd, for some d P N˚. The decoder wd P Wd takes U as input and outputs an estimate Ŷ of
the true label Y . The overall model is denoted by w :“ pwe, wdq P W “ We ˆ Wd. The setup is
shown in Fig. 1.

Learning algorithm. We consider a general stochastic learning framework in which the learning
algorithm A : Zn Ñ W has access to a training dataset S and uses it to choose a model (or hypothesis)
ApSq “ W P W , where W “ pWe,Wdq. The distribution induced by the learning algorithm A is
denoted by PW |S “ PWe,Wd|S . Also, the joint distribution of pS,W q is denoted by PS,W and the
marginal distribution of W under this distribution is denoted by PW . Furthermore, we denote the
induced conditional distribution of the latent variable U given the encoder and the input by PU |X,We

.
Finally, we denote the conditional distribution of the model’s prediction Ŷ , conditioned on the
decoder and the latent variable, by PŶ |U,Wd

. It is easy to see that PŶ |X,W “ EU„PU|X,We

“

PŶ |U,Wd

‰

.
Lastly and as a general rule, we use the following shorthand notation

PU,U1|X,X1,We
–

â

iPrns

␣

PUi|Xi,We
PU 1

i|X1
i,We

(

. (1)

Similar notation is used to shorten products of distributions, e.g., PU|X,We
and PŶ|X,W .

1We, however, make an exception for the input data, whose distribution is denoted by µ, as it is common in
theoretical papers, e.g. (XR17; BZV20; LN22).
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Risks. The quality of a model w is assessed by the below 0-1 loss function ℓ : Z ˆ W Ñ t0, 1u:

ℓpz, wq :“ EŶ „PŶ |x,w
r1

ty‰Ŷ u
s “ EU„PU|x,we

EŶ „PŶ |U,wd

”

1
ty‰Ŷ u

ı

. (2)

In learning theory, the ultimate goal is to find a model that minimizes the population risk, defined as
Lpwq :“ EZ„µrℓpZ,wqs. However, since the underlying distribution µ is unknown, only the empiri-
cal risk, defined as L̂ps, wq :“ 1

n

ř

iPrns ℓpzi, wq, is accessible and can be minimized. Therefore, a
central question in learning theory and this paper is to control the difference between these two risks,
known as generalization error:

genps, wq :“ Lpwq ´ L̂ps, wq. (3)

In our results, for simplicity, we also use the following shorthand notations:

L̂py, ŷq :“
1

n

ÿ

iPrns
1tŷi‰yiu, L̂py1, ŷ1q :“

1

n

ÿ

iPrns
1tŷ1

i‰y1
iu, (4)

Note that

L̂ps, wq “ EŶ„PŶ|x,w

”

L̂py, Ŷq

ı

, L̂ps1, wq “ EŶ1„PŶ1|x1,w

”

L̂py1, Ŷ1q

ı

. (5)

Symmetric prior. Our results are stated in terms of the KL-divergence between a posterior (e.g.,
PU,U1|X,X1,We

) and a prior Q that needs to satisfy some symmetry property.

Definition 1 (Symmetric prior). A conditional prior QpU2n|Y 2n, X2n,Weq is said to be symmetric if
QpU2n

π |Y 2n, X2n,Weq is invariant under all permutations π : r2ns ÞÑ r2ns for which @i : Yi“Yπpiq.

3 GENERALIZATION BOUNDS FOR REPRESENTATION LEARNING ALGORITHMS

In this section, we establish novel in-expectation and tail bounds on the generalization error of
representation learning algorithms for the setup of Fig. 1.

3.1 IN-EXPECTATION BOUND

Define the function hD : r0, 1s ˆ r0, 1s Ñ r0, 2s as

hDpx1, x2q :“ 2hb

´x1 ` x2

2

¯

´ hbpx1q ´ hbpx2q,

where hbpxq “ ´x log2pxq ´ p1 ´ xq log2p1 ´ xq is the binary Shannon entropy function. It is
easy to see that hDpx1, x2q{2 equals the Jensen-Shannon divergence between two binary Bernoulli
distributions with parameters x1 P r0, 1s and x2 P r0, 1s. Also, let the function hC : r0, 1s ˆ r0, 1s ˆ

R` Ñ R` be defined as

hCpx1, x2; ϵq :“ max
ϵ1

!

hbpx1^2 ` ϵ1q ´ hbpx1^2q ` hbpxx1_2 ´ ϵ1q ´ hbpxx1_2q

)

, (6)

where x1^2 “ minpx1, x2q, x1_2 “ maxpx1, x2q, and the maximization in (6) is over all

ϵ1 P

”

0,min
´

ϵ,
x1_2 ´ x1^2

2

¯ı

. (7)

Hereafter we sometimes use the handy notation

hy,y1,ŷ,ŷ1 pϵq :“ hC

´

L̂py, ŷq, L̂py1, ŷ1q; ϵ
¯

. (8)

Now, we state our in-expectation generalization bound for representation learning algorithms.

Theorem 1. Consider a C-class classification problem and a learning algorithm A : Zn Ñ W that
induces the joint distribution pS1, S,W,U,U1, Ŷ, Ŷ1q „ PS1PS,WPU,U1|X,X1,We

PŶ,Ŷ1|U,U1,Wd
.
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Then, for any symmetric conditional distribution QpU,U1|Y,Y1,X,X1,Weq and for n ě 10, we
have

ES,S1,W,Ŷ,Ŷ1

”

hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯ı

ď

MDLpQq ` logpnq

n
` EY,Y1,Ŷ,Ŷ1

„

hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

, (9)

where p̂Y and p̂Y1 are empirical distributions of Y and Y1, respectively, and

MDLpQq :“ ES,S1,We

“

DKL

`

PU,U1|X,X1,We

›

›Q
˘‰

. (10)

The proof of Theorem 1, which appears in Appendix G.1, consists of two main proof steps, a change
of measure argument followed by computation of a moment generation function (MGF). Specifically,
we use the Donsker-Varadhan’s lemma (DV75, Lemma 2.1) to change the distribution of the latent
variables from PU,U1|X,X1,We

to Q. This change of measure results in a penalty term that equals
MDLpQq. Let f be given by n times the difference of hD and the term on the right-hand-side (RHS)
of (9) , i.e., f “ nphD ´ RHS(9)q. We apply the Donsker-Varadhan change of measure on the
function f , in sharp contrast with related proofs in MI-based bounds literature (XR17; SZ20; Alq21).
The second step consists in bounding the MGF of nf . For every label c P rCs, let Bc denote the set
of those samples of S and S1 that have label c. By construction, any arbitrary reshuffling of the latent
variables associated to the samples in the set Bc preserves the labels. Also, such reshuffling does not
change the value of the symmetric prior Q. The rest of the proof consists in judiciously bounding the
MGF of nf under the uniform distribution induced by such reshuffles.

It is easy to see that the left hand side (LHS) of (9) is related to the expected generalization error.
For instance, since the function hDpx1, x2q is convex in both arguments, hDpx1, 0q ě x1, and
hDpx1, x2q ě px1 ´ x2q2 for x1, x2 P r0, 1s, one has that

ES,W

“

genpS,W q
‰

ď ES,S1,W,Ŷ,Ŷ1

“

hD

`

L̂pY1, Ŷ1q, L̂pY, Ŷq
˘‰

,

and
ES,W

“

genpS,W q
‰2

ď ES,S1,W,Ŷ,Ŷ1

“

hD

`

L̂pY1, Ŷ1q, L̂pY, Ŷq
˘‰

,

for the “realizable” and “unrealizable” cases, respectively.

Several remarks are now in order. First, note that the generalization gap bound of Theorem 1 does
not depend on the classification head; it only depends on the encoder part! In particular, this offers
a theoretical justification of the intuition that in representation-type neural architectures the main
goal of the encoder part is to seek a good generalization capability whereas the main goal of the
decoder part is to seek to minimize the empirical risk. Also, it allows the design of regularizers that
depend only on the encoder, namely the complexity of the latent variables as we will elaborate on
thoroughly in the next section. (2) The dominant term of the RHS of (9) is MDLpQq{n. This can be
seen by noticing that the total variation term }p̂Y ´ p̂Y1 }1 is of the order

a

C{n as shown in (BK12,
Theorem 2); and, hence, the residual

Bemp_diff :“ EY,Y1,Ŷ,Ŷ1

„

hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

, (11)

is small for large n (see below for additional numerical justification of this statement). (3) The
term MDLpQq as given by (10) expresses the average (w.r.t. data and training stochasticity) of
KL-divergence terms of the form DKLpP}Qq where P is representation distribution on n training
samples and n test samples conditioned on the features of the 2n examples for a given encoder, while
Q is a fixed symmetric prior distribution for representations givens 2n samples for the given encoder.
As stated in Definition 1, Q is symmetric for any permutation π; and, in a sense, this means that Q
induces a distribution on pU,U1q conditionally given pY,Y1,X,X1,Weq that is invariant under all
permutations that preserve the labels of training and ghost samples. (4) The minimum description
length of the representations arguably reflects the encoder’s “structure” and “simplicity” (SZK23).
In contrast, mutual information (MI) type bounds and regularizers, used, e.g., in the now popular
IB method, are known to fall short of doing so (Gei21; AG19; RG19; DKSV20; LLS`23). In
fact, as mentioned in these works, most existing theoretical MI-based generalization bounds (e.g.,
(VPV18; KDJH23)) become vacuous in reasonable setups. Also, no consistent relation between the
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Figure 2: Values of hC

´

L̂py, ŷq, L̂py1, ŷ1q; ϵ
¯

for various values of the generalization error for
the CIFAR10 dataset.

Figure 3: Comparison of the generalization
bounds of Theorems1 (for various values of
L̂pS,W q) and (SZK23, Theorem 4) for the CI-
FAR10 dataset.

generalization error and MI has been reported experimentally so far. Therefore, MDL is a better
indicator of the generalization error than the mutual information used in the IB principle.

As we already mentioned, the total variation }p̂Y ´ p̂Y1 }1 is of the order
a

C{n (BK12, Theorem 2);
and for this reason, the second term on the RHS of (9) is negligible in practice. Figure 2 shows
the values of the term inside the expectation of Bemp_diff as given by (11) for the CIFAR10 dataset
for various values of the generalization error. The values are obtained for empirical risk of 0.05
and }p̂Y ´ p̂Y1 }1 set to be of the order

a

C{n. As it is visible from the figure, the term inside the
expectation of Bemp_diff is order of magnitude smaller than the generalization error. This illustrates that
even for settings with moderate dataset size such as CIFAR, the generalization bound of Theorem 1
is mainly dominated by MDLpQq{n.

As stated in the Introduction section, generalization bounds for the representation learning setup
of Fig. 1 are rather scarce; and, to the best of our knowledge, the only non-vacuous existing in-
expectation bound was provided recently in (SZK23, Theorem 4). This bound states that

ES,W rgenpS,W qs ď

c

2MDLpQq ` C ` 2

n
, (12)

where C is the number of classes.

i. Investigating (9) and (12), it is easy to see that, order-wise, while the bound of (SZK23, Theorem 4)
evolves as O

´

a

MDLpQq{n
¯

our bound of Theorem 1 is tighter comparatively and it evolves as
OpMDLpQq{nq for realizable setups with large n (i.e., for most settings in practice).

ii. Figure 3 depicts the evolution of both bounds as function of MDLpQq{n for the CIFAR10 dataset
and for different values of the empirical risk. It is important to emphasize that, in doing so, we
account for the contribution of all terms of the RHS of (9), including the residual Bemp_diff which
is then not neglected. As is clearly visible from the figure, our bound of Theorem 1 is tighter
comparatively. Also, the advantage over (12) becomes larger for smaller values of the empirical
risk and larger values of MDLpQq{n.

3.2 TAIL BOUND

The following theorem provides a probability tail bound on the generalization error of the representa-
tion learning setup of Fig. 1.
Theorem 2. Consider the setup of Theorem 1 and consider some symmetric conditional distribution
QpU,U1|Y,Y1,X,X1,Weq. Then, for any δ ě 0 and for n ě 10, with probability at least 1 ´ δ
over choices of pS, S1,W q, it holds that

hD

´

L̂pS1,W q, L̂pS,W q

¯

ď
DKL

`

PU,U1|X,X1,We

›

›Q
˘

` logpn{δq

n

` EŶ,Ŷ1|Y,Y1

„

hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

, (13)
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where p̂Y and p̂Y1 are empirical distributions of Y and Y1, respectively.

The proof of Theorem 2 appears in Appendix G.2.

3.3 LOSSY GENERALIZATION BOUNDS

The bounds of the previous section can be regarded as lossless versions of ones that are more
general, and which we refer to as lossy bounds. The lossy bounds are rather easy extensions of the
corresponding lossless versions, but they have the advantage to be guaranteed to stay non-vacuous
even when the encoder is set to be deterministic. Also, such bounds are useful to explaining the
empirically observed geometrical compression phenomenon (Gei21). For comparison, MI-based
bounds, such Xu-Raginsky (XR17) are known to suffer both shortcomings (HRGT`23; Liv23). The
aforementioned shortcomings have been shown that can be addressed using the lossy approach
(SZ24; SZK23). For the sake of brevity, in the rest of this section we only illustrate how the
bound (12) can be extended to a corresponding lossy one. Let Ŵe P We be any quantized model
defined by PŴe|S , that satisfy the distortion criterion EPS,WPŴe|S

”

genpS,W q ´ genpS, Ŵ q

ı

ď ϵ,

where Ŵ “ pŴe,Wdq. Then, we get

ES,W rgenpS,W qs ď

c

2MDLpQq ` C ` 2

n
` ϵ, (14)

where now MDLpQq is considered for the quantized encoder, i.e.,

MDLpQq :“ ES,S1,Ŵe

”

DKL

´

PU,U1|X,X1,Ŵe

›

›QpU,U1|S, S1, Ŵeq

¯ı

. (15)

4 REGULARIZATION USING DATA-DEPENDENT GAUSSIAN MIXTURE PRIORS

Theorems 1 and 2 essentially mean that if for a given learning algorithm the minimum description
length MDLpQq is small then then the algorithm is guaranteed to generalize well. Hence, it is natural
to use the term MDLpQq as a suitable regularizer. The question of the choice of the prior Q is pivotal
for this. In this section we propose an effective method to simultaneously find a data-dependent Q
and use it to build a suitable regularizer term along the optimization iterations.

We assume that for a given input x the encoder outputs the mean µx P Rd and standard deviation
σx P Rd. Also, we assume that the latent variable U is distributed according to a multivariate
Gaussian distribution with a diagonal covariance matrix, i.e., U „ N

`

µx,diagpσ2
xq
˘

where diagpσ2
xq

denotes a d ˆ d diagonal matrix with diagonal elements σ2
x. With this assumption, we have

PU,U1|X,X1,We
“
â

iPrns

!

N
`

µxi
,diagpσ2

xi
q
˘

N
`

µx1
i
,diagpσ2

x1
i
q
˘

)

.

In our approach, we model the prior Q as a suitable Gaussian mixture, with the mixture coefficients
chosen judiciously in a manner that is training-data dependent and along the optimization iterations.
The rationale for this choice is two fold: (i) The Gaussian mixture distribution is known to possibly
approximate well enough any arbitrary distribution provided that the number of mixture components
is sufficiently large (DH83; GBC16) (see also (NNL`22, Theorem 1)); and (ii) given distributions
tpiuiPrNs, the distribution q that minimizes

ř

iPrNs DKLppi}qq is q “ 1
N

ř

iPrNs pi. Thus, if all
distributions pi are Gaussian, the minimizer is a Gaussian mixture.

Let, for c P rCs, Qc denote the data-dependent Gaussian mixture prior Qc for label c. Also,
let QpU,U1|S, S1, Ŵeq “

ś

iPrns QYi
pUiqQY 1

i
pU 1

iq. It is easy to see that this prior satisfies the
symmetry property of Definition 1. In what follows, we explain how the priors tQcu are chosen
and updated along the optimization iterations. As it will become clearer, our method is somewhat
reminiscent of the expectation-maximization (EM) algorithm for finding Gaussian mixture priors
that maximize the log-likelihood, but with notable major differences: (i) In our case the prior must
be learned along the optimization iterations with the underlying distribution of the latent variables
possibly changing at every iteration. (ii) The Gaussian mixture prior is intended to be used in a
regularizer term, not to maximize the log-likelihood; and, hence, the approach must be adapted
accordingly. (iii) Unlike the usual scenario where the goal is to find an appropriate Gaussian mixture

7
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given a set of points, here we are given a set of distributions i.e., N
`

µxi
,diagpσ2

xi
q
˘

that generate
such points. (iv) The found prior must satisfy (at least partially)2 certain “symmetry” properties.

4.1 LOSSLESS GAUSSIAN MIXTURE PRIOR

For each label c P rCs, we let the prior Qc to be defined as

Qc “
ÿ

mPrMs
αc,m Qc,m, (16)

over Rd, where αc,m P r0, 1s,
ř

mPrMs αc,m “ 1 for each c P rCs, and where tQc,muc,m are
multivariate Gaussian distributions with a diagonal covariance matrix:

Qc,m “ N
`

µc,m,diag
`

σ2
c,m

˘˘

, m P rM s, c P rCs.

With the above prior choice, the regularizer term simplifies as
ř

iPrbs DKL

`

PUi|Xi,We

›

›QYi

˘

. How-
ever, since the KL-divergence between a Gaussian and a Gaussian mixture distributions does not
have a closed-form expression, we estimate it using a slightly adapted method from (HO07). Our
estimate is an average of the upper and lower bounds of the KL-divergence, denoted as Dvar and
Dprod. Please refer to Appendix F for more details on this estimation. For better readability, we
present the approximation of the KL-divergence by its upper bound Dvar in the main part of this paper
and we refer the reader to Appendix C for the approach using

`

Dvar ` Dprod
˘

{2.

Finally, similar to (AFDM17; SZK23), we consider only the part of the upper bound MDLpQq

corresponding to the training dataset S, simply because the test dataset S1 is not available during the
training phase. With this assumption and for a mini-batch B “ tz1, . . . , zbu Ď S, the regularizer
term is equal to

RegularizerpQq :“ DKL

`

PUB|XB,We

›

›QB
˘

, (17)

where the indices B indicate the restriction to the set B. For better exposition, we will drop the
notation dependence on B in the rest of this section. Now, we are ready to explain how the Gaussian
mixtures are initialized, updated, and used as a regularizer simultaneously and along the optimization
iterations. In what follows, the superscript ptq denotes the optimization iteration t P N˚.

Initialization. First, we initialize the priors as Qp0q
c by initializing α

p0q
c,m and the parameters µp0q

c,m

σ
p0q
c,m of the components Qp0q

c,m, for c P rCs,m P rM s, similar to the method of initializing the centers
in k-means++ (Art07). The reader is referred to Appendix C.1 for further details.

Update of the priors. Let the mini-batch picked at iteration t be Bptq “ tz
ptq
1 , . . . , z

ptq
b u. By dropping

the dependence on ptq for better readability, the regularizer 17, at iteration ptq, can be written as

RegularizerpQq “
ÿ

iPrbs
DKL

`

PUi|xi,we

›

›

ÿ

mPrMs
αptq
yi,mQptq

yi,mpUiq
˘

paq

ď
ÿ

iPrbs

ÿ

mPrMs

γi,m

´

DKL

`

PUi|xi,we

›

›Qptq
yi,mpUiq

˘

´ log
`

αptq
yi,m{γi,m

˘

¯

, (18)

where the last step holds for any choices of γi,m ě 0 such that
ř

mPrMs γi,m “ 1, for every i P rbs.
To see why the step paq holds, we refer the reader to Appendix F to see how the variational bound
Dvar is derived.

Now, to update the components of the priors, first (similar to ‘E’-step) note that the coefficients γi,m
that minimizes the above upper bound are equal to

γi,m “
α

ptq
yi,me´DKL

`

PUi|xi,we}Qptq
yi,m

˘

ř

m1PrMs α
ptq
yi,m1e

´DKL

`

PUi|xi,we}Q
ptq

yi,m
1

˘ , i P rbs,m P rM s. (19)

2While the bounds of Theorems 1 and 2 require the prior Q to satisfy the exact symmetry of Definition 1, it
can be shown that these bounds still hold (with a small penalty) if such exact symmetry requirement is relaxed
partially. The reader is referred to Appendix B, where formal results and their proofs are provided for the case of
“almost symmetric” priors.
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Let γi,c,m “ γi,m if c “ yi and γi,c,m “ 0 otherwise. Next, (similar to M -step) we treat γi,m
as constants, and find the parameters µ˚

c,m, σ˚
c,m,j , α˚

c,m that minimizes the upper bound (18), by
simply taking the partial derivatives and equating them to zero. Simple calculations show that the
closed-form solutions are

µ˚
c,m “

1

bc,m

ÿ

iPrbs
γi,c,mµxi

, σ˚
c,m,j

2
“

1

bc,m

ÿ

iPrbs
γi,c,m

´

σ2
xi,j ` pµxi,j ´ µ

ptq
c,m,jq2

¯

,

α˚
c,m “bc,m{bc, bc,m “

ÿ

iPrbs
γi,c,m, bc “

ÿ

mPrMs
bc,m. (20)

where j P rds denotes the index of the coordinate in Rd and σ˚
c,m “ pσ˚

c,m,1, . . . , σ
˚
c,m,dq. Finally, to

reduce the dependence of the prior on the dataset and to partially preserve the symmetry property, let

µpt`1q
c,m “p1 ´ η1qµptq

c,m ` η1µ
˚
c,m ` Z

pt`1q

1 , σpt`1q
c,m

2
“ p1 ´ η2qσptq

c,m

2
` η2σ

˚
c,m

2
` Z

pt`1q

2 ,

αpt`1q
c,m “p1 ´ η3qαptq

c,m ` η3α
˚
c,m, (21)

where η1, η2, η3 P r0, 1s are some fixed coefficients and Z
pt`1q

j , j P r2s, are i.i.d. multivariate

Gaussian random variables distributed as N p0d, ζ
pt`1q

j Idq. Here 0d “ p0, . . . , 0q P Rd and ζ
pt`1q

j P

R` are some fixed constants.

Regularizer. Finally, using (19), the upper bound (18) that we use as a regularizer, can be simplified
as

´
ÿ

iPrbs
log

´

ÿ

mPrMs
αptq
yi,me´DKL

`

PUi|xi,we}Qptq
yi,m

˘

¯

. (22)

4.2 LOSSY GAUSSIAN MIXTURE PRIOR

The lossy case is explained in Appendix C.3 when the KL-divergence estimate pDprod ` Dvarq{2
is considered. Similar to Section 4.1, it can be shown that if only Dvar is considered for the KL-
divergence estimate, then the regularizer term becomes equal to

´
ÿ

iPrbs
log

ˆ

ÿ

mPrMs
αptq
yi,me´DKL,Lossy

`

PUi|xi,ŵe}Qptq
yi,m

˘

˙

, (23)

where DKL,Lossy

`

PU |x,ŵe
}Qy,m

˘

is defined as

DKL

ˆ

N
ˆ

µx,

?
d

2
Id

˙

›

›

›
N
ˆ

µc,m,

?
d

2
Id

˙˙

`DKL

´

N
`

0d,diagpσ2
x`ϵq

˘
›

›N
`

0d,diagpσ2
c,m`ϵq

˘

¯

,

(24)

where ϵ “ pϵ, . . . , ϵq P Rd and ϵ P R` is a fixed hyperparameter.

Furthermore the components are updated according to (21), where γi,c,m, µ˚
c,m, and α˚

c,m are defined
as before, but σ˚

c,m,j
2

“ 1
bc,m

ř

iPrbs γi,c,mσ2
xi,j

and γi,m is equal to

γi,m “
α

ptq
yi,me´DKL,Lossy

`

PUi|xi,ŵe}Qptq
yi,m

˘

ř

m1PrMs α
ptq
yi,m1e

´DKL,Lossy

`

PUi|xi,ŵe}Q
ptq

yi,m
1

˘ “
β

ptq
yi,me

xµxi
,µ

ptq
c,my

?
d

ř

m1PrMs β
ptq
yi,m1e

xµxi
,µ

ptq

c,m1 y

?
d

,

where β
ptq
yi,m “ α

ptq
yi,me

´
}µ

ptq
c,m}2
?

d e´
ř

jPrdsplogpσ
ptq

yi,m,j{σxi,j
q`σ2

xi,j
{p2σ

ptq

yi,m,j

2
qq. In cases where the

means of the components are normalized and the variances are fixed, βptq
yi,m9α

ptq
yi,m.

The parameters γi,m measure the contribution of the component m in Qyi
in generating the latent

variable Ui. One can observe a similarity between how these parameters are chosen in our approach
and the attention mechanism, with the difference that here we are considering a weighted version of
this mechanism, and without key and query matrices since we do not consider projections to other
spaces. Intuitively, to measure the contribution of each component, we measure how much that
component “attend” to Ui.
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Figure 4: Test performance of the CNN-based encoder trained on CIFAR10 using standard VIB
(AFDM17) regularization, Category-dependent VIB (CDVIB) (SZK23) regularization, and our
proposed Gaussian Mixture MDL (GM-MDL) regularization.

5 EXPERIMENTS

In this section, we present the results of our simulations. The reader is referred to Appendix E for
additional details, including used datasets, models, and training hyperparameters.

For the experiments, we considered the lossy regularizer approach with Gaussian mixture prior and
the KL-divergence estimate of pDprod ` Dvarq{2, as detailed in Appendix C.3. In this section, we
refer to our regularizer as Gaussian mixture MDL (GM-MDL). To verify the practical benefits of the
introduced regularizer, we conducted several experiments considering different datasets and encoder
architectures as summarized below and detailed in Appendix E:

• Datasets: CIFAR10, CIFAR100, INTEL, and USPS image classification,

• Encoder architectures: CNN4 and ResNet18.

To compare our approach with the previous literature, in addition to the no-regularizer case, we also
considered the Variational Information Bottleneck (VIB) of (AFDM17) and the Category-dependent
VIB (CDVIB) of (SZK23).

The results presented in Fig. 4 and Table 1 clearly show the practical advantages of our proposed
approach. All experiments are run independently for 5 times and the reported values and plots are the
average over 5 runs. In Fig.4, we plotted the performance of different regularizers as a function of the
trade-off regularization parameter β. In Table 1, we reported the best achieved average test accuracy
for each regularizer.

Table 1: Test performance of representation learning models with different encoder architectures, and
trained on selected datasets using VIB (AFDM17), Category-dependent VIB (CDVIB) (SZK23), and
our proposed Gaussian Mixture MDL (GM-MDL).

# Encoder Dataset no reg. VIB CDVIB GM-MDL

1 CNN4 CIFAR10 0.612 0.626 0.649 0.681

2 CNN4 USPS 0.948 0.952 0.955 0.963

3 CNN4 INTEL 0.756 0.759 0.763 0.776

4 ResNet18 CIFAR10 0.824 0.829 0.835 0.848

5 ResNet18 CIFAR100 0.454 0.458 0.463 0.497

10
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Appendices
The appendices are organized as follows:

• In Appendix A, we provide the intuition behind the lossy generalization bounds and we
present an extension of Theorem 1 to lossy compression settings.

• In Appendix B, we show how the established generalization bounds of this work can be
extended to cases where the prior violates the symmetry condition.

• In Appendix C, we explain in detail our approach to finding the Gaussian mixture and
Gaussian-product mixture priors and how to use them in a regularizer term. This subsection
is further divided into three parts, describing

– our initialization method in Appendix C.1,
– the lossless approach in Appendix C.2,
– and the lossy approach in Appendix C.3.

• In Appendix D, we discuss the potential future directions.

• Appendix E explains the details of our experiments.

• Appendix F contains the used approximation method for the KL divergence between a
Gaussian distribution and a Gaussian mixture distribution, and also between two Gaussian
mixture distributions.

• Finally, the deferred proofs are presented in Appendix G.

A INTUITION BEHIND LOSSY GENERALIZATION BOUNDS

The bounds of Theorems 1 and 2 for the deterministic encoders may become vacuous, due to the KL-
divergence term, and the bounds cannot explain the empirically observed geometrical compression
phenomenon (Gei21). These issues can be addressed using the lossy compressibility approach, as
opposed to the lossless compressibility approach considered in previous sections. To provide a better
intuition for these approaches, we first briefly explain their counterparts in information theory, i.e.,
lossless and lossy source compression.

Consider a discrete source V „ PV and assume that we have n i.i.d. realizations V1, . . . , Vn of
this source. Then, for sufficiently large values of n, the classical lossless source coding result in
information theory states that this sequence can be described by approximately nHpV q bits, where
HpV q is the Shannon entropy function. Thus, intuitively, HpV q is the complexity of the source V .
Now suppose that V is no longer discrete. Then V1, . . . , Vn can no longer be described by any finite
number of bits. However, if we consider some “vector quantization” instead, a sufficiently close
vector can be described by a finite number of bits. This concept is called lossy compression. The
amount of closeness is called the distortion, and the minimum number of needed bits (per sample) to
describe the source within a given distortion level is given by the rate-distortion function.

Similar to (SZK23, Section 2.2.1 and Appendix C.1.2), we borrow such concepts to capture the “lossy
complexity” of the latent variables in order to avoid non-vacuous bounds which can also explain
the geometrical compression phenomenon (Gei21; SZK23). This is achieved by considering the
compressibility of “quantized” latent variables derived using the “distorted” encoders Ŵe. Note that
Ŵe is distorted only for the regularization term to measure the lossy compressibility (rate distortion),
and the undistorted latent variables are passed to the decoder. This is different from approaches that
simply add noise to the output of the encoder and pass it to the decoder.

Finally, we show how to derive similar lossy bounds to (14) in terms of the function hD. We first
define the inverse of the function hD as follows. For any y P r0, 2s and x2 P r0, 1s, let

h´1
D py|x2q “ suptx1 P r0, 1s : hDpx1, x2q ď yu. (25)

Let Ŵe P We be any quantized model defined by PŴe|S , that satisfy the distortion criterion

EPS,WPŴe|S

”

genpS,W q ´ genpS, Ŵ q

ı

ď ϵ, where Ŵ “ pŴe,Wdq. Then, using Theorem 1 for the
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quantized model, we have

ES,S1,Ŵ ,Ŷ,Ŷ1

”

hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯ı

ď

MDLpQq ` logpnq

n
` EY,Y1,Ŷ,Ŷ1

„

hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

“: ∆pŴ ,Qq.

(26)

Next, using the Jensen inequality we have

hD

´

EŴ rLpŴ qs,ES,Ŵ rL̂pS, Ŵ qs

¯ı

ď ES,S1,Ŵ ,Ŷ,Ŷ1

”

hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯ı

. (27)

Combining the above two inequalities yields

hD

´

EŴ rLpŴ qs,ES,Ŵ rL̂pS, Ŵ qs

¯ı

ď ∆pŴ ,Qq. (28)

Finally, we have

ES,W rgenpS,W qs ďES,Ŵ

”

genpS, Ŵ q

ı

` ϵ

“EŴ rLpŴ qs ´ ES,Ŵ rL̂pS, Ŵ qs ` ϵ

ďh´1
D

´

minp2,∆pŴ ,Qqq
ˇ

ˇES,Ŵ rL̂pS, Ŵ qs

¯

´ ES,Ŵ rL̂pS, Ŵ qs ` ϵ (29)

In particular, for negligible values of ES,Ŵ rL̂pS, Ŵ qs, h´1
D

´

minp2,∆pŴ ,Qqq
ˇ

ˇES,Ŵ rL̂pS, Ŵ qs

¯

«

minp2,∆pŴ ,Qqq À
MDLpQq`logpnq

n , which gives

ES,W rgenpS,W qs À
MDLpQq ` logpnq

n
` ϵ.

B GENERALIZATION BOUNDS VIA NON-SYMMETRIC PRIORS

In this section, we discuss how the bounds of Theorems 1 and 2 can be extended to settings in which
the requirement of symmetry is relaxed partially. We focus on “differentially private” and “partially
symmetric” data-dependent priors.

B.1 DIFFERENTIALLY PRIVATE DATA-DEPENDENT PRIORS

One way to extend the results to include the partially symmetric data-dependent priors is by leveraging
the differential privacy tools (Dwo06; DR`14; DFH`15; DR18). The reader is referred to (Alq21,
Section 3.3) for more on differentially private priors.

Recall that given the dataset S we train a model W using the learning algorithm Ap¨q, i.e., W “ ApSq.
Now, assume that by having the dataset S and the trained model W “ ApSq we choose the prior
QS,W using a potentially stochastic mechanism T : S ˆ W Ñ Q, where Q denotes the space of all
conditional distributions of U,U1 given pY,Y1q, that is “strongly” symmetric. To state the definition
of strongly symmetric prior, we first recall the notations of Uπ,U

1
π and Yπ,Y

1
π for any permutation

π : r2ns Ñ r2ns. Let Y 2n :“ pY,Y1q. Then, we define Yπ and Y1
π as

Yπ :“Yπp1q, . . . , Yπpnq,

Yπ :“Yπpn`1q, . . . , Yπp2nq. (30)

The variables Uπ and U1
π are defined in a similar manner.

Definition 2 (Strongly symmetric prior). A conditional distribution Q of U,U1 given pY,Y1q is
strongly symmetric, if for every pU,U1,Y,Y1q and every permutation π : r2ns Ñ r2ns that preserves
the labeling (i.e., Yπ “ Y and Y1

π “ Y1) we have

Q
`

U,U1|Y,Y1
˘

“Q
`

Uπ,U
1
π|Y,Y1

˘

. (31)
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Note that any strongly symmetric prior satisfies the symmetry condition of Definition 1. In addition,
the per-label Gaussian-mixture prior of Section 4 meets the strongly symmetric condition. To show
this, recall that for any c P rCs, the Gaussian mixture prior for label c is denoted by Qc. Given these
per-label priors, the prior Q is defined as

QpU,U1|S, S1, Ŵeq “QpU,U1|Y,Y1q

“
ź

iPrns

QYi
pUiqQY 1

i
pU 1

iq.

It is immediate to see that this prior is strongly symmetric under any permutation that preserves the
labeling.

Next, we define the notion of learning the prior in a differentially private manner. For simplicity, we
consider the case where ApSq can be written as a deterministic function gpS, V q, where V represents
all the stochasticity in the learning algorithm that is independent of S. An example of such a learning
algorithm is the Stochastic Gradient Descent (SGD) algorithm.
Definition 3 (Differentially private prior). We say T : S ˆ W Ñ Q is εp-differentially private if for
any fixed V , and all datasets S and S1 that are different in only one coordinate and for all measurable
subsets B Ď Q, we have

P
´

QS,ApSq P B
¯

ď eεpP
´

QS1,ApS1q P B
¯

, (32)

where ApSq “ gpS, V q and ApS1q “ gpS1, V q.

Now, we state our tail-bound result for εp-differentially private prior.
Proposition 1. Consider the setup of Theorem 1 and suppose the prior QS,ApSq is chosen using an
εp-differentially private mechanism T : S ˆ W Ñ Q. Then, for any δ ě 0 and for n ě 10, with
probability at least 1 ´ δ over choices of pS, S1,W q, it holds that

hD

´

L̂pS1,W q, L̂pS,W q

¯

ď
DKL

`

PU,U1|X,X1,We

›

›QS,ApSq
˘

` logp2n{δq

n

` EŶ,Ŷ1|Y,Y1

„

hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

`
1

2
ε2p ` εp

c

logp4{δq

2n
, (33)

where p̂Y and p̂Y1 are empirical distributions of Y and Y1, respectively.

The proof stated in Appendix G.3 is an extension of Theorem 2 using (DFH`15, Theorems 18&19)
and (DR18, Theorem 4.2).

B.2 PARTIALLY SYMMETRIC DATA-DEPENDENT PRIORS

In this section, we show an alternative way to extend our generalization bound results by defining the
partially symmetric priors.
Definition 4 (Partially symmetric prior). The prior Q is pϵ, δq-partially symmetric for the learning
algorithm A : Zn Ñ W , if with probability at least 1 ´ δ over choices of pS1, S,We,U,U1q „

PS1PS,WeQ,
@πY,Y1 : QpU,U1|Y,Y1,X,X1,Weq ď eϵQpUπY,Y1 ,U

1
πY,Y1 |Y,Y1,X,X1,Weq, (34)

where this should hold for any permutation πY,Y1 (which could potentially depend on Y,Y1) that
satisfies the labeling.

Note that the partially symmetric prior can potentially depend on pS,W q.
Proposition 2. Consider the setup of Theorem 1. Then, for any pϵ, δq-partially symmetric conditional
distribution Q and for n ě 10, we have

ES,S1,W,Ŷ,Ŷ1

”

hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯ı

ď
MDLpQq ` log

`

δe2n ` neϵ
˘

n

` EY,Y1,Ŷ,Ŷ1

„

hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

.

(35)
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where p̂Y and p̂Y1 are empirical distributions of Y and Y1, respectively and MDLpQq is defined in
10.

This result is proved in Appendix G.4.

C GAUSSIAN MIXTURE PRIOR APPROXIMATION AND REGULARIZATION

In this section, we explain in detail our approach to finding an appropriate data-dependent Gaussian
mixture prior and how to use it in a regularizer term along the optimization trajectories. The section
is subdivided into three parts: the first part explains how we initialize the components of the Gaussian
mixture prior, and the other two parts explain the lossless and lossy versions of our approach.

Recall that we are considering a regularizer term equal to

RegularizerpQq :“ DKL

`

PUB|Xβ ,We

›

›QB
˘

, (36)

where the indices B indicate the restriction to the set B. However, for the sake of simplicity, we will
drop the dependence on B in the rest of this section. Also, in the following, the superscript ptq is used
to denote the optimization iteration t P N˚.

We choose a Gaussian mixture prior Q in lossless and lossy ways. In both approaches, we initialize
three sets of parameters αp0q

c,m, µp0q
c,m, and σ

p0q
c,m, for c P rCs and m P rM s, similarly. We will explain

this first.

C.1 INITIALIZATION OF THE COMPONENTS

We let αp0q
c,m “ 1{M , for c P rCs and m P rM s. The standard deviation values σp0q

c,m are randomly
chosen from the distribution N p0, Idq.

The means of the components µ
p0q
c,m are initialized in a way that the centers are initialized in the

k-means++ method (Art07). More specifically, they are initialized as follows.

1. The model’s encoder We is initialized.
2. A mini-batch Z “ tZ1, . . . , Zb̃u, with a large mini-batch size b̃ " b, of the training data is

selected. Let X and Y be the set of features and labels of this mini-batch.
For simplicity, we denote by Xc “ tXc,1, . . . , Xc,bcu Ď X the subset of features of the
mini-batch with label c P rCs. Note that

ř

cPrCs bc “ b̃.
Using the initialized encoder, we compute the corresponding parameters of the latent spaces
for this mini-batch. Denote their mean vector as µc “ tµc,1, . . . , µc,bcu. For each c P rCs,
we let µp0q

c,1 be equal to one of the elements in µc, uniformly.
3. For 2 ď m ď M , we take a new mini-batch Z, with per-label features and latent variable

means Xc and µc. Then, for all c P rCs, we compute the below distances:

dmin,cpiq “ min
m1Prm´1s

›

›

›
µc,i ´ µ

p0q

c,m1

›

›

›

2

, i P rbcs.

Then we randomly sample an index i˚ from the set rbcs according to a weighted probability
distribution, where the index i has a weight proportional to dmin,cpiq. We let µp0q

c,m be equal
to µc,i˚ .

C.2 LOSSLESS GAUSSIAN MIXTURE PRIOR

We start with the lossless version, which is easier to explain. Based on our observations in the
experiments, the final population accuracy achieved when using the lossless regularizer is better
than when using VIB (AFDM17) or CDVIB (SZK23), but worse than when using the lossy version,
explained in Appendix C.3.

Update of the priors. Suppose the mini-batch picked at iteration t is Bptq “ tz
ptq
1 , . . . , z

ptq
b u. We

drop the dependence of the samples on ptq for better readability. Then, the regularizer (36), at iteration
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ptq, can be written as

RegularizerpQq “
ÿ

iPrbs
DKL

`

PUi|xi,we

›

›Qptq
yi

pUiq
˘

. (37)

We propose upper and lower bounds on this term. The upper bound is already presented in (18),
denoted as Dvar:

RegularizerpQq ď Dvar :“
ÿ

iPrbs

ÿ

mPrMs

γi,m

˜

DKL

`

PUi|xi,we

›

›Qptq
yi,mpUiq

˘

´ log
´α

ptq
yi,m

γi,m

¯

¸

. (38)

The upper bound holds for all choices of γi,m ě 0 such that
ř

mPrMs γi,m “ 1, for any i P rbs. As
explained in Section 4, the coefficients γi,m that minimize the above upper bound and thus make it
tighter are equal to

γi,m “
α

ptq
yi,me´DKL

`

PUi|xi,we}Qptq
yi,m

˘

ř

m1PrMs

α
ptq
yi,m1e

´DKL

`

PUi|xi,we}Q
ptq

yi,m
1

˘ , i P rbs,m P rM s. (39)

Denote γi,c,m “

"

γi,m, if c “ yi,

0, otherwise..
.

Next, we establish a lower bound on the regularizer as

RegularizerpQq ě ´
ÿ

iPrbs

˜

1

2
log

´

p2πeqd
ź

jPrds
σ2
xi,j

¯

` log
´

M
ÿ

m“1

αptq
yi,mti,m

¯

¸

ě ´
ÿ

iPrbs

˜

1

2
log

´

p2πeqd
ź

jPrds
σ2
xi,j

¯

` log
´

M
ÿ

m“1

αptq
yi,mt1

i,m

¯

¸

“:Dprod, (40)

where

ti,m :“EU„PUi|xi,we

”

Qptq
yi,m

ı

paq
“

e
´

ř

jPrds

pµxi,j
´µ

ptq
yi,m,jq

2

2

ˆ

σ2
xi,j

`σ
ptq
yi,m,j

2
˙

d

ś

jPrds

ˆ

2π

ˆ

σ2
xi,j

` σ
ptq
yi,m,j

2
˙˙

,

t1
i,m :“

e
´

ř

jPrds

pµxi,j
´µ

ptq
yi,m,jq

2

2σ
ptq
yi,m,j

2

d

ś

jPrds

ˆ

2π

ˆ

σ2
xi,j

` σ
ptq
yi,m,j

2
˙˙

, (41)

where the step paq is derived from (Bro03). The reader is referred to Appendix F for details on how
this upper bound is derived.

It has already been observed in (HO07) for the case of two Gaussian mixture distributions that the
KL-divergence is better estimated by considering the average of the product lower bound and the
variational upper bound. We then consider the following estimate as the regularizer term

RegularizerpQq «
Dvar ` Dprod

2
“: Dest, , (42)

where Dvar and Dprod are defined in (38) and (40), respectively.

Next, we treat γi,m as constants and find the parameters µ˚
c,m, σ˚

c,m,j , α˚
c,m that minimize Dest by

solving the following equations

BDest

Bµc,m
“ 0,

BDest

Bσc,m
“ 0,

BDest

Bαc,m
“ 0,
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with the constraint that
ř

m αc,m “ 1 for each c P rCs.

The above equations have closed-form solutions for µ˚
c,m and α˚

c,m, but unlike the lossy version
in the next subsection, they do not have a closed-form solution for σ˚

c,m,j . However, by a simple
approximation trick of treating the denominator in (41) as constant, we can get a closed-form solution
for σ˚

c,m,j as well. Thus, simple algebra leads to the following exact closed-form solutions µ˚
c,m and

α˚
c,m and approximate σ˚

c,m,j :

µ˚
c,m “

1

b̃c,m

ÿ

iPrbs
γ̃i,c,mµxi

,

σ˚
c,m,j

2
“

1

bc,m

ÿ

iPrbs

´

γi,c,mσ2
xi,j ` 2γ̃i,c,mpµxi,j ´ µ

ptq
c,m,jq2

¯

,

α˚
c,m “b̃c,m{b̃c,

b̃c,m “
ÿ

iPrbs
γ̃i,c,m,

b̃c “
ÿ

mPrMs
b̃c,m

bc,m “
ÿ

iPrbs
γi,c,m, . (43)

where

γ̃i,c,m :“
γi,c,m ` βi,c,m

2
,

βi,c,m “

#

ηi,m
ř

m1PrMs ηi,m1
, ifc “ yi,

0, otherwise.

ηi,m :“αptq
yi,me

´
ř

jPrds

pµxi,j
´µ

ptq
yi,m,jq

2

2σ
ptq
yi,m,j

2

. (44)

Note that j P rds denotes the index of the coordinate in Rd and σ˚
c,m “ pσ˚

c,m,1, . . . , σ
˚
c,m,dq. Finally,

to reduce the dependence of the prior on the dataset, we choose the updates as

µpt`1q
c,m “p1 ´ η1qµptq

c,m ` η1µ
˚
c,m ` Z

pt`1q

1 , σpt`1q
c,m

2
“ p1 ´ η2qσptq

c,m

2
` η2σ

˚
c,m

2
` Z

pt`1q

2 ,

αpt`1q
c,m “p1 ´ η3qαptq

c,m ` η3α
˚
c,m, (45)

where η1, η2, η3 P r0, 1s are some fixed coefficients and Z
pt`1q

j , j P r2s, are i.i.d. multivariate

Gaussian random variables distributed as N p0d, ζ
pt`1q

j Idq. Here 0d “ p0, . . . , 0q P Rd and ζ
pt`1q

j P

R` are some fixed constants.

Regularizer. Finally, the regularizer estimation (42) can be simplified as

RegularizerpQq “ ´
1

2

ÿ

iPrbs

log
´

ÿ

mPrMs
αptq
yi,me´DKL

`

PUi|xi,we}Qptq
yi,m

˘

¯

´
1

2

ÿ

iPrbs

˜

1

2
log

´

p2πeqd
ź

jPrds
σ2
xi,j

¯

` log
´

M
ÿ

m“1

αptq
yi,mt1

i,m

¯

¸

. (46)

C.3 LOSSY GAUSSIAN MIXTURE PRIOR

Now we proceed with the lossy version of the regularizer. For this, we consider the MDL of the
“perturbed” latent variable, while passing the unperturbed latent variable to the decoder. Fix some
ϵ P R` and let ϵ “ pϵ, . . . , ϵq P Rd.

For the regularizer, we first consider the perturbed U as

Û “ U ` Z̃ “ pµX ` Z1q ` Z2 “: Û1 ` Û2, (47)
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where Z̃, Z1, and Z2 are independent multi-variate random variables, drawn from the distributions
N
´

0d,
a

d{4 Id ` diag
`

ϵ
˘

¯

, N
´

0d,
a

d{4 Id

¯

, and N
`

0d,diag
`

σ2
X,j ` ϵ

˘˘

, respectively. Conse-

quently, Û1 „ N pµX ,
a

d{4 Idq is independent from Û2 „ N p0d,diagpσ2
X ` ϵqq, given pX,Weq.

For each label c P rCs, we consider two Gaussian mixture priors Qc,1 and Qc,2 for Û1 and Û2,
respectively, as follows:

Qc,1 “
ÿ

mPrMs
αc,m Qc,m,1, (48)

Qc,2 “
ÿ

mPrMs
αc,m Qc,m,2 (49)

over Rd, where αc,m P r0, 1s,
ř

mPrMs αc,m “ 1 for each c P rCs, and where tQc,m,1uc,m and
tQc,m,2uc,m are multivariate Gaussian distributions with a diagonal covariance matrix:

Qc,m,1 “N
´

µc,m,
a

d{4 Id

¯

,

Qc,m “N
`

0d,diag
`

σ2
c,m ` ϵ

˘˘

.

Note that the Gaussian mixture priors Qc,1 and Qc,2 have the same parameters of αc,m. Now, let the
prior Qc be the distortion of Û “ Û1 ` Û2, when Û1 „ Qc,1 and Û2 „ Qc,2.

Now, for the variation upper bound Dvar for the regularizer, we first consider the inequality

DKL

´

PÛ |x,we
}Qyi

¯

ďDKL

´

N pµx,
a

d{4 Idq}Qyi,1

¯

` DKL

`

N p0d,diagpσ2
x ` ϵqq}Qyi,2

˘

“:DKL,Lossy

´

PÛ |x,we
}Qyi

¯

. (50)

Using the same arguments as in the lossless version but for DKL,Lossy

´

PÛ |x,we
}Qyi

¯

instead of

DKL

´

PÛ |x,we
}Qyi

¯

, we derive the following upper bound, denoted as Dvar:

RegularizerpQq ď Dvar :“
ÿ

iPrbs

ÿ

mPrMs

γi,m

˜

DKL,lossy

`

PUi|xi,we

›

›Qptq
yi,mpUiq

˘

´ log
´α

ptq
yi,m

γi,m

¯

¸

,

(51)

which is minimized for

γi,m “
α

ptq
yi,me´DKL,Lossy

`

PUi|xi,we}Qptq
yi,m

˘

ř

m1PrMs

α
ptq
yi,m1e

´DKL,Lossy

`

PUi|xi,we}Q
ptq

yi,m
1

˘ , i P rbs,m P rM s. (52)

Denote γi,c,m “

"

γi,m, if c “ yi,

0, otherwise..
.

For the lower bound, we first consider the inequality

DKL

´

PÛ |x,we
}Qyi

¯

ěDKL

´

N pµx,
a

d{4Idq}Qyi,1

¯

. (53)

Then we apply a similar lower bound as in the lossless case to the RHS of (53). This lower bound,
denoted by Dprod, is equal to

RegularizerpQq ě ´
ÿ

iPrbs

˜

d

2
log

´

πe
?
d
¯

` log
´

M
ÿ

m“1

αptq
yi,mt̃i,m

¯

¸

“:Dprod, (54)

where

t̃i,m :“
1

b

p2π
?
dqd

e
´

}µxi
´µ

ptq
yi,m}

2

2
?

d , (55)
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We then consider the following estimate as the regularizer term

RegularizerpQq «
Dvar ` Dprod

2
“: Dest, , (56)

where Dvar and Dprod are defined in (51) and (54), respectively.

Next, similar to the lossless case, we treat γi,m as constants and find the parameters µ˚
c,m, σ˚

c,m,j ,
α˚
c,m that minimize Dest by solving the following equations

BDest

Bµc,m
“ 0,

BDest

Bσc,m
“ 0,

BDest

Bαc,m
“ 0,

with the constraint that
ř

m αc,m “ 1 for each c P rCs. The exact closed-form solutions µ˚
c,m and

α˚
c,m and σ˚

c,m,j are equal to :

µ˚
c,m “

1

b̂c,m

ÿ

iPrbs
γ̂i,c,mµxi

,

σ˚
c,m,j

2
“

1

bc,m

ÿ

iPrbs
γi,c,mσ2

xi,j ,

α˚
c,m “b̃c,m{b̃c,

b̃c,m “
ÿ

iPrbs
γ̃i,c,m,

b̃c “
ÿ

mPrMs
b̃c,m

bc,m “
ÿ

iPrbs
γi,c,m,

b̂c,m “
ÿ

iPrbs
γ̂i,c,m. (57)

where

γ̃i,c,m :“
γi,c,m ` βi,c,m

2
,

γ̂i,c,m :“
2γi,c,m ` βi,c,m

3
,

βi,c,m “

#

ηi,m
ř

m1PrMs ηi,m1
, ifc “ yi,

0, otherwise.

ηi,m :“αptq
yi,me

´
}µxi

´µ
ptq
yi,m}

2

2
?

d . (58)

Note that j P rds denotes the index of the coordinate in Rd and σ˚
c,m “ pσ˚

c,m,1, . . . , σ
˚
c,m,dq. Finally,

to reduce the dependence of the prior on the dataset, we choose the updates

µpt`1q
c,m “p1 ´ η1qµptq

c,m ` η1µ
˚
c,m ` Z

pt`1q

1 , σpt`1q
c,m

2
“ p1 ´ η2qσptq

c,m

2
` η2σ

˚
c,m

2
` Z

pt`1q

2 ,

αpt`1q
c,m “p1 ´ η3qαptq

c,m ` η3α
˚
c,m, (59)

where η1, η2, η3 P r0, 1s are some fixed coefficients and Z
pt`1q

j , j P r2s, are i.i.d. multivariate

Gaussian random variables distributed as N p0d, ζ
pt`1q

j Idq. Here ζ
pt`1q

j P R` are some fixed
constants.

Regularizer. Finally, the regularizer estimation (56) can be simplified as

RegularizerpQq “ ´
1

2

ÿ

iPrbs

log
´

ÿ

mPrMs
αptq
yi,me´DKL,Lossy

`

PUi|xi,we}Qptq
yi,m

˘

¯

´
1

2

ÿ

iPrbs

˜

d

2
log

´

πe
?
d
¯

` log
´

M
ÿ

m“1

αptq
yi,mt̃i,m

¯

¸

. (60)
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D FUTURE DIRECTIONS

In this work, we have established generalization bounds in terms of the minimum description length
(MDL) of the latent variables. These bounds are particularly suitable for the encoder-decoder
architecture since they depend only on the encoder part of the model. The bounds improve the
state-of-the-art results from

a

MDLpQq{n to MDLpQq{n in some cases.

Inspired by the bounds, we propose a systematic approach to find a data-dependent prior and use it
as a regularizer. Intuitively, we simultaneously find the underlying “structure” of the latent variable
space, model it as a Gaussian mixture, and then further steer the latent variables to fit the Gaussian
mixture model. The approach shows promising results for different datasets and encoder architectures
in practice.

Our work opens several interesting future directions, as discussed below.

1. In our main body of work, we have established generalization bounds in terms of symmetric
priors. However, the proposed practical approach slightly violates the symmetry condition by
only deepening the training dataset. While generally, it is a common practice to design practical
approaches that are “inspired” by the theoretical results by deviating slightly from the required
assumptions, to make the proposed approach more rigorous, in Appendix B we show how a slight
deviation from symmetry results in only a small penalty in the bound. As a future work, it would
be interesting to measure the exact deviation of the obtained Gaussian mixture prior from the
symmetry condition using the proposed approach.

2. The introduced regularizer depends on the dimension of the latent variable, rather than on the
dimension of the model or the input data, which are often much larger. This is a major advantage
of our approach. In addition, our approach is relatively easy to implement. Nevertheless, similar to
many regularizers, our approach introduces additional computational overhead. In future work,
it would be interesting to investigate possible approaches towards reducing further that overhead,
including: (i) using the regularizer only in the first K epochs (which, usually, are the most critical
ones (KMN`16; ARS17)) and (ii) first projecting the latent space onto a lower dimensional one
and then applying the regularizer in that lower-dimensional space.

3. In our work and in Section 4, we have shown how a weighted attention mechanism emerges naturally
in the process of finding the data-dependent Gaussian mixture prior. This may be particularly
interesting and worth exploring when our approach is applied to self-attention layers. In such cases,
a more efficient implementation could be realized by reusing some of the computations performed
in the self-attention layer.

4. One of the hyperparameters that need to be chosen in our practical approach of Section 4 is the
number of components (M ) in the Gaussian mixture prior. The appropriate choice of M depends
on several factors, but mainly on the dimension d of the latent variables and the “sparsity” or
number of “subpopulations” in the latent variables (which depends on the complexity of the data
and the complexity of the encoder). Therefore, in general, it is not possible to know it exactly in
advance, and thus we consider it as a hyperparameter. However, one may choose an appropriate
number of components by exploring the “structure” of the training data using some common
dimensionality reduction and unsupervised clustering techniques, such as t-SNE dimensionality
reduction (CRHC18) and Gaussians mixture clustering (YLL12). We leave this question as an
interesting future work.

5. Finally, in this work, we focused only on the supervised classification task, but it seems that both
the theoretical and practical approaches can be extended to other setups such as semi-supervised
learning (where we can use the unlabeled data to better find the Gaussian mixture prior) and transfer
learning (where the learned Gaussian mixture prior can be used for transfer learning). These are
other interesting future directions.

E DETAILS OF THE EXPERIMENTS

This section describes additional details about the conducted experiments.
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E.1 DATASETS

In all experiments, we used the following image classification datasets:

CIFAR10 (KH`09) - a dataset of 60,000 labeled images of dimension 32 ˆ 32 ˆ 3 representing 10
different classes of animals and vehicles.

CIFAR100 (KH`09) - a dataset of 60,000 labeled images of dimension 32 ˆ 32 ˆ 3 representing
100 different classes.

USPS (Hul94)3 - a dataset of 9,298 labeled images of dimension 16 ˆ 16 ˆ 1 representing 10 classes
of handwritten digits.

INTEL4 - a dataset of over 24,000 labeled images of dimension 150ˆ 150ˆ 3 representing 6 classes
of different landscapes (‘buildings’, ‘forest’, ‘glacier’, ‘mountain’, ‘sea’, ‘street’).

All images were normalized before feeding them to the encoder.

E.2 ARCHITECTURE DETAILS

The experiments were conducted using three types of encoder models: a custom convolutional
encoder and a pre-trained ResNet18 followed by a linear layer (more specifically, the model
“ResNet18_Weights.IMAGENET1K_V1” in PyTorch). The architecture of the CNN-based en-
coder can be found in Table 2. This custom encoder is a concatenation of four convolutional layers
and two linear layers. We apply max-pooling and a LeakyReLU activation function with a negative
slope coefficient set to 0.1. The encoders take re-scaled images as input and generate parameters µx

and variance σ2
x of the latent variable of dimension m “ 64. Latent samples are produced using the

reparameterization trick introduced by (KW14). Subsequently, the generated latent samples are fed
into a decoder with a single linear layer and softmax activation function. The decoder’s output is a
soft class prediction.

Our tested encoders were complex enough to make them similar to “a universal function approxima-
tor”, in line with (DKSV20). Conversely, we employ a straightforward decoder akin to (AFDM17)
to minimize the unwanted regularization caused by a highly complex decoder. This approach allows
us to emphasize the advantages of our regularizer in terms of generalization performance. However,
note that the used ResNet18 model is already pre-trained using various regularization and data
augmentation techniques. Therefore, the effect of a new regularizer is naturally less visible.

Table 2: The architecture of the convolutional encoder used in the experiments. The convolutional
layers are parameterized respectively by the number of input channels, the number of output channels,
and the filter size. The linear layers are defined by their input and output sizes.

Encoder Encoder cont’d Encoder cont’d
Number Layer Number Layer Number Layer

1 Conv2D(3,8,5) 6 Conv2D(16,16,3) 11 LeakyReLU(0.1)
2 Conv2D(3,8,5) 7 LeakyReLU(0.1) 12 Linear(256,128)
3 LeakyReLU(0.1) 8 MaxPool(2,2) Decoder
4 MaxPool(2,2) 9 Flatten 1 Linear(64,10)
5 Conv2D(8,16,3) 10 Linear(N,256) 2 Softmax

E.3 IMPLEMENTATION AND TRAINING DETAILS

The PyTorch library (PGM`19) and a GPU Tesla P100 with CUDA 11.0 were utilized to train our
prediction model. We employed the PyTorch Xavier initialization scheme (GB10) to initialize all
weights, except biases set to zero. For optimization, we used the Adam optimizer (KB15) with

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.
html#usps

4https://www.kaggle.com/datasets/puneet6060/intel-image-classification
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parameters β1 “ 0.5 and β2 “ 0.999, an initial learning rate of 10´4, an exponential decay of 0.97,
and a batch size of 128.

We trained the encoder and decoder models for 200 epochs five times independently for each
considered regularization loss and for each value of the regularization parameter β ranging between
zero and one. The training was done using conventional cross-entropy loss for image category
classification at the decoder’s output, and regularization of the encoder’s output based on either
the standard VIB, the Category-dependent VIB, or our Gaussian mixture objective functions. For
the Gaussian mixture objective function, we selected M=20 priors for each class category. The
Gaussian mixture priors were initialized using the approaches in C.1. The priors were updated after
each training iteration using the procedure in C.3 with a moving average coefficient η1 “ 1e´2 for
the priors’ means µc,m, η2 “ 5e´4 for the priors’ variances σ2

c,m, and η3 “ 1e´2 for the mixture
weights αc,m. Following the approach outlined in (AFDM17), we generated one latent sample per
image during training and 12 samples during testing.

F KL-DIVERGENCE ESTIMATION

In this section, we first recall the KL-divergence estimation of two Gaussian mixture distributions
developed in (HO07; DTK12). Then, we adapt these approaches to the case where the KL-divergence
estimation of a Gaussian distribution and a Gaussian mixture distribution is considered.

F.1 KL-DIVERGENCE ESTIMATION OF TWO GAUSSIAN MIXTURE DISTRIBUTIONS

In this section, we recall the results of (HO07; DTK12). We give the results only for the case where
the covariance matrices of the Gaussian components are diagonal, for simplicity and because only
diagonal covariance matrices are considered in our work. However, the results hold for the general
form of the covariance matrix.

Consider two Gaussian mixture distributions P and Q, defined as

P “

N
ÿ

j“1

βjPj ,

Q “

M
ÿ

i“1

αiQi,

where αi, βj ě 0,
ř

jPrNs βj “ 1, and
ř

iPrMs αi “ 1. In addition, each component is a multivariate
Gaussian distribution with diagonal covariance matrices.

Pj “N pµp,j ,diagpσ2
p,jqq,

Qi “N pµq,i,diagpσ2
q,iqq.

F.1.1 PRODUCT OF GAUSSIAN APPROXIMATION

In this approximation, DKLpP }Qq is approximated as (HO07):

DprodpP }Qq :“
ÿ

jPrNs

βj log

˜

ř

j1PrMs βj1EPj
rPj1 s

ř

iPrMs αiEPj
rQis

¸

. (61)

Note that this approximation is generally neither an upper bound nor a lower bound.

F.1.2 VARIATIONAL APPROXIMATION

In this approximation, DKLpP }Qq is approximated as (HO07):

DvarpP }Qq :“
ÿ

jPrNs

βj log

¨

˝

ř

j1PrMs βj1e´DKLpPj}Pj1 q

ř

iPrMs αie´DKLpPj}Qiq

˛

‚. (62)

Note that this approximation is again not an upper or lower bound in general.
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F.1.3 AVERAGE OF TWO APPROXIMATIONS

It has been shown in (HO07; DTK12), that the average of the product and variational approximation
provides a better estimate of the KL-divergence between two Gaussian prior distributions.

DestpP }Qq “
DprodpP }Qq ` DvarpP }Qq

2
. (63)

F.2 KL-DIVERGENCE ESTIMATION BETWEEN A GAUSSIAN AND A GAUSSIAN MIXTURE
DISTRIBUTION

In this section, we adapt the approaches of (HO07) for the setup where P is a d-dimensional Gaussian
distribution with a diagonal covariance matrix and Q is a Gaussian mixture of M of d-dimensional
Gaussians with a diagonal covariance matrix.

Formally, let
P “ N pµ,diagpσ2

pqq,

and Q be a Gaussian mixture

Q “

M
ÿ

i“1

αiQi,

where αi ě 0,
ř

iPrMs αi “ 1, and

Qi “ N pµi,diagpσ2
q,iqq.

F.2.1 PRODUCT OF GAUSSIAN BOUND

Denoting LP pfq :“ EP rlogpfqs, we have DKLpP }Qq “ LP pP q ´ LP pQq. Note that

LP pP q “ ´hpP q “ ´
1

2
log

´

p2πeqd
ź

jPrds
σ2
p,j

¯

,

where hp¨q is the differential entropy. Next, to bound LP pQq, using the idea of (HO07), we have

LP pQq “EP

”

log
`

M
ÿ

i“1

αiQi

˘

ı

ď log
´

M
ÿ

i“1

αiEP rQis

¯

“ log
´

M
ÿ

i“1

αiti

¯

, (64)

where

ti “ EP rQis “

ż

x

P pxqQipxqdx, (65)

is the normalization constant of the product of the Gaussians (refer to (DTK12, Appendix A)). Note
that by choice of the diagonal covariance matrices, these constants can be written as the product of m
coordinate-wise constants.

Thus, we have

DKLpP }Qq ě ´
1

2
log

´

p2πeqd
ź

jPrds
σ2
p,j

¯

´ log
´

M
ÿ

i“1

αiti

¯

“: DprodpP }Qq. (66)

Note that, unlike the KL divergence estimation of two Gaussian mixture priors, here the product of
Gaussian approaches provides a lower bound.

F.2.2 VARIATIONAL BOUND

Fix some γi ě 0, i P rM s such that
ř

i γi “ 1. Then,

LP pQq “EP

”

log
`

M
ÿ

i“1

αiQi

˘

ı

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

“EP

”

log
´

M
ÿ

i“1

αiγi
Qi

γi

¯ı

ě
ÿ

iPrMs

γiEP

”

log
´αiQi

γi

¯ı

“
ÿ

iPrMs

γi
`

LP pQiq ` logpαi{γiq
˘

. (67)

Maximizing this lower bound with respect to γi gives

γi “
αie

´DKLpP }Qiq

ř

i1PrMs αi1e´DKLpP }Qi1 q
. (68)

Using this choice, (67) simplifies as

LP pQq “EP

”

log
`

M
ÿ

i“1

αiQi

˘

ı

ě log

ˆ

ÿ

iPrMs

αie
LP pQiq

˙

. (69)

Hence, overall

DKLpP }Qq ďLP pP q ´ log

ˆ

ÿ

iPrMs

αie
LP pQiq

˙

(70)

“ ´ log

ˆ

ÿ

iPrMs

αie
´DKLpP }Qiq

˙

(71)

“:DvarpP }Qq. (72)

Note that again, unlike the KL divergence estimation of two Gaussian mixture priors, where the
variation approach provides only an approximation, this approach provides an upper bound.

F.2.3 AVERAGE OF TWO APPROXIMATIONS

Finally, to estimate the KL-divergence between a Gaussian distribution and a Gaussian mixture
distribution, we consider the average of the product of the Gaussian lower bound and the variational
upper bound.

DestpP }Qq “
DprodpP }Qq ` DvarpP }Qq

2
. (73)

G PROOFS

In this section, we present the deferred proofs.

G.1 PROOF OF THEOREM 1

Fix some symmetric conditional prior QpU,U1|Y,Y1,X,X1,Weq. We will show that

ES,S1,W,Ŷ,Ŷ1

„

hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯

´ hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

ď
MDLpQq ` logpnq

n
,

(74)

where p̂Y and p̂Y1 are empirical distributions of Y and Y1, respectively,

MDLpQq :“ ES,S1,We

”

DKL

´

PU,U1|X,X1,We

›

›

›
Q

¯ı

, (75)

and

pS,S1,U,U1, Ŷ, Ŷ1,W q „ PS,WPS1PU|X,We
PU1|X1,We

PŶ|U,Wd
PŶ1|U1,Wd

.
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Denote

P1 :“PS,WPS1PU|X,We
PU1|X1,We

PŶ|U,Wd
PŶ1|U1,Wd

,

P2 :“PS,WPS1QU,U1|X,X1,Y,Y1,We
PŶ|U,Wd

PŶ1|U1,Wd
,

f
´

Y,Y1, Ŷ, Ŷ1
¯

:“hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯

´ hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙

.

Next, similar to information-theoretic (e.g. (XR17; SZ20; SZK23)) and PAC-Bayes-based approaches
(e.g. (Alq21; RKSST20)) we use Donsker-Varadhan’s inequality to change the measure from P1 to
P2. The cost of such a change is DKLpP1}P2q “ MDLpQq. We apply Donsker-Varadhan on the
function nf . Concretely, we have

ES,S1,W,Ŷ,Ŷ1

”

f
´

Y,Y1, Ŷ, Ŷ1
¯ı

ďDKLpP1}P2q ` log
´

EP2

”

enfpY,Y1,Ŷ,Ŷ1q
ı¯

“MDLpQq ` log
´

EP2

”

enfpY,Y1,Ŷ,Ŷ1q
ı¯

.

Hence, it remains to show that

EP2

”

enfpY,Y1,Ŷ,Ŷ1q
ı

ď n. (76)

Let Q̃Ŷ,Ŷ1|Y,Y1 be the conditional distribution of pŶ, Ŷ1q given pY,Y1q, under the joint distribution

P2. It can be easily verified that Q̃ satisfies the symmetry property since Q is symmetric (as defined
in Definition 1). For better clarity we re-state the symmetry property of Q̃ and define some notations
that will be used in the rest of the proof.

Let Y 2n :“ pY,Y1q and Ŷ 2n :“ pŶ, Ŷ1q. For a given permutation π̃ : r2ns Ñ r2ns, the permuted
vectors Y 2n

π̃ and Ŷ 2n
π̃ are defined as

Y 2n
π̃ :“ Yπ̃p1q, . . . , Yπ̃p2nq,

Ŷ 2n
π̃ :“ Ŷπ̃p1q, . . . , Ŷπ̃p2nq. (77)

Furthermore, under the permutation π̃, we denote the first n coordinates of Y 2n
π̃ and Ŷ 2n

π̃ by

Yπ̃ :“Yπ̃p1q, . . . , Ŷπ̃pnq,

Ŷπ̃ :“Ŷπ̃p1q, . . . , Ŷπ̃pnq, (78)

respectively, and the next n coordinates of Y 2n
π̃ and Ŷ 2n

π̃ by

Y1
π̃ :“ Yπ̃pn`1q, . . . , Yπ̃p2nq,

Ŷ1
π̃ :“ Ŷπ̃pn`1q, . . . , Ŷπ̃p2nq. (79)

respectively. By Q̃ being symmetric, we mean that Q̃Ŷπ̃,Ŷ1
π̃ |Y,Y1 remains invariant under all

permutations such that Yi “ Yπ̃piq for all i P r2ns. In other words, all permutations such that
Y “ Yπ̃ and Y1 “ Y1

π̃ .

Hence, we can write

EP2

”

enfpY,Y1,Ŷ,Ŷ1q
ı

“EY,Y1,Ŷ,Ŷ1

”

enfpY,Y1,Ŷ,Ŷ1q
ı

, (80)

where Y,Y1, Ŷ, Ŷ1 „ µb2n
Y Q̃Ŷ,Ŷ1|Y,Y1 .

Fix some Y and Y1. Without loss of generality and for simplicity, assume that Y and Y1 are ordered,
in the sense that for r P rRs, Yr “ Y 1

r , and tYR`1, . . . , Ynu
Ş
␣

Y 1
R`1, . . . , Y

1
n

(

“ ∅, where

R “ n ´
n

2
}p̂Y ´ p̂Y1 }1.

Otherwise, it is easy to see that the following analysis holds by proper (potentially non-identical)
re-orderings of Y and Y1 and corresponding predictions Ŷ (according to the way Y is re-ordered)
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and Ŷ1 (according to the way Y1 is re-ordered), such that Y and Y1 coincidence in all first R
coordinates and do not have any overlap in the remaining n ´ R coordinates.

Furthermore, for r P rns, let Jr P tr, n ` ru „ Bernp 1
2 q be a uniform binary random variable and

define Jc
r as its complement, i.e., Jr Y Jc

r “ tr, n ` ru. Define the mapping πR :“ r2ns Ñ r2ns

as following: For r P rRs, πRprq “ Jr and πRpr ` nq “ Jc
r . For r P rR ` 1, ns, πRprq “ r

and πRpn ` rq “ n ` r. Note that πR depends on pY,Y1q and under πR, Y “ YπR
and

Y1 “ Y1
πR

, where YπR
and Y1

πR
are defined in (78) and (79), respectively. Hence, }p̂Y ´ p̂Y1 }1 “

›

›

›
p̂YπR

´ p̂Y1
πR

›

›

›

1
. To simplify the notations, in what follows we denote the coordinates of YπR

by

YπR
:“ pYπR,1, . . . , YπR,nq,

and the coordinates of Y1
πR

by

Y1
πR

:“ pY 1
πR,1, . . . , Y

1
πR,nq.

Note that by (78) and (79), we have YπR,i “ Y 2n
πRpiq and Y 1

πR,i “ Y 2n
πRpi`nq

for i P rns, where Y 2n
πRpiq

is defined in (77). Similar notations are used for the prediction vectors, i.e.,

ŶπR
:“pŶπR,1, . . . , ŶπR,nq,

Ŷ1
πR

:“pŶ 1
πR,1, . . . , Ŷ

1
πR,nq.

With these notations, for a fixed ordered Y and Y1 we have

EŶ,Ŷ1|Y,Y1

”

enfpY,Y1,Ŷ,Ŷ1q
ı

“EŶ,Ŷ1|Y,Y1EJ1,...,JR„Bernp 1
2 qbR

”

enfpY,Y1,ŶπR
,Ŷ1

πR
q
ı

“EŶ,Ŷ1|Y,Y1EJ1,...,JR„Bernp 1
2 qbR

”

enfpYπR
,Y1

πR
,ŶπR

,Ŷ1
πR

q
ı

. (81)

where the first step follows due to the symmetric property of Q̃ and the second step follows since
Y “ YπR

and Y1 “ Y1
πR

.

Now, consider another mapping π :“ r2ns Ñ r2ns such that π is identical to πR for the indices in
the range r1 : Rs Y rn ` 1 : n ` Rs, i.e., for r P rRs,

πprq “ πRprq “ Jr, πpr ` nq “ πRpr ` nq “ Jc
r .

Furthermore, for the indices in the range in rR ` 1 : ns Y rn ` R ` 1 : 2ns, π is defined as follows:
for r P rR ` 1, ns,

πprq “ Jr, πpn ` rq “ Jc
r ,

where as previously defined, Jr P tr, n ` ru „ Bernp 1
2 q is a uniform binary random variable and Jc

r
is its complement. Denote

Jn
R`1 :“ JR`1, . . . , Jn.

With the above definitions, we have

enfpYπR
,Y1

πR
,ŶπR

,Ŷ1
πR

q

“EJn
R`1„Bernp 1

2 qbpn´Rq

„

e
nhD

ˆ

1
n

řn
i“1 1tŶ 1

π,i
‰Y 1

π,i
u
, 1
n

řn
i“1 1tŶπ,i‰Yπ,iu

˙

ˆ e
nfpYπR

,Y1
πR

,ŶπR
,Ŷ1

πR
q´nhD

ˆ

1
n

řn
i“1 1tŶ 1

π,i
‰Y 1

π,i
u
, 1
n

řn
i“1 1tŶπ,i‰Yπ,iu

˙

ȷ

paq

ďEJn
R`1„Bernp 1

2 qbpn´Rq

«

e
nhD

ˆ

1
n

řn
i“1 1tŶ 1

π,i
‰Y 1

π,i
u
, 1
n

řn
i“1 1tŶπ,i‰Yπ,iu

˙
ff

, (82)

where paq holds due to the following Lemma, shown in Appendix G.5.
Lemma 1. The below relation holds:

f
´

YπR
,Y1

πR
, ŶπR

, Ŷ1
πR

¯

ď hD

˜

1

n

n
ÿ

i“1

1
tŶ 1

π,i‰Y 1
π,iu

,
1

n

n
ÿ

i“1

1
tŶπ,i‰Yπ,iu

¸

. (83)
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Hence, for a fixed ordered Y and Y1, combining (81) and (82) yields

EŶ,Ŷ1|Y,Y1

”

enfpY,Y1,Ŷ,Ŷ1q
ı

“ EŶ,Ŷ1|Y,Y1EJ1,...,Jn„Bernp 1
2 qbn

«

e
nhD

´

1
n

řn
i“1 1tŶ 1

π,i
‰Y 1

π,i
u
, 1
n

řn
i“1 1tŶπ,i‰Yπ,iu

¯

ff

ď n, (84)

where the last step is derived by using (SZK23, Proof of Theorme 3). As mentioned before, it is
easy to see that the above analysis holds for non-ordered Y and Y1, by simply considering proper
(potentially non-identical) re-orderings of Y and Y1 and corresponding predictions Ŷ (according
to the way Y is re-ordered) and Ŷ1 (according to the way Y1 is re-ordered), such that Y and Y1

coincidence in all first R coordinates and do not have any overlap in the remaining n´R coordinates.

Combining (80), (81), and (84), shows (76) which completes the proof.

G.2 PROOF OF THEOREM 2

First note that by convexity of the function hD ((SZK23, Lemma 1)), we have

hD

´

L̂pS1,W q, L̂pS,W q

¯

ď EŶ,Ŷ1|Y,Y1

”

hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯ı

. (85)

Hence, it suffices to show that with probability at least 1 ´ δ over choices of pS, S1,W q,

EŶ,Ŷ1|Y,Y1

”

hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯ı

ď
DKL

`

PU,U1|X,X1,We

›

›Q
˘

` logpn{δq

n

`EŶ,Ŷ1|Y,Y1

„

hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

. (86)

Similar to the proof of Theorem 1, define

P 1
1 :“PU|X,We

PU1|X1,We
PŶ|U,Wd

PŶ1|U1,Wd
,

P 1
2 :“QU,U1|X,X1,Y,Y1,We

PŶ|U,Wd
PŶ1|U1,Wd

,

f
´

Y,Y1, Ŷ, Ŷ1
¯

:“hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯

´ hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙

.

Using Donsker-Varadhan’s inequality, we have

nEŶ,Ŷ1|Y,Y1

”

f
´

Y,Y1, Ŷ, Ŷ1
¯ı

ďDKL

`

P 1
1}P 1

2

˘

` log
´

EP 1
2

”

enfpY,Y1,Ŷ,Ŷ1q
ı¯

“DKL

`

PU,U1|X,X1,We

›

›Q
˘

` log
´

EP 1
2

”

enfpY,Y1,Ŷ,Ŷ1q
ı¯

.

(87)

Hence,

P

˜

EŶ,Ŷ1|Y,Y1

”

f
´

Y,Y1, Ŷ, Ŷ1
¯ı

ą
DKL

`

PU,U1|X,X1,We

›

›Q
˘

` logpn{δq

n

¸

paq

ď P
´

log
´

EP 1
2

”

enfpY,Y1,Ŷ,Ŷ1q
ı¯

ą logpn{δq

¯

“ P
´

EP 1
2

”

enfpY,Y1,Ŷ,Ŷ1q
ı

ą n{δ
¯

pbq

ď
ES,S1,We

EP 1
2

”

enfpY,Y1,Ŷ,Ŷ1q
ı

n{δ

pcq

ď δ, (88)

where
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• paq follows by (87),
• pbq is derived using the Markov inequality,
• and pcq is shown in (76).

This completes the proof.

G.3 PROOF OF PROPOSITION 1

To state the proof, first, we need to recall the notion of β-approximate max-information; as previously
defined in (DR18, Definition 3.2) and (DR18, Definition 3.2). Here, we state the definition adapted
to our setup. For ease of notation, denote

eV pSq :“ pS,ApSqq “ pS, gpS, V qq. (89)

Definition 5. Let β ě 0. Then, define the β-max-information between S and QeV pSq, denoted by Iβ8,
as the minimal value k such that for all product events E and all fixed V , we have

P
´

`

S,QeV pSq
˘

P E
¯

ď ekP
´

`

S,QeV pS̃q
˘

P E
¯

` β, (90)

where S̃ is an independent dataset with the same distribution as S.

Fix some δ1 ą 0, that will be made explicit in the following. Now, “similar” to the proof of (DR18,
Theorem 4.2), for any Q P Q, define

RpQq “

!

pS, S1,W q : hD

´

L̂pS1,W q, L̂pS,W q

¯

ą ∆pS, S1,W,Q, δ1q

)

, (91)

where

∆pS, S1,W,Q, δ1q :“
DKL

`

PU,U1|X,X1,We

›

›Q
˘

` logpn{δ1q

n

` EŶ,Ŷ1|Y,Y1

„

hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

. (92)

Fix some β ą 0. For every fixed S1 and V , by Definition 5, we know that

P
´

pS,W, S1q P RpQepSqq|S1, V
¯

ď eI
β
8P

´

pS,W, S1q P RpQeV pS̃qq|S1, V
¯

` β,

where S̃ is independent of pepSq, S1q. Hence,

PS,W,S1

´

pS,W, S1q P RpQeV pSqq

¯

ďeI
β
8PS,W,S1

´

pS,W, S1q P RpQeV pS̃qq

¯

` β

paq

ď eI
β
8δ1 ` β, (93)

where paq is derived since by Theorem 2, we know that PpRpQqq ď δ1 for every Q independent of S
and S1. Recall that strong symmetry implies symmetry.

Let β “ δ{2 and δ :“ eI
δ{2
8 δ1 ` δ{2. Equivalently,

δ1 :“
δe´I

δ{2
8

2
.

With these choices, with probability 1 ´ δ over choices of pS, S1,W q, we have

hD

´

L̂pS1,W q, L̂pS,W q

¯

ď∆pS, S1,W,Q, δ1q

“
DKL

`

PU,U1|X,X1,We

›

›QepSq
˘

` logp2n{δq ` I
δ{2
8

n

` EŶ,Ŷ1|Y,Y1

„

hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙ȷ

. (94)

The final result follows by (DFH`15, Theorem 20), where they showed that

I
δ{2
8 ď

n

2
ε2p ` εp

c

n logp4{δq

2
.

This completes the proof.
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G.4 PROOF OF PROPOSITION 2

Recall the following notations in the proof of Theorem 1:

P1 :“PS,WPS1PU|X,We
PU1|X1,We

PŶ|U,Wd
PŶ1|U1,Wd

,

P2 :“PS,WPS1QU,U1|X,X1,Y,Y1,We
PŶ|U,Wd

PŶ1|U1,Wd
,

f
´

Y,Y1, Ŷ, Ŷ1
¯

:“hD

´

L̂pY1, Ŷ1q, L̂pY, Ŷq

¯

´ hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙

.

Using the identical steps as in the proof Theorem 1, we have

ES,S1,W,Ŷ,Ŷ1

”

f
´

Y,Y1, Ŷ, Ŷ1
¯ı

ďMDLpQq ` log
´

EP2

”

enfpY,Y1,Ŷ,Ŷ1q
ı¯

.

Hence, it remains to show that

EP2

”

enfpY,Y1,Ŷ,Ŷ1q
ı

ď δe2n ` neϵ. (95)

Let ΠY,Y1 denote the set of all permutations that preserves the labeling. Denote the size of this set as
Nπ,Y,Y1 :“ N . Then, the prior

Q̃pU,U1|Y,Y1,X,X1,Weq :“
1

N

ÿ

πPΠY,Y1

QpUπ,U
1
π|Y,Y1,X,X1,Weq, (96)

is symmetric in the sense of Definition 1. Furthermore, by Definition 4, we have with probability at
least 1 ´ δ over choices of pS1, S,We,U,U1q „ PS1PS,WeQ,

QpU,U1|Y,Y1,X,X1,Weq ď eϵQ̃pU,U1|Y,Y1,X,X1,Weq. (97)

Hence, since f
´

Y,Y1, Ŷ, Ŷ1

¯

ď 2, we have that

EP2

”

enfpY,Y1,Ŷ,Ŷ1q
ı

ď δe2n ` eϵEP3

”

enfpY,Y1,Ŷ,Ŷ1q
ı

, (98)

where

P3 :“PS,WPS1Q̃U,U1|X,X1,Y,Y1,We
PŶ|U,Wd

PŶ1|U1,Wd
.

The result now follows since Q̃ is symmetric and hence identical to the proof of Theorem 1, we have

EP3

”

enfpY,Y1,Ŷ,Ŷ1q
ı

ď n. (99)

This completes the proof.

G.5 PROOF OF LEMMA 1

For ease of notations, for i P rns, denote

ℓi,πR
:“

1

n
1

tŶπR,i‰YπR,iu
,

ℓ1
i,πR

:“
1

n
1

tŶ 1
πR,i‰Y 1

πR,iu
.

Consider similar notations for the mapping π to define ℓi,π and ℓ1
i,π . Furthermore, denote

∆ℓ :“
n
ÿ

i“1

pℓi,πR
´ ℓi,πq “

n
ÿ

i“R`1

pℓi,πR
´ ℓi,πq,

∆ℓ1 :“
n
ÿ

i“1

`

ℓ1
i,πR

´ ℓ1
i,π

˘

“

n
ÿ

i“R`1

`

ℓ1
i,πR

´ ℓ1
i,π

˘

.

It is easy to verify that ∆ℓ “ ´∆ℓ1 and

|∆ℓ| ď
1

n
pn ´ Rq “

1

2
}p̂Y ´ p̂Y1 }1. (100)
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With these notations,

f
´

YπR
,Y1

πR
, ŶπR

, Ŷ1
πR

¯

“hD

˜

n
ÿ

i“1

ℓ1
i,πR

,
n
ÿ

i“1

ℓi,πR

¸

´ hY,Y1,Ŷ,Ŷ1

ˆ

1

2
}p̂Y ´ p̂Y1 }1

˙

paq

ďhD

˜

n
ÿ

i“1

ℓ1
i,πR

´ ∆ℓ1,
n
ÿ

i“1

ℓi,πR
´ ∆ℓ

¸

“hD

˜

n
ÿ

i“1

ℓ1
i,π,

n
ÿ

i“1

ℓi,π

¸

, (101)

which completes the proof, assuming the step (a) holds.

It remains then to show the step paq. To show this step, it is sufficient to prove that for every
x1, x2 P r0, 1s, ϵ̃ P R`, and ϵ P R such that px1 ` ϵq, px2 ´ ϵq P r0, 1s and |ϵ| ď ϵ̃, the below
inequality holds:

hDpx1, x2q ´ hCpx1, x2; ϵ̃q ď hDpx1 ` ϵ, x2 ´ ϵq. (102)

Without loss of generality, assume that x1 ď x2. We show the above inequality for different ranges
of ϵ, separately.

• If ϵ ď 0, then since by (SZK23, Lemma 1), hDpx;x2q is decreasing in the real-value range of
x P r0, x2s and hDpx1;xq is increasing in the real-value range of x P rx1, 1s, we have

hDpx1, x2q ´ hDpx1 ` ϵ, x2 ´ ϵq ď0

ďhCpx1, x2; ϵ̃q,

where the last inequality follows using the fact that hC is non-negative.
• If ϵ ě x2 ´ x1, then by letting ϵ1 “ px2 ´ x1q ´ ϵ ď 0, we have

hDpx1, x2q ´ hDpx1 ` ϵ, x2 ´ ϵq “hDpx1, x2q ´ hD

`

x2 ´ ϵ1, x1 ` ϵ1
˘

paq
“hDpx1, x2q ´ hD

`

x1 ` ϵ1, x2 ´ ϵ1
˘

pbq

ď0

pcq

ďhCpx1, x2; ϵ̃q,

where paq is deduced by the symmetry of hD and steps pbq and pcq are deduced similar to the case
ϵ ď 0 above.

• If ϵ P r0, px2 ´ x1q{2s, then we have

hDpx1, x2q ´ hDpx1 ` ϵ, x2 ´ ϵq “hbpx1 ` ϵq ` hbpx2 ´ ϵq ´ hbpx1q ´ hbpx2q

ďhCpx1, x2; ϵ̃q,

where the last step follows by definition of the function hC , and since ϵ belongs to the below
interval:

r0, ϵ̃s X r0, px1_2 ´ x1^2q{2s. (103)

• If ϵ P rpx2 ´ x1q{2, px2 ´ x1qs, then by letting ϵ1 “ px2 ´ x1q ´ ϵ, we have ϵ1 P r0, px2 ´ x1q{2s

and

hDpx1, x2q ´ hDpx1 ` ϵ, x2 ´ ϵq “hbpx1 ` ϵ1q ` hbpx2 ´ ϵ1q ´ hbpx1q ´ hbpx2q

ďhCpx1, x2; ϵ̃q

where the last step follows by definition of the function hC , and since ϵ belongs to the below
interval:

r0, ϵ̃s X r0, px1_2 ´ x1^2q{2s. (104)

Note that ϵ1 ď ϵ̃, since ϵ1 P r0, px2 ´ x1q{2s and ϵ P rpx2 ´ x1q{2, px2 ´ x1qs. Hence, ϵ1 ď ϵ, and
by assumption ϵ ď ϵ̃.

This completes the proof of the lemma.
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