
Under review as a conference paper at ICLR 2024

PRICING WITH CONTEXTUAL ELASTICITY AND HET-
EROSCEDASTIC VALUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study an online contextual dynamic pricing problem, where customers decide
whether to purchase a product based on its features and price. We introduce
a novel approach to modeling a customer’s expected demand by incorporating
feature-based price elasticity, which can be equivalently represented as a valuation
with heteroscedastic noise. To solve the problem, we propose a computationally
efficient algorithm called "Pricing with Perturbation (PwP)", which enjoys an
O(
√
dT log T ) regret while allowing arbitrary adversarial input context sequences.

We also prove a matching lower bound at Ω(
√
dT ) to show the optimality regarding

d and T (up to log T factors). Our results shed light on the relationship between
contextual elasticity and heteroscedastic valuation, providing insights for effective
and practical pricing strategies.

1 INTRODUCTION

Contextual pricing, a.k.a., Feature-based dynamic pricing, considers the problem of setting prices for
a sequence of highly specialized or individualized products. With the growth of e-commerce and the
increasing popularity of online retailers as well as customers, there has been a growing interest in
this area (see, e.g., Amin et al., 2014; Qiang & Bayati, 2016; Javanmard & Nazerzadeh, 2019; Shah
et al., 2019; Cohen et al., 2020; Xu & Wang, 2021; Bu et al., 2022).

Formulated as a learning problem, the seller has no prior knowledge of ideal prices but is expected to
learn on the fly by exploring different prices and adjusting their pricing strategy after collecting every
demand feedback from customers. Different from non-contextual dynamic pricing (Kleinberg &
Leighton, 2003) where identical products are sold repeatedly, a contextual pricing agent is expected
to generalize from one product to another in order to successfully price a previously-unseen product.
A formal problem setup is described below:

Contextual pricing. For t = 1, 2, ..., T :
1. A product occurs, described by a context xt ∈ Rd.
2. The seller (we) proposes a price pt ≥ 0.
3. The customer reveals a demand 0 ≤ Dt ≤ 1.
4. The seller gets a reward rt = pt ·Dt.

Here T is the time horizon, and the (random) demand Dt is drawn from a distribution determined by
context (or feature) xt and price pt. The sequence of contexts {xt} can be either independently and
identically distributed (iids) or chosen arbitrarily by an adversary. The seller’s goal is to minimize the
cumulative regret against the sequence of optimal prices.

Existing works on contextual pricing usually assumes linearity on the demand, but they fall into
two camps. On the one hand, the "linear demand" camp (Qiang & Bayati, 2016; Ban & Keskin,
2021; Bu et al., 2022) assumes the demand Dt as a (generalized) linear model. A typical model is
Dt = λ(αpt + xT

t β) + ϵt. Here α < 0 is a parameter closely related to the price elasticity. We
will rigorously define a price elasticity in Appendix A.1 according to Parkin et al. (2002), where we
also show that α is the coefficient of elasticity. Besides of α, other parameters like β ∈ Rd captures
the base demand of products with feature xt, ϵt is a zero-mean demand noise, and λ is a known
monotonically increasing link function. With this model, we have a noisy observation on the expected
demand, which is reasonable as the same product is offered many times in period t. On the other
hand, the "linear valuation" camp (Cohen et al., 2020; Javanmard & Nazerzadeh, 2019; Xu & Wang,
2021) models a buyer’s valuation yt as linear and assumes a binary demand Dt = 1[pt ≤ yt]. All
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three works listed above assume a linear-and-noisy model with yt = x⊤
t θ

∗ +Nt, where θ∗ ∈ Rd

is an unknown linear parameter that captures common valuations and Nt is an idiosyncratic noise
assumed to be iid.

Interestingly, the seemingly different modeling principles are closely connected to each other. In
the "linear valuation" camp, notice that a customer’s probability of "buying" a product equals E[Dt],
which is further given by

E[Dt|p] = P[yt ≥ p] := S(p− x⊤
t θ

∗),

where S is the survival function of Nt (i.e. S(w) = 1−CDF(w) for w ∈ R). This recovers a typical
linear demand model by taking λ(w) = S(−w) with α = −1 and β = θ∗. In other words, the
distribution of Nt completely characterizes the demand function λ(·) and vice versa.

However, the "linear demand" camp is not satisfied with a fixed α = −1, while the "linear valuation"
camp are skeptical about an observable demand Dt even with zero-mean iid noise. One common
limitation to both models is that neither captures how feature xt affects the price elasticity.

Our model. To address this issue, we propose a natural model that unifies the perspectives of both
groups. Also, we resolve the common limitation by modeling heteroscedasticity, where we assume
that the elasticity coefficient α is linearly dependent on feature xt. In specific, we assume:

Dt ∼ Ber(S(x⊤
t η

∗ · pt − x⊤
t θ

∗)), (1)
which adopts a generalized linear demand model (GLM) and a Boolean-censored feedback simulta-
neously. From the perspective of valuation model, it is equivalent to assume

Dt = 1[pt ≤ yt], where yt =
1

x⊤
t η

∗ · (x
⊤
t θ

∗ +Nt) and CDFNt(w) = 1− S(w). (2)

Although Eq. (1) seems more natural than Eq. (2), they are equivalent to each other (with reasonable
assumptions on S). Notice that the random valuation yt is heteroscedastic, which means its variance
is not the same constant across a variety of xt’s. We provide a detailed interpretation of this linear
fractional valuation model in appendix.

1.1 CONTRIBUTIONS.
Our main results are twofold.

1. We propose a new demand model that assumes a feature-dependent price elasticity on every
product. Equivalently, we model the heteroscedasticity on customers’ valuations among different
products. This model unifies the “linear demand” and “linear valuation” camps.

2. We propose a “Pricing with Perturbation (PwP)” algorithm that achieves O(
√
dT log T ) regret on

this model, which is optimal up to log T factors. This regret upper bound holds for both iid and
adversarial {xt} sequences.

1.2 TECHNICAL NOVELTY

To the best of our knowledge, we are the first to study a contextual pricing problem with het-
eroscedastic valuation and Boolean-censored feedback. Some existing works, including Javanmard &
Nazerzadeh (2019); Miao et al. (2019); Xu & Wang (2021); Ban & Keskin (2021), focus on related
topics and achieve theoretical guarantees. However, their methodologies are not applicable to our
settings due to substantial obstacles, which we propose novel techniques to overcome.

Randomized surrogate regret. Xu & Wang (2021) solves the problem with x⊤
t η

∗ = 1, by taking
the negative log-likelihood as a surrogate regret and running an optimization oracle that achieves a
fast rate (i.e. an O(log T ) regret). However, the log-likelihood is no longer a surrogate regret in our
setting, since it is not "convex enough" and therefore cannot provide sufficient (Fisher) information.
In this work, we overcome this challenge by constructing a randomized surrogate loss function,
whose expectation is "strongly convex" enough to upper bound the regret.

OCO for adversarial inputs. Javanmard & Nazerzadeh (2019) and Ban & Keskin (2021) study
the problem with unknown or heterogeneous noise variances (i.e. elasticity coefficients), but their
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techniques highly rely on the distribution of the feature distributions. As a result, their algorithm
could be easily attacked by an adversarial {xt} series. In our work, we settle this issue by conducting
an online convex optimization (OCO) scheme while updating parameters. Instead of estimating from
the history that requires sufficient randomness in the inputs, our algorithm can still work well for
adversarial inputs.

In addition, our algorithm has more advanced properties such as computational efficiency and
information-theoretical optimality. For more highlights of our algorithm, please refer to Sec-
tion 4.1.

2 RELATED WORKS

Here we present a review of the pertinent literature on contextual pricing and heteroscedasticity in
machine learning, aiming to position our work within the context of related studies. For more related
works on non-contextual pricing, contextual pricing, contextual searching and contextual bandits,
please refer to Wang et al. (2021), Xu & Wang (2021), Krishnamurthy et al. (2021) and Zhou (2015)
respectively.

Contextual Pricing. As we mentioned in Section 1.2, there are a large number of recent works on
contextual dynamic pricing problems, and we refer to Ban & Keskin (2021) as a detailed introduction.
On the one hand, Qiang & Bayati (2016); Nambiar et al. (2019); Miao et al. (2019); Ban & Keskin
(2021); Bu et al. (2022) assume a (generalized) linear demand model with noise, i.e. E[Dt] =
g(αpt − β⊤xt). Among those works, Miao et al. (2019) works on a similar setting with a fixed α.
Ban & Keskin (2021) also assumes a generalized linear demand model, but with independent noises
added on demands directly. In comparison, we model α as context-dependent, and we assume the
noises are added to valuations instead of demands. Besides, all of those works assume the context
sequence {xt} to be iid, whereas we consider it "too good to be true" and work towards an algorithm
adaptive to adversarial input sequences. On the other hand, Golrezaei et al. (2019); Shah et al. (2019);
Cohen et al. (2020); Javanmard & Nazerzadeh (2019); Xu & Wang (2021); Fan et al. (2021); Goyal
& Perivier (2021); Luo et al. (2022) adopts the linear valuation model yt = x⊤

t θ
∗ + Nt, which

is a special case of our model as x⊤
t η

∗ = 1. Specifically, both Javanmard & Nazerzadeh (2019)
and Xu & Wang (2021) achieve an O(d log T ) regret with Nt drawn from a known distribution
with x⊤

t η
∗ = −1. Javanmard & Nazerzadeh (2019) also studies the setting when x⊤

t η
∗ is fixed but

unknown and achieves O(d
√
T ) regret for stochastic {xt} sequences. In comparison, we achieve

O(
√
dT log T ) on a more general problem and get rid of those assumptions.

Heteroscedasticity. Since the valuation noise is scaled by a 1
x⊤
t η∗ coefficient, the valuation is

heteroscedastic, referring to a situation where the variance is not the same constant across all observa-
tions. Heteroscedasticity may lead to bias estimates or loss of sample information. There are several
existing methods handling this problem, including weighted least squares method (Cunia, 1964),
White’s test (White, 1980) and Breusch-Pagan test (Breusch & Pagan, 1979). Furthermore, Anava
& Mannor (2016) and Chaudhuri et al. (2017) study online learning problems with heteroscedastic
variances and provide regret bounds. For a formal and detailed introduction, we refer the audience to
the textbook of Kaufman (2013).

3 PROBLEM SETUP

3.1 NOTATIONS

To formulate the problem, we firstly introduce necessary notations and symbols used in the following
sections. The sales session contains T rounds with T known to the seller in advance1. At each time
t = 1, 2, . . . , T , a product with feature xt ∈ Rd occurs and we propose a price pt ≥ 0. Then the
nature draws a demand Dt ∼ Ber(S(x⊤

t η
∗ · pt − x⊤

t θ
∗)), where θ∗, η∗ ∈ Rd are fixed unknown

linear parameters and the link function S : R→ [0, 1] is non-increasing. By the end of time t, we
receive a reward rt = pt ·Dt.

Equivalently, this customer has a valuation yt =
x⊤
t θ∗+Nt

x⊤
t η∗ with noise Nt ∈ R, and then make a

decision 1t = 1[pt ≤ yt] = Dt after seeing the price pt. Similarly, we receive a reward rt = pt · 1t.

1Here we assume T known for simplicity. For unknown T , we may apply a “doubling epoch” trick as
Javanmard & Nazerzadeh (2019) without affecting the regret rate.
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Assume Nt ∼ DF is independently and identically distributed (iid), with cumulative distribution
function (CDF) F = 1− S. Denote s := S′ and f := F ′.

3.2 DEFINITIONS

Here we define some key quantities. Firstly, we define an expected reward function.

Definition 3.1 (expected reward function). Define

r(u, β, p) := E[rt|x⊤
t θ

∗ = u, x⊤
t η

∗ = β, pt = p] = p · S(β · p− u) (3)

as the expected reward function.

Given this, we further define a greedy price function as the argmax of r(u, β, p) over price p.

Definition 3.2 (greedy price function). Define J(u, β) as a greedy price function, i.e. the price that
maximizes the expected reward given u = x⊤

t θ
∗ and β = x⊤

t η
∗.

J(u, β) = argmax
p∈R

r(u, β, p) = argmax
p∈R

p · S(β · p− u) (4)

Notice that

J(u, β) = argmax
p

p · S(βp− u) =
1

β
· argmax

βp
βp · S(βp− u) =

1

β
J(u, 1). (5)

According to Xu & Wang (2021, Section B.1), we have the following properties.

Lemma 3.3. Denote φ(w) := −S(w)
s(w) − w = 1−F (w)

f(w) − w, and we have J(u, β) = u+φ−1(u)
β . Also,

for u ≥ 0 and β > 0, we have ∂J(u,β)
∂u ∈ (0, 1).

Then we define a negative log-likelihood function of parameter hypothesis (θ, η) given the results at
time t.

Definition 3.4 (log-likelihood functions). Denote ℓt(θ, η) as the negative log-likelihood at time t,
and define Lt(θ, η) as their summations:

−ℓt(θ, η) =1t · logS(xt⊤η · pt − x⊤
t θ) + (1− 1t) · log(1− S(x⊤

t η · pt − x⊤
t θ)).

Lt(θ, η) =

t∑
τ=1

ℓt.
(6)

Finally, we define the round-t expected regret and cumulative expected regret.

Definition 3.5 (regrets). Define Regt(pt) := r(x⊤
t θ

∗, x⊤
t η

∗, J(x⊤
t θ

∗, x⊤
t η

∗))− r(x⊤
t θ

∗, x⊤
t η

∗, pt)
as the expected regret at round t, conditioning on price pt. Also, define the cumulative regret as
follows

Regret =

T∑
t=1

Regt(pt) (7)

3.3 ASSUMPTIONS

We establish three technical assumptions to make our analysis and presentation clearer. Firstly, we
assume that all feature and parameter vectors are bounded within a unit ball in Euclidean norm. This
assumption is without loss of generality as it only rescales the problem.

Assumption 3.6 (bounded feature and parameter spaces). Assume features xt ∈ Hx and parameters
θ ∈ Hθ, η ∈ Hη. Denote Ud

p := {x ∈ Rd, ∥x∥p ≤ 1} as an Lp-norm unit ball in Rd. Assume all
Hx,Hθ,Hη ∈ Ud

p . Also, assume x⊤θ > 0,∀x ∈ Hx, θ ∈ Hθ and x⊤η > Cβ > 0,∀x ∈ Hx, η ∈
Hη for some constant Cβ .
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We will show the necessity of assuming an elasticity lower bound Cβ in Appendix C. In specific, we
claim that any algorithm will suffer a regret of Ω( 1

Cβ
). For the simplicity of notation, we denote

[θ; η] := [θ⊤, η⊤]⊤ ∈ R2d as the combination of d-dimension column vectors θ and η. Since we
know that x⊤

t θ ∈ [0, 1] and x⊤
t η ∈ [Cβ , 1], we have J(x⊤

t θ, x
⊤
t η) ∈ [J(0, 1), J(1, Cβ)]. Later we

will show that the price perturbation is no more than J(0,1)
10 . Therefore, we may have the following

assumption.

Assumption 3.7 (bounded prices). For any price pt at each time t = 1, 2, . . . , T , we require
pt ∈ [c1, c2], where c1 = J(0,1)

2 and c2 = 2J(1, Cβ).

Similar to Javanmard & Nazerzadeh (2019) and Xu & Wang (2021), we also assume a log-concavity
on the noise CDF.

Assumption 3.8 (log-concavity). Every Dt is independently sampled according to Eq. (1), with
S(ω) ∈ [0, 1] and s(ω) = S′(ω) > 0,∀ω ∈ R. Equivalently, the valuation noise Nt ∼ DF is
independently and identically distributed (iid), with CDF F = 1− S. Assume that S ∈ C2, and S
and (1− S) are strictly log-concave.

4 MAIN RESULTS

To solve the contextual pricing problem with featurized elasticity, we propose our “Pricing with
Perturbation (PwP)” algorithm. In the following, we firstly describe the algorithm and highlight its
properties, then analyze (and bound) its cumulative regret, and finally prove a regret lower bound to
show its optimality.

4.1 ALGORITHM

The pseudocode of PwP is displayed as Algorithm 1, which calls an ONS oracle (Algorithm 2).

Algorithm 1 Pricing with Perturbation (PwP)

1: Input: parameter spacesHθ,Hη , link function S, time horizon T , dimension d
2: Initialization:parameters θ1 ∈ Hθ, η1 ∈ Hη, price perturbation ∆, cumulative likelihood

L0 = 0, matrix A0 = ϵ · I2d and parameter ϵ, γ
3: for t = 1, 2, . . . , T do
4: Observe xt;
5: Calculate greedy price p̂t = J(x⊤

t θt, x
⊤
t ηt)

6: Sample ∆t = ∆ with Pr = 0.5 and ∆t = −∆ with Pr = 0.5;
7: Propose price pt = p̂t +∆t;
8: Receive the customer’s decision 1t;
9: Construct negative log-likelihood ℓt(θ, η) and Lt(θ, η) as eq. (6);

10: Update parameters:
[θt+1; ηt+1]← ONS([θt; ηt])

11: end for

At each time t, it inherits parameters θt and ηt from (t − 1) and takes in a context vector xt. By
trusting in θt and ηt, it calculates a greedy price p̂t and outputs a perturbed version pt = p̂t+∆t. After
seeing customer’s decision 1t, PwP calls an “Online Newton Step (ONS)” oracle (see Algorithm 2)
to update the parameters as θt+1 and ηt+1 for future use.

4.1.1 HIGHLIGHTS

We highlight the achievements of the PwP algorithm in the following three aspects.

In this pricing problem. As we mentioned in Section 1.2, the key to solving this contextual elasticity
(or heteroscedastic valuation) pricing problem is to construct a surrogate loss function. Xu & Wang
(2021) adopts negative log-likelihood in their setting, which does not work for ours since it is not
"convex" enough. In our PwP algorithm, we overcome this challenge by introducing a perturbation
∆ on the proposed greedy price. This idea originates from the observation that the variance of pt
contributes positively to the "convexity" of the expected log-likelihood, which helps "re-build" the
upper-bound inequality.
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Algorithm 2 Online Newton Step (ONS)

1: Input: current parameter [θt, ηt], likelihood ℓt(θ, η), matrix At, parameter γ, parameter
spacesHθ andHη .

2: Calculate∇t = ∇ℓt(θ, η);
3: Rank-1 update: At = At−1 +∇t∇⊤

t ;
4: Newton step: [θ̂t+1; η̂t+1] = [θ̂t; η̂t]− 1

γA
−1
t ∇t;

5: Projection: [θt+1; ηt+1] = ΠAt

Hθ×Hη
([θ̂t+1; η̂t+1]);

In online optimization. PwP perturbs the action (price) it should have taken greedily. This idea is
similar to a "Following the Perturbed Leader (FTPL)" algorithm (Hutter et al., 2005) that minimizes
the summation of the empirical risk and a random loss function serving as a perturbation. However,
this might lead to extra computational cost as the random perturbation is not necessarily smooth
and therefore hard to optimize. In this work, PwP introduces a possible way to overcome this
obstacle: Instead of perturbing the objective function, we may directly perturb the action to explore
its neighborhood. Our regret analysis and results indicate the optimality of this method and imply a
potentially wide application.

In information theory. In the regret analysis of PwP, we show that: By adding ∆ perturbation on
pt, we may lose O(∆2) in reward but will gain O(∆2) · I in Fisher information (i.e. the expected
Hessian of negative log-likelihood function) in return. By Cramer-Rao Bound, this leads to O( 1

∆2 )
estimation error. In this way, we quantify the information (observing from exploration) on the scale of
reward, which shares the same idea with the Upper Confidence Bound (Lai & Robbins, 1985) method
that always maximizes the summation of empirical reward and information-traded reward.

Besides, PwP is computationally efficient as it only calls the ONS oracle for once. As for the ONS
oracle, it updates an A−1

t = (At−1 +∇t∇⊤
t )

−1 at each time t, which is with O(d2) time complexity
according to the following Woodbury matrix identity

(A+ xx⊤)−1 = A−1 − 1

1 + x⊤A−1x
A−1x(A−1x)⊤. (8)

4.2 REGRET UPPER BOUND

Now we analyze the regret of PwP and propose an upper bound up to constant coefficients.

Theorem 4.1. Under Assumption 3.6, 3.7 and 3.8, by taking ∆ = min

{(
d log T

T

) 1
4

, J(0,1)
10 , 1

10

}
,

the algorithm PwP guarantees an expected regret at O(
√
dT log T ).

In the following, we prove Theorem 4.1 by stating a thread of key lemmas. We leave the detailed
proof of those lemmas to Appendix A.

Proof. The proof overview can be displayed as the following roadmap of inequalities:

E[Regret] =

T∑
t=1

Regt(pt) ≤E

[
T∑

t=1

O
(
(x⊤

t (θt − θ∗))2 + (x⊤
t (ηt − η∗))2 +∆2

)]

≤O

(∑T
t=1 E [ℓt(θt, ηt)− ℓt(θ

∗, η∗)]

∆2
+ T ·∆2

)

≤O
(
d log T

∆2
+ T ·∆2

)
= O(

√
dT log T ).

(9)

Here the first inequality is by the smoothness of regret function (see Lemma 4.2), the second inequality
is by a special “strong convexity” of ℓt(θ, η) that contributes to the surrogate loss (see Lemma 4.3),
the third inequality is by Online Newton Step (see Lemma 4.4), and the last equality is by the value
of ∆. A rigorous version of Eq. (9) can be found in Appendix A.4.

We firstly show the smoothness of Regt(pt):
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Lemma 4.2 (regret smoothness). Denote p∗t := J(x⊤
t θ

∗, x⊤
t η

∗). There exists constants Cr > 0 and
CJ > 0 such that

Regt(pt) ≤ Cr · (pt − p∗t )
2 ≤ Cr · 2

(
CJ ·

[
(x⊤

t (θt − θ∗))2 + (x⊤
t (ηt − η∗))2

]
+∆2

)
. (10)

While the first inequality of Eq. (10) is from the smoothness, and the second inequality is by the
Lipschitzness of function J(u, β). Please refer to Appendix A.2 for proof details. We then show the
reason why the log-likelihood function can still be a surrogate loss with carefully randomized pt.

Lemma 4.3 (surrogate expected regret). There exists a constant Cl > 0 such that ∀θ ∈ Hθ, η ∈ Hη ,
we have

E[ℓt(θ, η)− ℓt(θ
∗, η∗)|θt, ηt]

≥Cl∆
2

10
[(θ − θ∗)⊤, (η − η∗)⊤]

[
xtx

⊤
t 0

0 xtx
⊤
t

] [
θ − θ∗

η − η∗

]
=
Cl ·∆2

10

[(
x⊤
t (θ − θ∗)

)2
+
(
x⊤
t (η − η∗)

)2]
.

(11)

This is the most important lemma in this work. We show a proof sketch here and defer the detailed
proof to Appendix A.3.

Proof sketch of Lemma 4.3. We show that there exist constants Cl > 0, Cp > 0 such that

1. ∇2ℓt(θ, η) ⪰ Cl ·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2t · xtx

⊤
t

]
, and

2. E
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2t · xtx

⊤
t
|θt, ηt

]
⪰ Cp∆

2

[
xtx

⊤
t 0

0 xtx
⊤
t

]
.

The first property above relies on the exp-concavity of ℓt. Notice that the second property does not
hold without the E notation, as the left hand side is a (a− b)2 form while the right hand side is in a
(a2 + b2) form. In general, there exist no constant c > 0 such that (a− b)2 ≥ c(a2 + b2). However,
due to the randomness of pt, we have

E[p2t |p̂t] = E[pt|p̂t]2 +∆2. (12)

In this way, the conditional expectation of the left hand side turns to (a− b)2 + λ · b2 and we have

(a− b)2 + λb2 = (
1√
1 + λ

2

· a−
√
1 +

λ

2
· b)2 + (1− 1

1 + λ
2

)a2 +
λ

2
b2 ≥

λ
2

1 + λ
2

· (a2 + b2).

(13)

Similarly, we upper bound
[

xtx
⊤
t 0

0 xtx
⊤
t

]
with E[∇2ℓt(θ, η)|θt, ηt] up to a Cp ·∆2 coefficient.

With those two properties above, along with a property of likelihood function that E[∇ℓt(θ∗, η∗)] = 0,
we can prove Lemma 4.3 by taking a Taylor expansion of ℓt at [θ∗; η∗].

Finally, we cite a theorem from Hazan (2016) as our Lemma 4.4 that reveals the surrogate regret rate
on negative log-likelihood functions.

Lemma 4.4. With parameters G = supθ∈Hθ,η∈Hη
∥∇lt(θ, η)∥2, D = sup ∥[θ1; η1]− [θ2; θ2]∥ ≤ 2,

α = Ce, γ = 1
2 min{ 1

4GD , α} and ϵ = 1
γ2D2 and T > 4, Keep running Algorithm 2 for t =

1, 2, . . . , T guarantees:

sup
{xt}

{
T∑

t=1

ℓt(θt, ηt)− min
θ∈Hθ,η∈Hη

T∑
t=1

ℓt(θ, η)

}
≤ 5(

1

α
+GD)d log T. (14)

With all these lemma above, we have proved every line of Eq. (9).
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Figure 1: The regret of PwP algorithm and a modified RMLP-2 algorithm on simulation data (generated
according to Eq. (1)), plotted in log-log scales to indicate the regret dependence on T . Figure 1a and Figure 1b
are for stochastic and adversarial {xt} sequences respectively. We also plot linear fits for those regret curves,
where a slope-α line indicates an O(Tα) regret. The error bands are drawn with 0.95 coverage using Wald’s test.
From the figures, we know that PwP performs closely to its O(

√
T log T ) regret regardless of the types of input

context sequences, whereas RMLP-2 fails in the attack of adversarial input.

4.3 LOWER BOUNDS

We claim that PwP is near-optimal in information theory, by proposing a matching regret lower bound
in Theorem 4.5. We present the proof with valuation model to match with existing results.

Theorem 4.5. Consider the contextual pricing problem setting with Bernoulli demand model given
in Eq. (1). With all assumptions in Section 3 hold, any pricing algorithm has to suffer a Ω(

√
dT )

worst-case regret, with T the time horizon and d the dimension of context.

Proof. The main idea is to reduce d numbers of 1-dimension problems to this problem setting. In
fact, we may consider the following problem setting:

1. Construct set X = {xi := [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ Rd with only ith place being 1, i =
1, 2, . . . , d}.

2. Let θ∗ = [u1

σ1
, u2

σ2
, u3

σ3
, . . . , ud

σd
]⊤, η∗ = [ 1

σ1
, 1
σ2
, 1
σ3
, . . . , 1

σd
]⊤, and therefore we have

x⊤
i θ∗+Nt

x⊤
i η∗ = ui + σi ·Nt.

3. At each time t = 1, 2, . . . , T , sample xt ∼ X independently and uniformly at random.

In this way, we divide the whole time series T into d separated sub-problems: yt(i) = ui + σi ·Nt.
Notice that we know the distribution of Nt, any feedback on a round t with feature xi would not
provide any information on another round t′ with feature xj if i ̸= j. For each sub-problem, it has a
time horizon as T/d in expectation. According to Broder & Rusmevichientong (2012, Theorem 3.1),

the regret lower bound of each sub-problem is Ω(
√

T
d ). Therefore, the total regret lower bound is

d ·
√

T
d =
√
Td.

5 NUMERICAL EXPERIMENTS

Here we conduct numerical experiments to validate the low-regret performance of our algorithm
PwP. Since we are the first to study this heteroscadestic valuation model, we do not have a baseline
algorithm working for exactly the same problem. However, we can modify the RMLP-2 algorithm in
Javanmard & Nazerzadeh (2019) by only replacing their max-likelihood estimator (MLE) for θ∗ with
a new MLE for both θ∗ and η∗. This modified RMLP-2 algorithm does not have a regret guarantee in
our setting, but it may still serve as a baseline to compare with.

We test PwP and the modified RMLP-2 on the demand model assumed in Eq. (1) with both stochastic
and adversarial {xt} sequences, respectively. Basically, we assume T = 216 d = 2, Nt ∼ N (0, σ2)
with σ = 0.5, and we repeatedly run each algorithm for 20 times in each experiment setting. In order

8
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to show the regret dependence w.r.t. T , we plot all cumulative regret curves in log-log plots, where
an α slope indicates an O(Tα) dependence.

Stochastic {xt}. We implement and test PwP and RMLP-2 on stochastic {xt}’s, where xt are
iid sampled from N (µx, Σx) (for µx = [10, 10, . . . , 10]⊤ and some randomly sampled Σx) and
then normalized s.t. ∥xt∥2 ≤ 1. The numerical results are shown in Figure 1a. Numerical results
show that both algorithms achieve ∼ O(T 0.56) regrets, which is close to the theoretic regret rate at
O(
√
T log T ).

Adversarial {xt}. Here we design an adversarial {xt} sequence to attack both algorithms. Since
RMLP-2 divides the whole time horizon T into epochs with length k = 1, 2, 3, . . . sequentially
and then does pure exploration at the beginning of each epoch, we may directly attack those
pure-exploration rounds in the following way: (1) In each pure-exploration round (i.e. when
t = 1, 3, 6, . . . , k(k+1)

2 , . . .), let the context be xt = [1, 0]⊤; (2) In any other round, let the context be
xt = [0, 1]⊤. In this way, the RMLP-2 algorithm will never learn θ∗[2] and η∗[2] since the inputs of
pure-exploration rounds do not contain this information. Under this oblivious adversarial context
sequence, we implement PwP and RMLP-2 and compare their performance. The results are shown in
Figure 1b, indicating that PwP can still guarantee O(T 0.513) regret (close to O(

√
T log T )) while

RMLP-2 runs into a linear regret.

As a high-level interpretation, the performance difference is because PwP adopts a "distributed"
exploration at every time t while RMLP-2 makes it more "concentrated". Although both PwP
and RMLP-2 take the same amount of exploration that optimally balance the reward loss and the
information gain (and that is why they both perform well in stochastic inputs), randomly distributed
exploration would save the algorithm from being "attacked" by oblivious adversary. In fact, this
phenomenon is analog to ϵ-Greedy versus Exploration-first algorithms in multi-armed bandits. We
will discuss more in Appendix C.

So far, we have presented the numerical results of running PwP and a modified RMLP-2 on the
well-assumed demand model as Eq. (1) (or Eq. (2) equivalently). Besides of that, we also conduct
experiments on a model-misspecification setting to show the robustness, where the true demand (or
valuation) distribution is not the same as Eq. (1) or Eq. (2). The numerical results are presented in
Appendix B.

6 DISCUSSION

Here we discuss the motivation and the limitation of making Assumption 3.6. We leave the majority
of discussion to Appendix C.

Necessity of lower-bounding x⊤
t η

∗ from 0. As we state in Assumption 3.6, the price elasticity
coefficient x⊤

t η
∗ is lower bounded by a constant Cβ > 0. On the one hand, this is necessary since

we cannot have an upper bound on the optimal price without this assumption. On the other hand,
according to Eq. (3), we know that r(u, β, p) = r(u, 1, β · p) · 1β , which indicates that the reward is
rescaled by 1

β . As a result, the regret should be proportional to 1
Cβ

. Although a larger (i.e. closer to 0)
elasticity would lead to a more smooth demand curve, this actually reduce the information we could
gather from customers’ feedback and slow down the learning process. We look forward to future
researches getting rid of this assumption and achieve more adaptive regret rates.

7 CONCLUSION

In summary, our work focuses on the problem of contextual pricing with highly differentiated
products. We propose a contextual elasticity model that unifies the “linear demand” and “linear
valuation” camps and captures the price effect and heteroscedasticity. To solve this problem, we
develop an algorithm PwP, which utilizes Online Newton Step (ONS) on a surrogate loss function
and proposes perturbed prices for exploration. Our analysis show that it guarantees a O(

√
dT log T )

regret even for adversarial context sequences. We also provide a matching Ω(
√
dT ) regret lower

bound to show its optimality (up to log T factors). Besides, our numerical experiments also validate
the regret bounds of PwP and its advantage over existing method. We hope this work would shed
lights on the research of contextual pricing as well as online decision-making problems.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Kareem Amin, Afshin Rostamizadeh, and Umar Syed. Repeated contextual auctions with strategic
buyers. In Advances in Neural Information Processing Systems (NIPS-14), pp. 622–630, 2014.

Oren Anava and Shie Mannor. Heteroscedastic sequences: beyond gaussianity. In International
Conference on Machine Learning, pp. 755–763. PMLR, 2016.

Gah-Yi Ban and N Bora Keskin. Personalized dynamic pricing with machine learning: High-
dimensional features and heterogeneous elasticity. Management Science, 67(9):5549–5568, 2021.

Trevor S Breusch and Adrian R Pagan. A simple test for heteroscedasticity and random coefficient
variation. Econometrica: Journal of the econometric society, pp. 1287–1294, 1979.

Josef Broder and Paat Rusmevichientong. Dynamic pricing under a general parametric choice model.
Operations Research, 60(4):965–980, 2012.

Jinzhi Bu, David Simchi-Levi, and Chonghuan Wang. Context-based dynamic pricing with partially
linear demand model. In Advances in Neural Information Processing Systems, 2022.

Kamalika Chaudhuri, Prateek Jain, and Nagarajan Natarajan. Active heteroscedastic regression. In
International Conference on Machine Learning, pp. 694–702. PMLR, 2017.

Maxime C Cohen, Ilan Lobel, and Renato Paes Leme. Feature-based dynamic pricing. Management
Science, 66(11):4921–4943, 2020.

T Cunia. Weighted least squares method and construction of volume tables. Forest Science, 10(2):
180–191, 1964.

Jianqing Fan, Yongyi Guo, and Mengxin Yu. Policy optimization using semiparametric models for
dynamic pricing. arXiv preprint arXiv:2109.06368, 2021.

Negin Golrezaei, Patrick Jaillet, and Jason Cheuk Nam Liang. Incentive-aware contextual pricing
with non-parametric market noise. arXiv preprint arXiv:1911.03508, 2019.

Vineet Goyal and Noemie Perivier. Dynamic pricing and assortment under a contextual mnl demand.
arXiv preprint arXiv:2110.10018, 2021.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2
(3-4):157–325, 2016.

Marcus Hutter, Jan Poland, et al. Adaptive online prediction by following the perturbed leader. 2005.

Adel Javanmard and Hamid Nazerzadeh. Dynamic pricing in high-dimensions. The Journal of
Machine Learning Research, 20(1):315–363, 2019.

Robert L Kaufman. Heteroskedasticity in regression: Detection and correction. Sage Publications,
2013.

Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on regret for
online posted-price auctions. In IEEE Symposium on Foundations of Computer Science (FOCS-03),
pp. 594–605. IEEE, 2003.

Akshay Krishnamurthy, Thodoris Lykouris, Chara Podimata, and Robert Schapire. Contextual search
in the presence of irrational agents. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing (STOC-21), pp. 910–918, 2021.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

Yiyun Luo, Will Wei Sun, et al. Distribution-free contextual dynamic pricing. arXiv preprint
arXiv:2109.07340, 2021.

Yiyun Luo, Will Wei Sun, and Yufeng Liu. Contextual dynamic pricing with unknown noise: Explore-
then-ucb strategy and improved regrets. In Advances in Neural Information Processing Systems,
2022.

10



Under review as a conference paper at ICLR 2024

Sentao Miao, Xi Chen, Xiuli Chao, Jiaxi Liu, and Yidong Zhang. Context-based dynamic pricing
with online clustering. arXiv preprint arXiv:1902.06199, 2019.

Mila Nambiar, David Simchi-Levi, and He Wang. Dynamic learning and pricing with model
misspecification. Management Science, 65(11):4980–5000, 2019.

Michael Parkin, Melanie Powell, and Kent Matthews. Economics. Addison-Wesley, Harlow, 2002.

Sheng Qiang and Mohsen Bayati. Dynamic pricing with demand covariates. arXiv preprint
arXiv:1604.07463, 2016.

Virag Shah, Ramesh Johari, and Jose Blanchet. Semi-parametric dynamic contextual pricing. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Yining Wang, Boxiao Chen, and David Simchi-Levi. Multimodal dynamic pricing. Management
Science, 2021.

Halbert White. A heteroskedasticity-consistent covariance matrix estimator and a direct test for
heteroskedasticity. Econometrica: journal of the Econometric Society, pp. 817–838, 1980.

Jianyu Xu and Yu-Xiang Wang. Logarithmic regret in feature-based dynamic pricing. Advances in
Neural Information Processing Systems, 34, 2021.

Jianyu Xu and Yu-Xiang Wang. Towards agnostic feature-based dynamic pricing: Linear policies
vs linear valuation with unknown noise. International Conference on Artificial Intelligence and
Statistics (AISTATS), 2022.

Li Zhou. A survey on contextual multi-armed bandits. arXiv preprint arXiv:1508.03326, 2015.

11



Under review as a conference paper at ICLR 2024

A DEFINITION AND PROOF DETAILS

Here we show the proof details of the lemmas we have stated in Section 4.2. Before that, let us clarify
some terminologies we mentioned in the main paper.

A.1 DEFINITIONS

Firstly, we rigorously define the concept of price elasticity occurring in Section 1.

Definition A.1 (Price Elasticity (Parkin et al., 2002)). Suppose D(p) is a demand function of price p.
Then the price elasticity Ed of demand is defined as

ED :=
∆D(p)/D(p)

∆p/p
=

∂D(p)

∂p
· p

D(p)
. (15)

With this definition, along with our generalized linear demand model given in Eq. (1), the price
elasticity for the expected demand S(x⊤

t η
∗ · pt − x⊤

t θ
∗) is

ED =
∂S(x⊤

t η
∗ · pt − x⊤

t θ
∗)

∂pt
· pt
S(x⊤

t η
∗ · pt − x⊤

t θ
∗)

=x⊤
t η

∗ · s(x
⊤
t η

∗ · pt − x⊤
t θ

∗)

S(x⊤
t η

∗ · pt − x⊤
t θ

∗)
· pt.

(16)

Here s(·) = S′(·). Therefore, despite the effect of the link function and the price pt, the price
elasticity is proportional to the price coefficient x⊤

t η
∗. This is why we call x⊤

t η
∗ (or α in the general

model D(p) = λ(α ·p+xT
t β)) the elasticity coefficient or coefficient of elasticity in Section 1.

A.2 PROOF OF LEMMA 4.2
Proof. In order to prove Lemma 4.2, we show the following lemma that indicates the Lipschitzness
of J(u, β):

Lemma A.2 (Lipschitz of optimal price). There exists a constant CJ > 0 such that

|J(u1, β1)− J(u2, β2)| ≤ CJ · (|u1 − u2|+ |β1 − β2|). (17)

With this lemma, we get the second inequality of Eq. (10). We will prove this lemma later in this
subsection. Now, we focus on the first inequality. Notice that

Regt(pt) =r(x⊤
t θ

∗, x⊤
t η

∗, p∗t )− r(x⊤
t θ

∗, x⊤
t η

∗, pt)

≤− ∂r(u, β, p)

∂p
|u=x⊤

t θ∗,β=x⊤
t η∗,p=p∗

t
(p∗t − pt)

− 1

2
· inf
p∈[c1,c2],β∈[Cβ ,1],u∈[0,1]

∂2r(u, β, p)

∂p2
|u=x⊤

t θ∗,β=x⊤
t η∗,p=p∗

t
(p∗t − pt)

2

=0 +
1

2
· sup
p∈[c1,c2],β∈[Cβ ,1],u∈[0,1]

{|2s(β · p− u) · β + p · s′(β · p− u) · β2|}(p∗t − pt)
2.

(18)
Here the first line is by the definition of Regt(pt), the second line is by smoothness, the third line is
by the optimality of p∗t , and the last line is by calculus. Since |2s(β · p−u) ·β+ p · s′(β · p−u) ·β2|
is continuous on p ∈ [c1, c2], β ∈ [Cβ , 1], u ∈ [0, 1], we denote this maximum as 2Cr, which proves
the first inequality of Eq. (10).

Now we show the proof of Lemma A.2.

Proof of Lemma A.2. Since J(u, β) = u+φ−1(u)
β where φ(w) = −S(w)

s(w) − w. Notice that

φ′(w) = −
dS(w)

s(w)

dw
− 1 =

d2 log(S(w))

dw2
· S(w)

2

s(w)2
− 1 < −1 (19)

12
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since S(w) is log-concave (as is assumed in Assumption 3.8). Given Eq. (19), we know that
dφ−1(u)

d(u) = 1
dφ(w)

dw |w=φ−1(u)

∈ (−1, 0). Therefore, we have:

∂J(u, β)

∂u
=
1 + dφ−1(u)

du

β
∈ (0,

1

Cβ
)

∂J(u, β)

∂β
=
∂ J(u,1)

β

∂β
= −J(u, 1)

β2
∈ [− c2

Cβ
,−c1].

(20)

Therefore, we know that J(u, β) is Lipschitz with respect to u and β respectively. Take CJ =
max{ 1

Cβ
, c2
Cβ
} and we get Eq. (17).

A.3 PROOF OF LEMMA 4.3
Proof. We firstly show the convexity (and exp-concavity) of ℓt(θ, η) by the following lemma.

Lemma A.3 (exp-concavity). ℓt(θ, η) is convex and Ce-exp-concave with respect to [θ; η], where
Ce > 0 is a constant dependent on F and Cβ . Equivalently,∇2ℓt(θ, η) ⪰ Ce · ∇ℓt(θ, η)∇ℓt(θ, η)⊤.

Also, we have ∇2ℓt(θ, η) ⪰ Cl ·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t v2t · xtx

⊤
t

]
for some constant Cl > 0.

The proof of Lemma A.3 is mainly straightforward calculus, and we defer the proof to the end of

this subsection. According to Lemma A.3, we have ∇2ℓt(θ, η) ⪰ Cl ·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2t · xtx

⊤
t

]
.

Therefore, we know that

ℓt(θ, η) ≥ℓt(θ∗, η∗) +∇ℓt(θ∗, η∗)⊤
[

θ − θ∗

η − η∗

]
+ [(θ − θ∗)⊤, (η − η∗)⊤]Cl

[
xtx

⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2txtx

⊤
t

] [
θ − θ∗

η − η∗

]
(21)

According to the property of likelihood, we have E[∇ℓt(θ∗, η∗)|θt, ηt] = 0 for any θt and ηt.
Combining this with Eq. (21), we get

E[ℓt(θ, η)− ℓt(θ
∗, η∗)|θt, ηt] ≥ Cl[(θ − θ∗)⊤, (η − η∗)⊤]E

[
xtx

⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2txtx

⊤
t
|θt, ηt

] [
θ − θ∗

η − η∗

]
(22)

Recall that p̂t = J(x⊤
t θt, x

⊤
t ηt) and that pt = p̂t +∆t. Therefore, we know that the conditional

expectations E[pt|θt, ηt] = p̂t and E[p2t |θt, ηt] = p̂2t +∆2. Given this, we have

E
[

xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2txtx

⊤
t
|θt, ηt

]
=

[
xtx

⊤
t −p̂txtx

⊤
t

−p̂txtx
⊤
t (p̂2t +∆2)xtx

⊤
t

]
=

[
xt

−p̂txt

] [
x⊤
t ,−p̂tx⊤

t

]
+

[
0 0
0 ∆2xtx

⊤
t

]

=

 1√
1+∆2

2

· xt

−
√
1 + ∆2

2 p̂t · xt

 1√
1 + ∆2

2

· x⊤
t ,−

√
1 +

∆2

2
p̂t · x⊤

t

+

[
(1− 1

1+∆2

2

)xtx
⊤
t 0

0 ∆2

2 xtx
⊤
t

]
(23)

Since ∆ = min

{(
d log T

T

) 1
4

, J(0,1)
10 , 1

10

}
, we have 1− 1

1+∆2

2

=
∆2

2

1+∆2

2

≥ ∆2

10 . As a result, we have

E
[

xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2txtx

⊤
t
|θt, ηt

]
≥ ∆2

10
·
[

xtx
⊤
t 0

0 xtx
⊤
t

] (24)

This proves the lemma.
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Finally, we show the proof of Lemma A.3.

Proof of Lemma A.3. Recall that ℓt(θ, η) = −1t·log(S(x⊤
t (ptη−θ)))−(1−1t)·log(1−S(x⊤

t (ptη−
θ))). We first calculate the gradient and Hessian of ℓt(θ, η) with respect to [θ; η]. For notation
simplicity, denote wt := x⊤

t (ptη − θ).

∇ℓt = −
(
1t ·

s(wt)

S(wt)
− (1− 1t) ·

s(wt)

1− S(wt)

)
·
[
−xt

pt · xt

]
(25)

∇2ℓt =−
(
1t ·

s′(wt)S(wt)− s(wt)
2

S(wt)2
+ (1− 1t) ·

−s′(wt)(1− S(wt))− s(wt)
2

(1− S(wt))2

)
·
[
−xt

pt · xt

] [
−x⊤

t , pt · x⊤
t

]
=−

(
1t ·

s′(wt)S(wt)− s(wt)
2

S(wt)2
+ (1− 1t) ·

−s′(wt)(1− S(wt))− s(wt)
2

(1− S(wt))2

)
·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2t · xtx

⊤
t

]
(26)

According to Assumption 3.8, we know that S(w) and (1− S(w)) are strictly log-concave, which
indicates

d2 log(1− S(w))

dw2
=
−s′(w)(1− S(w))− s(w)2

(1− S(w))2
< 0

d2 log(S(w))

dw2
=
s′(w)S(w)− s(w)2

S(w)2
< 0,∀w ∈ R.

(27)

Since wt = pt · x⊤
t η − x⊤

t θ where pt ∈ [c1, c2], we know that wt ∈ [−1, c2]. Since d2 log(S(w))
dw2 and

d2 log(1−S(w))
dw2 are continuous on [−1, c2], we know that

1t ·
s′(wt)S(wt)− s(wt)

2

S(wt)2
+ (1− 1t) ·

−s′(wt)(1− S(wt))− s(wt)
2

(1− S(wt))2

≤ sup
w∈[−1,c2]

max

{
s′(wt)S(wt)− s(wt)

2

S(wt)2
,
−s′(wt)(1− S(wt))− s(wt)

2

(1− S(wt))2

}
< 0.

(28)

Denote Cl = − supw∈[−1,c2] max
{

s′(wt)S(wt)−s(wt)
2

S(wt)2
, −s′(wt)(1−S(wt))−s(wt)

2

(1−S(wt))2

}
> 0, and we

know that

∇2ℓt(θ, η) ⪰ Cl ·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2t · xtx

⊤
t

]
. (29)

Similarly, we know that s(w)
S(w) and −s(w)

1−S(w) are continuous on [−1, c2]. Therefore, we may denote

CG = supw∈[−1,c2] max
{
| s(w)
S(w) |, |

−s(w)
1−S(w) |

}
> 0 and get

∇ℓt(θ, η)∇ℓt(θ, η)⊤ ⪯ C2
G ·
[
−xt

pt · xt

] [
−x⊤

t , pt · x⊤
t

]
. (30)

Given all these above, we have

∇2ℓt(θ, η) ⪰ Cl ·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2t · xtx

⊤
t

]
=

Cl

C2
G

· C2
G ·
[
−xt

pt · xt

] [
−x⊤

t , pt · x⊤
t

]
⪰ Cl

C2
G

· ∇ℓt(θ, η)∇ℓt(θ, η)⊤.

(31)

Denote Ce :=
Cl

C2
G

and we prove the lemma.
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When RMLP-2 does not model the heteroscedasticity
PwP
PwP Linear fit, slope=0.536
RMLP-2
RMLP-2 Linear fit, slope=0.681

Figure 2: Regrets of PwP versus the original homoscedastic RMLP-2 algorithm. In this log-log
diagram, a O(Tα) regret curve is shown as a straight line with slope α. From the figure, we notice that
PwP is optimal while RMLP-2 is sub-optimal, indicating the necessity of modeling homoscedasticity
to achieve optimal regrets.

A.4 PROOF OF THEOREM 4.1
Proof. With all lemmas above, we have

E[Regret] =E[
T∑

t=1

E[Regt(pt)|θt, ηt]]

≤E[
T∑

t=1

Cr · 2 · CJ · E[(x⊤
t (θt − θ∗))2 + (x⊤

T (ηt − η∗))2|θt, ηt] + T · Cr · 2 ·∆2]

≤E[
T∑

t=1

2CrCJ ·
10

Cl ·∆2
· E[ℓt(θt, ηt)− ℓt(θ

∗, η∗)|θt, ηt] + 2CrT∆
2]

=
20CrCJ

Cl∆2
E[

T∑
t=1

ℓt(θt, ηt)− ℓt(θ
∗, η∗)] + 2CrT∆

2

=O(
d log T

∆2
+∆2T )

=O(
√
dT log T ).

(32)

Here the first line is by the law of total expectation, the second line is by Lemma 4.2, the third line is
by Lemma 4.3, the fourth line is by equivalent transformation, the fifth line is by Lemma 4.4, and the

sixth line is by the fact that ∆ = min

{(
d log T

T

) 1
4

, J(0,1)
10 , 1

10

}
. This holds the theorem.

B MORE EXPERIMENTS

B.1 MODEL ADAPTIVITY

In this section, we show that it is necessary to model the heteroscedasticity. In specific, we compare
PwP with the original RMLP-2 algorithm from Javanmard & Nazerzadeh (2019) that ignores het-
eroscedasticity in a heteroscedastic environment. We conduct both experiments for T = 214 rounds
and repeat them for 10 epochs. The numerical results are displayed in the lower figure, plotted in
log-log diagrams. From the figure, we notice that the regret of RMLP-2 is much larger than PwP.
Also, the slope of regrets of RMLP-2 is 0.681 >> 0.5, indicating that it does not guarantee a O(

√
T )

15



Under review as a conference paper at ICLR 2024

29 210 211 212 213 214 215 216

t=1,2,...,T

24

25

26

27

28

29

210

211

re
gr

et

PwP
PwP Linear fit, slope=0.538
RMLP-2
RMLP-2 Linear fit, slope=0.97

Figure 3: Regrets of misspecified PwP with expanded contexts, in comparison with a baseline
RMLP-2 knowing the correct model. The results show that PwP still have a sub-linear regret in a
certain period of time with context expansions, indicating that our linear demand model as Eq. (1)
can be generalized to a linear valuation model as Eq. (33) in practice.

regret. In comparison, PwP still performs well as it achieves a ∼ O(T 0.536) regret. This indicates
that the algorithmic adaptivity of PwP to both homoscedastic and heteroscedastic environments is
highly non-trivial, and a failure of capturing it would result in a substantial sub-optimality.

B.2 MODEL MISSPECIFICATION

In Section 5, we compare the cumulative regrets of our PwP algorithm with the (modified) RMLP-2
on the linear demand model (as Eq. (1) or equivalently, the linear fractional valuation model as
Eq. (2)). In this section, we consider a model-misspecific setting, where customer’s true valuation is
given by the following equation

yt = x⊤
t θ

∗ + x⊤
t η

∗ ·Nt (33)
and the demand Dt = 1t = 1[pt ≤ yt]. As a result, Eq. (33) captures a linear valuation model with
heteroscedastic valuation.

Now, we design an experiment to show the generalizability of both our PwP algorithm and our demand
model as Eq. (1). In specific, we run the PwP algorithm that still models a customer’s valuation as
ỹt =

x⊤
t θ̃∗+Ñt

x̃⊤
t η̃∗ , where x̃t ∈ Rq is an expanded version of the original context xt (i.e. x̃t = π(xt)

for some fixed expanding policy π) and θ̃∗, η̃∗ ∈ Rq are some fixed parameters2. Therefore, PwP
is trying to learn those misspecified θ̃∗ and η̃∗ although there does not exist such an underground
truth.

We are curious whether the expansion of context (from xt to x̃t) would leverage the hardness of
model misspecification. For x = [x1, x2, . . . , xd]

⊤, denote xn := [xn
1 , x

n
2 , . . . , x

n
d ]

⊤. Then for any
context x ∈ Rd, we specify each context-expanding policy as follows:

π(x;x0,a)

:=[x; (x− x0)
a1 ; (x− x0)

a2 ; . . . ; (x− x0)
am ]⊤ ∈ R(m+1)d.

(34)

The policy π in Eq. (34) is a polynomial expansion of x with index list a = [a1, a2, . . . , am] ∈ Zm,
where x0 ∈ Rd is a fixed start point of this expansion.

Now we consider the baseline to compare with. We claim that it is very challenging to solve the
contextual pricing problem with customers’ valuations being Eq. (33) with theoretic regret guarantees
(although the Ω(

√
T ) lower bound given by Javanmard & Nazerzadeh (2019) still holds), and

there are no existing algorithms targeting at this problem setting. However, there are still some
straightforward algorithms that might approach it: For example, a max-likelihood estimate (MLE)
of θ∗ and η∗. In fact, we may still reuse the framework of RMLP-2 by replacing its MLE oracle
according to the distribution given by Eq. (33). In the following, we will compare the performances
of

2We may assume q ≥ d without loss of generality.
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1. PwP algorithm with the misspecified linear demand model as Eq. (1), with expanded context
{xt}’s, and

2. RMLP-2 algorithm on the correct linear valuation model asEq. (33), with original context
{xt}’s.

We implement PwP and RMLP-2 on stochastic {xt} sequences (since RMLP-2 has already failed in
the adversarial setting) and get numerical results shown as Figure 3. Here we choose x0 = [0.5, 0.5]⊤

and a = [0, 1]. For a model-misspecified online-learning algorithm, there generally exists an O(ϵ · T )
term in the regret rate, where ϵ is a parameter measuring the distance between the global optimal
policy and the best proper policy (i.e. the best policy in the hypothesis set). However, our numerical
results imply that PwP may still achieve a sub-linear regret within a certain time horizon T , whereas
the baseline RMLP-2 that takes the correct model has a much worse regret. It is worth mentioning
that PwP may still run into Ω(T ) regret as T gets sufficiently large, due to model misspecification.
These results imply that

1. Our linear demand model Eq. (1) can be generalized to a linear valuation model as Eq. (33) in
practice.

2. Our PwP algorithm can still perform well in model-misspecification settings, and even better
than a baseline MLE algorithm with a correct model in a certain period of time.

For the first phenomenon that our demand model can be generalized with context expansion tricks, we
may understand it as a Taylor expansion (and we take a linear approximation) at x0 = [0.5, 0.5]⊤. For
the second phenomenon that PwP outperforms RMLP-2, it might be caused by the non-convexity of
the log-likelihood function of the valuation model specified in Eq. (33). As a result, while RMLP-2 is
solving a non-convex MLE and getting estimates far from the true parameters, PwP instead works on
an online convex optimization problem within a larger space (which probably contain the underground
truth) due to context expansions. Unfortunately, we do not have a rigorous analysis of those two
phenomenons.

C MORE DISCUSSIONS

As supplementary to Section 6, here we discuss some potential extensions and impacts of our work
with more details.

Assumption on lower-bounding elasticity as Cβ > 0. Here we claim that the regret lower bound
should have an Ω( 1

Cβ
) dependence on Cβ . We prove this by contradiction. Without loss of generality,

assume Cβ ∈ (0, 1). In specific, we construct a counter example to show it is impossible to have an
O(C−1+α

β ) regret for any α > 0:

Firstly, let β = Cβ . Suppose there exists an algorithm A that proposes a series of prices {pt}Tt=1

which achieve O(C−1+α
β ) regret in any pricing problem instance under our assumptions.

Now, we consider another specific problem setting where β = 1 while all other quantities
θ∗, η∗, {xt}Tt=1 stay unchanged. Notice that the reward function has the following property:

r(u, β, p) = p · S(βp− u) =
1

β
· (βp) · S(βp− u) =

1

β
· r(u, 1, βp) (35)

Therefore, we construct another algorithm A∗ which proposes Cβ · pt at t = 1, 2, . . . , T . According
to the O(C−1+α

β ) regret bound of A, we know that A∗ will suffer Cβ ·O(C−1+α
β ) = O(Cα

β ) regret.
Let Cβ → 0+ and observe the regret of A∗ on the latter problem setting (where β = 1). On the one
hand, this is a fixed problem setting with information-theoretic lower regret bound at Ω(log T ). On
the other hand, the regret will be bounded by limCβ→0+ O(Cα

β ) = 0. They are contradictory to each
other. Given this, we know that there does not exist such an α > 0 such that there exists an algorithm
that can achieve O(C−1+α

β ). As a result, it is necessary to lower bound the elasticities by Cβ from
0.

Adversarial attacks. Our PwP algorithm achieves near-optimal regret even for adversarial context
sequences, while the baseline (modified) RMLP-2 algorithm fails in an oblivious adversary and suffer
a linear regret. This is mainly caused by the fact that RMLP-2 takes a pure-exploration step at a fixed
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time series, i.e. t = 1, 1 + 2, 1 + 2 + 3, . . . , k(k+1)
2 . This issue might be leveraged by randomizing

the position of pure-exploration steps: In each Epoch k = 1, 2, . . ., it may firstly sample one out
of all k rounds in this epoch uniformly at random, and then propose a totally random price at this
specific round. However, RMLP-2 still requires E[xx⊤] ⪰ c · Id even with this trick.

Regret lower bounds for fixed unknown noise distributions. We claim a Ω(
√
dT ) regret lower

bound in Theorem 4.5 with customers’ demand model being Eq. (1). However, this result does not
imply a Ω(

√
dT ) regret lower bound for the contextual pricing problem with customers’ valuation

being yt = x⊤
t θ

∗ + Nt adopted by Javanmard & Nazerzadeh (2019); Cohen et al. (2020); Xu &
Wang (2021). This is because our problem setting is more general than theirs, and our construction
of Ω(

√
dT ) regret lower bounds are substantially beyond the scope of this specific subproblem. So

far, the best existing regret lower bound for the linear noisy model (yt = x⊤
t θ

∗ +Nt) is still Ω(
√
T ).

However, we conjecture that this should also be Ω(
√
dT ). The hardness of proving this lower bound

comes from the fact that the noises are iid over time, and it is harder to be separated into several
sub-sequences across d that are independent to each other.

Algorithm and analysis for unknown link function S(·). Unfortunately, our algorithm is unable
to be generalized to the online contextual pricing problem with linear valuation and unknown noise
distribution that has been studied by Fan et al. (2021). Indeed, the problem becomes substantially
harder when the noise distribution is unknown to the agent. Existing works usually adopt bandits
or bandit-like algorithms to tackle that problem. For example, Fan et al. (2021) approaches it with
a combination of exploration-first and kernel method (or equivalently, local polynomial), Luo et al.
(2021) uses a UCB-styled algorithm, and Xu & Wang (2022) adopts a discrete EXP-4 algorithm.
However, none of them close the regret gap even under the homoscedastic elasticity environment as
they assumed, and the known lower bound is at least Ω(T

2
3 ), or Ω(T

m+1
2m+1 ) for smooth ones (Wang

et al., 2021). On the other hand, we study a parametric model, and it is not quite suitable for a bandit
algorithm to achieve optimality in regret. In a nutshell, these two problems (known vs unknown noise
distributions), although seem similar to each other, are indeed substantially different.

Linear demand model vs linear valuation model. In this work, we adopt a generalized linear
demand model with Boolean feedback, as assumed in Eq. (1). As we have stated in Appendix B, there
exists a heteroscedastic linear valuation model as Eq. (33) that also captures a customer’s behavior.
However, this linear valuation model is actually harder to learn, as its log-likelihood function is
non-convex. It is still an open problem to determine the minimax regret of an online contextual
pricing problem with a valuation model like Eq. (33).

Ethic issues. Since we study a dynamic pricing problem, we have to consider the social impacts that
our methodologies and results could have. The major concern in pricing is fairness. In general, we
did not enforce or quantify the fairness of our algorithm. In fact, we might not guarantee an individual
fairness since PwP proposes random prices, which means even the same input xt’s would lead to
different output prices. Despite the perturbations ∆t we add to the prices, the pricing model (i.e. the
parameters θ∗ and η∗) is updating adaptively over time. This indicates that customers arriving later
would have relatively fairer prices, since the model is evolving drastically at the beginning rounds and
is converging to (local) optimal after a sufficiently long time period. We claim that our PwP algorithm
is still fairer than the baseline RMLP-2 algorithm we compare with, since RMLP-2 takes pure
explorations at some specific time. As a result, those customers who are given a totally random price
would have a either much higher or much lower expected price than those occurring in exploitation
rounds. However, it is still worth mentioning that RMLP-2 satisfies individual fairness within each
pure-exploitation epoch, since it does not update parameters nor adding noises then.
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