Under review as a conference paper at ICLR 2026

FROM LANGUAGE TO ACTION STREAMS: BRIDGING
LLM AUTOREGRESSION FOR LONG-HORIZON ROBOT
ACTION PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) models is a transformative paradigm for robotic
control, leveraging pre-trained vision-language models (VLMs) to directly trans-
late natural language instructions and visual observations into low-level actions.
The prominent idea of “Action-as-Language” discretizes action spaces into tokens
for large language models (LLMs), reframing action prediction as a standard se-
quential language generation task. However, current implementations underutilize
the LLM’s full generation potential, confining action prediction to fixed-length,
single-step token sequences and limiting the policy’s generation horizon. To over-
come this limitation, we propose the Action Stream paradigm, which customizes
LLM training and inference recipes to VLAs, enabling the generation of extended
chains of action tokens and facilitating implicit long-horizon generation with task
performance improvements. For training action streams, we propose a two-phase
approach: Long-horizon Behavior Cloning (L-BC) and Step-wise Action Align-
ment (S-AA). L-BC enables VLA models to generate coherent multi-step action
sequences, while S-A A mitigates exposure bias during sequential inference, creat-
ing a framework that enables long-horizon generation while reducing error accu-
mulation. During deployment, decoding strategies from language generation can
be successfully transferred to action streams, enabling efficient solution search
and task performance improvements. Through extensive evaluations on the sim-
ulation benchmark and real-world robotic setups, we demonstrate that the Action
Stream paradigm achieves improved task performance when extending the genera-
tion horizon, representing a significant step toward unified vision-language-action
modeling.

1 INTRODUCTION

Vision-Language-Action (VLA) models have emerged as the leading approach for general robot
control, providing end-to-end systems that translate natural language instructions and visual inputs
directly into executable robotic actions (Brohan et al., 2022; 2024; [Belkhale et al., [2024; |Black:
et al.; Kim et al.| [2025)). By adapting pre-trained Vision-Language Models (VLMs) for action pre-
diction (Wang et al., 2025;|Zhai et al.,2025; |Li et al., 2023, VLA models leverage both the language
understanding capabilities of LLMs and visual perception of vision networks to ground abstract in-
structions in concrete robotic actions.

To endow VLMs with the ability of action prediction, the academic community has explored two
main paradigms. The first is the “Module Grafting” paradigm, which grafts an independent action
prediction module (such as an MLP regression head (Jang et al.l [2022) or a diffusion decoder (Chi
et al., [2023)) onto the VLM’s feature representation. While effective, this introduces architectural
complexity by requiring the integration of heterogeneous modules and necessitates specialized train-
ing strategies (Liu et al., 2025} |[Kim et al.| 2025} Bu et al., 2025).

Unlike the modular approach, the second paradigm proposes a more elegant unified perspective by
rewriting the output space of VLMs, with the core idea summarized as “Action-as-Language.” Rep-
resented by RT-2 (Brohan et al., [2024) and OpenVLA (Kim et al., [2024), this paradigm is realized
through the technique of “Action Tokenization™: it discretizes the continuous robotic action and then



Under review as a conference paper at ICLR 2026

directly maps each discrete action to existing tokens in the LLM’s native vocabulary. This design
repurposes the LLM’s output space, making action generation identical to language generation and
enabling VLA models to use standard language model training and inference methods, significantly
enhancing architectural simplicity and fine-tuning efficiency.

However, the Action-as-Language paradigm is critically limited by its failure to leverage the LLM’s
full generation capabilities. Current models like OpenVLA (Kim et al., 2024)) predict actions one
step at a time with short, fixed-length token sequences. This approach, while effective for reactive
control, fails to leverage the LLM’s strengths for generating coherent, extended sequences, limiting
the policy’s horizon. It misses opportunities for implicit long-horizon planning and temporal depen-
dencies that could emerge from generating multi-step actions autoregressively (Liu et al.,|2024;[Zhao
et al., 2023), representing a significant gap between the policy’s potential and its current application.

To address this limitation, we introduce the “Action Stream” paradigm, which incorporates LLM
training and inference recipes into VLA and transforms robotic actions into a chain of action to-
kens, enabling policies to generate multi-step plans through autoregressive generation. To real-
ize this, we propose two specialized fine-tuning phases that customize established LLM training
recipes (Ouyang et al., 2022; Shengyu et al., |2023; Rafailov et al.,[2023)) for VLA models. The initial
phase, Long-horizon Behavior Cloning (L-BC), adapts the base VLA model to generate coherent,
extended action token sequences through offline imitation learning on restructured expert demon-
strations. This phase transforms the single-step prediction policy into one capable of generating
coherent action streams for long-horizon generation. In the second phase, we implement Step-wise
Action Alignment (S-AA), an online alignment technique that addresses the exposure bias problem
from the first phase. During the first behavior cloning phase, the model is trained with teacher forc-
ing using ground-truth inputs for next action prediction, but must rely on its own predictions during
inference, creating a distribution mismatch that leads to compounding errors in long-horizon execu-
tion (Bengio et al.| 2015; Wulfmeier et al.l 2024} |Cundy & Ermon, 2023; Bachmann & Nagarajan),
2024). S-AA addresses this challenge by using preference rewards to identify potential error steps in
online long-horizon generation and align them with expert demonstrations. Our experiments on the
simulation benchmark and real-world robotic setups show that L-BC alone successfully extends the
policy’s generation horizon, enabling longer-horizon task completion. With the addition of S-AA
tuning, we achieve even greater performance gains, maintaining extended horizons while signifi-
cantly improving task success rates. This two-phase approach creates robust policies that extend the
planning horizon while achieving improved performance, outperforming conventional single-step
approaches across various manipulation tasks.

Additionally, during policy deployment, we adapt inference-time computation paradigms to action
streams. Unlike traditional fixed sampling methods, we apply diverse sampling and search strategies
from LLM generation recipes, which significantly improve task performance. These improvements
demonstrate that the action stream paradigm creates a richer solution space that can be effectively
explored using established LLM decoding techniques, further enhancing robotic manipulation capa-
bilities.

2 PRELIMINARY

2.1 VISION-LANGUAGE-ACTION (VLA) MODELS

Our work builds upon OpenVLA (Kim et al.,[2024)), a powerful open-source VLA model. We briefly
introduce its core components below.

Architecture OpenVLA is built on a VLM framework, combining SigLIP (Zhai et al., 2023) and
DINOV2 (Oquab et al.,[2023) visual encoders with a Llama-2-7B LLM (Touvron et al.,|2023)) back-
bone for generation. At each time step, the policy takes an RGB image and language instruction
as input. The image is encoded into embedding tokens while the instruction is tokenized via the
Llama-2 tokenizer. These token sequences are concatenated and processed by the causal transformer
decoder to generate outputs.

Action Tokenization and Vocabulary Remapping To enable an LLM to generate physical com-
mands, OpenVLA bridges the continuous robot action space with the LLM’s text generation capa-
bilities through discretization. The 7-dimensional action vector (6-DoF end-effector displacement
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Figure 1: The illustration of the proposed Action Stream Paradigm. We transfer the text generation
paradigm to long-horizon action generation, enabling the policy to generate coherent multi-step
action sequences from current states, similar to how LLMs produce coherent text.

plus gripper state) is uniformly discretized into 256 bins per dimension following (Brohan et al.|
2022;2024), representing each action as seven integer indices. These indices are mapped to the 256
least-frequently used tokens in the Llama-2 vocabulary, transforming action prediction into a stan-
dard text generation task where the policy autoregressively predicts action tokens just as it would
predict words in a sentence.

2.2 DIRECT PREFERENCE OPTIMIZATION (DPO)

Direct Preference Optimization (DPO) (Rafailov et al., [2023) is a powerful alignment paradigm
that aligns LLMs with human preferences using static preference datasets, eliminating the need for
explicit reward models or complex online reinforcement learning as required in RLHF (Ouyang
et al., [2022).

DPO is based on the Bradley-Terry preference model (Sun et al., 2024}, where the probability of
winner response y,, over loser y; given prompt z is o (r(y |x) — 7(yi|x)), with r(-|z) being a latent
reward function. Importantly, DPO demonstrates that the policy 7 implicitly defines this reward as:

— 810 mo(y | ) T
ro(y | =) = Bl 8y [ 2) + f(=),

where 7 is a reference policy, 3 controls preference strength, and f(z) is a normalization constant.

To optimize the policy, DPO uses a preference dataset of triplets (x, y,,, y;) and the alignment ob-
jective is equivalent to minimizing a the following loss:
o (Yuw | T) o (Y1 |$))]

Lpo (703 Trer) = By, g~ [l0g o  Blog ——e==5 — Blo
PO (79 Trer) (T Yw,y1) D[ 8 (ﬁ gmef(ywm) b g?ﬁef(yl\ﬂf)

This loss function continuously aligns the policy with the winner responses by increasing their like-
lihood while decreasing that of the loser responses, effectively optimizing the policy to match the
preferences encoded in the dataset.

3 METHOD

3.1 PROBLEM FORMULATION

The robot control task is formulated as a sequential decision-making problem within a Markov
Decision Process (MDP) framework. The state at any given time step ¢ is defined as s; = (vy, 1),
where v, is the current visual observation and [ is the high-level language instruction, which remains
constant throughout the task episode.

The action space is defined by the “action tokenization” scheme of OpenVLA. A single, complete
action at time step ¢, which we term an action unit and denote as ay, is represented by a sequence
of K discrete tokens:

a; = (al,d?,...,al) (1)
where K = 7 for a 7-DoF action (6-DoF end-effector displacement + 1 gripper state), and each a¥
is an integer index corresponding to a specific token in the VLM’s vocabulary.
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The Conventional Single-Step Prediction Paradigm The original OpenVLA policy, which we
denote as Ty, Operates as a closed-loop, single-step predictor. At each time step ¢, it generates a
single action unit a; conditioned on the current state s; through an autoregressive process over the
K constituent tokens:

K
Toase(at|5¢) = H P(af|ss,a") @)
k=1

This “one-step-at-a-time” paradigm, while effective for reactive control, inherently limits the pol-
icy’s planning horizon and fails to exploit the LLM backbone’s intrinsic capability for generating
long, coherent token sequences.

The Proposed Action Stream Paradigm. To address this limitation, we reformulate the task from
single-step prediction to multi-step Action Stream generation. Our goal is to train a policy 7y that,
given a single observation s;, can directly generate a sequence of future action units (a;, a;1, .. . )
as an open-loop plan. Formally, we define an Action Stream of horizon H starting from time ¢ as:

Afl = (at,at+1,...,at+H_1) (3)

The generation process follows a two-level autoregressive structure: as shown in Figure [I] at the
outer level, the policy sequentially predicts each future action unit, and at the inner level, each
action unit is generated token by token. This results in the following full conditional probability:

H—-1 H-1 K
H <h k <h <k
P(As)) = ] Plarsnlse AT = 1] (Hp(at+h|5tv-’4t ’at+h)> 4)
h=0 h=0 \k=1
where A" denotes the sequence of action units (ay, . .., a;,,_1) generated for previous time steps

within the stream.

We briefly introduce that this objective will be achieved via a two-stage framework: Stage 1: Long-
Horizon Behavior Cloning (L-BC), and Stage 2: Step-wise Action Alignment (S-AA).

3.2 STAGE 1: OFFLINE LONG-HORIZON BEHAVIOR CLONING

The pre-trained Open VLA model, mpyse, is limited to generating only 7 tokens per action unit. To en-
able long-horizon generation capability, we train the policy to imitate expert action streams through
Supervised Fine-Tuning (SFT).

Data Reformatting for Stream Imitation. We restructure the standard expert demonstration
dataset from individual (s;,a;) pairs into a format suitable for long action stream modeling.
For each state s; in an expert trajectory, we construct a ground-truth “Expert Action Stream”
AEE = (ay,a441,- .-, a;+g—1) by concatenating the subsequent H action units. We insert a special
separator token [; ] between consecutive units to delineate action unit boundaries. The final target
sequence AP is a flat sequence of tokens:

A{'y = concat(ay, [ ],a41, (71, am—1, [ ]) (5)

This reformatting process transforms the original dataset D = {(s:,a;)} into a new instruction-
following dataset Dyyeam = { (¢, AtH )}

Training Objective. The SFT stage closely mirrors the instruction fine-tuning process in LLMs.
The state s; serves as the “instruction”, and the expert action stream Af 1 serves as the ground-truth
“response” (Shengyu et al} [2023)). We train the policy 7y using supervised fine-tuning to maximize
the log-likelihood of generating the expert action stream conditioned on a given state, minimizing
the standard negative log-likelihood loss:

Lsrr(0) = _E(st,A{'{E)N’Dglmm [log WQ(AEE‘St)} (6)

where the log-probability is decomposed autoregressively over the tokens of the target sequence:
1A 5|

1og7rg(AffE\st) = Z long(a{’E|st,aié)
j=1
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Here, af p is the j-th token in the flattened sequence Af;. By fine-tuning on these structured
pairs, we explicitly teach the model to interpret a state as a request for a coherent, multi-step plan,
effectively reformatting its output behavior. The resulting policy from this stage is denoted as mspr.

3.3 STAGE 2: ONLINE STEP-WISE ACTION ALIGNMENT

Challenge The L-BC stage enables 7spr to generate long-form action sequences. However, it
relies on teacher forcing during training, where the model predicts the next token conditioned on
ground-truth expert tokens (Wulfmeier et al., [2024} Williams & Zipser, |1989). This creates a mis-
match with inference conditions, leading to exposure bias: during deployment, the policy must con-
dition on its own generated tokens, potentially resulting in errors (Bengio et al., |2015; [Bachmann
& Nagarajan|, 2024). These errors can cause irreversible environmental changes, making recovery
difficult and causing action sequences to diverge, ultimately leading to task failure.

Methodology To address this challenge, we introduce an online exploration and alignment
paradigm based on Direct Preference Optimization (DPO) that moves beyond passive learning.

Given a state s;, we first allow the policy 7y to actively explore and generate its own action stream
step by step: A/ = (a¢r,...,a45-1,7). We then retrieve the corresponding expert’s action

stream: AfIE = (a¢p,...,a1H—1,5). To identify the first position where deviation occurs in the
policy’s rollout, we leverage the implicit preference reward derived from the DPO formulation.

mo(alc)

R(a|c; 0, mef) = Blog m

)

Here, the reference policy 7 is initialized

Expert [0 0O~ O} -0 O~ O]—-[OO 0) from .the SFT policy TSFT- This reward
............ SRy LRy quantifies how the policy’s preference for
v }/ v } }X an action has changed relative to the initial

i i —> B expert-imitating policy mspr, with higher

Policy MO Q- O}-0 0~ 0O}~00-0) values indicating stronger preference com-

pared to its initial version. Then we com-
Figure 2: Illustration of our proposed S-AA: given pare the preference divergence between the
a state and expert action stream, the policy explores policy’s generated action and the expert’s
multi-step actions, then calculates preference reward action. We define an deviation at step h*
at each step to identify the first divergence and applies  when the policy’s action a, 5~ has a higher
DPO loss at that step to align with the expert. preference reward than the expert’s action

ap - at the same context, formally ex-
pressed as R(ar p+|cp+) > R(agn-|cn-). This indicates that the policy has developed an over-
confidence in its own potentially suboptimal action compared to the expert demonstration. Once the
first deviation is identified, we apply the DPO loss exclusively at this specific step h*. The objective
is to maximize the preference for the expert’s action ag ;- over the policy’s action a, ;- at that
specific context ¢+, with the loss function defined as:

L =—E;,p|L(h" exists) - 1oga(ﬂ log M — Blog M) (8)
71'ref(aE h* ‘Ch ) 7T'ref(afrq,h* Ch*)

where I(-) is the indicator function, ensuring the loss is only active when a first mistake is found,
and the reference policy 7f remains the frozen SFT policy 7spr.

By optimizing this objective, we are not just performing imitation with teacher forcing. Instead,
we introduce online exploration that actively identifies and corrects potential error actions in real-
time. This approach pinpoints the precise origin of behavioral drift, specifically the very first action
that would lead the policy down a suboptimal path, and immediately aligns it with expert behavior,
thereby mitigating the accumulation of errors in long-sequence generation.
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Table 1: Success rates across different generation horizons, task suites, and training stages.
H Spatial Object Goal Long Average

OpenVLA 1 84.4+09%  86.6£0.8%  77.2¥1.0%  53.7£1.3%  75.5£1.0%

x2 83.6+0.8%  85.6x0.9%  78.4+09%  53.4%12%  75.2+0.9%
x4 79.4£1.0%  81.4+£0.7%  75.4+09%  52.4+1.1%  72.2+0.9%
L-BC X6 73.2409%  76.2409%  67.840.8%  48.0£1.0%  66.3+0.9%
%8 64.6£1.0%  71.2+1.1%  58.2+0.7%  39.6£0.9%  58.4+0.9%
x10  53.0£1.2%  62.8+1.4%  48.8+1.3%  27.2+x1.2%  47.9+1.3%

x2  854+0.8%  89.0+0.7%  80.0+0.9%  57.6x1.1%  78.0+0.9%
x4 82.0+0.7%  84.0+0.7%  76.840.9%  54.2+1.0%  74.2+0.8%
L-BC+S-AA X6 75.440.6%  78.0£0.6%  70.0£0.8%  47.6£0.9%  67.8+0.7%
x8 65.840.5%  73.6£0.5%  60.6£0.7%  41.2+0.8%  60.3+0.6%
x10  55.6£04%  66.0£0.4%  52.0+£0.6%  29.6£0.7%  50.8+0.5%

4 EXPERIMENTS

4.1 SETUP

We evaluate our method on the LIBERO dataset (Liu et al., [2023)), which consists of four task
suites (each containing 10 tasks with 50 human-teleoperated demonstrations): LIBERO-Spatial ,
LIBERO-Object , LIBERO-Goal, and LIBERO-Long. To validate our approach beyond simulation,
we conduct experiments on a Kinova Jaco2 6-DoF robotic arm with a parallel-jaw gripper. Four
tabletop manipulation tasks are designed, covering pick-and-place and wiping motions with diverse
objects. Details can be found in the Appendix [A.2]and [A.5]

We use OpenVLA as our backbone with LoRA (Hu et al.l 2022) fine-tuning. For the first stage
(offline action stream imitation), we follow standard SFT paradigm commonly used for LLMs on
an A6000 GPU with batch size 4, content length 512, learning rate 5e-4, and train for 50,000 steps.
In the second stage (online alignment), we use training trajectories as expert demonstrations with
B = 0.1 and learning rate 0.0005, continuing to fine-tune the same LoRA parameters. Additional
details are in the Appendix [A.4]

4.2 ABLATION ON ACTION STREAM HORIZON LENGTH

This experiment investigates the core proposition of our work: that the Action Stream policy can ex-
tend the action generation horizon similar to how LLMs generate coherent text, extended generation
horizons. We analyze the impact of varying the horizon length H on two different settings: L-BC
only: The model trained only with Long-Horizon Behavior Cloning (Stage 1), to assess the benefits
of simply enabling long-sequence generation. L-BC + S-AA: The full model, fine-tuned with our
proposed Step-wise Action Alignment (Stage 2), to demonstrate its ability to mitigate compounding
errors.

Results. Table 1| shows how horizon length H affects task success rates across training regimes.
For L-BC only models, performance shows minimal decline when H increases from 1 to 2 (0.3%
difference) and modest reduction at H = 4 (3.1% decrease). However, performance drops sharply at
longer horizons: H = 6 (9.8% decrease), H = 8 (17.1% decrease), and H = 10 (27.6% decrease).
This pattern clearly demonstrates how exposure bias and compounding errors become increasingly
problematic as action sequences extend.

In contrast, with S-AA tuning, the performance demonstrates notable improvements. When H in-
creases from 1 to 2, performance actually improves from 75.2% to 78.0%, demonstrating that our
approach not only extends the generation horizon but also enhances overall task success. The perfor-
mance decline as H increases further is significantly more gradual with S-AA than with L-BC only.
At H = 4, S-AA shows only a 1.3% drop from H = 2, compared to L-BC only’s 3.2% decline over
the same range. This pattern continues at H = 6, where S-AA’s performance decreases by 7.7%
from H = 2, while L-BC only drops by 9.2%. Even at longer horizons ({ = 8 and H = 10), S-
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Table 2: The results of the Pass@N metric under different task suites and horizon lengths.
H Spatial Object Goal Long Average

Pass@2 1 85.841.0% 89.6£0.8% 81.4+1.2% 54.8+1.1% 77.9+1.0%

OpenVLA p s@5 1 86.6£0.7% 904+1.1% 83.2+0.9% 574+1.0% 79.4+0.9%
x2  94.4+0.8% 92.0+0.9% 93.6+0.7% 80.6+1.2% 90.2+0.9%
x4  928+1.0% 92.6+0.8% 89.2+1.1% 76.4+0.9% 87.8+1.0%

Pass@2 x6 90.8+0.9% 86.0+1.2% 82.4+1.0% 69.2+1.1% 82.1+1.1%
x8 822+1.1% 854+0.7% 72.0+12% 62.4+1.0% 75.5+1.0%

Action %10 71.8+1.2% 72.0+1.1% 64.4+09% 46.6+1.3% 63.7+1.1%

Stream x2  98.840.6% 97.620.7% 95.2+0.8% 87.4+0.9% 94.8+0.8%

x4  97.4+0.7% 96.4+0.8% 93.6+0.9% 82.8+1.1% 92.6+0.9%
Pass@5 x6 96.6+£0.8% 95.8+0.9% 88.2+1.0% 76.6x1.2% 89.3x1.0%
x8 88.4x1.0% 91.2+09% 85.4+1.1% 69.4+1.2% 83.6x1.1%
x10 82.2+1.1% 84.6x1.0% 83.2£09% 58.2+1.3% 77.1+1.1%

AA maintains substantially better resilience, with relative degradation rates 13.6% and 14.9% lower
than L-BC only. This clearly demonstrates that our approach effectively mitigates the compounding
errors that plague longer-horizon action generation, allowing the model to maintain coherence over
extended sequences.

4.3 ACTION STREAM SAMPLING AND DECODING ANALYSIS

Action Stream generation is essentially a form of LLM text generation, with decoding strategies
significantly affecting output quality. While OpenVLA uses greedy decoding for efficiency, this
approach often compromises quality and diverges from best practices in both text (Shi et al.| 2024)
and action generation. For robotic tasks, generation diversity is essential since multiple valid action
sequences typically exist for a same state, and exploring alternatives can substantially improve task
performance (Chi et al.| 2023). Therefore, we investigate two alternative approaches: stochastic
sampling and structured search.

Uncovering Latent Potential with Pass@N We employ top-k stochastic decoding, where at each
token generation step, the model samples from the k highest-probability tokens, and this process
continues autoregressively throughout the episode. We evaluate using the Pass@QN metric, which
counts a success if at least one trajectory completes the task. Table |2 presents the results across
different task suites and horizon lengths. For I = 2, success rates increase by 8.6%, and notably,
the Pass@?2 average performance when H = 6 (82.1%) surpasses the H = 1 baseline (77.9%).
With N = 5, all metrics show substantial improvements, with gains reaching up to 15.4% for longer
horizons. Meanwhile, OpenVLA shows minimal benefits from Pass@QN in single-step greedy de-
coding. These findings demonstrate that long-horizon generation enables better exploration of the
solution space, making our action stream policy a more effective proposer. Similar to how LLMs
explore the reasoning space through extended generation, our approach allows the policy to discover
diverse valid action sequences within the robotic solution space.

Exploiting the Search Space with Beam Search The high PassQN results show our action
stream policy generates multiple viable trajectories, creating a rich solution space that can be sys-
tematically explored using beam search. Beam search maintains a set of promising partial sequences
at each action unit step, expands them in parallel, and selects the highest-scoring complete action
stream based on cumulative log probabilities (Vijayakumar et al.| 2016).

Figure [3| shows the beam search results under different beam width B. The results demonstrate
that beam search significantly improves performance across all horizon lengths. With B = 2,
performance at H = 2 substantially surpasses the baseline across all metrics. At B = 4 and
B = 5, even H = 4 performance exceeds the baseline, demonstrating effective exploration of
the solution space. Moreover, as beam width increases, the performance degradation trend with
increasing horizon H becomes increasingly gradual. This confirms that structured search techniques
effectively exploit the rich solution space produced by our action stream policy.
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Figure 3: The beam search results under different beam width across different task suites. The gray
bars represent the OpenVLA baseline performance.

4.4 ACTION TRAJECTORY ANALYSIS

Figure ] shows the robot end-effector movement tra-

s jectories under different horizon lengths. We ob-
— Action Stream (H=4) serve that when the policy’s generation horizon is ex-
2 tended, the trajectories become smoother, while step-
wise prediction exhibits noticeable spikes. This phe-
nomenon can be attributed to the fundamental dif-
o ference in action generation mechanisms: step-wise
oo prediction requires independent action prediction at
1055 each timestep under new environmental states, lead-
Loso ing to potential inconsistencies and abrupt changes
/‘ in the trajectory (Liu et al.| |2024). In contrast, Ac-
o tion Stream performs autoregressive continuous ac-

o1z R 7 om0 tion prediction within the same environmental con-
e, g o text, where each action is conditioned on the preced-
o T2 ing actions in the sequence, resulting in stronger co-

herence and smoother robot movements. More anal-

Figure 4: The trajectory visualization. ysis can be found in the Appendix [A.3]

Trajectory Comparison

4.5 RESULTS ON REAL ROBOT

Using an Xbox Gamepad, we teleoperate the Jaco2 arm and collect demonstrations at a frequency of

10 Hz, recording RGB images and robot states throughout each trajectory. We design four distinct

tasks for evaluation: PlaceBlock, PlaceCarrot, CleanTable, and RelocateCup. We gather 50-200

demonstrations per task to form the training dataset and finetune the Action Stream using our pro-

posed two-phase approach. Table [3] shows the results, which demonstrate consistent observations

with the simulation environment. More task and training details can be found in the Appendix[A.2}
Table 3: Real robot task success rates (%) with different horizon lengths.

H  PlaceBlock PlaceCarrot CleanTable RelocateCup  Average

OpenVLA 1 85.0 90.0 80.0 75.0 82.5
x2 85.0 95.0 90.0 80.0 87.5

Action Stream 3 80.0 85.0 85.0 75.0 81.25
x4 70.0 85.0 80.0 70.0 76.25

x5 65.0 75.0 70.0 65.0 68.75

5 RELATED WORK

5.1 TRANSFORMING VLM 1O VLA

Recent vision-language-action (VLA) models adapt pre-trained VLMs for robotic control through
two main approaches: output space unification, which integrates all modalities into a shared token
space, and module grafting, which attaches specialized action prediction components to VLMs.

In the output space unification paradigm, all modalities are unified into a shared discrete token space
for autoregressive modeling. Reed et al.| (2022) serializes text, images, actions, and proprioception
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into unified token sequences. The RT series (Brohan et al., [2022; [2024; Belkhale et al.| 2024) dis-
cretizes robot actions into bins for autoregressive inference. Open X-Embodiment (O’Neill et al.}
2024) standardizes action representation across diverse robots. These methods preserve the orig-
inal foundation model architecture, enabling efficient end-to-end training. In the module grafting
paradigm, specialized action prediction modules are attached to pre-trained VLMs. LangLfP (Lynch
& Sermanet, [2020) uses a conditional variational autoencoder to generate continuous control com-
mands. BC-Z (Jang et al.|[2022)) employs a VLM-based task encoder with a separate MLP network,
decoupling task understanding from action generation. HybridVLA (Liu et al., [2025)) integrates
autoregressive and diffusion policies into a unified model. These approaches require integrating
heterogeneous modules, introducing complexity in design and training.

5.2 EXTENSION PoLICY HORIZON

Extending policy horizons enables more coherent planning and reduces replanning frequency for
complex sequential tasks. Long-VLA (Fan et al. 2025) allows policies to handle longer, multi-
step manipulations by segmenting tasks and selectively focusing on relevant inputs. MuST(Gao
et al.,|2025) extends policy horizons by decomposing tasks into reusable skills and sequencing them
through a progress-guided selector. Diffusion policy (Chi et al.,|2023) and OFT (Kim et al., [2025)
integrate action chunking decoding module to achieve multi-step action generation in parallel. How-
ever, these methods do not adopt a unified action-as-language perspective for coherent sequence
generation.

6 DISCUSSION AND LIMITATION

While our work significantly advances the Action-as-Language paradigm, several limitations re-
main. First, action discretization remains a fundamental challenge, disrupting pose continuity and
introducing quantization errors that accumulate over longer sequences, ultimately hindering precise
control in high-precision tasks (Liu et al., |2025). This limitation ultimately constrains the upper
performance bound of VLA models in tasks requiring fine-grained manipulation.

Additionally, Action Stream’s performance degrades with longer horizons due to cumulative errors
and trajectory drift. Unlike text generation, robotic actions directly interact with the physical envi-
ronment and can cause irreversible changes, making each prediction error more consequential and
harder to correct downstream. We provide detailed analysis of this trajectory drift phenomenon in
the Appendix Moreover, Action Stream’s autoregressive generation introduces computational
overhead compared to single-step prediction methods, potentially causing higher latency during de-
ployment. Future work could explore more efficient decoding strategies or hybrid approaches that
balance the benefits of action stream generation with computational efficiency.

7 CONCLUSION

In this paper, we introduced the Action Stream paradigm, which advances the Action-as-Language
paradigm in VLA models. Unlike traditional approaches that rely on single-step action prediction,
we successfully customized LLM training and inference recipes for VLA models, overcoming the
limitations of conventional methods and fully leveraging the long-sequence generation capabilities
of LLMs. Through our two-phase approach consisting of offline long-horizon behavior cloning
and step-wise action alignment, we enable VLA models to generate extended action sequences
while effectively addressing exposure bias in long-horizon prediction. Furthermore, we success-
fully adapted LLM inference-time decoding techniques to the VLA domain, enabling our approach
to better explore the solution space by generating multiple action trajectories and selecting the most
promising ones. These inference-time enhancements unlock the potential of Action Stream, leading
to significant performance improvements. This comprehensive framework substantially advances
the Action-as-Language paradigm in VLA models, representing a significant step towards unified
vision-language-action modeling and inspiring future work to transfer more LLM paradigms to ad-
vance VLA capabilities.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

We use LLMs only for text polishing and language refinement to improve the clarity and readability
of our manuscript. All core ideas, experimental designs, methodological contributions, and technical
innovations presented in this work are conceived and developed entirely by human researchers. The
LLMs were not involved in any aspect of the research process, including problem formulation,
algorithm design, experimental setup, data analysis, or result interpretation. Their usage was strictly
limited to enhancing the linguistic quality of the written content.

A.2 REAL ROBOT EXPERIMENTS SETTINGS

Hardware and setup. We use a Kinova Jaco2 arm for real-world evaluation. Demonstrations are
collected via Xbox Gamepad teleoperation at a control frequency of 10 Hz, recording synchronized
RGB images and robot states at each step. We design four manipulation tasks: 1) PlaceBlock: Place
the blue cube on the green plate. 2) PlaceCarrot: Place the carrot on the blue pan. 3) CleanTable:
Clean the table. 4) RelocateCup: Pick up the orange pot and place it in the green plate. The visual
observations for each task are shown in Figure 3]

Training data. For each task, we collect a set of human teleoperated demonstrations to construct
the training dataset: 198 trajectories for PlaceBlock (average length 75 steps), 201 for PlaceCarrot
(81 steps), 69 for CleanTable (58 steps), and 179 for RelocateCup (150 steps). We then finetune the
Action Stream policy on these datasets using our two-phase procedure described in Section

Evaluation protocol. For each trained policy, we perform 20 independent trials per task (80 trials
in total). At the start of each trial, the robot is reset to a standardized home configuration, and the
objects are placed at randomized but feasible positions on the workspace. The policy then executes
until task completion or a timeout of 30 seconds.

Success criteria. A trial is counted as successful if the task-specific goal is satisfied: (i) the target
object is fully placed inside the designated container (PlaceBlock, PlaceCarrot, RelocateCup), or
(ii) the distractor object is completely removed from the designated region (CleanTable). The object
must remain stable in the target region for at least one second to be considered a success. Success
rates reported in Table|3|are computed as the fraction of successful trials over the total trials.

A.3 ACTION TRAJECTORY ANALYSIS

In this section, we read trajectory data from the LIBERO simulation platform and visualize it to
conduct an in-depth analysis of the robot end-effector movement trajectories. We examine two
key aspects of our Action Stream paradigm: temporal coherence and error accumulation in long-
sequence generation. We compare the trajectory patterns generated by our Action Stream paradigm
against the baseline Openvla single-step prediction method.

12
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Figure 5: Visual observations for the four real-robot evaluation tasks.

Temporal Coherence: Figure[6]illustrates the end-effector trajectories for both approaches during
task execution. The baseline step-wise action prediction exhibits noticeable trajectory spikes and
discontinuities (highlighted in red boxes), demonstrating weak temporal coherence in single-step
prediction. This phenomenon can be attributed to the fundamental difference in action generation
mechanisms: step-wise prediction requires independent action prediction at each timestep under new
environmental states, leading to potential inconsistencies and abrupt changes in the trajectory (Liu
et al., |2024). These abrupt changes in the trajectory indicate that the policy struggles to main-
tain smooth, consistent motion patterns when predicting actions independently at each timestep. In
contrast, our Action Stream approach generates significantly smoother trajectories with better
temporal consistency. Action Stream performs autoregressive continuous action prediction within
the same environmental context, where each action is conditioned on the preceding actions in the
sequence, resulting in stronger coherence and smoother robot movements. By leveraging the LLM’s
autoregressive generation capabilities to produce coherent multi-step action sequences, the policy
maintains better continuity in the end-effector’s movement patterns.

Understanding Trajectory Drift through the Momentum Effect: Our analysis reveals a dis-
tinctive momentum characteristic in Action Stream generation. As shown in Figure [/| while both
approaches exhibit similar and overlapping trajectories in the initial stages, Action Stream exhibits
a tendency to persist on pre-computed trajectories due to its autoregressive nature. Unlike single-
step prediction that adapts to each new state independently, Action Stream operates in an open-loop
fashion where the entire sequence of actions is conditioned solely on the initial state. This creates a
form of executional momentum where the policy maintains its planned trajectory even when envi-
ronmental conditions change during execution. While this momentum contributes to the smoother
trajectories we observe, it also renders the policy less sensitive to real-time state changes that occur
during the stream’s execution, potentially leading to trajectory drift when the initial plan becomes
suboptimal.

13



Under review as a conference paper at ICLR 2026

Trajectory Comparison

Trajectory Comparison

Baseline

Trajectory Comparison

Baseline Baseline
—— Action Stream (H=4) —— Action Stream (H=4) —— Action Stream (H=4)
e Start ® Start ®  Start
e Goal ® Goal ® Goal

Trajectory Comparison

Baseline

0.06
Trajectory Comparison

Baseline

Baseline

Trajectory Comparison

—— Action Stream (H=10)

= Action Stream (H=4) = Action Stream (H=10)
* Start ® Start e St
e Goal * Goal e Goul
Laro { 05 Lo
| Loz fozs
tToss | |
A 015 tom
foso 2 tom ”
| - | o1
1055
| Iu 10
foso foos
03 03 03
0z L 02
~ e, . < 01
- 01 o =
~ -0.150 - -0 =
010 " ¥ 0.125 T =012 T 0o Y
008 ~_ 00 . 010 01
0.0 0o7s o 008 | T
0.04 . ~ a1 x 0025 x m‘on‘l" 02

Figure 6: The action trajectory analysis results. The baseline step-wise action prediction exhibits
trajectory spikes and abrupt directional changes (highlighted in red boxes), demonstrating weak
temporal coherence in single-step prediction.
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Figure 7: The action trajectory analysis results showing momentum effect. Both approaches ex-
hibit overlapping initial trajectories, but Action Stream exhibits trajectory drift over time due to its
momentum-driven autoregressive nature, persisting on pre-computed trajectories.

A.4 TRAINING DETAILS

Supervised Fine-Tuning (SFT) Details In the SFT stage, we follow the standard SFT paradigm
commonly used in LLMs. We randomly sample an expert demonstration, which includes image
embeddings and text token embeddings as input, and concatenate the subsequent multi-step actions
as supervised output targets. The training context length is set to 512 tokens. If the concatenated
multi-step action sequence does not fill the entire context length, we pad it with placeholder tokens
that do not participate in the loss function computation. Figure [8|shows the SFT training details. As
can be observed from the training curves, the model successfully converges with steadily decreas-
ing loss and accuracy approaching 100%, demonstrating effective learning of the multi-step action
sequences and the ability to successfully imitate long-horizon expert trajectories.
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Figure 8: The SFT training details. The model successfully converges with steadily decreasing loss
and accuracy approaching 100%, demonstrating effective learning of the multi-step action sequences
and the ability to successfully imitate long-horizon expert trajectories.

Step-wise action Training Details Since this stage requires online policy exploration and Open-
VLA’s setup does not support batch inference, we use a batch size of 1 during this phase. We sample
a state from expert demonstrations and obtain the subsequent H-step action sequence, while also
allowing the policy to explore for 10 steps (generating 10x8=80 tokens, consisting of 7 action di-
mensions plus 1 separator token per step). We then compute preference rewards for each step to
identify the first error. DPO loss is applied only to the first error step. For training stability, we
maintain a 9:1 ratio between DPO loss and SFT loss. If no first error is identified, we perform SFT
fine-tuning using the expert demonstration.

During the training process, we monitor two key metrics: the expected action reward (representing
expert demonstrations) and the policy’s online exploration reward. Figure [J]illustrates the conver-
gence curves for these two rewards, where “winner” represents the expected expert actions and
“loser” represents the policy-generated actions. As training progresses, both rewards show an up-
ward trend, indicating that the policy increasingly favors expert actions while simultaneously gener-
ating actions that closely align with expert behavior. This dual improvement demonstrates that our
Step-wise Action Alignment effectively guides the policy to prefer expert demonstrations while en-
hancing the quality of its own action generation, leading to a virtuous cycle where policy-generated
actions become increasingly expert-like and thus receive higher preference scores.

We select the optimal checkpoint for evaluation based on the convergence behavior of both expert
and policy rewards. Specifically, we monitor the reward gap between expert demonstrations (win-
ner) and policy-generated actions (loser) throughout training. The checkpoint is selected when: (1)
the reward gap between expert and policy actions becomes minimal, indicating that policy-generated
actions closely match expert quality, and (2) both reward curves exhibit stability without significant
fluctuations, suggesting convergence. This selection strategy ensures that we evaluate the model at
its optimal performance point where the policy has learned to generate expert-like actions consis-
tently.
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Figure 9: The DPO training details showing winner and loser reward changes. Winner represents
expert trajectory actions while loser represents policy exploration actions. The upward trend of both
rewards indicates that policy exploration actions are increasingly aligning with expert actions.

A.5 LIBERO SIMULATION BENCHMARK SETTINGS

LIBERO (Liu et al.,|2023) is a recent benchmark for embodied robot learning, designed to evaluate
generalization across diverse manipulation scenarios. It consists of four task suites, each contain-

15



Under review as a conference paper at ICLR 2026

put both the alphabet soup and the tomato sauce in the basket

- o ' =

pick up the black bowl in the top drawer of
the wooden cabinet and place it on the plate

Spatial

Figure 10: Visual observations for the four LIBERO evaluation task suites. We show episodes from
4 subtasks to demonstrate the diversity and complexity of the evaluation scenarios.

ing 10 subtasks with 50 human-teleoperated demonstrations per task. The suites differ in object
diversity, spatial variation, and goal specification, thereby testing complementary aspects of policy
robustness:

* LIBERO-Spatial: Same set of objects, but placed in different spatial layouts. This suite
evaluates the ability to generalize across spatial configurations and adapt to changes in
object positions and relative distances.

* LIBERO-Object: Same spatial layouts, but involving different objects. This suite tests
object recognition and manipulation transfer when new but semantically similar objects are
introduced.

¢ LIBERO-Goal: Same objects and layouts, but with varying goals or instructions. This
suite emphasizes understanding task semantics and aligning actions with different high-
level task objectives.

* LIBERO-Long: Also known as LIBERO-10, containing long-horizon tasks with multiple
objects, diverse layouts, and compound goals. This suite is the most challenging, as it
requires coherent multi-step planning and strong temporal consistency to succeed.

Together, these four suites provide a comprehensive evaluation: LIBERO-Spatial and LIBERO-
Object measure generalization to environment or object shifts, LIBERO-Goal probes semantic
grounding, and LIBERO-Long stresses long-horizon reasoning and error accumulation. Figure [I0]
shows example episodes from each suite, illustrating their diversity and complexity.
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