

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM LANGUAGE TO ACTION STREAMS: BRIDGING LLM AUTOREGRESSION FOR LONG-HORIZON ROBOT ACTION PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) models is a transformative paradigm for robotic control, leveraging pre-trained vision-language models (VLMs) to directly translate natural language instructions and visual observations into low-level actions. The prominent idea of “Action-as-Language” discretizes action spaces into tokens for large language models (LLMs), reframing action prediction as a standard sequential language generation task. However, current implementations underutilize the LLM’s full generation potential, confining action prediction to fixed-length, single-step token sequences and limiting the policy’s generation horizon. To overcome this limitation, we propose the **Action Stream** paradigm, which customizes LLM training and inference recipes to VLAs, enabling the generation of extended chains of action tokens and facilitating implicit long-horizon generation with task performance improvements. For training action streams, we propose a two-phase approach: Long-horizon Behavior Cloning (L-BC) and Step-wise Action Alignment (S-AA). L-BC enables VLA models to generate coherent multi-step action sequences, while S-AA mitigates exposure bias during sequential inference, creating a framework that enables long-horizon generation while reducing error accumulation. During deployment, decoding strategies from language generation can be successfully transferred to action streams, enabling efficient solution search and task performance improvements. Through extensive evaluations on the simulation benchmark and real-world robotic setups, we demonstrate that the Action Stream paradigm achieves improved task performance when extending the generation horizon, representing a significant step toward unified vision-language-action modeling.

1 INTRODUCTION

Vision-Language-Action (VLA) models have emerged as the leading approach for general robot control, providing end-to-end systems that translate natural language instructions and visual inputs directly into executable robotic actions (Brohan et al., 2022; 2024; Belkhale et al., 2024; Black et al.; Kim et al., 2025). By adapting pre-trained Vision-Language Models (VLMs) for action prediction (Wang et al., 2025; Zhai et al., 2025; Li et al., 2023), VLA models leverage both the language understanding capabilities of LLMs and visual perception of vision networks to ground abstract instructions in concrete robotic actions.

To endow VLMs with the ability of action prediction, the academic community has explored two main paradigms. The first is the “Module Grafting” paradigm, which grafts an independent action prediction module (such as an MLP regression head (Jang et al., 2022) or a diffusion decoder (Chi et al., 2023)) onto the VLM’s feature representation. While effective, this introduces architectural complexity by requiring the integration of heterogeneous modules and necessitates specialized training strategies (Liu et al., 2025; Kim et al., 2025; Bu et al., 2025).

Unlike the modular approach, the second paradigm proposes a more elegant unified perspective by rewriting the output space of VLMs, with the core idea summarized as “Action-as-Language.” Represented by RT-2 (Brohan et al., 2024) and OpenVLA (Kim et al., 2024), this paradigm is realized through the technique of “Action Tokenization”: it discretizes the continuous robotic action and then

054 directly maps each discrete action to existing tokens in the LLM’s native vocabulary. This design
 055 repurposes the LLM’s output space, making action generation identical to language generation and
 056 enabling VLA models to use standard language model training and inference methods, significantly
 057 enhancing architectural simplicity and fine-tuning efficiency.

058 However, the Action-as-Language paradigm is critically limited by its failure to leverage the LLM’s
 059 full generation capabilities. Current models like OpenVLA (Kim et al., 2024) predict actions one
 060 step at a time with short, fixed-length token sequences. This approach, while effective for reactive
 061 control, fails to leverage the LLM’s strengths for generating coherent, extended sequences, limiting
 062 the policy’s horizon. It misses opportunities for implicit long-horizon planning and temporal depen-
 063 dencies that could emerge from generating multi-step actions autoregressively (Liu et al., 2024; Zhao
 064 et al., 2023), representing a significant gap between the policy’s potential and its current application.

065 To address this limitation, we introduce the “Action Stream” paradigm, which incorporates LLM
 066 training and inference recipes into VLA and transforms robotic actions into a chain of action to-
 067 kens, enabling policies to generate multi-step plans through autoregressive generation. To real-
 068 ize this, we propose two specialized fine-tuning phases that customize established LLM training
 069 recipes (Ouyang et al., 2022; Shengyu et al., 2023; Rafailov et al., 2023) for VLA models. The initial
 070 phase, Long-horizon Behavior Cloning (L-BC), adapts the base VLA model to generate coherent,
 071 extended action token sequences through offline imitation learning on restructured expert demon-
 072 strations. This phase transforms the single-step prediction policy into one capable of generating
 073 coherent action streams for long-horizon generation. In the second phase, we implement Step-wise
 074 Action Alignment (S-AA), an online alignment technique that addresses the exposure bias problem
 075 from the first phase. During the first behavior cloning phase, the model is trained with teacher for-
 076 cing using ground-truth inputs for next action prediction, but must rely on its own predictions during
 077 inference, creating a distribution mismatch that leads to compounding errors in long-horizon execu-
 078 tion (Bengio et al., 2015; Wulfmeier et al., 2024; Cundy & Ermon, 2023; Bachmann & Nagarajan,
 079 2024). S-AA addresses this challenge by using preference rewards to identify potential error steps in
 080 online long-horizon generation and align them with expert demonstrations. Our experiments on the
 081 simulation benchmark and real-world robotic setups show that L-BC alone successfully extends the
 082 policy’s generation horizon, enabling longer-horizon task completion. With the addition of S-AA
 083 tuning, we achieve even greater performance gains, maintaining extended horizons while signifi-
 084 cantly improving task success rates. This two-phase approach creates robust policies that extend the
 085 planning horizon while achieving improved performance, outperforming conventional single-step
 086 approaches across various manipulation tasks.

087 Additionally, during policy deployment, we adapt inference-time computation paradigms to action
 088 streams. Unlike traditional fixed sampling methods, we apply diverse sampling and search strategies
 089 from LLM generation recipes, which significantly improve task performance. These improvements
 090 demonstrate that the action stream paradigm creates a richer solution space that can be effectively
 091 explored using established LLM decoding techniques, further enhancing robotic manipulation capa-
 092 bilities.

093 2 PRELIMINARY

095 2.1 VISION-LANGUAGE-ACTION (VLA) MODELS

096 Our work builds upon OpenVLA (Kim et al., 2024), a powerful open-source VLA model. We briefly
 097 introduce its core components below.

100 **Architecture** OpenVLA is built on a VLM framework, combining SigLIP (Zhai et al., 2023) and
 101 DINOv2 (Oquab et al., 2023) visual encoders with a Llama-2-7B LLM (Touvron et al., 2023) back-
 102 bone for generation. At each time step, the policy takes an RGB image and language instruction
 103 as input. The image is encoded into embedding tokens while the instruction is tokenized via the
 104 Llama-2 tokenizer. These token sequences are concatenated and processed by the causal transformer
 105 decoder to generate outputs.

106 **Action Tokenization and Vocabulary Remapping** To enable an LLM to generate physical com-
 107 mands, OpenVLA bridges the continuous robot action space with the LLM’s text generation capa-
 108 bilities through discretization. The 7-dimensional action vector (6-DoF end-effector displacement

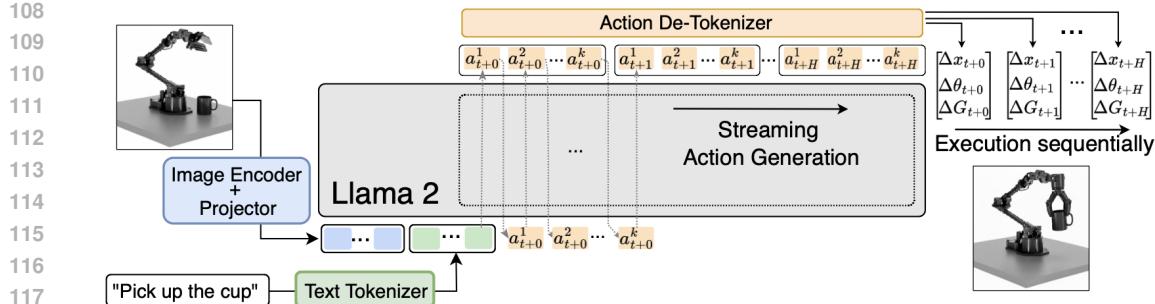


Figure 1: The illustration of the proposed Action Stream Paradigm. We transfer the text generation paradigm to long-horizon action generation, enabling the policy to generate coherent multi-step action sequences from current states, similar to how LLMs produce coherent text.

plus gripper state) is uniformly discretized into 256 bins per dimension following (Brohan et al., 2022; 2024), representing each action as seven integer indices. These indices are mapped to the 256 least-frequently used tokens in the Llama-2 vocabulary, transforming action prediction into a standard text generation task where the policy autoregressively predicts action tokens just as it would predict words in a sentence.

2.2 DIRECT PREFERENCE OPTIMIZATION (DPO)

Direct Preference Optimization (DPO) (Rafailov et al., 2023) is a powerful alignment paradigm that aligns LLMs with human preferences using static preference datasets, eliminating the need for explicit reward models or complex online reinforcement learning as required in RLHF (Ouyang et al., 2022).

DPO is based on the Bradley-Terry preference model (Sun et al., 2024), where the probability of winner response y_w over loser y_l given prompt x is $\sigma(r(y_w|x) - r(y_l|x))$, with $r(\cdot|x)$ being a latent reward function. Importantly, DPO demonstrates that the policy π_θ implicitly defines this reward as:

$$r_\theta(y|x) = \beta \log \frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)} + f(x),$$

where π_{ref} is a reference policy, β controls preference strength, and $f(x)$ is a normalization constant.

To optimize the policy, DPO uses a preference dataset of triplets (x, y_w, y_l) and the alignment objective is equivalent to minimizing the following loss:

$$\mathcal{L}_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right].$$

This loss function continuously aligns the policy with the winner responses by increasing their likelihood while decreasing that of the loser responses, effectively optimizing the policy to match the preferences encoded in the dataset.

3 METHOD

3.1 PROBLEM FORMULATION

The robot control task is formulated as a sequential decision-making problem within a Markov Decision Process (MDP) framework. The state at any given time step t is defined as $s_t = (v_t, l)$, where v_t is the current visual observation and l is the high-level language instruction, which remains constant throughout the task episode.

The action space is defined by the ‘‘action tokenization’’ scheme of OpenVLA. A single, complete action at time step t , which we term an **action unit** and denote as \mathbf{a}_t , is represented by a sequence of K discrete tokens:

$$\mathbf{a}_t = (a_t^1, a_t^2, \dots, a_t^K) \quad (1)$$

where $K = 7$ for a 7-DoF action (6-DoF end-effector displacement + 1 gripper state), and each a_t^k is an integer index corresponding to a specific token in the VLM’s vocabulary.

162 **The Conventional Single-Step Prediction Paradigm** The original OpenVLA policy, which we
 163 denote as π_{base} , operates as a closed-loop, single-step predictor. At each time step t , it generates a
 164 single action unit \mathbf{a}_t conditioned on the current state s_t through an autoregressive process over the
 165 K constituent tokens:

$$166 \quad \pi_{\text{base}}(\mathbf{a}_t | s_t) = \prod_{k=1}^K P(a_t^k | s_t, a_t^{<k}) \quad (2)$$

167 This "one-step-at-a-time" paradigm, while effective for reactive control, inherently limits the policy's
 168 planning horizon and fails to exploit the LLM backbone's intrinsic capability for generating
 169 long, coherent token sequences.

170 **The Proposed Action Stream Paradigm.** To address this limitation, we reformulate the task from
 171 single-step prediction to multi-step **Action Stream** generation. Our goal is to train a policy π_θ that,
 172 given a single observation s_t , can directly generate a sequence of future action units $(\mathbf{a}_t, \mathbf{a}_{t+1}, \dots)$
 173 as an open-loop plan. Formally, we define an Action Stream of horizon H starting from time t as:

$$174 \quad \mathcal{A}_t^H = (\mathbf{a}_t, \mathbf{a}_{t+1}, \dots, \mathbf{a}_{t+H-1}) \quad (3)$$

175 The generation process follows a two-level autoregressive structure: as shown in Figure 1, at the
 176 outer level, the policy sequentially predicts each future action unit, and at the inner level, each
 177 action unit is generated token by token. This results in the following full conditional probability:

$$178 \quad P(\mathcal{A}_t^H | s_t) = \prod_{h=0}^{H-1} P(\mathbf{a}_{t+h} | s_t, \mathcal{A}_t^{<h}) = \prod_{h=0}^{H-1} \left(\prod_{k=1}^K P(a_{t+h}^k | s_t, \mathcal{A}_t^{<h}, a_{t+h}^{<k}) \right) \quad (4)$$

179 where $\mathcal{A}_t^{<h}$ denotes the sequence of action units $(\mathbf{a}_t, \dots, \mathbf{a}_{t+h-1})$ generated for previous time steps
 180 within the stream.

181 We briefly introduce that this objective will be achieved via a two-stage framework: **Stage 1:** Long-
 182 Horizon Behavior Cloning (L-BC), and **Stage 2:** Step-wise Action Alignment (S-AA).

183 3.2 STAGE 1: OFFLINE LONG-HORIZON BEHAVIOR CLONING

184 The pre-trained OpenVLA model, π_{base} , is limited to generating only 7 tokens per action unit. To enable
 185 long-horizon generation capability, we train the policy to imitate expert action streams through
 186 Supervised Fine-Tuning (SFT).

187 **Data Reformatting for Stream Imitation.** We restructure the standard expert demonstration
 188 dataset from individual (s_t, \mathbf{a}_t) pairs into a format suitable for long action stream modeling.
 189 For each state s_t in an expert trajectory, we construct a ground-truth "Expert Action Stream"
 190 $\mathcal{A}_{t,E}^H = (\mathbf{a}_t, \mathbf{a}_{t+1}, \dots, \mathbf{a}_{t+H-1})$ by concatenating the subsequent H action units. We insert a special
 191 separator token $[;]$ between consecutive units to delineate action unit boundaries. The final target
 192 sequence A_t^E is a flat sequence of tokens:

$$193 \quad A_{t,E}^H = \text{concat}(\mathbf{a}_t, [;], \mathbf{a}_{t+1}, [;], \dots, \mathbf{a}_{t+H-1}, [;]) \quad (5)$$

194 This reformatting process transforms the original dataset $\mathcal{D} = \{(s_t, \mathbf{a}_t)\}$ into a new instruction-
 195 following dataset $\mathcal{D}_{\text{stream}} = \{(s_t, A_{t,E}^H)\}$.

196 **Training Objective.** The SFT stage closely mirrors the instruction fine-tuning process in LLMs.
 197 The state s_t serves as the "instruction", and the expert action stream $A_{t,E}^H$ serves as the ground-truth
 198 "response" (Shengyu et al., 2023). We train the policy π_θ using supervised fine-tuning to maximize
 199 the log-likelihood of generating the expert action stream conditioned on a given state, minimizing
 200 the standard negative log-likelihood loss:

$$201 \quad \mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{(s_t, A_{t,E}^H) \sim \mathcal{D}_{\text{stream}}} [\log \pi_\theta(A_{t,E}^H | s_t)] \quad (6)$$

202 where the log-probability is decomposed autoregressively over the tokens of the target sequence:

$$203 \quad \log \pi_\theta(A_{t,E}^H | s_t) = \sum_{j=1}^{|A_{t,E}^H|} \log P_\theta(a_{t,E}^j | s_t, a_{t,E}^{<j})$$

216 Here, $a_{t,E}^j$ is the j -th token in the flattened sequence $A_{t,E}^H$. By fine-tuning on these structured
 217 pairs, we explicitly teach the model to interpret a state as a request for a coherent, multi-step plan,
 218 effectively reformatting its output behavior. The resulting policy from this stage is denoted as π_{SFT} .
 219

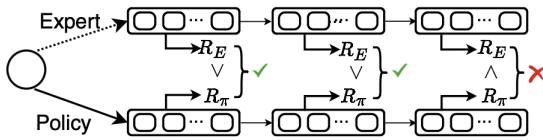
220 **3.3 STAGE 2: ONLINE STEP-WISE ACTION ALIGNMENT**

221 **Challenge** The L-BC stage enables π_{SFT} to generate long-form action sequences. However, it
 222 relies on teacher forcing during training, where the model predicts the next token conditioned on
 223 ground-truth expert tokens (Wulfmeier et al., 2024; Williams & Zipser, 1989). This creates a mis-
 224 match with inference conditions, leading to exposure bias: during deployment, the policy must con-
 225 dition on its own generated tokens, potentially resulting in errors (Bengio et al., 2015; Bachmann
 226 & Nagarajan, 2024). These errors can cause irreversible environmental changes, making recovery
 227 difficult and causing action sequences to diverge, ultimately leading to task failure.
 228

229 **Methodology** To address this challenge, we introduce an online exploration and alignment
 230 paradigm based on Direct Preference Optimization (DPO) that moves beyond passive learning.
 231

232 Given a state s_t , we first allow the policy π_θ to actively explore and generate its own action stream
 233 step by step: $\mathcal{A}_{t,\pi}^H = (\mathbf{a}_{t,\pi}, \dots, \mathbf{a}_{t+H-1,\pi})$. We then retrieve the corresponding expert’s action
 234 stream: $\mathcal{A}_{t,E}^H = (\mathbf{a}_{t,E}, \dots, \mathbf{a}_{t+H-1,E})$. To identify the first position where deviation occurs in the
 235 policy’s rollout, we leverage the implicit preference reward derived from the DPO formulation.
 236

$$R(\mathbf{a}|c; \theta, \pi_{\text{ref}}) = \beta \log \frac{\pi_\theta(\mathbf{a}|c)}{\pi_{\text{ref}}(\mathbf{a}|c)} \quad (7)$$



242
 243 Figure 2: Illustration of our proposed S-AA: given
 244 a state and expert action stream, the policy explores
 245 multi-step actions, then calculates preference reward
 246 at each step to identify the first divergence and applies
 247 DPO loss at that step to align with the expert.

248 expressed as $R(\mathbf{a}_{\pi,h^*}|c_{h^*}) > R(\mathbf{a}_{E,h^*}|c_{h^*})$. This indicates that the policy has developed an over-
 249 confidence in its own potentially suboptimal action compared to the expert demonstration. Once the
 250 first deviation is identified, we apply the DPO loss exclusively at this specific step h^* . The objective
 251 is to maximize the preference for the expert’s action \mathbf{a}_{E,h^*} over the policy’s action \mathbf{a}_{π,h^*} at that
 252 specific context c_{h^*} , with the loss function defined as:
 253

$$\mathcal{L} = -\mathbb{E}_{s_t \sim \mathcal{D}} \left[\mathbb{I}(h^* \text{ exists}) \cdot \log \sigma \left(\beta \log \frac{\pi_\theta(\mathbf{a}_{E,h^*}|c_{h^*})}{\pi_{\text{ref}}(\mathbf{a}_{E,h^*}|c_{h^*})} - \beta \log \frac{\pi_\theta(\mathbf{a}_{\pi,h^*}|c_{h^*})}{\pi_{\text{ref}}(\mathbf{a}_{\pi,h^*}|c_{h^*})} \right) \right] \quad (8)$$

254 where $\mathbb{I}(\cdot)$ is the indicator function, ensuring the loss is only active when a first mistake is found,
 255 and the reference policy π_{ref} remains the frozen SFT policy π_{SFT} .
 256

257 By optimizing this objective, we are not just performing imitation with teacher forcing. Instead,
 258 we introduce online exploration that actively identifies and corrects potential error actions in real-
 259 time. This approach pinpoints the precise origin of behavioral drift, specifically the very first action
 260 that would lead the policy down a suboptimal path, and immediately aligns it with expert behavior,
 261 thereby mitigating the accumulation of errors in long-sequence generation.
 262

270

271

Table 1: Success rates across different generation horizons, task suites, and training stages.

	H	Spatial	Object	Goal	Long	Average
OpenVLA	1	84.4 \pm 0.9%	86.6 \pm 0.8%	77.2 \pm 1.0%	53.7 \pm 1.3%	75.5 \pm 1.0%
L-BC	$\times 2$	83.6 \pm 0.8%	85.6 \pm 0.9%	78.4 \pm 0.9%	53.4 \pm 1.2%	75.2 \pm 0.9%
	$\times 4$	79.4 \pm 1.0%	81.4 \pm 0.7%	75.4 \pm 0.9%	52.4 \pm 1.1%	72.2 \pm 0.9%
	$\times 6$	73.2 \pm 0.9%	76.2 \pm 0.9%	67.8 \pm 0.8%	48.0 \pm 1.0%	66.3 \pm 0.9%
	$\times 8$	64.6 \pm 1.0%	71.2 \pm 1.1%	58.2 \pm 0.7%	39.6 \pm 0.9%	58.4 \pm 0.9%
	$\times 10$	53.0 \pm 1.2%	62.8 \pm 1.4%	48.8 \pm 1.3%	27.2 \pm 1.2%	47.9 \pm 1.3%
	$\times 2$	85.4\pm0.8%	89.0\pm0.7%	80.0\pm0.9%	57.6\pm1.1%	78.0\pm0.9%
L-BC+S-AA	$\times 4$	82.0 \pm 0.7%	84.0 \pm 0.7%	76.8 \pm 0.9%	54.2\pm1.0%	74.2 \pm 0.8%
	$\times 6$	75.4 \pm 0.6%	78.0 \pm 0.6%	70.0 \pm 0.8%	47.6 \pm 0.9%	67.8 \pm 0.7%
	$\times 8$	65.8 \pm 0.5%	73.6 \pm 0.5%	60.6 \pm 0.7%	41.2 \pm 0.8%	60.3 \pm 0.6%
	$\times 10$	55.6 \pm 0.4%	66.0 \pm 0.4%	52.0 \pm 0.6%	29.6 \pm 0.7%	50.8 \pm 0.5%

4 EXPERIMENTS

4.1 SETUP

We evaluate our method on the LIBERO dataset (Liu et al., 2023), which consists of four task suites (each containing 10 tasks with 50 human-teleoperated demonstrations): LIBERO-Spatial , LIBERO-Object , LIBERO-Goal, and LIBERO-Long. To validate our approach beyond simulation, we conduct experiments on a **Kinova Jaco2** 6-DoF robotic arm with a parallel-jaw gripper. Four tabletop manipulation tasks are designed, covering pick-and-place and wiping motions with diverse objects. Details can be found in the Appendix A.2 and A.5.

We use OpenVLA as our backbone with LoRA (Hu et al., 2022) fine-tuning. For the first stage (offline action stream imitation), we follow standard SFT paradigm commonly used for LLMs on an A6000 GPU with batch size 4, content length 512, learning rate 5e-4, and train for 50,000 steps. In the second stage (online alignment), we use training trajectories as expert demonstrations with $\beta = 0.1$ and learning rate 0.0005, continuing to fine-tune the same LoRA parameters. Additional details are in the Appendix A.4.

4.2 ABLATION ON ACTION STREAM HORIZON LENGTH

This experiment investigates the core proposition of our work: that the Action Stream policy can extend the action generation horizon similar to how LLMs generate coherent text, extended generation horizons. We analyze the impact of varying the horizon length H on two different settings: **L-BC only**: The model trained only with Long-Horizon Behavior Cloning (Stage 1), to assess the benefits of simply enabling long-sequence generation. **L-BC + S-AA**: The full model, fine-tuned with our proposed Step-wise Action Alignment (Stage 2), to demonstrate its ability to mitigate compounding errors.

Results. Table 1 shows how horizon length H affects task success rates across training regimes. For L-BC only models, performance shows minimal decline when H increases from 1 to 2 (0.3% difference) and modest reduction at $H = 4$ (3.1% decrease). However, performance drops sharply at longer horizons: $H = 6$ (9.8% decrease), $H = 8$ (17.1% decrease), and $H = 10$ (27.6% decrease). This pattern clearly demonstrates how exposure bias and compounding errors become increasingly problematic as action sequences extend.

In contrast, with S-AA tuning, the performance demonstrates notable improvements. When H increases from 1 to 2, performance actually improves from 75.2% to 78.0%, demonstrating that our approach not only extends the generation horizon but also enhances overall task success. The performance decline as H increases further is significantly more gradual with S-AA than with L-BC only. At $H = 4$, S-AA shows only a 1.3% drop from $H = 2$, compared to L-BC only’s 3.2% decline over the same range. This pattern continues at $H = 6$, where S-AA’s performance decreases by 7.7% from $H = 2$, while L-BC only drops by 9.2%. Even at longer horizons ($H = 8$ and $H = 10$), S-

324

325

Table 2: The results of the $Pass@N$ metric under different task suites and horizon lengths.

		H	Spatial	Object	Goal	Long	Average
OpenVLA	Pass@2	1	85.8 \pm 1.0%	89.6 \pm 0.8%	81.4 \pm 1.2%	54.8 \pm 1.1%	77.9 \pm 1.0%
		1	86.6 \pm 0.7%	90.4 \pm 1.1%	83.2 \pm 0.9%	57.4 \pm 1.0%	79.4 \pm 0.9%
	Pass@2	$\times 2$	94.4 \pm 0.8%	92.0 \pm 0.9%	93.6 \pm 0.7%	80.6 \pm 1.2%	90.2 \pm 0.9%
		$\times 4$	92.8 \pm 1.0%	92.6 \pm 0.8%	89.2 \pm 1.1%	76.4 \pm 0.9%	87.8 \pm 1.0%
		$\times 6$	90.8 \pm 0.9%	86.0 \pm 1.2%	82.4 \pm 1.0%	69.2 \pm 1.1%	82.1 \pm 1.1%
		$\times 8$	82.2 \pm 1.1%	85.4 \pm 0.7%	72.0 \pm 1.2%	62.4 \pm 1.0%	75.5 \pm 1.0%
		$\times 10$	71.8 \pm 1.2%	72.0 \pm 1.1%	64.4 \pm 0.9%	46.6 \pm 1.3%	63.7 \pm 1.1%
	Action Stream	$\times 2$	98.8 \pm 0.6%	97.6 \pm 0.7%	95.2 \pm 0.8%	87.4 \pm 0.9%	94.8 \pm 0.8%
		$\times 4$	97.4 \pm 0.7%	96.4 \pm 0.8%	93.6 \pm 0.9%	82.8 \pm 1.1%	92.6 \pm 0.9%
		$\times 6$	96.6 \pm 0.8%	95.8 \pm 0.9%	88.2 \pm 1.0%	76.6 \pm 1.2%	89.3 \pm 1.0%
		$\times 8$	88.4 \pm 1.0%	91.2 \pm 0.9%	85.4 \pm 1.1%	69.4 \pm 1.2%	83.6 \pm 1.1%
		$\times 10$	82.2 \pm 1.1%	84.6 \pm 1.0%	83.2 \pm 0.9%	58.2 \pm 1.3%	77.1 \pm 1.1%

AA maintains substantially better resilience, with relative degradation rates 13.6% and 14.9% lower than L-BC only. This clearly demonstrates that our approach effectively mitigates the compounding errors that plague longer-horizon action generation, allowing the model to maintain coherence over extended sequences.

4.3 ACTION STREAM SAMPLING AND DECODING ANALYSIS

Action Stream generation is essentially a form of LLM text generation, with decoding strategies significantly affecting output quality. While OpenVLA uses greedy decoding for efficiency, this approach often compromises quality and diverges from best practices in both text (Shi et al., 2024) and action generation. For robotic tasks, generation diversity is essential since multiple valid action sequences typically exist for a same state, and exploring alternatives can substantially improve task performance (Chi et al., 2023). Therefore, we investigate two alternative approaches: stochastic sampling and structured search.

Uncovering Latent Potential with Pass@N We employ top- k stochastic decoding, where at each token generation step, the model samples from the k highest-probability tokens, and this process continues autoregressively throughout the episode. We evaluate using the $Pass@N$ metric, which counts a success if at least one trajectory completes the task. Table 2 presents the results across different task suites and horizon lengths. For $H = 2$, success rates increase by 8.6%, and notably, the $Pass@2$ average performance when $H = 6$ (82.1%) surpasses the $H = 1$ baseline (77.9%). With $N = 5$, all metrics show substantial improvements, with gains reaching up to 15.4% for longer horizons. Meanwhile, OpenVLA shows minimal benefits from $Pass@N$ in single-step greedy decoding. These findings demonstrate that long-horizon generation enables better exploration of the solution space, making our action stream policy a more effective proposer. Similar to how LLMs explore the reasoning space through extended generation, our approach allows the policy to discover diverse valid action sequences within the robotic solution space.

Exploiting the Search Space with Beam Search The high $Pass@N$ results show our action stream policy generates multiple viable trajectories, creating a rich solution space that can be systematically explored using beam search. Beam search maintains a set of promising partial sequences at each action unit step, expands them in parallel, and selects the highest-scoring complete action stream based on cumulative log probabilities (Vijayakumar et al., 2016).

Figure 3 shows the beam search results under different beam width B . The results demonstrate that beam search significantly improves performance across all horizon lengths. With $B = 2$, performance at $H = 2$ substantially surpasses the baseline across all metrics. At $B = 4$ and $B = 5$, even $H = 4$ performance exceeds the baseline, demonstrating effective exploration of the solution space. Moreover, as beam width increases, the performance degradation trend with increasing horizon H becomes increasingly gradual. This confirms that structured search techniques effectively exploit the rich solution space produced by our action stream policy.

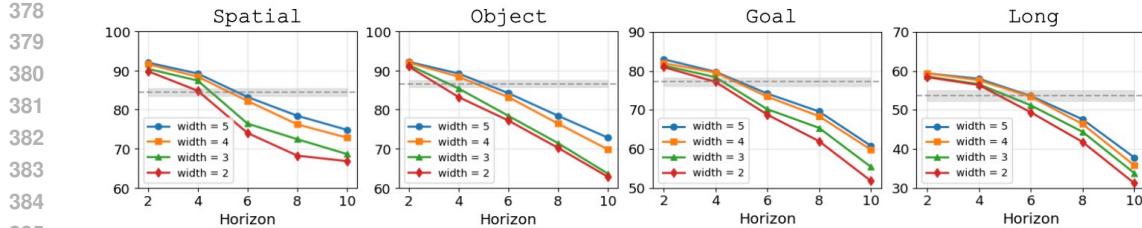


Figure 3: The beam search results under different beam width across different task suites. The gray bars represent the OpenVLA baseline performance.

4.4 ACTION TRAJECTORY ANALYSIS

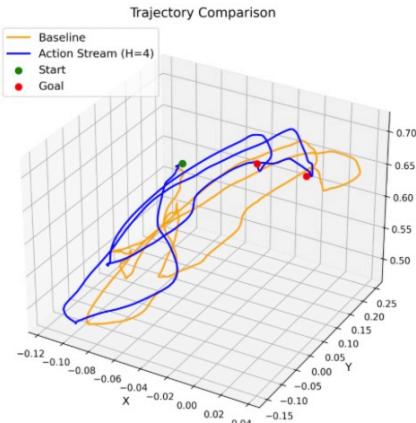


Figure 4: The trajectory visualization.

Figure 4 shows the robot end-effector movement trajectories under different horizon lengths. We observe that when the policy’s generation horizon is extended, the trajectories become smoother, while step-wise prediction exhibits noticeable spikes. This phenomenon can be attributed to the fundamental difference in action generation mechanisms: step-wise prediction requires independent action prediction at each timestep under new environmental states, leading to potential inconsistencies and abrupt changes in the trajectory (Liu et al., 2024). In contrast, Action Stream performs autoregressive continuous action prediction within the same environmental context, where each action is conditioned on the preceding actions in the sequence, resulting in stronger coherence and smoother robot movements. More analysis can be found in the Appendix A.3.

4.5 RESULTS ON REAL ROBOT

Using an Xbox Gamepad, we teleoperate the Jaco2 arm and collect demonstrations at a frequency of 10 Hz, recording RGB images and robot states throughout each trajectory. We design four distinct tasks for evaluation: PlaceBlock, PlaceCarrot, CleanTable, and RelocateCup. We gather 50–200 demonstrations per task to form the training dataset and finetune the Action Stream using our proposed two-phase approach. Table 3 shows the results, which demonstrate consistent observations with the simulation environment. More task and training details can be found in the Appendix A.2.

Table 3: Real robot task success rates (%) with different horizon lengths.

	H	PlaceBlock	PlaceCarrot	CleanTable	RelocateCup	Average
Action Stream	OpenVLA	1	85.0	90.0	80.0	75.0
		×2	85.0	95.0	90.0	80.0
		×3	80.0	85.0	85.0	75.0
		×4	70.0	85.0	80.0	70.0
		×5	65.0	75.0	70.0	65.0
						68.75

5 RELATED WORK

5.1 TRANSFORMING VLM TO VLA

Recent vision-language-action (VLA) models adapt pre-trained VLMs for robotic control through two main approaches: output space unification, which integrates all modalities into a shared token space, and module grafting, which attaches specialized action prediction components to VLMs.

In the output space unification paradigm, all modalities are unified into a shared discrete token space for autoregressive modeling. Reed et al. (2022) serializes text, images, actions, and proprioception

432 into unified token sequences. The RT series (Brohan et al., 2022; 2024; Belkhale et al., 2024) dis-
 433cretizes robot actions into bins for autoregressive inference. Open X-Embodiment (O’Neill et al.,
 4342024) standardizes action representation across diverse robots. These methods preserve the orig-
 435inal foundation model architecture, enabling efficient end-to-end training. In the module grafting
 436paradigm, specialized action prediction modules are attached to pre-trained VLMs. LangLfP (Lynch
 437& Sermanet, 2020) uses a conditional variational autoencoder to generate continuous control com-
 438mands. BC-Z (Jang et al., 2022) employs a VLM-based task encoder with a separate MLP network,
 439decoupling task understanding from action generation. HybridVLA (Liu et al., 2025) integrates
 440autoregressive and diffusion policies into a unified model. These approaches require integrating
 441heterogeneous modules, introducing complexity in design and training.

442 5.2 EXTENSION POLICY HORIZON

443 Extending policy horizons enables more coherent planning and reduces replanning frequency for
 444complex sequential tasks. Long-VLA (Fan et al., 2025) allows policies to handle longer, multi-
 445step manipulations by segmenting tasks and selectively focusing on relevant inputs. MuST(Gao
 446et al., 2025) extends policy horizons by decomposing tasks into reusable skills and sequencing them
 447through a progress-guided selector. Diffusion policy (Chi et al., 2023) and OFT (Kim et al., 2025)
 448integrate action chunking decoding module to achieve multi-step action generation in parallel. How-
 449ever, these methods do not adopt a unified action-as-language perspective for coherent sequence
 450generation.

451 6 DISCUSSION AND LIMITATION

452 While our work significantly advances the Action-as-Language paradigm, several limitations re-
 453main. First, action discretization remains a fundamental challenge, disrupting pose continuity and
 454introducing quantization errors that accumulate over longer sequences, ultimately hindering precise
 455control in high-precision tasks (Liu et al., 2025). This limitation ultimately constrains the upper
 456performance bound of VLA models in tasks requiring fine-grained manipulation.

457 Additionally, Action Stream’s performance degrades with longer horizons due to cumulative errors
 458and trajectory drift. Unlike text generation, robotic actions directly interact with the physical envi-
 459ronment and can cause irreversible changes, making each prediction error more consequential and
 460harder to correct downstream. We provide detailed analysis of this trajectory drift phenomenon in
 461the Appendix A.3. Moreover, Action Stream’s autoregressive generation introduces computational
 462overhead compared to single-step prediction methods, potentially causing higher latency during de-
 463ployment. Future work could explore more efficient decoding strategies or hybrid approaches that
 464balance the benefits of action stream generation with computational efficiency.

465 7 CONCLUSION

466 In this paper, we introduced the Action Stream paradigm, which advances the Action-as-Language
 467paradigm in VLA models. Unlike traditional approaches that rely on single-step action prediction,
 468we successfully customized LLM training and inference recipes for VLA models, overcoming the
 469limitations of conventional methods and fully leveraging the long-sequence generation capabilities
 470of LLMs. Through our two-phase approach consisting of offline long-horizon behavior cloning
 471and step-wise action alignment, we enable VLA models to generate extended action sequences
 472while effectively addressing exposure bias in long-horizon prediction. Furthermore, we suc-
 473cessfully adapted LLM inference-time decoding techniques to the VLA domain, enabling our approach
 474to better explore the solution space by generating multiple action trajectories and selecting the most
 475promising ones. These inference-time enhancements unlock the potential of Action Stream, leading
 476to significant performance improvements. This comprehensive framework substantially advances
 477the Action-as-Language paradigm in VLA models, representing a significant step towards unified
 478vision-language-action modeling and inspiring future work to transfer more LLM paradigms to ad-
 479vance VLA capabilities.

486 REFERENCES
487

488 Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. *arXiv preprint*
489 *arXiv:2403.06963*, 2024.

490 Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen
491 Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. Rt-h: Action hierarchies using language. *arXiv*
492 *preprint arXiv:2403.01823*, 2024.

493 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
494 prediction with recurrent neural networks. *Advances in neural information processing systems*,
495 28, 2015.

496 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
497 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π 0: A vision-language-action flow
498 model for general robot control. *corr*, abs/2410.24164, 2024. doi: 10.48550. *arXiv preprint*
499 *ARXIV.2410.24164*.

500 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
501 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
502 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

503 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
504 Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
505 models transfer web knowledge to robotic control, 2023. URL <https://arxiv.org/abs/2307.15818>,
506 2024.

507 Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo,
508 and Hongyang Li. Learning to act anywhere with task-centric latent actions. *arXiv preprint*
509 *arXiv:2502.14420*, 2025.

510 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
511 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International
512 Journal of Robotics Research*, pp. 02783649241273668, 2023.

513 Chris Cundy and Stefano Ermon. Sequencematch: Imitation learning for autoregressive sequence
514 modelling with backtracking. *arXiv preprint arXiv:2306.05426*, 2023.

515 Yiguo Fan, Pengxiang Ding, Shuanghao Bai, Xinyang Tong, Yuyang Zhu, Hongchao Lu, Fengqi
516 Dai, Wei Zhao, Yang Liu, Siteng Huang, et al. Long-vla: Unleashing long-horizon capability of
517 vision language action model for robot manipulation. *arXiv preprint arXiv:2508.19958*, 2025.

518 Kai Gao, Fan Wang, Erica Aduh, Dylan Randle, and Jane Shi. Must: Multi-head skill transformer
519 for long-horizon dexterous manipulation with skill progress. *arXiv preprint arXiv:2502.02753*,
520 2025.

521 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
522 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

523 Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
524 and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In *Conference
525 on Robot Learning*, pp. 991–1002. PMLR, 2022.

526 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
527 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
528 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.

529 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
530 speed and success. *arXiv preprint arXiv:2502.19645*, 2025.

531 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
532 Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
533 imitators. *arXiv preprint arXiv:2311.01378*, 2023.

540 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 541 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information*
 542 *Processing Systems*, 36:44776–44791, 2023.

543

544 Jiaming Liu, Hao Chen, Pengju An, Zhuoyang Liu, Renrui Zhang, Chenyang Gu, Xiaoqi Li, Ziyu
 545 Guo, Sixiang Chen, Mengzhen Liu, et al. Hybridvla: Collaborative diffusion and autoregression
 546 in a unified vision-language-action model. *arXiv preprint arXiv:2503.10631*, 2025.

547

548 Yuejiang Liu, Jubayer Ibn Hamid, Annie Xie, Yoonho Lee, Maximilian Du, and Chelsea Finn.
 549 Bidirectional decoding: Improving action chunking via guided test-time sampling. *arXiv preprint*
 550 *arXiv:2408.17355*, 2024.

551

552 Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data.
 553 *arXiv preprint arXiv:2005.07648*, 2020.

554

555 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 556 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 557 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

558

559 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 560 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 561 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 562 27730–27744, 2022.

563

564 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 565 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 566 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE*
 567 *International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024.

568

569 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 570 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 571 *in neural information processing systems*, 36:53728–53741, 2023.

572

573 Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
 574 Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
 575 A generalist agent. *arXiv preprint arXiv:2205.06175*, 2022.

576

577 Zhang Shengyu, Dong Linfeng, Li Xiaoya, Zhang Sen, Sun Xiaofei, Wang Shuhe, Li Jiwei, Runyi
 578 Hu, Zhang Tianwei, Fei Wu, et al. Instruction tuning for large language models: A survey. *arXiv*
 579 *preprint arXiv:2308.10792*, 2023.

580

581 Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
 582 thorough examination of decoding methods in the era of llms. *arXiv preprint arXiv:2402.06925*,
 583 2024.

584

585 Hao Sun, Yunyi Shen, and Jean-Francois Ton. Rethinking bradley-terry models in preference-based
 586 reward modeling: Foundations, theory, and alternatives. *arXiv preprint arXiv:2411.04991*, 2024.

587

588 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 589 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 590 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

591

592 Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David
 593 Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural se-
 594 quence models. *arXiv preprint arXiv:1610.02424*, 2016.

595

596 Yuqi Wang, Xinghang Li, Wenxuan Wang, Junbo Zhang, Yingyan Li, Yuntao Chen, Xinlong Wang,
 597 and Zhaoxiang Zhang. Unified vision-language-action model. *arXiv preprint arXiv:2506.19850*,
 598 2025.

599

600 Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
 601 neural networks. *Neural computation*, 1(2):270–280, 1989.

594 Markus Wulfmeier, Michael Bloesch, Nino Vieillard, Arun Ahuja, Jorg Bornschein, Sandy Huang,
 595 Artem Sokolov, Matt Barnes, Guillaume Desjardins, Alex Bewley, et al. Imitating language via
 596 scalable inverse reinforcement learning. *Advances in Neural Information Processing Systems*, 37:
 597 90714–90735, 2024.

598 Andy Zhai, Brae Liu, Bruno Fang, Chalse Cai, Ellie Ma, Ethan Yin, Hao Wang, Hugo Zhou,
 599 James Wang, Lights Shi, et al. Igniting vlm’s toward the embodied space. *arXiv preprint*
 600 *arXiv:2509.11766*, 2025.

602 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 603 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 604 pp. 11975–11986, 2023.

605 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
 606 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.

608 A APPENDIX

609 A.1 USE OF LARGE LANGUAGE MODELS

612 We use LLMs only for text polishing and language refinement to improve the clarity and readability
 613 of our manuscript. All core ideas, experimental designs, methodological contributions, and technical
 614 innovations presented in this work are conceived and developed entirely by human researchers. The
 615 LLMs were not involved in any aspect of the research process, including problem formulation,
 616 algorithm design, experimental setup, data analysis, or result interpretation. Their usage was strictly
 617 limited to enhancing the linguistic quality of the written content.

619 A.2 REAL ROBOT EXPERIMENTS SETTINGS

621 **Hardware and setup.** We use a Kinova Jaco2 arm for real-world evaluation. Demonstrations are
 622 collected via Xbox Gamepad teleoperation at a control frequency of 10 Hz, recording synchronized
 623 RGB images and robot states at each step. We design four manipulation tasks: 1) **PlaceBlock**: Place
 624 the blue cube on the green plate. 2) **PlaceCarrot**: Place the carrot on the blue pan. 3) **CleanTable**:
 625 Clean the table. 4) **RelocateCup**: Pick up the orange pot and place it in the green plate. The visual
 626 observations for each task are shown in Figure 5.

627 **Training data.** For each task, we collect a set of human teleoperated demonstrations to construct
 628 the training dataset: 198 trajectories for PlaceBlock (average length 75 steps), 201 for PlaceCarrot
 629 (81 steps), 69 for CleanTable (58 steps), and 179 for RelocateCup (150 steps). We then finetune the
 630 Action Stream policy on these datasets using our two-phase procedure described in Section 3.

632 **Evaluation protocol.** For each trained policy, we perform 20 independent trials per task (80 trials
 633 in total). At the start of each trial, the robot is reset to a standardized home configuration, and the
 634 objects are placed at randomized but feasible positions on the workspace. The policy then executes
 635 until task completion or a timeout of 30 seconds.

636 **Success criteria.** A trial is counted as successful if the task-specific goal is satisfied: (i) the target
 637 object is fully placed inside the designated container (PlaceBlock, PlaceCarrot, RelocateCup), or
 638 (ii) the distractor object is completely removed from the designated region (CleanTable). The object
 639 must remain stable in the target region for at least one second to be considered a success. Success
 640 rates reported in Table 3 are computed as the fraction of successful trials over the total trials.

642 A.3 ACTION TRAJECTORY ANALYSIS

644 In this section, we read trajectory data from the LIBERO simulation platform and visualize it to
 645 conduct an in-depth analysis of the robot end-effector movement trajectories. We examine two
 646 key aspects of our Action Stream paradigm: temporal coherence and error accumulation in long-
 647 sequence generation. We compare the trajectory patterns generated by our Action Stream paradigm
 648 against the baseline Openvla single-step prediction method.

Figure 5: Visual observations for the four real-robot evaluation tasks.

Temporal Coherence: Figure 6 illustrates the end-effector trajectories for both approaches during task execution. The baseline step-wise action prediction exhibits noticeable **trajectory spikes and discontinuities (highlighted in red boxes)**, demonstrating weak temporal coherence in single-step prediction. This phenomenon can be attributed to the fundamental difference in action generation mechanisms: step-wise prediction requires independent action prediction at each timestep under new environmental states, leading to potential inconsistencies and abrupt changes in the trajectory (Liu et al., 2024). These abrupt changes in the trajectory indicate that the policy struggles to maintain smooth, consistent motion patterns when predicting actions independently at each timestep. In contrast, our Action Stream approach generates **significantly smoother trajectories with better temporal consistency**. Action Stream performs autoregressive continuous action prediction within the same environmental context, where each action is conditioned on the preceding actions in the sequence, resulting in stronger coherence and smoother robot movements. By leveraging the LLM’s autoregressive generation capabilities to produce coherent multi-step action sequences, the policy maintains better continuity in the end-effector’s movement patterns.

Understanding Trajectory Drift through the Momentum Effect: Our analysis reveals a distinctive momentum characteristic in Action Stream generation. As shown in Figure 7, while both approaches exhibit similar and overlapping trajectories in the initial stages, Action Stream exhibits a tendency to persist on pre-computed trajectories due to its autoregressive nature. Unlike single-step prediction that adapts to each new state independently, Action Stream operates in an open-loop fashion where the entire sequence of actions is conditioned solely on the initial state. This creates a form of executional momentum where the policy maintains its planned trajectory even when environmental conditions change during execution. While this momentum contributes to the smoother trajectories we observe, it also renders the policy less sensitive to real-time state changes that occur during the stream’s execution, potentially leading to trajectory drift when the initial plan becomes suboptimal.

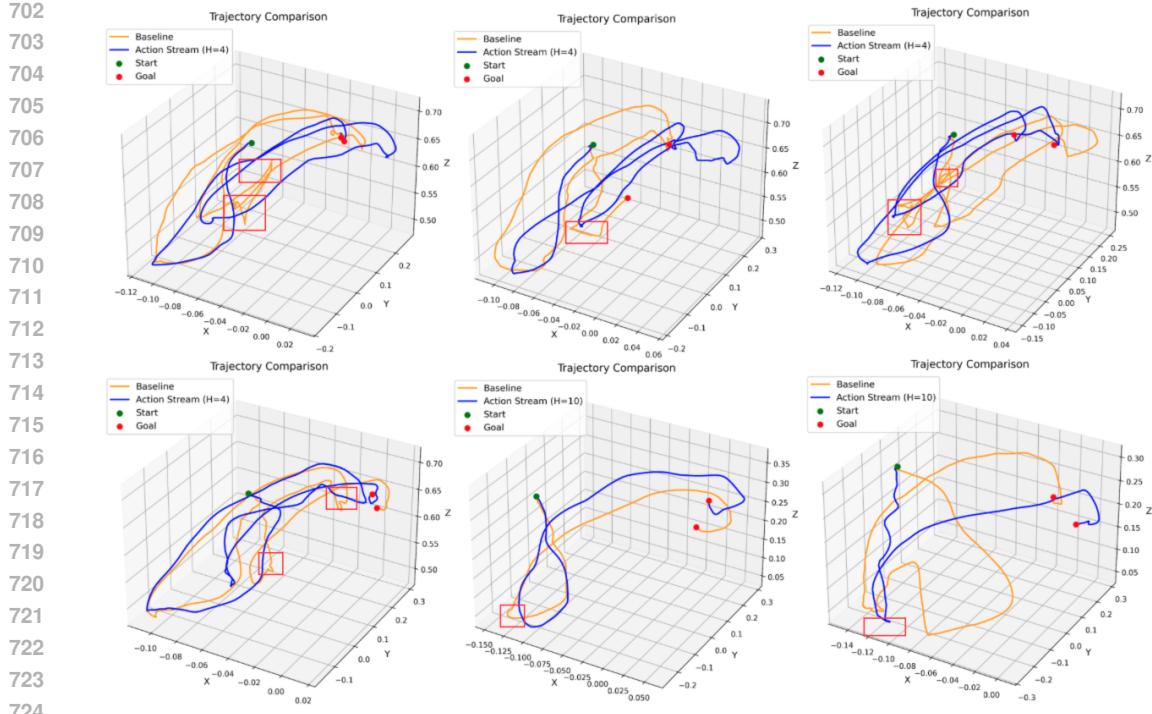


Figure 6: The action trajectory analysis results. The baseline step-wise action prediction exhibits trajectory spikes and abrupt directional changes (highlighted in red boxes), demonstrating weak temporal coherence in single-step prediction.

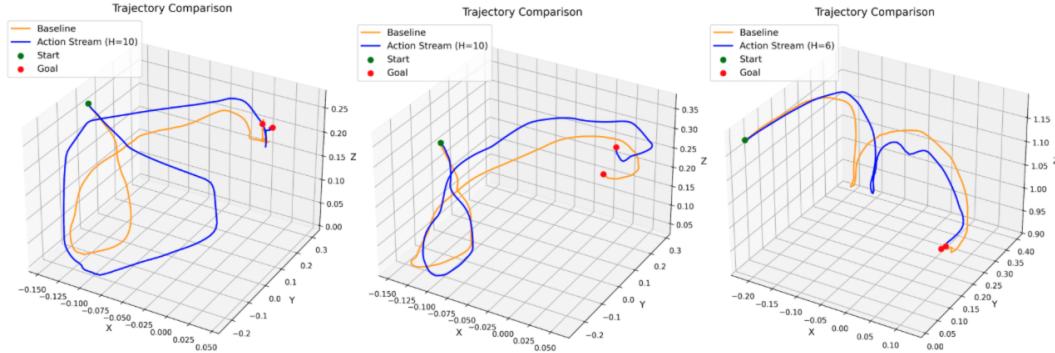


Figure 7: The action trajectory analysis results showing momentum effect. Both approaches exhibit overlapping initial trajectories, but Action Stream exhibits trajectory drift over time due to its momentum-driven autoregressive nature, persisting on pre-computed trajectories.

A.4 TRAINING DETAILS

Supervised Fine-Tuning (SFT) Details In the SFT stage, we follow the standard SFT paradigm commonly used in LLMs. We randomly sample an expert demonstration, which includes image embeddings and text token embeddings as input, and concatenate the subsequent multi-step actions as supervised output targets. The training context length is set to 512 tokens. If the concatenated multi-step action sequence does not fill the entire context length, we pad it with placeholder tokens that do not participate in the loss function computation. Figure 8 shows the SFT training details. As can be observed from the training curves, the model successfully converges with steadily decreasing loss and accuracy approaching 100%, demonstrating effective learning of the multi-step action sequences and the ability to successfully imitate long-horizon expert trajectories.

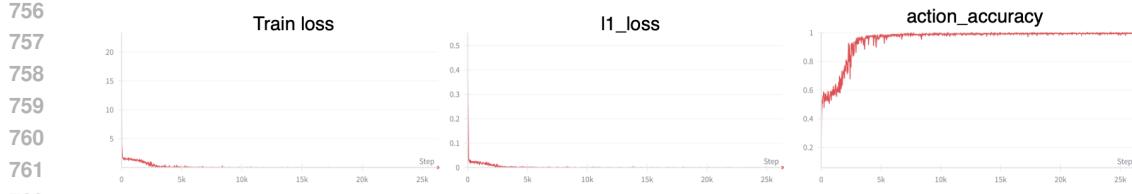


Figure 8: The SFT training details. The model successfully converges with steadily decreasing loss and accuracy approaching 100%, demonstrating effective learning of the multi-step action sequences and the ability to successfully imitate long-horizon expert trajectories.

Step-wise action Training Details Since this stage requires online policy exploration and OpenVLA’s setup does not support batch inference, we use a batch size of 1 during this phase. We sample a state from expert demonstrations and obtain the subsequent H-step action sequence, while also allowing the policy to explore for 10 steps (generating $10 \times 8 = 80$ tokens, consisting of 7 action dimensions plus 1 separator token per step). We then compute preference rewards for each step to identify the first error. DPO loss is applied only to the first error step. For training stability, we maintain a 9:1 ratio between DPO loss and SFT loss. If no first error is identified, we perform SFT fine-tuning using the expert demonstration.

During the training process, we monitor two key metrics: the expected action reward (representing expert demonstrations) and the policy’s online exploration reward. Figure 9 illustrates the convergence curves for these two rewards, where “winner” represents the expected expert actions and “loser” represents the policy-generated actions. As training progresses, both rewards show an upward trend, indicating that the policy increasingly favors expert actions while simultaneously generating actions that closely align with expert behavior. This dual improvement demonstrates that our Step-wise Action Alignment effectively guides the policy to prefer expert demonstrations while enhancing the quality of its own action generation, leading to a virtuous cycle where policy-generated actions become increasingly expert-like and thus receive higher preference scores.

We select the optimal checkpoint for evaluation based on the convergence behavior of both expert and policy rewards. Specifically, we monitor the reward gap between expert demonstrations (winner) and policy-generated actions (loser) throughout training. The checkpoint is selected when: (1) the reward gap between expert and policy actions becomes minimal, indicating that policy-generated actions closely match expert quality, and (2) both reward curves exhibit stability without significant fluctuations, suggesting convergence. This selection strategy ensures that we evaluate the model at its optimal performance point where the policy has learned to generate expert-like actions consistently.

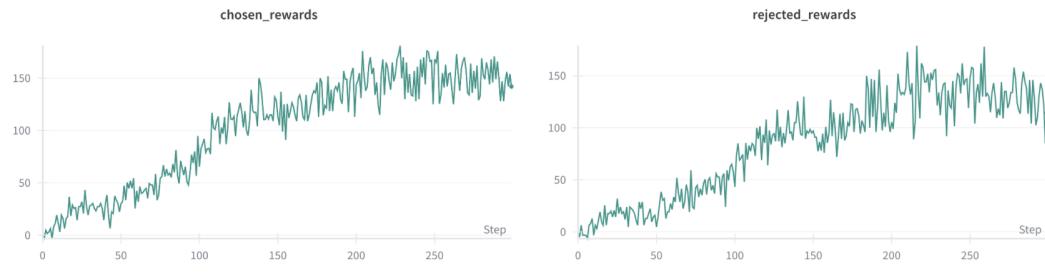
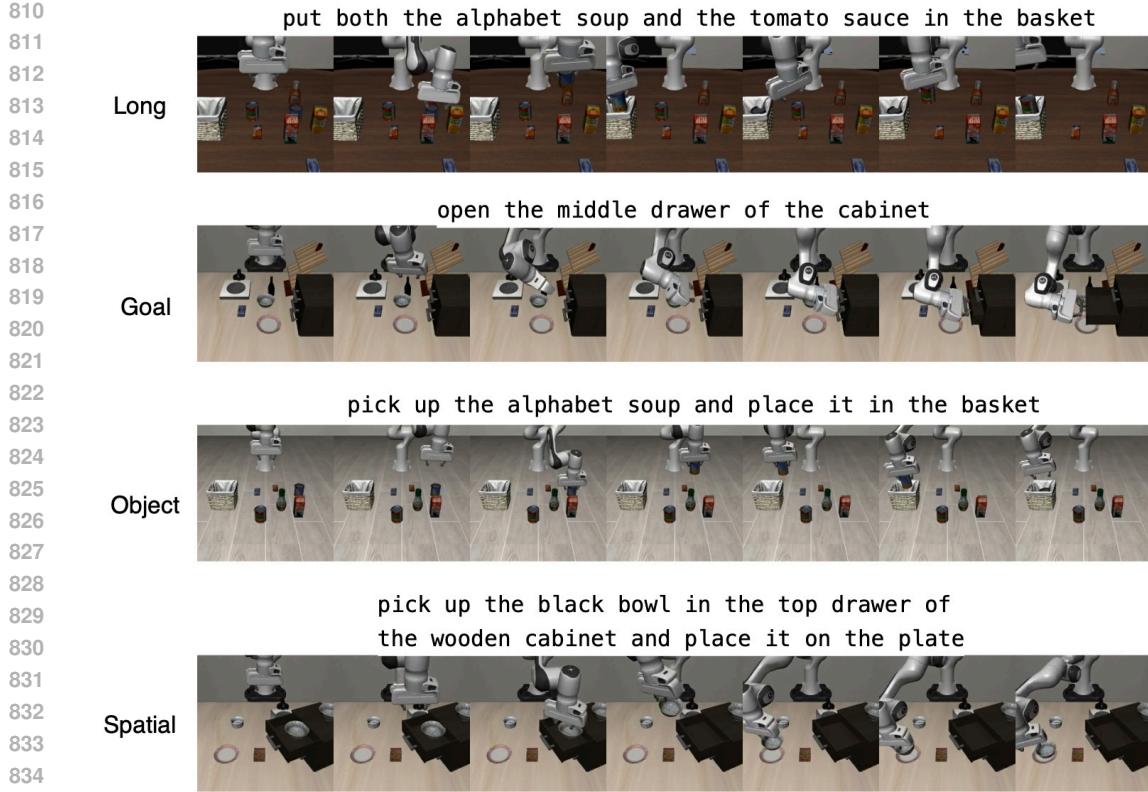


Figure 9: The DPO training details showing winner and loser reward changes. Winner represents expert trajectory actions while loser represents policy exploration actions. The upward trend of both rewards indicates that policy exploration actions are increasingly aligning with expert actions.

A.5 LIBERO SIMULATION BENCHMARK SETTINGS

LIBERO (Liu et al., 2023) is a recent benchmark for embodied robot learning, designed to evaluate generalization across diverse manipulation scenarios. It consists of four task suites, each containing



836 Figure 10: Visual observations for the four LIBERO evaluation task suites. We show episodes from
 837 4 subtasks to demonstrate the diversity and complexity of the evaluation scenarios.
 838

839
 840 ing 10 subtasks with 50 human-teleoperated demonstrations per task. The suites differ in object
 841 diversity, spatial variation, and goal specification, thereby testing complementary aspects of policy
 842 robustness:

- 843 • **LIBERO-Spatial**: Same set of objects, but placed in different spatial layouts. This suite
 844 evaluates the ability to generalize across spatial configurations and adapt to changes in
 845 object positions and relative distances.
- 846 • **LIBERO-Object**: Same spatial layouts, but involving different objects. This suite tests
 847 object recognition and manipulation transfer when new but semantically similar objects are
 848 introduced.
- 849 • **LIBERO-Goal**: Same objects and layouts, but with varying goals or instructions. This
 850 suite emphasizes understanding task semantics and aligning actions with different high-
 851 level task objectives.
- 852 • **LIBERO-Long**: Also known as LIBERO-10, containing long-horizon tasks with multiple
 853 objects, diverse layouts, and compound goals. This suite is the most challenging, as it
 854 requires coherent multi-step planning and strong temporal consistency to succeed.

856 Together, these four suites provide a comprehensive evaluation: LIBERO-Spatial and LIBERO-
 857 Object measure generalization to environment or object shifts, LIBERO-Goal probes semantic
 858 grounding, and LIBERO-Long stresses long-horizon reasoning and error accumulation. Figure 10
 859 shows example episodes from each suite, illustrating their diversity and complexity.
 860
 861
 862
 863