
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIPO-MILP: HIERARCHICAL PREFERENCE OPTI-
MIZATION FOR MILP SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixed-integer linear programming (MILP) is a fundamental yet computationally
challenging optimization problem in operations research. To accelerate the solv-
ing process, recent machine learning methods predict an initial solution and con-
fine the subsequent search to a local trust region. However, these models face
two critical challenges during training. First, the models are typically trained on
a collection of high-quality solutions weighted by their objective values, which
fails to account for a solution’s distant to the near-optimal region and leads to
a biased training signal. Second, weighting by objective value provides an am-
biguous preference signal, which prevents the model from learning to explicitly
distinguish between high-quality and local optimal solutions. To address the chal-
lenges, we introduce HiPO-MILP, a novel Hierarchical Preference Optimization
framework. Our key idea is to define a quality score for each solution that com-
bines its objective value with its distance to the convex hull of optimal solutions.
Based on this score, HiPO-MILP constructs a three-tiered preference hierarchy
that distinguishes between near-optimal, high-quality, and perturbed solutions,
thereby providing a clear and robust learning signal. By training with explicit
preference pairs derived from this hierarchy, HiPO-MILP learns to navigate the
solution space towards regions that are not only high-scoring but also structurally
closer to the global optimum. Experiments demonstrate that HiPO-MILP substan-
tially improves solving efficiency across a diverse range of MILP benchmarks.

1 INTRODUCTION

Mixed-Integer Linear Programming (MILP) is a foundational model for combinatorial optimization,
with widespread applications in fields such as engineering (Husseinzadeh Kashan & Ozturk, 2022),
daily scheduling (Liu et al., 2021), and operations research (Golmohamadi, 2022). Traditional MILP
solvers, which typically rely on the branch-and-bound algorithm, must navigate a vast and discrete
solution space to find the optimal solution. This process presents a significant computational chal-
lenge, as many MILP problems are NP-hard, with search spaces that expand exponentially with the
problem size. In many real-world scenarios, however, practitioners frequently encounter specific
families of MILP instances that share underlying structural and statistical patterns. This has created
a fertile ground for machine learning (ML) techniques designed to capture these data-driven patterns
and accelerate the solving process (Gasse et al., 2019; Bengio et al., 2021). Among the various ML-
enhanced solving paradigms, direct solution prediction has gained significant popularity in recent
years. These approaches, including neural diving (Nair et al., 2020) and predict-and-search (PS)
(Han et al., 2023), utilize a neural network to generate an initial solution for a given MILP instance.
Subsequently, a traditional solver is used to find the optimal solution, but its search is confined to a
predefined trust region around this initial prediction. By dramatically narrowing the search space,
this method holds the promise of substantial speedups.

However, the PS paradigm depends critically on the quality of the training data—and more impor-
tantly, on the quality score that defines “quality” for such data. Due to the NP-hard nature of MILP,
training labels are typically not true optimal solutions but a collection of high-quality, near-optimal
solutions obtained by solvers within a time limit (Han et al., 2023; Huang et al., 2024). Existing
PS methods typically select the top solutions and assign weights for training based on their objec-
tive values. We identify two key challenges in the solving process. (1) Using a solution’s objective
value as the sole criterion is inadequate, as it does not account for the solution’s structural proximity

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

PS PS w.i. HQS
0

20

40

60

80

100

120

G
ap

117.980

24.110

CA

PS PS w.i. HQS
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.160

0.070

SC

PS PS w.i. HQS
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.160

0.100

IP

PS PS w.i. HQS
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.009

0.006

WA

𝑦

𝑥𝑥2𝑥1

𝑦1
𝑦2

𝑦3

𝑥3

ba c d e

Figure 1: (a) We observe that while some solutions exhibit high-quality objective values (e.g., x1),
their distance from the optimal solution x3 is significant. Utilizing these solutions for training may
introduce additional noise. (b)-(e) present a comparison of various weighting strategies, specifi-
cally using either the objective value or the holistic quality score, to train the PS model across four
datasets. Training with the holistic quality score results in a smaller performance gap. H.Q.S de-
notes the holistic quality score. The detailed results are reported in Appendix E.

to the true optimal region. Our analysis indicates that many solutions, even with similar objective
values, can be geometrically distant from one another (see Figure 1). (2) Second, simply weighting
solutions by their objective values provides an ambiguous learning signal. It fails to teach the model
to explicitly distinguish between structurally superior solutions and those that are merely locally
optimal. Consequently, training a model with these structurally misleading labels provides a noisy
and biased learning signal, which reduces sample efficiency and often traps the solver in a local
optimum, fundamentally limiting the quality of the final solution.

To address this challenge, we propose a novel metric called the holistic quality score, which eval-
uates solutions based on both their objective values and their internal structures. We introduce the
concept of the near-optimal convex hull, defined as the convex hull of all solutions with the highest
objective values. Using this convex hull, the holistic quality score for any solution is calculated as
a weighted sum of its objective value and its distance to the near-optimal convex hull. This score
enables us to more accurately assess the effectiveness of any given solution in the training process.

Building on the proposed holistic quality score, we introduce HiPO-MILP, a novel Hierarchical
Preference Optimization approach for training solution prediction models. HiPO-MILP constructs a
multi-tiered preference system based on solution quality scores. The highest preference is assigned
to solutions that lie within the near-optimal convex hull, which achieve the top holistic quality scores
and objective values in the dataset. Medium preference is given to solutions with high holistic qual-
ity scores that fall outside the near-optimal convex hull. The third level of preference is designated
for perturbed solutions, which are further classified into two types: low-quality feasible perturbed
solutions, differentiated by their holistic quality scores, and infeasible perturbed solutions, which
receive the worst possible holistic quality score. For modeling training, we leverage the direct pref-
erence learning (DPO) (Rafailov et al., 2023) on explicit preference pairs derived from this clearly
defined hierarchy. The preference learning framework enables our model to identify the subtle
structural features that set optimal or near-optimal solutions apart from those that are merely locally
optimal. Experimental results demonstrate that our method achieves state-of-the-art performance
across various challenging MILP benchmarks.

We summarize the contribution of this paper as follows. (1) We propose a novel hierarchical pref-
erence optimization framework for MILP, grounded in a quality score that unifies a solution’s ob-
jective value and its distance to the optimal set. (2) We integrate this preference learning strategy
with a powerful prediction model to generate superior warm-start solutions that lead to faster con-
vergence for MILP solvers. (3) We conduct extensive experiments across a diverse range of MILP
benchmarks, demonstrating that HiPO-MILP substantially improves both final solution quality and
solving efficiency over existing baselines.

2 RELATED WORKS

2.1 MACHINE LEARNING FOR MILPS

Researchers have leveraged machine learning to accelerate the solving process of MILP (Bengio
et al., 2021). Existing learning-based solving methods include two main lines of research. The first

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

line uses learning-based methods to improve modules in traditional MILP solvers (Li et al., 2024).
They usually replace the heuristics in the solvers with learning-based networks, such as branching
(Gasse et al., 2019; Khalil et al., 2022; Kuang et al., 2024), node selection (He et al., 2014; Liu et al.,
2024), cutting in branch-and-bound solvers (Wang et al., 2023; Puigdemont et al., 2024), and large
neighborhood search solvers (Huang et al., 2023; Sonnerat et al., 2021).

The second line of research uses neural networks to directly predict solutions for the solvers. The
solution prediction methods have gained significant popularity in recent years (Nair et al., 2020;
Han et al., 2023). These methods first leverage neural networks to predict an initial solution and
then call a traditional solver to search for the optimal solution around the initial solution. This
line of research includes neural diving (Nair et al., 2020), predict-and-search (Nair et al., 2020),
and their variants. Neural diving directly fixes some variables in a predicted partial solution, while
predict-and-search employs a trust region search to allow for better feasibility. Contrastive predict-
and-search (Huang et al., 2024) utilizes contrastive learning to improve the prediction accuracy.
SymILO (Chen et al., 2024) exploits the symmetric features of the MILP instances to enhance the
prediction capability further. DiffILO (Geng et al., 2025) integrates gradient information into the
prediction model. Apollo-MILP (Liu et al., 2025), from a search perspective, leverages a prediction-
correction framework to achieve better solution quality.

2.2 PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) (Rafailov et al., 2023) is a stable and efficient policy-learning
algorithm designed to align models with human or objective preferences, emerging as a popular al-
ternative to Reinforcement Learning from Human Feedback (RLHF). Instead of training a separate
reward model to guide the policy, DPO directly optimizes the policy using a preference dataset
(Meng et al., 2024; Ethayarajh et al., 2024). Preference optimization has been applied to combina-
torial optimization for enhanced exploration (Pan et al., 2025; Liao et al., 2025; Fan et al., 2025).
However, these methods are tailored to routing problems, while we are focusing on the complex
general MILP problems.

3 PRELIMINARIES

3.1 MIXED-INTEGER LINEAR PROGRAMMING

Mixed-integer linear programming can formulate a large family of operations research and combi-
natorial optimization problems, which takes the form of

min
x∈Zp×Rn−p

c⊤x, s.t. Ax ≤ b, l ≤ x ≤ u, (1)

where x is the decision variables, c is the objective coefficients, A is the constraint coefficient
matrix, b is the right-hand-side terms of the constraints, and l and u are the lower and upper bound
of the decision variables, respectively. To encode a MILP instance, existing learning-based methods
often present the MILP instances as bipartite graphs. Each group of nodes represents the constraints
and variables in the instances, respectively. Then, these methods employ graph neural network
(GNN) for graph representation learning.

3.2 DIRECT PREFERENCE OPTIMIZATION

DPO (Rafailov et al., 2023) constructs a preference dataset for preference learning. This dataset D
consists of triplets (I,yw,yl), where for a given input I, yw is the preferred (winner) output and yl

is the rejected (loser) output. The core assumption of DPO is that the preference labels are generated
by an implicit reward model r∗(y, I), where a human prefers yw over yl if r∗(yw, I) > r∗(yl, I).
Simple preference optimization (SimPO) (Meng et al., 2024) is an improved version of DPO with
much popularity. The objective of SimPO is to train a policy πθ that best satisfies these preferences.
The SimPO loss function is derived from the Bradley-Terry model (Hunter, 2004), which links
preferences to the underlying reward, and is expressed as:

LSimPO = −E(I,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(y

w|I)− β

|yl|
log πθ(y

l|I)
)]

. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 HIPO-MILP: HIERARCHICAL PREFERENCE OPTIMIZATION FOR MILPS

In this part, we present our HiPO-MILP framework. The overview of the framework is in Figure 2.

𝒙

𝐜𝐨𝐧𝐯(𝑺∗)
𝒅(𝒙, 𝐜𝐨𝐧𝐯 𝑺∗)

min
𝒙

𝒄⊤𝒙

s.t. 𝑨𝒙 ≤ 𝒃

𝒍 ≤ 𝒙 ≤ 𝒖

𝒙 ∈ ℤ𝒑 × ℝ𝒏−𝒑

…

…

𝒂𝒊𝒋

𝒄𝟏

𝒃𝟏

𝒃𝒎

𝒄𝟐

𝒄𝒏

𝒘𝟏

𝒘𝟐

𝒘𝒏

𝒗𝟏

𝒗𝒎

GNN

Direct Preference Optimization (DPO)

Dataset
𝑆∗ 𝑄 𝒙 = −(

𝒄⊤𝒙

𝜏obj
+ 𝜆

𝑑(𝒙, conv(𝒙, 𝑆∗))

𝜏dist
)

𝑥1 ≽ 𝑥2𝑄 𝑥1 ≥ 𝑄 𝑥2 Preference Data:

𝐜𝐨𝐧𝐯(𝑺∗)
𝑥1

𝑥2
𝑥3

𝑥1 ≽ 𝑥2 ≽ 𝑥3

(a) Overview of Our Framework

𝒙

𝐜𝐨𝐧𝐯(𝑺∗)
𝒅(𝒙, 𝐜𝐨𝐧𝐯 𝑺∗)

min
𝒙

𝒄⊤𝒙

s.t. 𝑨𝒙 ≤ 𝒃

𝒍 ≤ 𝒙 ≤ 𝒖

𝒙 ∈ ℤ𝒑 × ℝ𝒏−𝒑

…

…

𝒂𝒊𝒋

𝒄𝟏

𝒃𝟏

𝒃𝒎

𝒄𝟐

𝒄𝒏

𝒘𝟏

𝒘𝟐

𝒘𝒏

𝒗𝟏

𝒗𝒎

GNN

Direct Preference Optimization (DPO)

Dataset
𝑆∗ 𝑄 𝒙 = −(

𝒄⊤𝒙

𝜏obj
+ 𝜆

𝑑(𝒙, conv(𝒙, 𝑆∗))

𝜏dist
)

𝑥1 ≽ 𝑥2𝑄 𝑥1 ≥ 𝑄 𝑥2 Preference Data:

𝐜𝐨𝐧𝐯(𝑺∗)
𝑥1

𝑥2
𝑥3

𝑥1 ≽ 𝑥2 ≽ 𝑥3

(b) Preference Levels

Figure 2: (a) Overview of Our Framework. We employ a GNN to predict an initial solution, thereby
accelerating the solving process for MILP. Using a training dataset that includes multiple solutions,
we construct the near-optimal convex hull and calculate the holistic quality score for each solution.
This score enables us to create preference pairs for preference optimization. (b) Three-Tiered Pref-
erence Levels. The preference levels are categorized from high to low: (1) solutions within the
near-optimal convex hull, (2) solutions outside the convex hull with high holistic quality scores, and
(3) solutions with low scores.

4.1 PREDICT-AND-SEARCH FOR MILPS

To approximate the solution distribution of a given MILP instance, we adopt the PS paradigm (Han
et al., 2023). Specifically, this distribution is defined via an energy function, which assigns lower en-
ergy values to high-quality feasible solutions and infinite energy to infeasible ones. Mathematically,
the distribution and energy function are formulated as follows,

p(x | I) = exp (−E(x | I))∑
x′ exp (−E(x′ | I))

, where E(x | I) =
{
c⊤x, if x is feasible,
+∞, otherwise.

(3)

Here, x denotes a candidate solution, I represents the MILP instance, x′ are summed over the
training dataset, and c⊤x is the objective function of the MILP, ensuring that feasible solutions with
better (lower) objective values correspond to lower energy. Our objective is to learn a parameterized
distribution pθ(x | I) (with parameters θ) that approximates the true solution distribution of I.
To make the learning process computationally tractable (given the discrete and high-dimensional
nature of MILP solutions), we introduce a key simplification: we assume a fully factorized solution
distribution over the binary variables of the MILP. This means the joint probability of a solution
can be decomposed into the product of marginal probabilities for individual binary variables pθ(x |
I) =

∏p
i=1 pθ(xi | I), where p is the number of binary variables in I, and pθ(xi | I) denotes the

model’s predicted marginal probability that the i-th binary variable xi takes the value 1 .

To compute these marginal probabilities, we employ a Graph Neural Network (GNN) as the predic-
tive model. The GNN takes the MILP instance I (typically encoded as a bipartite graph of variables
and constraints) as input and outputs a p-dimensional vector x̂ = fθ(I) = (x̂1, · · · , x̂p)

⊤ ∈ [0, 1]p.
Each element x̂j in this vector directly corresponds to the predicted marginal probability pθ(xj =
1 | I) for the j-th binary variable. For training the GNN, we use a set of weighted feasible so-
lutions {x(i)}Ni=1 as supervision signals. Each solution x(i) is assigned a weight proportional to
the exponential of its negative objective value: wi ∝ exp

(
−c⊤x(i)

)
. This weighting scheme en-

sures that solutions with better objective values exert a larger influence on the training process. The
training loss is a Binary Cross-Entropy (BCE) loss, which minimizes the discrepancy between the
GNN’s predicted marginal probabilities x̂j and the ground-truth binary values x(i)

j of the supervised
solutions:

LBCE(θ | I) = −
N∑
i=1

p∑
j=1

wi ·
[
x
(i)
j log x̂j + (1− x

(i)
j) log(1− x̂j)

]
. (4)

At inference time, the trained GNN outputs the vector of predicted marginal probabilities x̂ ∈ [0, 1]p.
To find the optimal feasible solution for I, we use a standard MILP solver (e.g., Gurobi or SCIP)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and constrain its search to a local trust region around x̂—this avoids the solver exploring the entire
exponentially large solution space. The trust region problem solved by the solver is defined as:

min
x∈Zp×Rn−p

{
c⊤x | Ax ≤ b, l ≤ x ≤ u, x1:p ∈ B(x̂,∆)

}
, (5)

where x1:p denotes the subset of binary variables in x, n is the total number of decision variables
(binary and continuous), and A, b, l,u are the constraint matrix, constraint right-hand-side terms,
and variable bounds of the MILP, respectively. The trust region B(x̂,∆) is defined using the L1-
norm: B(x̂,∆) = {x ∈ Rn | ∥x1:p− x̂∥1 ≤ ∆}, ensuring the solver only explores solutions whose
binary variables are close to the GNN’s predictions .

4.2 HOLISTIC QUALITY SCORE

Existing PS methods typically select the top solutions and assign training weights based solely on
their objective values. However, relying solely on a solution’s objective value is insufficient, as it
does not account for the structural proximity of the solution to the true optimal region. Our analysis
reveals that many solutions, despite having similar objective values, can be geometrically distant
from one another. To address this, we introduce the concept of the holistic quality score, which
evaluates the usefulness of each solution in the training process.

We begin by presenting a theorem that provides a geometric perspective on this issue. Let S∗ denote
the set of all solutions with the best objective values in a given training dataset, and define their
convex hull as the near-optimal convex hull, denoted by conv(S∗). The near-optimal convex hull
has the following critical property (please see Appendix A.1 for the proof).
Theorem 4.1. For a MILP problem, let S∗ be the set of all its optimal solutions or solutions with
the best objective value in a given solution set. Let z∗ be the corresponding objective value. Any
feasible solution y within the convex hull of S∗, denoted conv(S∗), has the objective value z∗.

The distance between any solution and the near-optimal convex hull is well-defined, as stated in the
following theorem (please see Appendix A.2 for the proof),
Theorem 4.2. For any feasible solution y (or any point y), the distance from y to the set conv(S∗)
is uniquely determined. That is, there exists a unique distance value d(y, conv(S∗)).

The foundation of our preference framework is a holistic quality score, Q(x), designed to more ac-
curately measure a solution’s true value as a training label. Instead of relying solely on the objective,
this score combines two critical components (1) objective value and (2) structural proximity, which
is the distance of a solution x to the near-optimal convex hull. This metric captures how structurally
similar a solution is to the optimal or near-optimal region. The score is defined as follows: for any
solution x, we have

Q(x) =

{
−
(

c⊤x
τobj

+ λd(x,conv(S∗))
τdist

)
, if x is feasible;

−∞, otherwise,
(6)

where λ is a non-negative constant that balances the contributions of the objective and the distance
terms, and τobj, τdist are normalizing factors. In particular, τobj serves two purposes: it scales the
objective value to be comparable with the distance term, and it also unifies the optimization direction.
Specifically, for maximization instances, τobj is set to a negative value so that the objective term is
effectively minimized, thereby aligning it with the minimization perspective of the distance term;
for minimization instances, τobj is positive and the direction is preserved. The following observation
shows that the solution of the near-optimal set has the highest holistic quality score (please see
Appendix A.3 for the proof).
Theorem 4.3. Given a solution set S, the solutions in the corresponding near-optimal set S∗ has
the lowest holistic quality score, i.e., for any x,y ∈ S and x ∈ S∗, we have Q(x) ≥ Q(y).

4.3 HIERARCHICAL PREFERENCE OPTIMIZATION

Using the quality score Q(x), we categorize the pool of solutions collected from the solver into a
three-tiered hierarchy, transforming a flat set of solutions into structured data that is well-suited for
preference learning. We introduce the following hierarchical preference framework:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Level 1: Solutions in the Near-Optimal Convex Hull (High Preference). At the top of the hierar-
chy are the solutions with the highest holistic quality scores. We assign them the highest preference
to encourage the model to closely approximate their structure. Accurate predictions in this optimal
region significantly narrow the search space for solvers. We denote this set of solutions as S∗.

Level 2: High-Quality Feasible Solutions (Medium Preference). The second tier comprises solu-
tions with high holistic quality scores that lie outside the near-optimal convex hull. We refer to this
set of solutions as S2.

Level 3: Perturbed Solutions (Low Preference). The final tier consists of perturbed solutions,
which serve as explicit negative examples. These solutions exhibit low holistic quality scores and
include both low-quality feasible perturbations and infeasible solutions, with the latter receiving the
lowest preference. We denote this set of solutions as S3.

By constructing preference pairs from these tiers (for instance, a Level 1 solution is preferred over
a Level 2 solution, and a Level 2 solution is preferred over a Level 3 solution), we create a rich
training dataset. This framework enables HiPO-MILP to learn a more nuanced and effective policy
for predicting high-quality, warm-start solutions.

4.4 PREFERENCE LEARNING IN MILP

HiPO-MILP utilizes simple preference optimization (SimPO) for hierarchical preference learning.
First, we define an implicit reward rθ(x) that the model assigns to a given solution x. This reward
is calculated as the log-probability of the solution under the model’s current policy, scaled by a
temperature parameter β:

rθ(x) = β log πθ(x|I) = β

p∑
j=1

log πθ(xj |I). (7)

A higher reward indicates that the solution is more likely according to the model’s learned distri-
bution. The goal of preference learning is to adjust the model’s parameters θ such that the rewards
align with our hierarchical preference structure.

To construct preference pairs for training, we sample a “positive set” of preferred solutions and a
“negative set” of rejected solutions, resulting in a set of preference pairs D = {(xw,(k),xl,(k))}k.
This sampling reflects our three-tiered hierarchy: if xw,(k) ∈ S∗, then xl,(k) ∈ S2 ∪ S3; if xw,(k) ∈
S2, then xl,(k) ∈ S3. The HiPO loss is formulated as follows:

LHiPO = −E(I,xw,xl)∼D

log σ
 β

|xw|
log

|xw|∑
i=1

πθ(x
w
i |I)−

β

|xl|
log

|xl|∑
i=1

πθ(x
l
i|I)− γ

 . (8)

Here, γ represents trainable margins that help create separation between the reward distributions of
different solution tiers.

The overall training objective for HiPO-MILP combines the standard Binary Cross-Entropy (BCE)
imitation learning loss with our new preference loss:

Ltotal = LBCE + ηLHiPO, (9)

where η is a hyperparameter that balances the two terms. The term LBCE acts as a stabilizer, ensuring
that the model learns the general distribution of high-quality solutions. In contrast, LHiPO refines this
distribution by imposing the crucial hierarchical preference structure. This dual-objective approach
results in a more robust and accurate prediction model capable of generating superior warm-start
solutions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

In this section, we conduct extensive experiments to validate the effectiveness of HiPO-MILP.
Specifically, these experiments include an analysis of HiPO-MILP’s performance improvements
over traditional solvers (Section 5.2), alongside an evaluation of its generalization ability (Appendix
F.3), and detailed ablation studies (Section 5.3 and Appendix F.2) to highlight the efficiency of key
design components in our framework.

5.1 EXPERIMENT SETTINGS

Benchmarks Our experimental evaluations base on four popular MILP benchmarks within the
ML4CO field: combinatorial auctions (CA) (Leyton-Brown et al., 2000), set covering (SC) (Balas
& Ho, 1980), item placement (IP) (Gasse et al., 2022), and workload appointment (WA) (Gasse
et al., 2022). The first two, CA and SC, introduced in (Gasse et al., 2019), serve as standard testbeds
commonly adopted for evaluating ML solver performance (Gasse et al., 2019; Han et al., 2023;
Huang et al., 2024; Liu et al., 2025), while the latter two, IP and WA, derive from two challenging
real-world problem families featured in the NeurIPS ML4CO 2021 competition (Gasse et al., 2022).
Our experimental setup includes 240 training instances, 60 validation instances, and 100 testing
instances, which aligns with the configurations outlined in Han et al. (2023). We give a more detailed
information about benchmarks in Appendix C.

Baselines We primarily compare our method against two categories of baseline methods. First, we
include traditional solvers, including Gurobi (Gurobi Optimization, 2021) and SCIP (Achterberg,
2009), to evaluate whether the heuristic solutions generated by HiPO-MILP can enhance solving
performance. Second, we compare our method with two classic ML-based methods: Predict-and-
Search (PS) (Han et al., 2023) and Contrastive Predict-and-Search (ConPS) (Huang et al., 2024).
PS is a milestone work, as it was the first to propose predicting a partial solution via ML and then
performing a search to obtain a high-quality solution. ConPS, by contrast, is a stronger baseline that
uses contrastive learning between high-quality and low-quality solutions. Detailed implementation
details for these baselines are provided in Appendix B.

Metrics We evaluate each method on all test instances and report the best objective value OBJ
attained within a 1,000-second time limit. Consistent with the experimental setup in Han et al.
(2023), we run a single-threaded instance of Gurobi with a 3,600-second time limit, and designate
its resulting best objective value as the best-known solution (BKS). The BKS is used to approximate
the true optimal value of the problem. We define the absolute primal gap as the absolute differ-
ence between the best objective value identified by each solver and the BKS, formally expressed as
gapabs := |OBJ − BKS|. For identical solving time limits, a smaller absolute primal gap indicates
superior performance.

Implementations In our experiments, we first construct a near-optimal convex hull from the
highest-quality solutions during dataset collection. To generate perturbed solutions, we follow the
method proposed in ConPS (Huang et al., 2024): specifically, we randomly perturb a small fraction
of binary variables in these high-quality solutions by flipping their values. These perturbed solu-
tions are mostly infeasible or of low quality. We then compute the holistic quality score for each
solution based on Equation 6. We provide a detailed description of the implementation, including
data generation, training, and inference. Please refer to Appendix B for more details.

5.2 MAIN EVALUATION

Solving Performance To evaluate the effectiveness of the proposed HiPO-MILP framework, we
compare its solution performance against baseline methods under a 1,000-second time limit. Table 1
presents two core metrics for each solver: the average best objective value and the average absolute
primal gap. Given the use of challenging large-scale benchmark instances, all solvers exhausted the
1,000-second time limit during experiments, this ensures a fair comparison of performance within
the same computational budget. The CA, SC, IP, and WA datasets comprise problems of varying
complexity, with IP and WA instances in particular exhibiting more intricate structures, thereby pos-
ing greater challenges to solver performance. Among the baseline methods, ConPS consistently out-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of between HiPO-MILP and baseline methods under a 1000-
second time limit. All ML-based methods are built upon Gurobi and SCIP solvers, respectively.
Given the use of challenging large-scale benchmark instances, every solver involved hits the prede-
fined 1000s time limit during experiments. We therefore report two core metrics: the average best
objective value and the primal gap (gapabs). ‘↑’ denotes that higher is better, while ‘↓’ indicates that
lower is better. We mark the best values in bold. Furthermore, the improvement of HiPO-MILP
over traditional solvers is quantified, with the improvement degree evaluated based on gapabs.

CA (BKS 97375.08) SC (BKS 124.95) IP (BKS 11.21) WA (BKS 703.09)

Obj ↑ gapabs ↓ Obj ↓ gapabs ↓ Obj ↓ gapabs ↓ Obj ↓ gapabs ↓
Gurobi 97247.84 127.24 125.42 0.47 11.32 0.11 703.27 0.18

PS+Gurobi 97257.10 117.98 125.11 0.16 11.37 0.16 703.18 0.09
ConPS+Gurobi 97286.74 88.34 125.13 0.18 11.34 0.13 703.17 0.08

HiPO+Gurobi 97354.78 20.30 125.04 0.09 11.24 0.03 703.13 0.04
Improvement 84.1% 80.9% 72.7% 77.8%

SCIP 96049.43 1325.65 127.31 2.36 18.00 6.79 706.05 2.96
PS+SCIP 96212.73 1162.35 126.76 1.81 17.51 6.30 705.77 2.68

ConPS+SCIP 96294.93 1080.15 126.54 1.59 17.08 5.87 705.68 2.59

HiPO+SCIP 96354.57 1020.51 126.02 1.07 16.54 5.33 705.63 2.54
Improvement 23.0% 54.7% 21.5% 14.2%

101 103102

Time(s)
0.00

0.01

0.02

Av
er

ag
e

Pr
im

al
 G

ap

CA

101 103102

Time(s)
0.000

0.025

0.050 SC

101 103102

Time(s)
0.0

0.1

0.2 IP

101 103102

Time(s)
0.00

0.01

0.02 WA

Gurobi PS + Gurobi ConPS + Gurobi HiPO + Gurobi

Figure 3: The primal gap of the approaches as the solving process proceeds. Our methods are
implemented using Gurobi, with a time limit set to 1,000s, and we average the results across 100
testing instances. A lower primal gap for our method indicates stronger convergence performance.

performs PS across most datasets, which reflects that incorporating solution information of varying
quality facilitates more effective model learning. The results demonstrate that HiPO-MILP outper-
forms all baselines uniformly and significantly: it achieves the best Obj values and the lowest gapabs
across all benchmark datasets. Specifically, HiPO-MILP reduces gapabs substantially: it delivers
up to an 84.1% improvement in gapabs reduction compared to Gurobi on the CA benchmark, and a
54.7% improvement compared to SCIP on the SC benchmark. For the more complex IP and WA
benchmarks, HiPO-MILP also maintains advantages in both Obj optimality and gapabs reduction. In
addition, we also conduct real-world datasets from MIPLIB and report the results in Appendix F.1.

Primal Gap as a Function of Runtime Figure 3 illustrates the curves of the relative primal gap
over the solving process, where the relative primal gap is defined as gaprel := |OBJ − BKS|/|BKS|.
As shown in Figure 3, while the initial reduction in the gap appears less steep, this observation is
primarily a result of the x-axis scaling. In practice, HiPO-MILP can achieve high-quality solutions
within the first 100 seconds of the solving process. This performance advantage stems from the more
precise variable selection in our proposed approach: the fixed variables predicted by HiPO-MILP
provide a superior initial starting point for the solver, thereby enabling more efficient local search. In
contrast, baseline methods frequently make hasty variable selection decisions based solely on point-
wise training losses. This not only leads to misidentification of critical variables but also causes
premature convergence to suboptimal solutions. Furthermore, HiPO-MILP consistently attains bet-
ter final objective values, which is an outcome that further confirms its inherent advantages in both
convergence speed and solution quality.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDY

Table 2: Comparison of solving performance of HiPO-MILP
with different preference strategies, under a 1,000s time limit.
We report the average best objective values and absolute primal
gap. ‘↑’ denotes that higher is better, while ‘↓’ indicates that
lower is better. We mark the best values in bold.

CA (BKS 97375.08) SC (BKS 124.95)

Methods Obj ↑ gapabs ↓ Obj ↓ gapabs ↓
HiPO w/o S∗+Gurobi 97264.54 110.54 125.08 0.13
HiPO w/o S2+Gurobi 97249.06 126.02 125.11 0.16
HiPO w/o S3+Gurobi 97278.33 96.75 125.07 0.12

HiPO+Gurobi 97354.78 20.30 125.04 0.09

Preference Hierarchy We con-
duct an ablation study to exam-
ine how the three-tiered prefer-
ence scheme contributes to HiPO-
MILP’s performance. We imple-
ment three variants: one omitting
the top tier S∗, one omitting the
middle tier S2, and one omitting
the lowest tier S3. Table 2 reports
the average best objective values
and absolute primal gaps under
a 1,000s time limit. The results
show that removing any tier de-
grades performance, but omitting
the highest tier S∗ causes the most
significant drop in quality and in-
crease in gap. This indicates that the top preference layer plays a critical guiding role in steering the
solver toward high-quality regions. And the other preference hierarchies could help the model learn
a deeper understanding of MILP instances.

Table 3: Comparison of solving performance with different
sample sizes, under a 1,000s time limit. We report the aver-
age best objective values and absolute primal gap. ‘↑’ denotes
that higher is better, while ‘↓’ indicates that lower is better. We
mark the best values in bold.

CA (BKS 97375.08) SC (BKS 124.95)

Sample Size Obj ↑ gapabs ↓ Obj ↓ gapabs ↓
32 97283.51 91.57 125.06 0.11
64 97354.78 20.30 125.04 0.09

128 97350.07 25.01 125.09 0.14
512 97273.55 101.53 125.07 0.12

Preference Pairs In the prefer-
ence learning process, for each
MILP instance we must sample a
number of preference pairs to fine-
tune the model. Intuitively, too
few preference pairs may starve
the model of signal, while too
many pairs may introduce noise or
redundant comparisons and slow
down learning. To assess how
the sample size of preference pairs
affects overall performance, we
evaluate HiPO-MILP using four
different sample sizes: 32, 64,
128, and 512 preference pairs per
instance. Table 3 records the performance of different sample pairs on CA and SC benchmarks.
We see that sampling 64 preference pairs achieves the best result on both benchmarks, increasing to
128 or to 512 leads to slight deterioration, and reducing to 32 also underperforms. This suggests a
“sweet spot” in the number of preference comparisons: enough to capture informative contrasts, but
not so many as to overconstrain or introduce inconsistent signals.

In addition, we also conduct a more detailed analysis of the hyperparameters in preference learning
and search, and further explore the impacts on model performance of two key factors, namely the
number of training instances and top near-optimal solutions which served as labels. All these results
are presented in Appendix F.2.

6 CONCLUSION AND FUTURE WORKS

In this paper, we present a new framework called HiPO-MILP that uses preference learning to fully
exploit information across solutions of varying quality. We define a holistic quality score that com-
bines the objective value and solution distance to assess solution quality. Based on this score, we
organize solutions into a three-tier hierarchical preference structure and use these preferences to
improve the efficiency of extracting information from solutions. Experimental results show that
HiPO-MILP significantly outperforms other ML-based methods in terms of solution quality and
demonstrates strong generalization ability and promising potential for real-world application.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT.

This work is designed to explore the significance of the solution prediction methods in solving
mixed-integer linear programming problems. We do not foresee any direct, immediate, or negative
societal impacts of our research.

REPRODUCIBILITY STATEMENT.

All the results in this work are reproducible. We have discussed the implementation details in Section
5.1 and Appendix B, including the data generation process in Appendix B.1, the training details in
Appendix B.2, and inference details in Appendix B.3.

REFERENCES

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Compu-
tation, 1:1–41, 2009.

Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and subgra-
dient optimization: a computational study. Springer, 1980.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Qian Chen, Tianjian Zhang, Linxin Yang, Qingyu Han, Akang Wang, Ruoyu Sun, Xiaodong Luo,
and Tsung-Hui Chang. SymILO: A symmetry-aware learning framework for integer linear op-
timization. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=RtMyTzIW6l.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model align-
ment as prospect theoretic optimization. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=iUwHnoENnl.

Mingfeng Fan, Jianan Zhou, Yifeng Zhang, Yaoxin Wu, Jinbiao Chen, and Guillaume Adrien Sar-
toretti. Preference-driven multi-objective combinatorial optimization with conditional computa-
tion, 2025. URL https://arxiv.org/abs/2506.08898.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil,
Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Morris Christopher, Dimitri J.
Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia
Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang,
Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei
Huang, Shuchang Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, and
Mao Kun. The machine learning for combinatorial optimization competition (ml4co): Re-
sults and insights. In Douwe Kiela, Marco Ciccone, and Barbara Caputo (eds.), Proceed-
ings of the NeurIPS 2021 Competitions and Demonstrations Track, volume 176 of Proceed-
ings of Machine Learning Research, pp. 220–231. PMLR, 06–14 Dec 2022. URL https:
//proceedings.mlr.press/v176/gasse22a.html.

Zijie Geng, Jie Wang, Xijun Li, Fangzhou Zhu, Jianye HAO, Bin Li, and Feng Wu. Differentiable
integer linear programming. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=FPfCUJTsCn.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443–490, 2021.

10

https://openreview.net/forum?id=RtMyTzIW6l
https://openreview.net/forum?id=iUwHnoENnl
https://arxiv.org/abs/2506.08898
https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html
https://openreview.net/forum?id=FPfCUJTsCn

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hessam Golmohamadi. Demand-side management in industrial sector: A review of heavy indus-
tries. Renewable and Sustainable Energy Reviews, 156:111963, 2022. ISSN 1364-0321. doi:
https://doi.org/10.1016/j.rser.2021.111963. URL https://www.sciencedirect.com/
science/article/pii/S1364032121012284.

LLC Gurobi Optimization. Gurobi optimizer. URL http://www. gurobi. com, 2021.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
In The Eleventh International Conference on Learning Representations, 2023.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra N. Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International Conference
on Machine Learning, 2023. URL https://api.semanticscholar.org/CorpusID:
256598329.

Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina. Con-
trastive predict-and-search for mixed integer linear programs. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 19757–19771. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/huang24f.html.

David R Hunter. Mm algorithms for generalized bradley-terry models. The annals of statistics, 32
(1):384–406, 2004.

Ali Husseinzadeh Kashan and Onur Ozturk. Improved milp formulation equipped with
valid inequalities for scheduling a batch processing machine with non-identical job sizes.
Omega, 112:102673, 2022. ISSN 0305-0483. doi: https://doi.org/10.1016/j.omega.
2022.102673. URL https://www.sciencedirect.com/science/article/pii/
S0305048322000809.

Elias B. Khalil, Christopher Morris, and Andrea Lodi. MIP-GNN: A data-driven framework for
guiding combinatorial solvers. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pp. 10219–10227. AAAI Press, 2022. doi: 10.1609/AAAI.
V36I9.21262. URL https://doi.org/10.1609/aaai.v36i9.21262.

Yufei Kuang, Jie Wang, Haoyang Liu, Fangzhou Zhu, Xijun Li, Jia Zeng, Jianye HAO, Bin Li,
and Feng Wu. Rethinking branching on exact combinatorial optimization solver: The first deep
symbolic discovery framework. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=jKhNBulNMh.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combina-
torial auction algorithms. In Proceedings of the 2nd ACM Conference on Electronic Commerce,
pp. 66–76, 2000.

Xijun Li, Fangzhou Zhu, Hui-Ling Zhen, Weilin Luo, Meng Lu, Yimin Huang, Zhenan Fan, Zirui
Zhou, Yufei Kuang, Zhihai Wang, et al. Machine learning insides optverse ai solver: Design
principles and applications. arXiv preprint arXiv:2401.05960, 2024.

Zijun Liao, Jinbiao Chen, Debing Wang, Zizhen Zhang, and Jiahai Wang. BOPO: Neural combi-
natorial optimization via best-anchored and objective-guided preference optimization. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=FLy6yXdrlW.

Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye HAO, and Feng
Wu. Apollo-MILP: An alternating prediction-correction neural solving framework for mixed-
integer linear programming. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=mFY0tPDWK8.

11

https://www.sciencedirect.com/science/article/pii/S1364032121012284
https://www.sciencedirect.com/science/article/pii/S1364032121012284
https://api.semanticscholar.org/CorpusID:256598329
https://api.semanticscholar.org/CorpusID:256598329
https://proceedings.mlr.press/v235/huang24f.html
https://www.sciencedirect.com/science/article/pii/S0305048322000809
https://www.sciencedirect.com/science/article/pii/S0305048322000809
https://doi.org/10.1609/aaai.v36i9.21262
https://openreview.net/forum?id=jKhNBulNMh
https://openreview.net/forum?id=FLy6yXdrlW
https://openreview.net/forum?id=FLy6yXdrlW
https://openreview.net/forum?id=mFY0tPDWK8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hongyu Liu, Haoyang Liu, Yufei Kuang, Jie Wang, and Bin Li. Deep symbolic optimization for
combinatorial optimization: Accelerating node selection by discovering potential heuristics. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 2067–
2075, 2024.

Qihao Liu, Xinyu Li, and Liang Gao. A novel milp model based on the topology of a network
graph for process planning in an intelligent manufacturing system. Engineering, 7(6):807–817,
2021. ISSN 2095-8099. doi: https://doi.org/10.1016/j.eng.2021.04.011. URL https://www.
sciencedirect.com/science/article/pii/S2095809921001946.

Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple preference optimization with a
reference-free reward. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=3Tzcot1LKb.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Mingjun Pan, Guanquan Lin, You-Wei Luo, Bin Zhu, Zhien Dai, Lijun Sun, and Chun Yuan.
Preference optimization for combinatorial optimization problems. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
Jwe5FJ8QGx.

Pol Puigdemont, Stratis Skoulakis, Grigorios Chrysos, and Volkan Cevher. Learning to remove cuts
in integer linear programming. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 41235–41255. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/puigdemont24a.html.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa9.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. ArXiv, abs/2107.10201, 2021. URL
https://api.semanticscholar.org/CorpusID:236154746.

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model. In The Eleventh International Conference on Learning Representations, 2023.

12

https://www.sciencedirect.com/science/article/pii/S2095809921001946
https://www.sciencedirect.com/science/article/pii/S2095809921001946
https://openreview.net/forum?id=3Tzcot1LKb
https://openreview.net/forum?id=Jwe5FJ8QGx
https://openreview.net/forum?id=Jwe5FJ8QGx
https://proceedings.mlr.press/v235/puigdemont24a.html
https://proceedings.mlr.press/v235/puigdemont24a.html
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://api.semanticscholar.org/CorpusID:236154746

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

USE OF LLMS

Large language models (LLMs) were used to aid writing polish, including refining sentence phras-
ing, logical flow, and prose clarity, without altering original meanings or technical details. LLMs
did not participate in core research tasks (e.g., experiment design, data processing, model training,
result analysis, or drafting key technical content).

A PROOF

A.1 THEOREM 4.1

Proof. Let y ∈ conv(S∗) be a feasible solution to the MILP. We aim to show c⊤y = z∗.

By the definition of the convex hull, y can be written as a convex combination of elements in S∗:

y =

k∑
i=1

λix
(i) with x(i) ∈ S∗, λi ≥ 0,

k∑
i=1

λi = 1.

The objective value of y is computed using the linearity of the objective function c⊤x:

c⊤y = c⊤

(
k∑

i=1

λix
(i)

)
=

k∑
i=1

λi

(
c⊤x(i)

)
.

By definition of S∗, every x(i) ∈ S∗ achieves the optimal objective value: c⊤x(i) = z∗ for all i.
Substituting this into the equation above gives:

c⊤y =

k∑
i=1

λiz
∗ = z∗ ·

k∑
i=1

λi.

Since
∑k

i=1 λi = 1 (by the definition of a convex combination), we conclude:

c⊤y = z∗.

Thus, any feasible solution within the convex hull of the optimal set S∗ must have the optimal
objective value z∗.

A.2 THEOREM 4.2

Proof. For a compact convex set C ⊆ Rn and a point y ∈ Rn, the distance minimization problem

min
x∈C

∥y − x∥

has a unique solution when using the Euclidean norm. By compactness of C, the continuous function
f(x) = ∥y − x∥ attains its infimum on C (Extreme Value Theorem). Thus, there exists at least one
x∗ ∈ C such that ∥y − x∗∥ = d(y, C). Suppose, for contradiction, there exist two distinct points
x(1),x(2) ∈ C such that

∥y − x(1)∥ = ∥y − x(2)∥ = d(y, C).

By convexity of C, the midpoint x(m) = 1
2x

(1) + 1
2x

(2) ∈ C. By the strict convexity of the
Euclidean norm:

∥y − x(m)∥ <
1

2
∥y − x(1)∥+ 1

2
∥y − x(2)∥ = d(y, C),

which contradicts the definition of d(y, C) as the infimum. Thus, x∗ must be unique.

A.3 THEOREM 4.3

Proof. A solution y ∈ S \ S∗ (non-near-optimal) fails to satisfy at least one condition of S∗. We
analyze both failure cases.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Case 1: y /∈ S∗ because c⊤y > z∗ + ϵ1 For x ∈ S∗, by definition of S∗: 1. Objective
term: c⊤x ≤ z∗ + ϵ1. Since c⊤y > z∗ + ϵ1, we have c⊤x ≤ c⊤y. 2. Distance term: Even
if d(x, conv(S∗)) = d(y, conv(S∗)), the smaller c⊤x implies:

c⊤x

τobj
≤ c⊤y

τobj

Combine the two terms in Q(·):

c⊤x

τobj
+ λ · d(x, conv(S∗))

τdist
≤ c⊤y

τobj
+ λ · d(y, conv(S∗))

τdist

Since Q(·) is the negative of the above sum, taking the negative reverses the inequality:

Q(x) ≥ Q(y)

Case 2: y /∈ S∗ because d(y, conv(S∗)) > ϵ2 For x ∈ S∗, by definition of S∗: 1. Distance term:
d(x, conv(S∗)) ≤ ϵ2. Since d(y, conv(S∗)) > ϵ2, we have d(x, conv(S∗)) ≤ d(y, conv(S∗)). 2.
Objective term: Even if c⊤x = c⊤y, the smaller distance implies:

λ · d(x, conv(S∗))

τdist
≤ λ · d(y, conv(S∗))

τdist

Combine the two terms in Q(·):

c⊤x

τobj
+ λ · d(x, conv(S∗))

τdist
≤ c⊤y

τobj
+ λ · d(y, conv(S∗))

τdist

Taking the negative (per Q(·) definition) reverses the inequality:

Q(x) ≥ Q(y)

B IMPLEMENTATION DETAILS

Recent advances in machine learning and graph neural networks have enabled a wave of ML-
augmented approaches for MILP solving (Nair et al., 2020; Han et al., 2023; Huang et al., 2024;
Liu et al., 2025; Geng et al., 2025), with strong results on challenging benchmarks. In our imple-
mentation, we follow the PS (Han et al., 2023) framework as described in the original paper and
released code. HiPO-MILP is finetuned on top of PS and uses the same backbone, a graph neural
network with four half-convolution layers. Because an official implementation of ConPS (Huang
et al., 2024) has not been released, we re-implemented it and carefully tuned hyperparameters to
obtain competitive performance. All experiments were run on a single workstation with an NVIDIA
GeForce RTX 3090 GPU and an AMD EPYC 7402 24-core CPU.

B.1 DATA GENERATION

Following the experimental setup in Han et al. (2023), we employ 240 instances for training, 60
instances for validation, and 100 instances for testing. All reported results reflect the average per-
formance across the 100 test instances. During data generation, we compute the convex hull over
a set of near-optimal solutions and construct perturbed solutions, enabling us to derive the holistic
quality score for each hierarchical preference solution.

Convex hull computation We start by collecting a batch of high-quality solutions for each prob-
lem instance. Intuitively, the quality and diversity of these solutions can strongly influence the ef-
fectiveness of model learning. In Appendix F.2, we further analyze how the number of near-optimal
solutions used as labels affects learning. Rather than solely weighting these solutions by their ob-
jective values for supervision, we also incorporate pairwise distance information among them. To
do so, we extract those solutions whose objective value is equal to the best objective value among
the collected set, and treat them as the vertices of a convex hull. Formally, let {x(i)}Ki=1 ⊂ {0, 1}n

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

denote the K “best” solutions sharing the same objective f∗ = mini c
⊤x(i). For any candidate

solution x, we project it onto the convex hull spanned by {x(i)} by solving

min
λ∈RK

∥V λ− x∥22 subject to λ ⪰ 0, 1⊤λ = 1, (10)

where V = [x(1), x(2), . . . , x(K)] ∈ Rn×K . We solve this convex Quadratic Programming (QP)
(regularized by a small diagonal term εI) using Operator Splitting Quadratic Program (OSQP).
After obtaining λ, we compute xproj = V λ and define the distance

d(x) = ∥xproj − x∥2. (11)

If all solvers fail or the QP is ill-posed, we approximate distance by Hamming distance to the
nearest vertex, i.e.

d(x) ≈ min
i=1,...,K

∥x− x(i)∥1 (12)

over the top-k vertices.

Perturbed solution construction We adopt a perturbation strategy inspired by the ConPS Huang
et al. (2024) to generate perturbed solutions. There are two types of perturbed solutions: infeasible
perturbations and low-quality feasible perturbations. For infeasible perturbations, for each high-
quality solution, we randomly flip a fixed proportion (initially 10 %) of its binary variables. We then
fix those perturbed binary assignments and check if the resulting subproblem becomes infeasible
(for mixed integer programs we verify feasibility over continuous variables). If we fail to generate
enough infeasible candidates, we gradually increase the flip rate by 5% until sufficient samples
are collected. For low-quality perturbations we aim to find feasible solutions that are similar to
the positive sample yet exhibit worse objective values. In the pure binary case we solve a local
branching subproblem that maximizes c⊤x′ under the constraint that the Hamming distance to the
positive sample does not exceed a threshold (e.g. 10 units). We then filter solutions whose objective
difference exceeds a preset margin. In the mixed integer case we treat the problem as a max–min
optimization: we fix the binary part within a small distance, then optimize continuous variables to
maximize the worst objective value. We iteratively impose constraints that force the next solution
to be worse than the previous, thereby extracting degraded feasible solutions. After obtaining these
perturbed solutions, we compute their holistic quality scores in the same fashion as for the other
solutions.

B.2 TRAINING DETAILS

During model training, we adopt SimPO for preference learning to better distinguish among different
solutions. We observe that in many solution pairs, the majority of decision variables share identical
values. If we naively define the preference score as

rθ(x) = β log πθ(x | I) = β

p∑
j=1

log πθ(xj | I), (13)

then the contributions of the few differing variables can be diluted by the many invariant ones. To
mitigate this issue, in practice we focus only on the variables that differ between the two solutions.
Concretely, for a pair (x+,x−), let ∆ = {j | x+

j ̸= x−
j }. We then define a corrected preference

score

rθ(x
+,x−) = β

∑
j∈∆

(
log πθ(x

+
j | I)− log πθ(x

−
j | I)

)
. (14)

This adjustment ensures that the learning signal concentrates on the truly discriminative coordinates.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Moreover, when sampling preference pairs, we impose a threshold on the difference between the
positive and negative samples. If two solutions are extremely similar, forcing a preference label may
lead to overfitting. Therefore, we require that sampled pairs differ by at least a minimal margin both
in objective value and in solution distance. This constraint guarantees that preference supervision
remains meaningful. In Appendix F.2 we provide detailed analysis of how these thresholds affect
model performance.

B.3 INFERENCE DETAILS

In the PS framework, the hyperparameters k0, k1, and δ play a critical role in balancing search
efficiency and solution quality. Because our benchmarks are more challenging than those in the
original PS paper, the PS hyperparameters reported therein yield poor performance in our experi-
ments. Therefore, we carefully re-tune these search parameters, and we enforce that HiPO-MILP
uses exactly the same search parameters as PS, to rule out disparities from differing hyperparam-
eter settings. Table 4 summarizes the parameter choices used for all methods in this work, and in
Appendix F.2 we include a full ablation study of these hyperparameters.

Table 4: The partial solution size parameter (k0, k1) and neighborhood parameter ∆.

Benchmark CA SC IP WA

PS+Gurobi (900,0,80) (4900,40,30) (60,35,55) (200,600,100)
ConPS+Gurobi (900,0,50) (1000,0,200) (400,5,3) (0,500,10)
HiPO+Gurobi (900,0,80) (4900,40,30) (60,35,55) (200,600,100)

PS+SCIP (900,0,80) (4900,40,30) (60,35,55) (200,600,100)
ConPS+SCIP (900,0,50) (1000,0,200) (400,5,3) (0,400,50)
HiPO+SCIP (900,0,80) (4900,40,30) (60,35,55) (200,600,100)

C DETAILS ON BENCHMARKS

C.1 BENCHMARKS IN MAIN EVALUATION

In our primary evaluation we rely on four categories of MILP benchmarks. The Combinatorial
Auction (CA) and Set Cover (SC) instances are generated via the procedures introduced in Gasse
et al. (2019). In particular, the CA family follows the auction-generation scheme from Leyton-
Brown et al. (2000), while the SC instances are produced based on the classical set-cover generation
method in Balas & Ho (1980). The IP and WA datasets are sourced from the NeurIPS ML4CO
2021 challenge (Gasse et al., 2022). Table 5 reports key statistics (number of constraints, variables,
binary/continuous splits) for all these instance classes used in our experiments.

Table 5: Statistical information of the benchmarks we used in this paper.

CA SC IP WA

Constraints 2593 3000 195 64306
Variables 1500 5000 1083 61000
Binary Variables 1500 5000 1050 1000
Continuous Variables 0 0 33 60000
Integer Variables 0 0 0 0

C.2 BENCHMARKS IN USED FOR GENERALIZATION

To assess the generalization capability of our methods beyond the training scale, we synthesize
larger versions of the CA and SC problem families. Using the same generation code as Gasse et al.
(2019), we produce CA instances with around 2,596 constraints and 4,000 variables on average, and
SC instances with approximately 6,000 constraints and 10,000 variables. These enlarged instances

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

are substantially more demanding than those in our training set, and thus serve as a stress test for
cross-scale generalization.

C.3 SUBSET OF MIPLIB

To validate HiPO-MILP on realistic combinatorial challenges, we assemble a targeted benchmark
derived from the MIPLIB 2017 collection (Gleixner et al., 2021). MIPLIB offers a rich variety of
mixed-integer programs drawn from real applications in areas like logistics, energy, network design,
and scheduling. Because the full collection is highly heterogeneous and often too large for learning-
based models to train on end to end, we select a manageable yet representative subset. Our selection
follows an instance similarity approach inspired by prior methods (e.g. Apollo-MILP (Liu et al.,
2025)). Concretely, similarity is measured using one hundred pre-defined instance features (covering
constraint structure, variable statistics, objective coefficients, etc.) as introduced in the MIPLIB doc-
umentation (Gleixner et al., 2021). We begin with the “IIS” family—there are 11 candidate instances
in total. From these, we allocate six for training (namely glass-sc, iis-glass-cov, 5375,
214, 56133, and iis-hc-cov) and reserve the remaining five (i.e. ex1010-pi, fast0507,
ramos3, scpj4scip, and scpl4) for testing. To increase the evaluation challenge, we further
include three large and structurally complex instances (bg512142, dws008-01, dws008-03),
which feature more variables, more constraints, and richer variable/constraint types. Table 6 collects
the detailed statistics of all test instances in our MIPLIB benchmark.

Table 6: Statistical information of the instances in the constructed MIPLIB dataset.

Constraints # Variables # Binaries # Integers # Continuous # Nonzero Coefficient

ex1010-pi 1468 25200 25200 0 0 102114
fast0507 507 63009 63009 0 0 409349
ramos3 2187 2187 2187 0 0 32805
scpj4scip 1000 99947 99947 0 0 999893
scpl4 2000 200000 200000 0 0 2000000
bg512142 1307 792 240 0 552 3953
dws008-03 16344 32280 18928 0 13352 165168
dws008-01 6064 11096 6608 0 4488 56400

D HYPERPARAMETERS

Since HiPO-MILP is obtained by fine-tuning the PS model, most training hyperparameters remain
identical to those in PS. Table 7 lists the hyperparameters specific to HiPO-MILP.

Table 7: Hyperparameters in our experiments.

Hyperparameter CA SC IP WA Description

lr 1e-4 1e-5 1e-5 1e-5 Learning rate for training.
β 0.8 0.8 0.8 0.8 Temperature parameter in reward.
γ 0.2 0.2 0.2 0.2 Margin in the preference learning.
η 5.0 0.5 0.5 0.5 Balancing the two loss functions.

sample numbers 64 32 16 16 Sample pairs in each instance.

E THE IMPORTANCE OF THE HOLISTIC QUALITY SCORE

To further validate the effectiveness of our holistic quality score, we replace the conventional
objective-weighted labels in PS with labels derived from the holistic quality score, train a new model
under that scheme, and present the performance comparison in Table 8. We can easily see that the
model with the holistic quality score holds superior performance than PS on the four benchmarks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison of PS and PS w.i. H.Q.S. H.Q.S denotes the holistic quality score.
Two core metrics are reported: Objective value and absolute gap. ‘↑’ denotes higher is better, while
‘↓’ indicates lower is better. Best values are marked in bold. “Improvement” quantifies the gap
optimization percentage of PS w.i. H.Q.S.+Gurobi over PS+Gurobi.

CA (BKS: 97375.08) SC (BKS: 124.95) IP (BKS: 11.21) WA (BKS: 703.09)

Method Obj ↑ gapabs ↓ Obj ↓ gapabs ↓ Obj ↓ gapabs ↓ Obj ↓ gapabs ↓
PS+Gurobi 97257.10 117.98 125.11 0.16 11.37 0.16 703.18 0.09

PS w.i H.Q.S.+Gurobi 97350.97 24.11 125.02 0.07 11.31 0.10 703.15 0.06
Improvement 79.6% 56.3% 37.5% 33.3%

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 REAL-WORLD DATASET

To demonstrate HiPO-MILP’s practicality on real-world instances, we test it over a curated subset
of MIPLIB problems. For PS and ConPS, we train the model on the training dataset which are
selected based on the instance similarity. In contrast, as a fine-tuning approach, HiPO-MILP exploits
detailed information about solutions: during dataset preparation, we collect 500 high-quality feasible
solutions per instance and use these to fine-tune the model that was pretrained on the synthetic
dataset. At inference time, we hold the search hyperparameters constant across all runs, k0 = 0.6,
k1 = 0.01, and ∆ = 1000, rather than adjusting them per instance. This consistency underscores
the robustness of HiPO-MILP. Table 9 reports the performance on the MIPLIB subset. HiPO-MILP
either matches or surpasses baseline methods in nearly all cases, and interestingly it attains the
best known solution (BKS) on all five test instances on which the baselines fail. These findings
strongly support that HiPO-MILP sustains excellent performance even on challenging real-world
MILP problems.

Table 9: The best objectives found by the approaches on each test instance in MIPLIB. BKS repre-
sents the best objectives from the website of MIPLIB.

BKS Gurobi PS+Gurobi ConPS+Gurobi HiPO-MILP+Gurobi

ex1010-pi 233.00 239.00 241.00 239.00 237.00
fast0507 174.00 174.00 179.00 179.00 174.00
ramos3 186.00 233.00 225.00 225.00 224.00
scpj4scip 128.00 132.00 133.00 133.00 131.00
scpl4 259.00 277.00 275.00 275.00 273.00

dws008-03 62831.76 64452.67 71234.06 67473.85 65685.03
dws008-01 37412.60 37412.60 39043.26 38817.50 37412.6
bg512142 184202.75 184202.75 190193.00 190193.00 188634.5

F.2 HYPERPARAMETER ANALYSIS

Table 10: Effect of temperature β on CA benchmark.

Obj ↑ gapabs ↓
β = 0.2 97284.92 90.16
β = 0.5 97338.25 36.83
β = 0.8 97354.78 20.30
β = 1.0 97274.81 100.27

Analysis of temperature β In the preference learning, the temperature (inverse scale β) governs
how sharply the model’s preference (or reward) distribution emphasizes differences in predicted
scores: a higher β (lower “temperature”) makes the model more confident in selecting high-scoring
items, while a lower β softens the distinctions and encourages exploration. In the MILP setting, this

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

tradeoff becomes more delicate, because the combinatorial solution space is huge and true optimal
solutions tend to lie at extreme corners: if β is too low, the model may fail to discriminate among
many feasible solutions, whereas if β is too high, early mis-preferences risk biasing the search
irreversibly. Table 10 reports the model performance of different β values on CA benchmark.

Analysis of margin γ In preference-learning settings, the margin γ determines how strongly a
preferred item must exceed a dispreferred item in score to enforce a confident preference, effectively
controlling how “aggressive” the preference separation is. In the context of HiPO-MILP, choosing a
large γ biases the model to strictly favor higher-scoring candidates and may risk overconfidence or
rigidity, while a small γ yields softer separations and more uncertainty in preference ranking; thus,
γ modulates the tradeoff between discriminative power and robustness in HiPO-MILP’s preference
modeling. Table 11 reports the model performance of different γ values on CA benchmark.

Table 11: Effect of margin γ on CA benchmark.

Obj ↑ gapabs ↓
γ = 0.1 97118.51 256.57
γ = 0.2 97354.78 20.30
γ = 0.5 97195.32 179.76
γ = 1.0 97068.19 306.89

Analysis of pair interval The way we sample preference pairs profoundly influences how strong
and clear the learning signal becomes. If a positive and a negative example differ only trivially,
the model learns very little; if they differ ambiguously, noise drowns out meaningful signal. In
HiPO-MILP, the notion of a “pair interval” is central, because it governs how bold or conservative
the model’s preference judgments are. A wide interval causes the model to focus only on well-
separated pairs, enforcing strong separation but potentially missing subtler distinctions; a narrow
interval allows many pairs but risks admitting weak or conflicting signals, which degrades learning
speed and reliability. It is essential to make a distinction between two kinds of thresholds: in the
objective domain, the interval defines how large a score difference must be for a pair to count as
informative; in the solution domain, it defines how dissimilar two candidate solutions must be before
we treat them as meaningfully comparable. Table 12 shows model performance under different
objective-level thresholds on the CA benchmark. And Table 13 shows performance under different
minimal distances between solution pairs on the CA benchmark.

Table 12: Model performance for varying objective-level thresholds on the CA benchmark. The
thresholds are set as fractions of the span between the maximum and minimum objective values
among a solution set obtained from traditional solvers.

Obj ↑ gap abs ↓
0.015 97265.10 109.98
0.025 97309.19 65.89
0.050 97354.78 20.30
0.100 97298.35 76.73

Table 13: Model performance across different solution-level distances between paired solutions on
the CA benchmark. We enforce that each pair differ in at least a minimum number of variable
assignments.

Obj ↑ gapabs ↓
3 97321.58 53.50
5 97247.71 127.37
8 97354.78 20.30

10 97290.32 84.76

Analysis of η The hyperparameter η balances between the binary cross-entropy loss and the HiPO-
MILP preference loss: a larger η gives more weight to BCE and thus stabilizes classification,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

whereas a smaller η emphasizes the HiPO-MILP loss and strengthens preference learning. Table
14 reports the model performance of different η values between pair solutions on CA and SC bench-
marks.

Table 14: Effect of η on performance in CA and SC benchmarks.

CA (BKS: 97375.08) SC (BKS: 124.95)

Obj ↑ gapabs ↓ Obj ↓ gapabs ↓
η = 1.0 97272.19 102.89 125.04 textbf0.09
η = 3.0 97332.98 42.10 125.16 0.21
η = 5.0 97354.78 20.30 125.08 013
η = 8.0 97345.70 29.38 125.24 0.29

Analysis of training instance numbers We investigate how reducing the size of the training set
affects the performances of PS and HiPO-MILP. Since HiPO-MILP more fully exploits preference
relationships inferred from data, we expect its performance to degrade more gracefully under data
scarcity, whereas PS may suffer greater decline as it depends more directly on raw samples. Table
15 reports model performance with different training data.

Table 15: Model performance under different numbers of training instances on the CA benchmark.
“80 %”, “50 %” and “30 %” indicate that only those proportions of the original training set are used.

100% 80% 50% 30%

Method Obj ↑ gapabs ↓ Obj ↑ gapabs ↓ Obj ↑ gapabs ↓ Obj ↑ gapabs ↓
PS+Gurobi 97257.10 117.98 97158.02 217.06 97074.86 300.22 97003.88 371.20

HiPO+Gurobi 97354.78 20.30 97290.64 84.44 97228.99 146.09 97167.44 207.64

Analysis of the number of top near-optimal solutions In the PS paradigm guided only by ob-
jective values, relying on a small top-k set risks overfitting: some solutions may have excellent
objective scores yet lie far from the true optimal region in solution space, leading the model toward
misleading local optima. HiPO-MILP, in contrast, alleviates this issue by simultaneously consider-
ing both objective values and solution distances, thus preventing undue trust in structurally distant
but “objectively good” solutions. Furthermore, HiPO-MILP does not treat the top solutions as hard
labels; instead it learns fine-grained preference relations among them, allowing more complete use
of the information embedded in a larger solution set and making its performance less sensitive to the
precise choice of k. Based on this insight, we conducted experiments varying k (e.g. top 5, 10, 20)
to compare the sensitivity of PS and HiPO-MILP to k, and we report the results in Table 16.

Table 16: Model performance with varying numbers of near-optimal solutions used as training labels
on the CA benchmark. “H.Q.S.” denotes the holistic quality score, and “PS w. H.Q.S.” denotes PS
where the weighted solutions are replaced by objective values as the holistic quality score.

10 20 50

Method Obj ↑ gapabs ↓ Obj ↑ gapabs ↓ Obj ↑ gap abs ↓
PS+Gurobi 97257.10 117.98 97126.06 249.02 97177.60 197.48

PS wi. H.Q.S+Gurobi 97350.97 24.11 97306.73 68.35 97315.97 59.11
HiPO+Gurobi 97354.78 20.30 97293.51 81.57 97319.29 55.79

Sensitivity analysis of k0, k1, and ∆ Because we are working on a dataset with far higher scale in
variables and constraints than those typically used by PS, the original PS search parameters perform
quite poorly. We therefore made a careful effort to fine-tune them to find reasonably good settings.
To avoid any bias in comparing HiPO-MILP to PS, in all experiments we fix PS’s tuned parameters
and use the same settings for HiPO-MILP. Figure 4 shows the performance of PS and HiPO-MILP
on the CA dataset under varying values of k0, k1, and ∆. Overall, across almost all parameter
configurations, HiPO-MILP considerably outperforms PS.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

700 800 900 1000

k0

95800

96000

96200

96400

96600

96800

97000

97200

97400

O
b

j
97168

96940.9

97257.1

96062.1

97192.5

96920.9

97354.8

96061.4

PS

HiPO

0 5 10 20

k1

95500

95750

96000

96250

96500

96750

97000

97250

97500

97257.1

96436.4

96321.6

95929.7

97354.8

96394.5

96206.7

95834.4

50 60 80 100

95000

95500

96000

96500

97000

97500

95008.7

95577.9

97257.1

97095.6

94974.2

95680.1

97354.8

97134.4

cba

Figure 4: Sensitivity analysis of k0, k1, and ∆ on the CA benchmark. The default configuration
(k0, k1,∆) is (900, 0, 80). (a)–(c) show performance when varying k0, k1, and ∆ respectively
while holding the other two parameters fixed.

F.3 GENERALIZATION

To further assess the generalization power of HiPO-MILP, we evaluate its performance on expanded
CA and SC instances with much larger numbers of constraints and variables, as detailed in Appendix
C.2. We apply the HiPO-MILP model trained on the primary benchmark directly, without any
additional finetuning, to these scaled-up instances. Table 17 summarizes the outcomes, confirming
that HiPO-MILP can successfully generalize to more demanding and structurally complex problems.

Table 17: Generalization results of 100 larger instances on CA and SC using Gurobi with a 1000
seconds time limit. ‘↑’ indicates that higher is better, and ‘↓’ indicates that lower is better. We mark
the best values in bold.

CA (BKS: 115498.51) SC (BKS: 102.09)

Method Obj ↑ gapabs ↓ Obj ↓ gapabs ↓
Gurobi 114672.25 826.26 103.85 1.76

PS+Gurobi 114940.13 558.38 103.93 1.84
ConPS+Gurobi 115053.87 444.64 103.84 1.75

HiPO-MILP+Gurobi 115154.14 344.37 102.93 0.84

G DISCUSSIONS

G.1 LIMITATIONS

While HiPO-MILP demonstrates significant improvements in MILP solving efficiency through hier-
archical preference optimization, it still faces certain limitations. One primary constraint lies in the
dependency on the quality and diversity of the preference pairs sampled during training; although
our method constructs a three-tiered hierarchy to enhance the learning signal, sampling sufficiently
informative and high-quality pairs remains challenging, especially for highly complex or degenerate
MILP instances where the distinction between near-optimal and perturbed solutions may be sub-
tle. Future work could explore more efficient methods for generating preference pairs or adaptive
strategies for tuning these parameters dynamically. Moreover, exploring alternative preference opti-
mization algorithms beyond SimPO, or incorporating reinforcement learning to dynamically adjust
the preference hierarchy during training, might lead to more robust and sample-efficient learning.

G.2 FUTURE AVENUES

There are several promising directions for extending HiPO-MILP. First, the framework could be
adapted and fine-tuned for more complex, real-world MILP applications, such as large-scale supply
chain optimization, energy grid management, or financial portfolio planning, where instance struc-
tures are highly heterogeneous and often contain domain-specific constraints; by leveraging transfer
learning or domain adaptation techniques, HiPO-MILP could be tailored to these settings, poten-
tially offering even greater performance gains. Second, further advancements could be made in

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

the design of the underlying model architecture—–for instance, integrating more expressive graph
neural networks or attention-based mechanisms to better capture the intricate relationships between
variables and constraints in MILP instances.

22

	Introduction
	Related Works
	Machine Learning for MILPs
	Preference Optimization

	Preliminaries
	Mixed-integer Linear Programming
	Direct Preference Optimization

	HiPO-MILP: Hierarchical Preference Optimization for MILPs
	Predict-and-Search for MILPs
	Holistic Quality Score
	Hierarchical Preference Optimization
	Preference Learning in MILP

	Experiments
	Experiment Settings
	Main Evaluation
	Ablation Study

	Conclusion and Future Works
	Proof
	Theorem 4.1
	Theorem 4.2
	Theorem 4.3

	Implementation Details
	Data Generation
	Training Details
	Inference Details

	Details on Benchmarks
	Benchmarks in Main Evaluation
	Benchmarks in Used for Generalization
	Subset of MIPLIB

	Hyperparameters
	The Importance of the Holistic Quality Score
	Additional Experimental Results
	Real-world Dataset
	Hyperparameter Analysis
	Generalization

	Discussions
	Limitations
	Future Avenues

