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ABSTRACT

We introduce a framework for robust uncertainty quantification in situations where
labeled training data are corrupted, through noisy or missing labels. We build on
conformal prediction, a statistical tool for generating prediction sets that cover the
test label with a pre-specified probability. The validity of conformal prediction,
however, holds under the i.i.d assumption, which does not hold in our setting due
to the corruptions in the data. To account for this distribution shift, the privileged
conformal prediction (PCP) method proposed leveraging privileged information
(PI)—additional features available only during training—to re-weight the data
distribution, yielding valid prediction sets under the assumption that the weights
are accurate. In this work, we analyze the robustness of PCP to inaccuracies in the
weights. Our analysis indicates that PCP can still yield valid uncertainty estimates
even when the weights are poorly estimated. Furthermore, we introduce uncertain
imputation (UI), a new conformal method that does not rely on weight estimation.
Instead, we impute corrupted labels in a way that preserves their uncertainty. Our
approach is supported by theoretical guarantees and validated empirically on both
synthetic and real benchmarks. Finally, we show that these techniques can be
integrated into a triply robust framework, ensuring statistically valid predictions as
long as at least one underlying method is valid.

1 INTRODUCTION

Modern machine learning models are increasingly deployed in high-stakes settings where reliable
uncertainty quantification is essential. This need becomes even more critical when dealing with
imperfect training data, which may be affected by noisy or missing labels. A common strategy to
quantify prediction uncertainty is to construct prediction sets that cover the true outcome with a
user-specified probability, e.g., 90%. Conformal prediction (CP) (Vovk et al., 2005) is a powerful
framework for constructing theoretically valid prediction sets. Given a predictive model, CP utilizes
labeled holdout calibration samples to compute prediction errors, which are then used to construct
prediction sets for unseen test points. To provide a validity guarantee, this procedure requires that
the training and test data are exchangeable, an assumption that does not hold in many real-world
scenarios in which the observed data is corrupted.

To illustrate the challenge of providing reliable inference under corrupted data, we conduct an
experiment on the Medical Expenditure Panel Survey (MEPS) (meps_19) dataset where the goal is to
predict an individual’s medical utilization (Y € ) given a set of features (X € X), such as race,
income, medical conditions, and other demographic variables. We simulate a missing-at-random
setup by randomly removing labels with a probability that depends on the features. Since we cannot
use the samples with missing labels to compute the prediction error, we naively employ CP using
only the observed data to construct prediction sets aiming to cover the true Y with 90% probability.
Figure 1 shows that this Naive CP fails to achieve the desired coverage due to the distributional
shift induced by the missing labels.

However, in this special case, the distributional shift is a covariate shift which we can account for
using the method of weighted conformal prediction (WCP) (Tibshirani et al., 2019). This method
weights the data distribution by the labels’ likelihood ratio so that the train and test points will
look exchangeable. Figure 1 reveals that WCP applied with the true weights attains the desired
1 — a = 90% coverage rate, as theoretically guaranteed in (Tibshirani et al., 2019). Nevertheless,
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WCP requires all test features X to be observed to compute the weights. This assumption might not
hold in practice, e.g., when an individual does not share sensitive attributes at test time, such as their
income or race in our MEPS example, due to privacy concerns. In such cases, WCP is infeasible and
cannot be employed as it is impossible to compute the weights.

The goal of this work is to provide reliable inference under
the setup of corrupted labels with missing features at test
time (Collier et al., 2022; Wu et al., 2021; Ortiz-Jimenez
et al., 2023). We refer to these features as privileged
information (PI) (Vapnik & Vashist, 2009)—additional
information available during training but unavailable at
test time. In our MEPS example, the privileged features
are I"E'ICG, income, an individual’s rat1ng of feeling, and Figure 1: Coverage rate obtained on the
more; see Appendix B for more practical examples of MEPS19 data

PI. Privileged conformal prediction (PCP) (Feldman & )

Romano, 2024) is a recent novel calibration scheme that builds on WCP to generate theoretically
valid prediction sets without access to the test PI. However, PCP assumes access to the true weights
of WCP, a requirement that might not hold in real-world applications. Indeed, Figure 1 shows that
when applied with estimated weights, PCP does not achieve the nominal coverage level on the MEPS
dataset. In this work, we focus precisely on this gap: what if the true weights are unavailable?

-~
Ut

Coverage
% 2

(Infeasible)

Naive CP WCP  PCP  Ours

1.1 OUR CONTRIBUTION

This work provides two key contributions. First, we analyze the robustness of PCP and WCP to
inaccuracies in the approximated weights. We formally characterize the conditions under which these
methods maintain valid coverage despite the errors of the weights. In contrast with prior work (Lei &
Candes, 2021; Bhattacharyya & Barber, 2024; Gui et al., 2024; Marmarelis et al., 2024) that deal with
a worst-case analysis, our study reveals that PCP and WCP may construct prediction sets that attain
the desired coverage rate even under significant errors in the weights, as demonstrated in empirical
simulations in Section 3.1.2. Hence, the formulations developed in this work offer new theoretical
guarantees and practical insights for these methods.

Second, we propose uncertain imputation (UI)—a novel calibration scheme that generates theoreti-
cally valid prediction sets in the presence of corrupted labels. In contrast to WCP and PCP, which
assume that the weights can be estimated well from the PI, here, we assume that the clean labels
can be estimated well from the PI (Wu et al., 2021; Xu et al., 2021; Collier et al., 2022). Under
several assumptions, we show how to impute corrupted labels in a way that preserves the uncertainty
of the imputed labels. By leveraging recent results on label-noise robustness of conformal predic-
tion (Einbinder et al., 2023; Sesia et al., 2024), we theoretically show that our uncertainty-preserving
imputation guarantees the validity of our proposal even when the weights are unreliable. Importantly,
PCP might fail to achieve the nominal coverage level in such cases. Indeed, Figure 1 demonstrates
that our proposed UI achieves the desired coverage rate while PCP does not.

Finally, we leverage the complementary validity conditions of PCP, UI, and CP, and propose
combining all three into a triply robust calibration scheme (TriplyRobust) that constructs valid
prediction sets when the assumptions of one of the methods are satisfied. Lastly, we conduct
experiments on synthetic and real datasets to demonstrate the effectiveness of our proposed methods.

1.2 PROBLEM SETUP

Suppose we are given n training samples {(X;, Y;, Z;, M;)}™_,, where X; € X denotes the observed
covariates, 3?; € Y the observed, potentially corrupted, labels, Z; € Z the PI, and M; € {0, 1} is the
corruption indicator. Specifically, if M; = 0 then YQ =Y;, where Y}, is the clean, ground truth label.
Otherwise, if M; = 1, then 171 is corrupted. For instance, in a missing response setup, if M; = 1 then
}71; = ‘NA’. At test time, we are given the test features X' = X, 1, and our goal is to construct a

prediction set C'(X'") C ) that covers the test response Y'*' = Y,, 1 at a user-specified probability
1—a,e.g., 90%:

P(Y'* € C(X®Y) > 1—a. (1)
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This property is called marginal coverage, as the probability is taken over all samples
{(X;, Y;.Y;, Z;, M; ) Z“rll, which are assumed to be drawn exchangeably (e.g., i.i.d.) from
Py v v,z a- The primary challenge in obtaining (1) is the distributional shift between the training
data {(X;,Y;)}" ; and the test pair (X, 41, Y,+1). In practice, naively applying CP on the corrupted
data could lead to unreliable uncertainty estimates (Barber et al., 2023), or overly conservative
prediction sets (Einbinder et al., 2023). Moreover, calibrating using only the clean data introduces
bias since the clean samples are drawn from Px y|a7—0, While the test distribution is Px y . This bias
might lead to undercoverage, as demonstrated in Figure 1.

To account for this bias, we assume the privileged information explains the corruption appearances,
ie., (X,Y) 1 M | Z. We study the robustness of PCP (Feldman & Romano, 2024) to inaccuracies
of the weights under this assumption. We then consider an alternative setup where the clean label Y’
can be estimated well from Z, and develop the method UT to construct prediction sets satisfying (1)
even when the weights cannot be approximated accurately. Lastly, we combine all methods into a
triply robust calibration scheme which enjoys the validity guarantees of both methods. See Table 1 in
Appendix C.4 for a summary of our results.

2 BACKGROUND AND RELATED WORK

2.1 CONFORMAL PREDICTION

Conformal prediction (CP) (Vovk et al., 2005) is a popular framework for generating prediction
sets with a guaranteed coverage rate (1). It splits the dataset into a training set, denoted by Z;, and
a calibration set, denoted by Z5. A learning model f is then trained on the training data and its
performance is assessed on the calibration set using a non-conformity score function S(-) € R:
S = 8(X;,Ys; f ) Vi € Z,. For example in regression problems, the score could be the absolute

residual S(z,y; f) = | f(x) — |, where f represents a mean estimator. The next step is computing
the (1 +1/|Z2|)(1 — «)-th empirical quantile of the calibration scores for the nominal coverage level:

QF = (1+1/|Z3|) (1 — «)-th empirical quantile of the scores {S; };c7, -

Finally, the prediction set for a test point is defined as:

CCP(Xtest) — {y : S(XteS[,y; f) < QCP}- (2)

This prediction set is guaranteed to achieve the desired marginal coverage rate, assuming that the
calibration and test samples are exchangeable (Vovk et al., 2005). Since this is not the case in our
setup, the next section introduces WCP, an extension of CP designed to handle covariate shifts.

2.2  WEIGHTED CONFORMAL PREDICTION

In the previous section, we noted that prediction sets constructed by CP might fail to achieve the
desired coverage level due to the corruptions in the data. To overcome this issue, one could apply
CP using only the scores of the uncorrupted samples, i.e., {S(X;, Y;, f)}iezgc, where Z3¢ = {i €
Ty : M; = 0}. Although these scores are computed using the true labels and are therefore accurate,
considering only the uncorrupted samples induces a covariate shift between the calibration and
test data. The weighted conformal prediction (WCP) (Tibshirani et al., 2019) method corrects this
covariate shift by weighting the non-conformity scores using the likelihood ratio w(z) = 4Eec (),

where dPies(2), dPyrain(z) are the densities of the test and train probabilities, respectively. in this
context, the weights can be expressed as w(z) = %@J) (Feldman & Romano, 2024). Then, it
extracts the quantile of the weighted distribution:

w(Z;) 5o 4 w(Ze)
S Si . oo
EjGI;Cw(Zj) +w(Ztest) ZjEIZ,Cw(Zj) +w(Zlest)
3)
The prediction set is constructed similarly to (2), except for using the threshold Q"°F (Z''). While

this procedure is guaranteed to achieve the nominal coverage level, it cannot be applied directly since
it relies on access to the test PI Z'*, which is unavailable in our framework.

Q" (Z*") := Quantile [ 1 —a; Y
i€TY
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2.3 CONFORMAL PREDICTION WITH NOISY LABELS

The works of Einbinder et al. (2023); Sesia et al. (2024); Penso & Goldberger (2024); H. Zargarbashi
et al. (2024); Penso et al. (2025); Bashari et al. (2025) explore the setup where CP is employed with
noisy labels. The main conclusion of Einbinder et al. (2023) is that CP remains valid label noise when
the noise is dispersive, i.e., increasing the variability of the observed labels. Specifically in regression
tasks, their analysis reveals that CP remains valid when the noise is symmetric and additive. Their
study also explores different noise models and provides empirical evidence for the robustness of CP.
Building on these results, in Section 3.2 we impute corrupted labels with noisy versions of the true
ones in a way that leads to a valid coverage rate. Additional related work is given in Appendix B.

3 METHODS

In this section, we split our study into two cases based on the role of the PI: either as an indicator
of the corruption indicator M or as a proxy for the label Y. In the first case, for example, Z may
represent an annotator’s expertise level, such that a lower value may correspond to a higher likelihood
of label noise. We present PCP, a method for constructing reliable uncertainty sets in this setup, and
analyze its robustness to inaccuracies in the estimated corruption probabilities. In the second setting,
we assume that the PI serves as a proxy for the label itself, for example, Z may be a high-resolution
image or detailed clinical reports available only during training. For this case, we develop UI-a novel
imputation technique that leverages Z to generate theoretically valid uncertainty sets.

3.1 CASE 1: WHEN THE PI EXPLAINS THE CORRUPTION INDICATOR

3.1.1 PRIVILEGED CONFORMAL PREDICTION

The PCP (Feldman & Romano, 2024) procedure begins by partitioning the data into a training set,
71, and a calibration set, Z,. Subsequently, a predictive model f is trained on the training set, and a
non-conformity score is computed for each sample in the calibration set: S; = S(X;, Yi; f ), Vi € Zy.
We also compute the likelihood ratio between the training and test distributions to calculate the weight
for each sample i: w; := Mﬁg’i‘;‘ﬁzﬁ. Next, we treat each calibration point in Z5 as a test point and
apply WCP as a subroutine using the uncorrupted calibration samples to derive the score threshold
Q(Z;) for the i-th sample. The final test score threshold, denoted as QF°F, is then defined as the
(1 — j3)-th empirical quantile of the calibration thresholds {Q(Z;)} (icz,}:

1 1
PCF — Quantile | 1 — 3; ———bo(z) + =——000 | ,
Q Q ( B Z Zo] + 1 Q(Z:) 1Zo| + 1 )

i€,
where § € (0, «) is a pre-defined level, e.g., 8 = 0.05. Finally, for a new test input X%, the
prediction set for Y'* is constructed as follows: CFF (X'!) = {y CS(Xy, f) < QPCP}.This
prediction set is guaranteed to obtain a valid coverage rate, as stated next.
Theorem 1 (Validity of PCP (Feldman & Romano, 2024)). Suppose that {(X;,Y;, Y;, Zi. Mi)}f;ll

are exchangeable, Y L. M | Z, and Py is absolutely continuous with respect to Pz pr—o. Then, the
prediction set CFF(X') achieves the desired coverage rate: P(Y'™' € CPF(X')) > 1 — a.

The above theorem provides a valid coverage rate guarantee even without access to the test PT Z',
and despite the corruptions present in the data. Nevertheless, the true weights w; are required for this
guarantee to hold. In the following section, we study the robustness of PCP to inaccurate weights.
Surprisingly, our analysis provided hereafter reveals that PCP can achieve the nominal coverage rate
even when applied with inaccurate approximates of w;.

3.1.2 Is PCP ROBUST TO INACCURATE WEIGHTS?

The following robustness analysis of PCP is divided into two parts. First, we consider a case where
the inaccurate weights {w;}?_, are shifted by a constant error 6 € R from the true weights for all
samples. In the second, we extend the analysis to a more general setting where the error varies across
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Figure 2: The coverage rate of PCP applied on synthetic data with weights shifted by §. Green:
valid coverage region, orange: invalid coverage region. Left: Naive CP under-covers the response.
Right: Naive CP achieves over-coverage. Results are averaged over 20 random splits of the data.

samples. We remark that the theory developed in this section also applies to WCP, as detailed in
Appendix A.1. We begin by examining the case of constant error, formulated as:

w; = w; +0, Vi=1,...,n. 4)

We remark that, in this analysis, we do not consider the sign of the weights and allow them to become
negative. We denote the sum of the true weights by Wy, := Z§:1 w; and recall that Q"°F from (3)

is the threshold constructed by WCP using the true weights. We also denote by Q°F the threshold
generated by Naive CP, which is CP from Section 2.1 applied using only the uncorrupted data; see
Appendix A.1.1 for more details. These notations set the ground for the conditions required for PCP
to achieve the desired coverage rate.

Theorem 2. Suppose that the assumptions of Theorem 1 hold. Further, suppose that at least one of the
following holds: (1) P (QF > Q"F) > 1—ecandd > 0; (2) P (QCP > Q"< —W"“) >1—eg

n+1
B P(QF < Q5> -~ M) > 1 —cand § < 0; (4) P(QT = Q") > 1~ = Then, the
prediction set CF(X'*") constructed by PCP with weights shifted by 8, as in (4), satisfies:

P(Yzext c CPCP(Xzext)) Z 1— a— €.

The proofs are provided in Appendix A.1. If Naive CP attains the nominal coverage rate, i.e.,
QF > Q"CF, PCP also achieves high coverage even when the weights are poorly estimated (§ > 0 or
J is sufficiently negative). However, if Naive CP undercovers, i.e., Q¥ < Q"°F, then the weights

must be accurate for PCP to be valid, specifically, 6 must lie within the narrow interval ( — VZ:_*; , O).
We demonstrate Theorem 2 on two synthetic datasets. In the first dataset, Naive CP achieves
over-coverage, while in the second, Naive CP undercovers the response. For each dataset, we
apply PCP using weights shifted by 4, as in (4). We refer to Appendix D.3 for the full details about
this experimental setup. The coverage rates of PCP for different values of § are shown in Figure 2.
This figure indicates that when Naive CP over-covers, PCP achieves valid coverage for 6 > 0 or

o< — VZ’rll ~ —1. However, when Naive CP undercovers, 6 must lie within (— VZ’fl‘ 7()) for

PCP to achieve the nominal coverage rate. This result is connected to the MEPS experiment from
Figure 1 in which Naive CP and PCP undercover the response, indicating that the weight error
does not fall inside the interval. To conclude, the empirical regions of § in which PCP is valid that we
observed in this experiment align with the theoretical bounds from Theorem 2.

Next, we consider the setting in which the errors are not uniform:
w; = w; + 05, Vi =1,...,n. 5

We assume that the errors are bounded: 6; € [Omin, Omax] fOr some dyin, dmax € R and 5 = (6; —
Omin)/(Omax — Omin) are the normalized errors. We denote the XOR operator by (a XOR b) =
((not a) and b) or (a and (not b)), and the NXOR operator by (¢ NXOR b) = (not (a XOR b)). We
also denote by £"°F the index of the score corresponding to the threshold Q"< from (3), generated by
WCP with true weights: k"°F := min {k : Zle w;/Wp41 > 1 — ap. We now derive the conditions

under which PCP applied with weights of a general error achieves valid coverage.
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Theorem 3. Suppose that the assumptions in Theorem 1 hold. Further suppose that one of the
following is satisfied:

cp WCP < Ay 1 Wywer — Ay wer Whg1 ) _§n1axAn+l+Wn+l _
1P (Q%F < QU (§ < Sl Rl NXOR by > — b iloss)) >
&

cp wep % A1 Wymer —Apwee Wi g1 ) B Smax D1+ W1 _
2. ]P (Q > Q » (6 S Wn,+1kWCP—(7l+1)WkWCP XOR 5mm > n+17An+1 Z 1 &

CP _ wCP N Ap 1 Wywer —Apwee Wing1 AkWCP W wep _
3. P(QF =@, (5 < Syt Bustlon NyoR S < Fi) ) > 1 ¢

Above, A}, = Zle s, and & = Sin / (8max — Omin)- Then, the prediction set C*°F(X'*") constructed
by PCP with weights shifted by a general error, as in (5), attains the following coverage rate:

]P)(Yzext c CPCP(Xzext)) Z 1— a— €.

Theorem 3 establishes the connection between the errors d; and the validity of PCP. Similarly to the
constant error setting, the validity of PCP depends on whether Naive CP obtains overcoverage or
undercoverage. Here, however, the region of i, dmax in Which we attain valid coverage is more
complex and determined by the true weights w; and the distribution of the normalized errors d;. In
the case that Naive CP achieves overcoverage, the validity region is defined by the XOR of two
variables, whereas in the case of undercoverage, the validity region is the exact complement, and
given by the NXOR of the same variables.

Figure 8 in Appendix F.2 illustrates the coverage validity of PCP along with the theoretical bounds
derived in Theorem 3 for various combinations of dyin, dmin. We experiment on the same synthetic
datasets from Figure 2 while using weights with varying errors. We examine two distributions of
d;: uniform distribution and right-skewed distribution, where most samples are concentrated in the
top 5% of the range (dmin, Omax)- See Appendix E.2 for further details regarding the experimental
setup. This figure shows that the bounds of Theorem 3 align with the empirical coverage validity
of PCP, with minor discrepancies arising from interpolating discrete values. Furthermore, this figure
reveals that different error distributions of §; yield diverse validity regions: the validity region of a
uniform distribution is diagonal, while the validity region of the right-skewed distribution is horizontal.
Moreover, we observe a pattern similar to the one observed in Figure 2: when Naive CP overcovers
the response, the validity region is extensive, spanning almost the entire space, excluding one interval.
In contrast, when Naive CP undercovers, the validity region is limited to one interval. Finally, we
refer to Appendix F.2 for additional experiments demonstrating the effect of inaccurate weights on
the coverage rate attained by PCP.

3.2 CASE 2: WHEN THE PI EXPLAINS THE LABEL

In this section, we introduce uncertain imputation (UI), a novel and different approach to address
corrupted labels, which, in contrast to PCP, does not require access to the conditional corruption
probabilities. With UI, however, we use the PI, which is always observed, to impute the corrupted
labels with an uncertain version of them, and show that this procedure achieves a valid coverage rate
under several assumptions. This way, UI can obtain valid coverage even when PCP does not.

We begin by splitting the data into three parts: a training set, Z;, a calibration set, Z,, and a reference
set Z3, from which the residual errors will be sampled to account for the uncertainty in the estimated
labels. Then, we fit two predictive models to estimate the response using the training data: (1) a
predictive model f () that takes as an input only the feature vector X — as in standard CP; and (2) an
additional predictive model g(x, z) that utilizes both the feature vector X and the PI Z to predict Y.
Next, we compute the residual error of g for each point in the reference set:

E; =Y, — §(Xi, Zi),Vi € Is. (6)
We define £(z) as a reference set of holdout errors conditional on z, i.e., £(z) :={E; : i € I3, Z; =
z} and denote by F(z) a random variable drawn uniformly from £(z). We impute the corrupted
labels using this set:

Vi e IQ (7)

P =

(v if M; = 0,
9(Xi, Z;) + E(Z;) otherwise ’



Under review as a conference paper at ICLR 2026

Next, we compute the non-conformity scores of the imputed calibration set: S; = S(X;,Y;; f),Vi €
7T5, and define the threshold using these scores:

1 1
Ul .= Quantile | 1 — a; Jg + 0oo | -
@7=Q ( 2 ol +17% 7 T + 1 >

i€To

Finally, for a new input data X', we construct the prediction set for Y as: CUI(X'™%!) =
{y L S(XEy, f) < QYT } We summarize this procedure in Algorithm 2 in Appendix C.3. We now
show that UT achieves a valid marginal coverage rate if (1) g is sufficiently accurate; and (2) the set
C"? contains all peaks of the distribution of Y | X, Z, as formulated next.

Theorem 4. Suppose that {(X;,Y;,Y;, Zi, M)} 1! are iiid,, and (X,Y) 1L M | Z. Denote
by C"(z) = la(x),b(z)] the prediction set constructed by UI that draws errors from the true

distribution of E | Z. Suppose that Y follows the model: Y = g*(X, Z) + €, where ¢ is drawn from
a distribution Pg« and e 1L X | Z. Further, suppose that

1. § is sufficiently accurate so that there exists a residual R™" satisfying: (a) (X', Z'*") =
g* (Xtest’ Ztest) + Rtest, (,ll’ld (b) Rrest 1L (g* (‘X'test7 Ztest)’ CUI(Xtest)) | Ztest_

2. Forevery z € Z and x € X such that fxiws ges(x,z) > 0 the density of Y | X' =
x, Z'" = z is peaked inside the interval [a(x), b(x)], i.e.,

(a) Yo >0: fyre.\-r‘Xre.sr:x7zre.\-r:z (b(x) -+ ’U) 2 fyre.sr|sz-1=_,£,zresrzz(b(l’) — U), and
(b) \V/’U > 0 . fyre.vr‘Xresr:w7zre.vrzz (a(:p) — ’U) Z fY"'“|X"’”:J;,Z’”’:Z(a(x) =+ U).

Then, P(Y'™' € CUVH( X)) > 1 — a.

The proof is given in Appendix A.2. Theorem 4 requires that the residual errors are independent
of the prediction of § and of CY* given the PI Z. Notably, this assumption does not restrict the
distribution of the errors or their magnitude and holds even under substantial errors. The second
assumption states that the distribution of Y | X, Z is concentrated in the predicted interval, and that
the density at Y = y decreases as we move away from this interval. Importantly, this assumption
does not limit the number of peaks in the distribution of Y | X, Z, as long as all such peaks are
inside the interval. Moreover, since the PI is strongly indicative of the label in our framework, the
distribution of Y | X, Z is expected to be relatively simple in practice. Overall, this assumption
is relatively mild, particularly for prediction intervals that aim to achieve a high coverage rate. In
Appendix F.5 we empirically evaluate these assumptions. We remark that in practical applications, if
Z is continuous or high-dimensional, the reference set £(z) might be empty or too small. To alleviate
this, we recommend employing the clustering techniques described in Appendix C.3.1.

3.3 TRIPLY ROBUST CONFORMAL PREDICTION WITH PRIVILEGED INFORMATION

Recall that PCP and UT rely on different sets of assumptions to provide a theoretical guarantee.
Therefore, we propose combining these calibration schemes to enjoy the robustness guarantees of both
methods. In addition, since Naive CP generates valid prediction sets when the underlying model

f is ideal, we include it in the ensemble of the calibration schemes. In sum, this TriplyRobust
method takes the test features vector X' and unifies the prediction sets of all three methods:

CTriplyRobust (Xtest) — CNaive CP (Xlest) U OPCP (Xtest) U CUI (Xtest). (8)
This approach achieves the nominal coverage rate if the assumptions of one of the methods hold:
Theorem 5. Suppose that {(X;,Y;,Y;, Zi, Mi)}'F ! are exchangeable, and (X,Y) 1L M | Z.
Further, suppose that at least one of the following is satisfied: (1) The model f is sufficiently accurate
so that the scores {S(X;,Ys; ) i =1,...,n, M; = 0} U{S(X"" Y™ f)} are exchangeable; (2)
The assumptions of Theorem 1 hold; (3) The assumptions of Theorem 4 hold. Then, the prediction set
CTriplyRobust( X1est) from (8) achieves the desired coverage rate:

]P;(Y{est c CTriplyRobust(Xtesl)) >1—q
Intuitively, Theorem 5 guarantees that TriplyRobust generates valid uncertainty sets if at least

one of the following distributions is well-estimated: Y | X (Naive CP), M | Z (PCP),orY | Z
(UI). In the following section, we demonstrate the robustness of this approach.
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4 EXPERIMENTS

In this section, we quantify the effectiveness of our proposed techniques through three experiments. In
all experiments, the dataset is randomly split into four distinct subsets: training, validation, calibration,
and test sets. For the UT method, the original calibration set is further partitioned into a reference set
and a calibration set. The training set is used for fitting a predictive model, and the validation set is
used for early stopping. The model is then calibrated using the calibration data, and the performance
is evaluated on the test set over 30 random data splits. Moreover, we use the CQR (Romano et al.,
2019) non-conformity scores, aiming to obtain 1 — v = 90% coverage rate. The full details regarding
the training methodology, datasets, corruption techniques, and the overall experimental protocol are
given in Appendix E. We further demonstrate our proposals on a causal inference task using the
NSLM dataset (Yeager et al., 2019) in Appendix F.3.

4.1 SYNTHETIC EXPERIMENT: THE ROBUSTNESS OF TRIPLYROBUST

We demonstrate the robustness of TriplyRobust by combining degenerate and oracle variants
of each underlying component: quantile regression (QR), PCP, and UI. We generate a synthetic
dataset with 10-dimensional inputs X, 3-dimensional privileged information Z, and a continuous
response Y that is a function of X and Z. The dataset is artificially corrupted by removing labels,
such that labels with greater uncertainty have a higher probability of being removed. The degenerate
variant of QR outputs the trivial prediction set {0}, while the oracle version uses the true conditional
quantiles of Y | X to achieve the desired conditional coverage. Similarly, the degenerate version of
PCP computes weights using half the true corruption probabilities. In contrast, its oracle counterpart
employs the correct probabilities. The trivial imputation method assigns missing labels the value 0,
while the oracle method draws labels from the true conditional distribution of Y | Z. Figure 3 shows
that when all three components are degenerate, TriplyRobust achieves a coverage rate lower
than the nominal level. However, when at least one technique is oracle-based, TriplyRobust
produces valid uncertainty estimates. This experiment reveals that the coverage rate achieved by
TriplyRobust is not overly conservative, despite being a union of three intervals.

degenerate QR oracle QR

& e — o RS B =
%"90 """"" R . e PCP
§ I degenerate
80 == T oracle
degenerate oracle degenerate oracle
Imputation Imputation

Figure 3: The coverage achieved by TriplyRobust with “degenerate” or “oracle” models.

4.2 SYNTHETIC EXPERIMENT: WEIGHTS ARE HARD TO ESTIMATE

To demonstrate the advantages of UT compared to PCP, we adopt the synthetic setup from Feldman
& Romano (2024), where Z is a strong predictor of Y. The only difference is that we engineer
the missingness mechanism to be challenging to estimate; see Appendix D.3 for details. Figure 4
shows that PCP fails to attain the nominal 90% coverage rate due to inaccuracies in the estimated
weights. In contrast, UI relies on accurate estimates of Y from (X, Z) rather than on weights;
therefore, it consistently achieves the desired coverage, as guaranteed by Theorem 4. This experiment
demonstrates that UT can achieve the desired coverage rate, even in cases where PCP does not.

4.3 REAL DATASETS WITH ARTIFICIAL CORRUPTIONS

In this section, we evaluate the proposed UI in a missing response setup using five benchmarks used
in Feldman & Romano (2024): Facebook1,2 (facebook), Bio (bio), House (house), Meps19 (meps_19).
We follow Feldman & Romano (2024) and artificially define the PI as the feature in X with the
highest correlation to Y and remove it from X, so that the PI is unavailable at test time. Since all true
labels are available in the original datasets, we artificially remove 20% of them similarly to Feldman
& Romano (2024) to induce a distribution shift between missing and observed variables.
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Figure 4: Complex weights experiment. The performance of Naive CP,PCP and UI.

We employ the naive conformal prediction (Naive CP) that uses only the observed labels, PCP,
with either estimated corruption probabilities or true ones used for computing the weights w(z), and
the proposed UI. Additionally, to demonstrate the importance of the error sampling scheme of UT,
we apply CP with a naive imputation scheme that replaces missing labels with the mean estimates
of Y | X,Z (Naive Imputation). The performances of all calibration schemes are presented
in Figure 5. This figure indicates that the naive approaches produce too narrow intervals that do
not achieve the desired coverage level. This is anticipated, as the validity guarantees of CP do not
hold under distribution shifts or naive imputations. However, PCP, and the proposed UI consistently
achieve the target 90% coverage level, as they appropriately account for the distributional shift. This is
also indicated by Theorem 4. Notably, since PCP with estimated weights is valid while Naive CP is
not, Figure 2 suggests that weight estimation errors fall within the theoretical validity region. Overall,
this experiment reveals that UT constructs uncertainty intervals that are both statistically efficient and
reliable. The performance of TriplyRobust in this experiment is provided in Appendix F.6.

o = = == Method
S 90 G a““% """" o = ﬂ ------------- é ---------- ﬁ B Naive CP
E ° : - B Naive |
3 S {_; = aive Imp.
“ 50 -l-f i I PCP (est. weights)
facebookl facebook?2 bio house meps19 B PCP (oracle weights)
Dataset I Uncertain Imp.
=
09
e
<
g =
I R e
facebookl facebook?2 bio house meps19
Dataset

Figure 5: Missing response experiment. The performance of various methods; see text for details.

5 DISCUSSION AND IMPACT STATEMENT

In this work, we analyzed the impact of inaccurate weights on WCP and PCP, and introduced UT,
a novel calibration technique for reliable uncertainty quantification under corrupted labels. Our
theoretical guarantees, supported by empirical experiments, demonstrate that UT constructs valid
uncertainty estimates. While the validity conditions we derived for WCP and PCP are theoretically
grounded, they require access to true weights, which are unavailable in practice. This calls for a
promising future research direction in estimating these conditions from the available data. One
limitation of our proposed UI is that it requires the features and responses to be independent of
the corruption indicator given the privileged information, which resembles the strong ignorability
assumption in causal inference (Rubin, 1978; Rosenbaum & Rubin, 1983; Imbens & Rubin, 2015).
Furthermore, our approach assumes that the label variability depends only on the PI and that the
labels can be accurately estimated from the features and PI. In practice, our experiments indicate that
our method attains valid coverage. Finally, we acknowledge potential social implications, akin to
many developments in ML.
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A THEORETICAL RESULTS

A.1 ANALYSIS OF INACCURATE WEIGHTS ON WEIGHTED CONFORMAL PREDICTION

In this section, we analyze the coverage rate achieved by WCP applied with estimated (inaccurate)
weights. Before we present the analysis, we begin by defining notations that will be used throughout
the theoretical analysis.

A.1.1 NOTATIONS

Suppose, without loss of generality, that the indices of the calibration set are {1,...,n}. For the
simplicity of the proof, we suppose without loss of generality that the indices are sorted by the score,
ie.,

Vi € {1,...,77,71}:52' < Si+1

For ease of notations, we define S;,11 = oo, while the score of the test sample is denoted by

S(X 41, Yni1; f). Recall that the ground truth weights used by WCP are formulated by:

test

7 (Zi)

wi =w(Z) = w7y
z i

The inaccurate weights are denoted by w;. The true normalized weights are formulated by: p;, =

le - where W, := Z?Zl w; is a partial sum of weights. Similarly, we denote the normalized

inaccurate weights by p;. We denote the threshold chosen by WCP with the oracle weights {wl}:j 11
by Q"°F, which is the (1 — «) empirical quantile of the distribution Y ", p;ds, + Pnt100c. The
corresponding index k"°F is defined as:

k
kWCP:min{k:Zpizl—a}. 9)

i=1

Similarly, denote by QWCP the threshold chosen by WCP applied with the inaccurate weights w;, which
is the 1 — v empirical quantile of the distribution " | p;8s, + Pn+100. Finally, we denote by Q°F
the threshold of naive CP applied with no weights, and by k“* its corresponding index:

k
1
k°® = min<{ k : >1- . 10
min { ; = a} (10)
Notice that the interval constructed by WCP with oracle weights is given by:

C"®(z) == {y € V: S(z,y; f) < Q"*},

and similarly, the interval constructed by WCP with the inaccurate weights is

C"®(z) = {y eV : Sz, y; f) < Q"}. (11)

A.1.2 CONSTANT ERROR

In this section, we consider the setting where the inaccurate weights have a constant bias from the
ground truth ones across all samples. Formally, we assume that there exists 6 € R such that:

W, = w; +0,Vi € {1,...,77,}.

The normalized inaccurate weights are therefore given by:

Py = w; . w; + 0 B w; + 6
oy Y (wy+6) Wap+(n+1)d

We begin with a general lemma that provides a deterministic connection between k% and k"°F, as
defined in (10) and (9), respectively.

Lemma 1. Suppose that the calibration set is fixed, and equals to {(X;,Y:, Z;) = (zi,vi, 2i) }1q
for some x; € X y; € Y,z; € Z foralli € {1,...,n}. Further suppose that the test PI is fixed
as well, i.e., Z, 11 = z for some z € Z. Then, Q"F > Q"F if and only if one of the following is
satisfied:
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1. k°F > E"Fand (6 > 0ord < —VZ’:T

2. k% < KPP and — UL < 5 <0
3. kCP — pCP

Furthermore, Q"°F > QC if and only if one of the following is satisfied:

1. k8 > K" and (§ < — Y2t

cp WCP Wit

3. kCP — k.WCP

Proof. If § = 0 then w; = w; for all ¢ and thus the intervals constructed by WCP with the oracle
weights w; are identical to the ones constructed with the inaccurate weights w; and therefore achieve

the same coverage rate. From this point on, we only consider § # 0. Furthermore, if § = — VZJII
then p; is not defined and hence we do not consider this case and suppose that § # — VZ’:’II . Observe

that

kWCP kWCP

Zﬁl < Zpi ]%WCP > EWCP QWCP > QWCP.
=1 =1

WCP WCP
We now analyze when Zle Di < Zle p; is satisfied. We split into three cases. First, we consider
6> 0:

kWCP kWCP
E i < g Di
i=1 i—1

Wigee + K"CF§ Wgnce
Wn+1 + (n + 1)5 - Wn+1
(Woee + K" 8) W1 < Wioer Wiy + (n +1)9)
kWCP(SWTH_l Wkwcp (TL + 1)5
mee Wjgnee
0
n+ 1 Wn+1
JCP Wiice
n+1 Wn+1
kCP > kWCP .

IAIA

0

IN

IN

Wit

T <d<O:

‘We now turn to —

k:WCP k:WCP
S hi<) b
i=1 i=1

WkWCF + kWCP(S Wkwcp
Wn+1 + (n + 1)5 Wn+1
(Wkw(:; + ]fWCP(S)Wn+1 Wkwcp (Wn+1 + (TL + 1)(5)
kWCPJWn_i_l Wkwcp (’/L + 1)6
kWCP WkwcP
1
n + 1 Wn+1
kWCP Wkwcp
n+1 Wn+1
k‘CP < kWCP .

IN

<
<

0

IN

Y
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. . Wi,
Finally, if 6 < — e
kWCP k_WCP

S hi<) b
i—1 =1

Wkwcp —|— kWCP6 < Wkwcp
Wn+1 + (TL + 1)5 - Wn+1
(Wiaee + k" P8 Wa1 > Wiee (W1 + (n + 1)0)
kWCP6Wn+1 Z Wkwcp (Tl + 1)5
WCP oo
k 5> Wign
n+1 = Wn+1
Lnee Wce
<
n+1 "~ Wn+1
kCP > kWCP

0

We now compare the threshold of WCP applied with inaccurate weights to the threshold of naive CP:

kCP kCP

QWCP>QCP s JWCP S pCP ZZ§<Z 1 — Wiee + k6 < kCP.
- - Tl Woii+(n+1)6 ~ n+1

Ifo > — "“ then:

Wier + kCF0 k°F
Whsi+(n+1)0 ~ n+1
(Wiee + k°F8)(n + 1) kCPWn 1+ kF(n+1)8
Wier (n + 1) Wi
Wiee (n + 1) E© Wn+1
Wiee k

Wn+1 n+1
kCP < kWCP.

IN

IN I/\ IN

IN

Ifo < — "“ then:

chp k‘CP
>

— kP > ke,
Wpy1  n+1 -

chp > QCP

O

We now present a stochastic result that states the conditions under which WCP achieves a conserva-
tive coverage rate with inaccurate weights. Here, the randomness is taken over random draws of
(X”_;,_l, Yn-{—l) from PX,Y|Z'

Proposition 1. Suppose that the calibration set is fixed, and equals to {(X;,Y:, Z;) = (zi,yi, 2i) }1q
forsome x; € X,y; € V,z; € Z foralli € {1,...,n}. Further suppose that the test Pl is fixed as

well, i.e., Zy 11 = z for some z € Z. Then, C"F(X,,11), as defined in (11), achieves a conservative
coverage rate, i.e,:

IP(KL+1 S C’WCP(Xn+1) | Zn+l =z, {(X’Lv}/la Z’L) = (x’myhzz)}?:l)
>P(Yni1 € C"F(Xni1) | Zngr = 2,{(X,,Yi, Zi) = (24, i, 2) Yiey)

if one of the following is satisfied:

1. k> k" and (6 > 0ord < — n_ﬁl

cp WCP Wit
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3. kCP kWCP

If the above holds with probability at least 1 — ¢ over the drawing of Z, 11, then we get a high
marginal coverage rate:

P(Yni1 € C"F(Xppa) | {(Xi,Yi, Zi) = (23,90, 20) iy
> P(Yi1 € C"F(Xop1) [{(X0,Yi, Zi) = (24,9, 2i) bimr) — €
Furthermore, C'"°F (X,41) achieves a higher coverage rate than Naive CP, i.e.,
P(Yni1 € C"(Xni1) | Znsr = 2,{(X3, Y3, Zi) = (i, yir 21) Y1)
> P(Yns1 € CF(Xpp1) | Znr = 2, {(X0, Y3, Zi) = (i, 93, 20) Fiey)
if one of the following is satisfied

Cp wCpP W1
1.k >k ana’(5<—nJrl

cp WCP Wit

3. kCP kWCP

If the above holds with probability at least 1 — € for the drawing of Z,, 1, then, we get a high marginal
coverage rate:

P(Yoi1 € C"F(Xns1) | {(Xi,Yi, Zi) = (4,95, 20) Yy
> P(Yny1 € CF(Xngr) | {(X0, Y5, Zi) = (@i, i, 20) bim1) — €.

Proof. The probabilities in this proof are taken for drawing (X,,+1,Y,+41) ~ Px y conditional on
the fixed calibration set {(X;,Y;) = (;,v;)}?_, and the fixed test P Z,, 1 = z. For ease of notation,

we omit the conditioning on the calibration set in the formulas. Notice that in this case, QWCP,QWCP,
QF are deterministic since these are functions of the calibration set and the test PI Z,, ;. Observe
that by the construction of the uncertainty sets:

Q" > Q" = P(Yyy1 € C"F(Xpi1) | Zng1 = 2) = P(Yns1 € C"F(Xp1) | Zusr = 2),
and
Q" > Q% = P(Yni1 € C"F(Xpi1) | Zng1 = 2) = P(Yg1 € OF (Xni1) | Zng1 = 2).

Therefore, P(Y,,11 € C’WCP(Xn+1) | Zpny1 = 2) > P(Yyq1 € C"*(Xp41) | Zng1 = z) holds if
Q"F > Q"F, which, according to Lemma 1, is equivalent to assuming that one of the following is
satisfied:

1. k°* > k" and (6 > 0ord < — n’_"fll

cp WCP Wit
2. EF <k and—n_s_1 <6<0

3. kP = CE,

Denote the event that one of the above requirements is satisfied by E. Following Lemma 1 we get
that P(Q"F > Q"* | ) = 1. If E holds with probability 1 — &, where the randomness is taken
over Z,+1, then we get:

P(Yo1 € C"F(Xnp1)) = P(Yngs € C"F(Xppn) | E)P(E)
> P(Ypi1 € C"F(Xo41) | E)P(E)
=P(Yp1 € C"F(Xpp1)) — IP’(Yn+1 € C"F(Xpq1) | E)P(E)
> P(Ypi1 € C"F (X)) —

Similarly, P(Yy41 € C"*(Xpi1) | Zns1 = 2) > P(Yngq € C®(Xpp1) | Zns1 = 2) holds if
Q" > Q°F, which, according to Lemma 1, is equivalent to assuming that one of the following is
satisfied:

17
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CP WCP n+1
1. k°F > k" Fand § < — =

2. kK < k" and — an )

3. kCF = R,

If the above holds with probability 1 — € over random draws of Z,,.; = z € Z, then by the same
reasoning as before, we get a high marginal coverage rate:

P(Yys1 € C"F(Xpnt1)) = P(Yns1 € CF(Xnp)) — .
O

We now present a different stochastic result in which the randomness is taken over the randomness in
the drawing of all calibration and test data points.

Proposition 2. Suppose that the calibration and test samples are given by {(X;, Y, Zi)}?:f. Further,
suppose that one of the following holds:

1. Pk > k"F)>1—candd >0,

4. P (kP = k"F) > 1 —¢.

2. P (kP > k7P § < — "+1)21—5,

n+1

3 P (kP < k7P 6> — "+1>21—5and(5§0,

n+1

Then, we get a high marginal coverage rate:

P(Yoi1 € CAWCP(Xn+1)) > P(Yni1 € C"F(Xpt1)) — e

Proof. Denote by E; the following event:

kCP kWCP f(s >
B = { > , ifo >0,

kCF < KCF G > — Tl if 5 < 0.

We denote Ey = k°F = k", B3 = (kK > k"® and § < 7‘/1/;_?11 ).

FE = F;or E5 or Es.

By the construction of E and our assumptions, P(F) > 1 — e. Following Lemma 1 we get that
P(Q"F > Q"F | E) = 1. By combining these, we get:

P(Ynt1 € éWCP(Xn+1)) P(Ynt1 € CWCP(XnJrl) | E
P( n+1 € CWCP(Xn-i-l) |
(Y1 € C"F (X)) — P( w1 € C"F (X,11) | E)P(E)
2 P(Yny1 € CWCP(XH+1))

Building on our theoretical results for WCP under constant weight error, we now turn to PCP applied
with constant weight errors and prove Theorem 2.

Proof of Theorem 2. According to Feldman & Romano (2024, Theorem 1), we get that when applied
with the same weights, PCP achieves a higher coverage rate than WCP, that is:

IPD(Yn+1 € épcp(Xn+1)) > P(Yn+1 € CA’WCP(Xn—&-l))-

18
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Since the assumptions of Proposition 2 hold, we obtain:
P(Yoi1 € C"F(Xn11)) > P(Yopa € C"F(Xpp1)) — e
Lastly, under the exchangeability of the samples, Tibshirani et al. (2019, Corollary 1) states that:
P(Ypi1 € C"F(Xp41)) > 1—a.
By combining it all, we get:

P(Vpy1 € C°F(Xpp1)) > 1—a—e.

A.1.3 GENERAL BOUNDED ERROR

We now turn to consider the setup where the inaccurate weights w; are at bias ¢; from the true weights
w;.

The errors d; are assumed to be bounded by 6; € [dmin, Omax)> Where dmin < dmax € R. Notice that the
setting where O, = Omax 1S the case analyzed in Appendix A.1.2. We denote the normalized error

d; by: Sl = (0; — Omin)/ (Omax — 6min2 and Ay, = Zle 57 We also denote 0 = Spin/(dmax — Omin)-

Notice that since dyax > Omin We get A, 11 < n + 1. We follow the notations from A.1.1 and define
the following requirements:

1. 5< Ap 1 Winer —Apwer Wig1
: - n+1E"F —(n+1)Woner *
Smax Ay 14+ Winia
2‘ 6 . > __ 9max n«i»l‘~ n+4
min n+l1—-Anq1
Akwcp W wice
. e o Whoee
3 Apt1 — Cht1

We begin with a general lemma that provides a deterministic connection between k% and k"%, For
this purpose, we define

(a XOR b) = ((not @) and b) or (a and (not b)),
(a NXOR b) = (not (a XOR b)).

Lemma 2. Suppose that the calibration set is fixed, and equals to {(X;,Y:, Z;) = (zi,vi, 2i) }1q
for some x; € X,y; € Y,z € Z foralli € {1,...,n}. Further suppose that the test PI and the

errors {0;}17] are also fixed, i.e., Z,, 11 = z for some z € Z. Then, Q" > Q" if and only if one
of the following is satisfied:

1. k% < k"CF and (requirement 1 NXOR requirement 2),
2. k°F > k"°F and (requirement 1 XOR requirement 2),

3. k® = k"°" and (requirement I NXOR requirement 3).

Proof. We begin the proof by developing Zficf p; and Zficf Pi

kWCP kWCP
- wi - Wkwcp
Sh S
i=1 o3 i Wy n+1
kWCP kWCP “ k)WCP
Z . Z W; Z w; + (51 Wkwcp —+ Akwcp
bi = n+1 « = n+1 = ‘
i=1 S e Y w6 Wan B
Observe that:
kWCP kWCF
N 7.WCP WCP AWCP WCP
Sopi <Y pi = B R = QU > QN
i=1 =1
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We begin by developing requirement 2:
W1 + An+1 >0

Wii1 + (Omax — Omin) Ang1 + (04 1)6min > 0
OmaxAni1 = OminAni1 + (0 + 1)0min > Wit
[(n+1) = Api1]0min > —OmaxAng1 — Wit
ma A+ W

5min ~
n+1-— An+1
We now turn to requirement 1, considering the case where £— > W"WCP , meaning that Q°F < Q"F.
Here, we have 2= > Wee oy Wy, kWP — (4 1)Wkwcp > O.

n+1 Wit
(Wkwcp + AkV\CP) n+1 < (Wn+1 + An+1)Wkwcp
Wises W1 + Agoce Wiy i1 < Wy Wiser + Ay g1 Wies
Wkwcp

A WCP < 7An
b o Wn+1 1
(5max - 5min)AkWCP + kwcpémin < kaw [(5max 5mm)An+1 + (” + 1)5mm]
n+1
Apes + £ < kaa [Ani1+ (n+1)d]
n+1

n_;’_lAkWCP —|— Wn-i—lk 5 fwee An-‘,—l —|— Wkwcp (n + )5
5 [Wn+1kWCP (TL —+ 1 Wkw ] n+1 Wkwcp — Akwcp Wn+1
An+1 Wkwcp — AkWCP Wn+1

)
Wn+1kWCP - (TL + 1)Wkwcp

IN

We conclude the case TH > W’“WCF by observing that
kWCP kWCP W A W
kWCP + kWCP kWCF
QWCP > QWCP D < Di S
zzl ! Z ! Wn+1 + An—0—1 Wn+1

Notice that, according to the above der1vat10ns, the last inequality holds if and only if both requirement
1 and requirement 2 are satisfied, or both requirements are not satisfied. This is equivalent to
requirement 1 NXOR requirement 2.

Wi W
We now consider the case where k— < ’“‘ < that is that Q°F > Q"°". Here, £ 1 < ’“Vfi —

Wt 1k"F — (n 4+ 1) Wiaee < 0. ThlS case 1s almost identical to the previous one, except for the
following:

An_t,_kaWCP — Akwcp Wn+1
(Whaer + Agiee ) Wyg1 < (Wigt + App1)Wiier <= 6 > W BT — (1 1) Wier

Also, according to the same reasoning, we know that:
QWCP > QWCP — Wiwee + AkWCP < W pwce
Wist +Ang1 — Wi
Therefore, Q"* > Q"® holds if and only if exactly one of requirement 1 and requirement 2 is
satisfied. This is equivalent to requirement 1 XOR requirement 2.

We now turn to analyze the setting where % J:; = VMZ’C—T‘;
(Wiee + Apee)Wip1 < (Wagr + D) Wigee <=
S[Wi1 K™% — (n+ 1) Wiee] < Appig Wigeee — Apuee Wiy =
0< Ap i Wiger — Apee Wiyy =
Apsr Wig1 € Dyt Wiaor =
Ak < Wiser
Apyr~ Wan
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Notice that requirement 3 is defined as the last inequality. We therefore conclude that Q"% > Q"°®
holds if and only if requirement 1 NXOR requirement 3 is satisfied. O

We now present a stochastic result that states the conditions under which WCP achieves a valid
coverage rate when applied with weights that have a general error. The randomness is taken over
random draws of (X1, Y4 1) from Px y 7.

Proposition 3. Suppose that the calibration set is fixed, and equals to {(X;,Y:, Z;) = (zi,yi, 2i) }1q
Jor some x; € X,y; € Y,z € Z foralli € {1,...,n}. Further suppose that the test PI and the
errors {(Si}?jll are also fixed, i.e., Zp 1 = z for some z € Z. Then, C'WCP(Xn+1), as defined in (11),
achieves a conservative coverage rate, i.e,

P(Yoi1 € C"*(Xns1) | Znsr = 2, {(Xi, Vi, Zi) = (24, i, 20) Hoy)
Z ]P(Yn-i-l S CWCP(XTH-I) | Z’n.+1 =z, {(XHYM Zz) == (xiayiazi)}?:l)

if and only if one of the following is satisfied:
1. kF < k"CF and (requirement 1 NXOR requirement 2)
2. k°F > k"°? and (requirement 1 XOR requirement 2)

3. k® = k"°F and (requirement 1 NXOR requirement 3)

Furthermore, if the above holds with probability at least 1 — € over the random draws of Z,,+ 1, then
we get a high marginal coverage rate:

P(Yoi1 € C"F (Xng1) | {(X0, Y5, Zi) = (4,93, 2) Hy)
2 ]P)(Yn+l € CWCP(XTL-‘,-I) | {(X“ )/’L'a Zz) - (xivyiv Z’L)}?:l) —E&.

Proof. The proof is identical to the proof of Proposition 1 except for applying Lemma 2 instead of
Lemma 1 and hence omitted. O

We now present a different stochastic result in which the randomness is taken over random splits of
the calibration and test samples.

Proposition 4. Suppose that the calibration and test samples are given by {(X;,Y;, Z;) Y. Further
suppose that:

1. P (kK < k" (requirement I NXOR requirement 2)) > 1 — ¢,
2. P (k® > k"F (requirement 1 XOR requirement 2)) > 1 — ¢,

3. P (k°F = k"F (requirement 1 NXOR requirement 3))) > 1 —¢

Then, we get a high marginal coverage rate:

IP)(YnJrl € OWCP(XnJrl)) > P(Yn+1 € CWCP(Xn+1))v

Proof. The proof is identical to the proof of Proposition 2 except for applying Lemma 2 instead of
Lemma I and marginalizing over the randomness of the errors, and hence omitted. O

The above theory sets the ground for Theorem 3.

Proof of Theorem 3. The proof is identical to the proof of Theorem 2 except for applying Propo-
sition 4 instead of Proposition 2, and marginalizing over the randomness of the errors, and hence
omitted. O
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A.2 UNCERTAIN IMPUTATION

Lemma 3. Denote the prediction interval function C(x) = [a(z), b(z)]. Suppose that Y follows the
model:
Y = (X, 2) +e.

where ¢ is drawn from a distribution Pg+ and ¢ |l X | Z. Suppose that

1. There exists a random variable R"" drawn from a distribution Pp such that:

(a) g(X[eSt’ Ztest) — g*(Xtest, Ztesi) + Rtest,
(b) Rle&‘t J-L g* (Xt@st7 ZIESI) | ZleXt’
(C) RZL’ST J_I_ C(XIL’SZ) | Zz‘est'

2. Forevery z € Z and v € X such that fxws ges(x,2z) > 0 the density of Y'*' | X' =
x, 2" = 7z is peaked inside the interval C(x) = [a(z),b(x)], i.e.,

(a) \V/’U > 0 . fyrexr‘Xresr:$7zre.vr:z (b(,ﬁl}) + ’U) Z .fY’e'“|X""":J;,Z’“’:z(b(x) — U), and
(b) Yo >0: fyre.rr‘XreAr=x7zre.rr=Z (a(x) — ’U) 2 fyresrlxze.n:xﬁzresrzz(a(l’) + 'U).

Suppose that the test Pl is fixed and equals to Z'*' = z for some z € Z. Denote the imputed test
variable:
Ytest — g(Xtest Ztesr) +e

where e is a random variable drawn from the same distribution as Y'*" — (X', Z'") | Z'" = 2.
Then,
P(yles‘t c C(Xtesl) | Zlest — Z) Z ]P)(}_/test c C(xlest) | Zfest — Z)

Above, the probability is taken over draws of the test variables: (X', Z'*"' Y ') ~ Px 7y, g=.
If we further assume that R Il X" je., R is a deterministic function of Z™", then we obtain
coverage equality:

P(ytest c C(Xtesr) | Ztest — Z) — ]P;(Ytest c C(Xtest) | Ztest — Z)
Proof. All formulations in this proof are conducted conditioned on Z'*' = 2. For ease of notation,
we omit this conditioning, yet emphasize that the probabilities are taken over draws conditional on

Z'*st = 7. From the definition of e, and under the model of Y, there exist (X,Y, D', ¢) ~ Px y,p g
such that:

e=Y —9(X,2)=g"(X,2)+e—§(X,2) =¢"(X,2) +e — (¢"(X,2) + D) =¢e - D".

We remark that e 1L X' D’ 1l X''and e 1L Y"" since these are drawn independently of X'*.
Following the assumption on Y, there exists ' which satisfies:

Ytest — g*(XteSt ZteSt) + Elest
where € ~ Pg. and £ 11 X5, Therefore, the variable Y, formulated as:
Y/ pp— g*(XteSt, Ztesl) + €
is equal in distribution to Y"'**!, that is: Y’ 4 yrest, Furthermore, since €' 1. X' we also get that:
y’ | st 4 ytest ‘ xtest.
We denote by R the sum of R*" and —D":
R:=R* D
Observe that since R < D’ we get that R is a symmetric random variable:
P(R<r)=P(R™ - D <r)=P(D — R* <r)=P(—R<r).
Moreover, the mean of R is 0:

E[R] = E[R®' — D] = E[R"] — E[D'] = 0.
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Since R is a symmetric random variable with mean 0, its median is 0 as well. We now develop the
imputed value Y

Ytest — g(Xtest Ztest) +e

g(Xtest Ztesl) +e— D/

g* (Xtesl Ztest) + Rlest +e— D/
=Y'+R.

Suppose that C'(X'**) = [a(X"™"), b(X'**")] is a prediction interval for Y'**'. We now compute the
probability P(Y'' < p(X'™")). For ease of notation, we denote b(X"™") by B.

(
(g*(XteS[, Ztest) e+ R S B)

(g* (Xtest, Ztesl) + 8test + R < B)

(Ytest + R S B)

(Ytesl+R§ B | R> O)P(RZ 0)+P(Yt65t+R§ B | R < 0)P(R<O)

PY*™+R<B|R>0)+PY*""+R<B|R<0)]

PY*™"+R<B|R>0)+PY*"—R<B|R>0)

1 . .
5 | PO B R[R=r)+ P <B4 R|R=1)] frnsolr)dr
r>0

We now turn to develop P(Y*™ < B—R | R=7r)+P(Y™ < B+ R | R = r). We begin by
conditioning on X' being equal to some = € X. Therefore, we can write:
PY<B-R|R=rX""=2)+P(Y™ <B+R|R=r,X""=2)
=2P(Y*™ ' <B|R=r, X" =12)
+ P(ytest S B—-—R | R = 7, Xlest _ l’) _ P(YteSt S B | R = T, Xlest _ .’17)
—‘y—P(YteSt S B + R | R =r, Xlest _ .’If) _ ]P(YteSt S B | R =r, Xlest _ .’L')
=2P(Y*™'<B|R=r, X" =1)
+P(BL<Y"™'<B+R|R=rX""=02)
—~P(B-RS<Y®™<B|R=rX""=n2).
Observe that Y™ 1l R since g*(X"™", z) is independent of R"*'. Therefore, we can omit the
conditioning on R = 7:
PBL<Y"<B+R|R=rX""=12)—-P(B-R<Y®"<B|R=r,X""=1)
:]P)(B S Ytesl S B+T | Xlest :l') 7]P>(B*T S Ytesl S B | Xtest :.’,U)

Since the density of Y | X' jg agsumed to peak inside the interval, we get:
]P)(B SY[eSt SB"’T | XleSt:.fE) _P(B_T, SY[eSt SB ‘ XteSt:.r) S O
Therefore:

PY*<B-R|R=rX=2)+PY*™ < B+ R|R=rX" =2z
<Y < B|R=r, X =1).
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We return to the marginal statement:
PY*™<B-R|R=r)+PY*""<B+R|R=r)
:/ PY*'<B-R|R=7rX""=u2)
+ ]P’EC}E/(:ZSl <B+R|R=rX""=21)|fxe|per(z;r)dz
< / X[Q]P’(Y“’S‘ < B|R=r X" =) fxe|pey(2;7)dx
z€

=P(Y™' <B|R=r).

We plug this in and get:
P(Y'™ < B) = 1/>0 [PY*™<B-R|R=r)
+ I[D(Ytht < B+ R|R=r)| frirzso(r)dr
< ;/r>o [2P(Y'*™ < B | R =1)] frir>o(r)dr

=P(Y™' < B|R>0)

— P(ylest S B)
The last equality holds since Y'**' 1L (R'**, D) | Z'**' and C'(X'**") 1L (R"*', D’) | Z'**'. The proof
for P(Y'' > A) < P(Y'' > A) is similar and hence omitted. By combining these we get:

P(Ytest c C(Xtesl)) — ]P;(a(Xlest) S Ytest S b(Xtesl))

]P;(}_/test < b(Xtest)) _ P(YteSt > a(Xtest))
]P)(szl S b(XIESt)) _ P(YteSt 2 a(X[est))
]P)(a(XleSt) S YteSt S b(XteSl))
]P)(Y{esl c C(XleSt)).

IIA

We now consider the setting where R 1l X', j.e., R** is a deterministic function of Z*. Since
we conditioned on Z'*' = z in this analysis, we get that R*' = D’ are constants. Therefore:

Y=Y'+R=Y'+R*-D =Y
Which leads to:
P(Y/test c C«(Xtest)) — HD(Y/ c C(Xtest)) — P(ytest c C(Xtest))
O

Lemma 4. Suppose that C(x) is a prediction set satisfying the assumptions of Lemma 3. Denote the
imputed variable by:

Ytesl o Ytest, Mtest — 0’
= g(Xtest’ Ztest) + e, Mtesl‘ — 1,

where e is a random variable drawn from the distribution of Y'' — (X', Z'") | Z'*'. Then, under
the assumptions of Lemma 3, and assuming (X' Y'e") 1L M'™" | Z'' we get:

P(Ymsz c C(Xtest)) Z ]P;(}_/test c C(XleSt)).

If we further assume that R 1l X", i.e., R"*" is a deterministic function of Z'®, then we obtain
coverage equality:

P(ytest c C(Xtest)) — ]P;(}_/test c C(XleSt)).

Proof. All formulations in this proof are conducted conditioned on Z** = 2 unless explicitly stated
otherwise. For ease of notation, we omit this conditioning, while the probabilities are taken of draws
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conditional on Z'' = 2. By applying Lemma 3 and assuming (X', Y'*t) 1| Mt | Z'*t we get:
]P(Ytest c C(Xtest)) — ]P;(Ytest c C«(Xtest) | Mtest O)P(Mtest )
(Ytest c C(Xtest) | Mtest 1)P(Mtest )
P(ytest c C(Xteit) | Mteit O)P Mteit )

+ RGN, 29 4 e € X | MO = HP(M™ = 1)
= P(Y™ € C(X'))P(M® = 0)

+P(GX, 2 + e € C(X)P(M'™ = 1)

< P(Y' € C(X*)P(M'™ = 0)

+B(Y' € O(X©)P(M™ = 1)

= P(Y™ € C(X') | M = 0)P(M" = 0)

PV e O(X) | M = P(M* = 1)

P(ytest c C(Xtest))

We now return to explicitly stating the conditioning on Z'*. Thus far, we showed that for every
z € Z:

PY'™' € O(X*™) | 2 = 2) < P(Y™ € O(X"*™) | 2" = 2).

By marginalizing this, we obtain:
P(Y'™ € C(X™) < P(Y'™ € C(X"™)).
When assuming that R*" 1| X' by Lemma 3 we get
P(g(X™ 2" +ec O(X™) | 2 = 2) = P(Y™ € C(X"™) | 2" = 2).

By plugging in this expression to the development of P(Y'*t € C'(X'*)) above, we get:

P(Y'™ € C(X*™) | 2 = 2) = P(Y"™' € C(X"™) | Z* = 2).
By taking the expectation over Z** we obtain:

P(Ytest c C(Xtest>) — ]P)(}_/test c C(XteSt)).

Armed with the above theory, we now prove Theorem 4

Proof of Theorem 4. Denote the imputed variable by:

}_/lest . Y[CS[7 MtCSt — 07
= Q(Xtest, Ztes[) + e, Mtest — 1

Above, e is a random variable drawn from the distribution of Y — §(X,2) | Z = Z*', M = 0.
Since (X,Y) 1L M | Z, this distribution is equivalent to the distribution of Y — §(X, Z) | Z = Z'**\.
Since C" is constructed by CP using the imputed labels, and due to the exchangeability of the data,
CUT covers Y at the desired coverage rate Vovk et al. (2005); Angelopoulos & Bates (2023):

P(Y*™ e CV'(X"™) > 1—a.
By applying Lemma 4, and since the samples are drawn independently, we get:
P(Y' € CUH(X'™) | {(Xi, Y, Vi, Zi, Mi)}ey) = P(YV' € CVH(X'™) | {(X0, Vi, Vi, Zi, M)},
By marginalizing the above, we obtain:

P(ytest c CUI(Xlest)) > P(}‘/lest c CUI (Xtest)) > 1—a.
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A.3 TRIPLY ROBUST CALIBRATION

Building on the validity of UI, we turn to prove the validity of the triply robust method.

Proof of Theorem 5. Under the assumptions of Theorem 1 we get P(Y'*' € C®°F (X)) > 1 — q,
under the assumptions of Theorem 4 we get P(Y™' € CF°F (X)) > 1 — . By Vovk et al. (2005);
Angelopoulos & Bates (2023), CP constructs prediction sets with the nominal coverage level when
the scores are exchangeable, i.e., P(Y'™' € C¥(X'"*')) > 1 — a. Thus, when at least one of
the above assumptions hold, one of the above prediction sets achieves the desired coverage rate.
Since TriplyRobust is the union of all three sets, its coverage rate is greater than or equal to the
coverage rate of each prediction set. Therefore:

]P)(Y{est c CTriplyRobust(Xtesl)) Z 1—a

B ADDITIONAL RELATED WORK

Practical examples for tasks with privileged information include crowd-sourcing settings, such as
CIFAR-10H, in which annotator metadata, e.g., response times, confidence scores, and expertise
level, may serve as PI. Another example is e-commerce recommendation, where a user’s click history
can be considered as PI, which is a good predictor for actual purchases (Yang et al., 2022). In this
example, vendors may not share the user’s click history with the model provider due to privacy issues,
which makes the PI unavailable at test time. In medical imaging, a pathologist’s diagnostic report for
a biopsy image can act as privileged information that strongly predicts whether the tissue is cancerous
or healthy (Lopez-Paz et al., 2015). In this context, the PI may not be available for all patients at test
time for various reasons, such as limited resources or prioritization.

Several recent works extend conformal prediction beyond the i.i.d. assumption to handle various
forms of distribution shifts, including arbitrary shifts (Barber et al., 2023), online and time-series
settings (Gibbs & Candes, 2021; Gibbs & Candes, 2024; Zaffran et al., 2022; Feldman et al., 2023; Xu
& Xie, 2023), missing covariates (Zaffran et al., 2023; 2024), and ambiguous labels (Stutz et al., 2023;
Caprio et al., 2024). Related research on missing-data imputation includes analyses of missingness
mechanisms (Rubin, 1976), and multiple imputation frameworks (Rubin, 1996; 2018). Furthermore,
the work of Zhang (2016) studies regression imputation approaches and discusses adding residual
variance to account for prediction uncertainty.

C ALGORITHMS

C.1 PRIVILEGED CONFORMAL PREDICTION

Algorithm 1 given below details the PCP method.

C.2 NAIVE IMPUTATION

A natural approach to handle corrupted labels is to impute them, using the observed covariates and
privileged information. Then, CP can be simply employed using the imputed labels. Formally, we
begin similarly to CP and PCP and split the data into two parts: a training set, Z;, and a calibration
set, Z,. Then, we fit two predictive models to estimate the response using the training data: a model

f () which takes as an input the feature vector X, and a label imputator §(, z) which takes as an
input the feature vector X and the privileged information Z. Next, we impute the corrupted labels in

the calibration set using the model §:
v . Y; if M; =0,
" 9(Xi, Z;)  otherwise
We compute the non-conformity scores using the imputed labels: S; = S(X;, Y;; f ),Vi € Zo. The
scores threshold is defined using the above scores:

) 1 1
NaiveImpute = til 1—a da 7500 .
Q Quanle( oz,gz T+ 1 Si+|1-2|+1 )
7 2

Vi€ T,
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Algorithm 1: Privileged Conformal Prediction (PCP)
Input:
Data (X;,Y;, Z;, M;) e X X Y X Z % {O 1},1 < i < n, weights {w; }?_;, miscoverage level
€ (0,1), level 3 € (0, ), an algorithm f(z), a score function S, and a test point X't = z,
Process:
Randomly split {1, . n} into two disjoint sets Zy, Z,.
Fit the base algorlthm f on the training data {(Xi,Yi) Yier, .

Compute the scores S; = S(X;, Y;: f ) for the calibration samples, i € Z5.
Compute the normalized weights:

wj

> kezw W+ W

%

p; =

Compute a threshold Q(Z;) for each calibration sample:

Q(Z;) = Quantile | 1 — a + 3; Z PiSs, + pide

JETY

Compute QF°F, the (1 — 3) quantile of {Q(Z;) }iez,:

1
PCP _ til b
Q" = Quantile ﬁz|1|+1 oz T g

Qutput:
Prediction set C*°® (2) = {y : S(z,y; f) < Q°F}.

Finally, for a new input data X', we construct the prediction set for Y"'**" as follows:
CNaiveImpute (Xlest) _ {y . S()(lest7 v, JE) < QNaiveImpute} )

While this approach is simple and intuitive, it does not hold any theoretical guarantees. Furthermore,
the experiments in Section 4.3 reveal that it consistently undercovers the response. We believe that
this is attributed to the fact that the imputed labels are estimates of E[Y" | X, Z], which reduces the
uncertainty of the imputed label. This, in turn, leads to narrower intervals.

C.3 UNCERTAIN IMPUTATION

The UT algorithm is fully described in Algorithm C.3 below.

C.3.1 ERROR SAMPLING TECHNIQUES

In this section, we present our suggestions for sampling errors conditional on the privileged informa-
tion for the imputation process of UI in (7). Instead of using a strict equality condition of Z; = z
in&(z) :=={FE; : i € I3, Z; = z}, we can relax this requirement by clustering the Z space and
comparing the clusters into which each z falls, that is, £(z) := {E; : i € Z3,h(Z;) = h(z)}, where
h is a clustering function. The first clustering method we use is Kmeans, which we fit on the training
and validation data. Then, we cluster the PIs of the reference set. When imputing the corrupted labels
of the calibration set, we sample an error from the cluster corresponding to the test PI. The second
clustering approach we examine is Linear clustering. We first fit on the training and validation data
a linear model that takes as an input the PI Z and outputs an estimated label Y. We used this model
to compute the estimated labels for each point in the reference set and then split them into bins. We
note that the alternative approach of learning the error distribution given the PI Z may be applied as
well, such as random forest for conditional density estimation (Pospisil & Lee, 2018), or normalizing
flows (Rezende & Mohamed, 2015; Papamakarios et al., 2021).
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Algorithm 2: Uncertain imputation (UI)

Input:

Data (X;,Y;, Z;, M;) € X x ¥ x Z x {0,1},1 < < n, miscoverage level & € (0,1), an

algorithm f(z), and algorithm §j(z, z), a score function S, and a test point X' = z.
Process:

Randomly split {1, ..., n} into three disjoint sets 7, Zo, Z5.

Fit the base algorithm f on the training data {(X;,Y;)}iez, .

Fit the predictor § on the training data {(X;, Z;, f/i)}iezl-

Compute the errors E; of g on the reference set Z3 according to (6).

Generate the imputed labels Y;, Vi € 7y, according to (7).

Compute the scores S; = S(X;, Y;; f) using the imputed labels for the calibration samples,
1 € Io.
Compute Q"L, the (1 — «) quantile of the scores

1

1
Ur _ til 1—a: da
Q Quantile a,z AR 5, T ]

oo
JEL2 +1

Qutput:
Prediction set CV% () = {y : S(z,y; f) < QT }.

C.4 METHOD VALIDITY CONDITIONS SUMMARY

We summarize the validity conditions of each method in Table 1. This table illustrates that
TriplyRobust achieves the desired coverage rate when at least one of the underlying methods is
valid.

Table 1: Summary of Method Validity Conditions

Method Guarantee AccurateY | X est. Accurate M/ | Z est. AccurateY | Z est.

Quantile (Koenker v NA NA
Regression & Bassett,

1978;

Koenker,

2005;

Steinwart

& Christ-

mann,

2011;

Takeuchi

et al.,

2006)
PCP Theorem 1 X v NA

Ul Theorem 4 X NA v
TriplyRobust Theorem 5 v v v

D DATASETS DETAILS

D.1 GENERAL REAL DATASET DETAILS

Table 2 displays the size of each dataset, the feature dimension, and the feature that is used as
privileged information in the tabular data experiments.
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Table 2: Information about the real data sets.

Dataset #Samples X /Z/Y Dimensions Z description
facebookl1 (facebook) 40948 52/1/1 Number of posts comments
facebook2 (facebook) 81311 52/1/1 Number of posts comments
Bio (bio) 45730 8/1/1 Fractional area of exposed non polar residue
House (house) 21613 1711 Square footage of the apartments interior living space
Meps19 (meps_19) 15785 138 /3/1 Overall rating of feelings, age, working limitation
NSLM (Yeager et al., 2019) 10391 10/1/1 Synthetic normally distributed random variable

D.2 NSLM DATASET DETAILS

The 2018 Atlantic Causal Inference Conference workshop on heterogeneous treatment effects (Car-
valho et al., 2019) introduced the National Study of Learning Mindsets (NSLM) dataset (Yeager et al.,
2019). We refer to Carvalho et al. (2019, Section 2) for its full details. In our experiments, we adopt
the approach outlined in Carvalho et al. (2019); Lei & Candes (2021) to generate synthetic potential
outcomes and a synthetic PI variable. The process begins by standardizing the dataset so that all
features have a mean of O and a standard deviation of 1. The data is then randomly split into two
subsets: 80% samples are used for training, while the remaining 20% samples are used for validation.
To model the relationship between X and Y, we train a neural network with a single hidden layer
containing 32 neurons. The learning mechanism of the network is described in Section E.1. We
refer to its learned function as fip(+). Additionally, we employ an XGBoost classifier to estimate the
original treatment variable M using the features in X. The classifier is configured with a maximum
depth of 2 and uses 10 estimators. We then calibrate the estimated propensity score to have the
same marginal probability as the original probability and denote the calibrated score é(X;). Once
these models are trained, we generate a new treatment indicator M;, a synthetic PI variable Z;, and a
semi-synthetic outcome variable Y; as detailed next:

Z; ~ N(0,0.2%)

E; = 1{Z; > Quantile(0.9, Z) or Z; < Quantile(0.1, Z)}

M; ~ Ber(min(0.8, (1 + E;)é(X;)))

7 = 0.228 + 0.051{ X, 5 < 0.07) — 0.051{X; 5 < —0.69} — 0.081{X;, € {1,13,14}}
Y= jo(X) + 7+ (1+ Ei)Z;.

D.3 SYNTHETIC DATASET DETAILS

In this section, we present the synthetic datasets used in this work. Across all datasets, X, Y, Z are
generated using the same procedure from Feldman & Romano (2024), where the only difference is
the label corruption mechanism. We first describe the generation process for X, Y, Z and then detail
the corruption mechanisms.

The feature vectors are uniformly sampled as follows:
X; ~ Uni(1,5)'°,

where Uni(a, b) is a unifrom distribution in the range (a, b). The p = 3 dimensional PI Z; ;, for each
dimension j € {1,...,3} is sampled as:
1
Ei,j ~ N(Ov 1);
2 .
E;; ~ Uni(—1,1),
3
B ~N(0,1),
P;; ~ Pois(cos(E;})? 4+ 0.1) x EZ,
Zij~ P, +2E}.
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Above, Pois()\) is a poisson distribution with parameter ), and N (i, o) is a normal distribution
with mean 1 and variance o2. We define some additional variables:

B1 ~ Uni(0,1)*

Br = B1/l|B1llx

By ~ Uni(0, 1)

B2 = Ba2/l|B2l1

Z's = BaZ;

Ui=1z,c 3+2%1 3<z,<1+8*1z,51
E; ~N(0,1)

Finally, the label is defined as:
Y; =0.3X;8+082Z"; + 0.2+ U; F;.

Turning to the corruption mechanism, for the dataset in which Naive CP achieves under-coverage,
the corruption probability is defined as detailed in Appendix E.1. In the alternative dataset, in which
Naive CP overcovers the response, the corruption probability is formulated as follows. For each
sample, we subtract from Z the minimal value between the 5% quantile and 0. Then, we divide by
the 95% quantile of these values and multiply by 2.5. Next, we zero out all negative values. After
that, we raise e by the power of the negative of these values and take 1 minus this result. Lastly, we
zero out all negative values and those that are greater than the 30% quantile. To obtain the corruption
probabilities, we normalize these values between 0.2 and 0.9 and raise them to the power that leads
to a 20% marginal corruption probability.

In Section 4.2 we employed a different corruption mechanism in which the weights are hard to
estimate from Z. We begin by computing a complex function of Z:

1/3
arctan (0.3\/651n2(Z’Z—)) — 0.8tanh (cos(Z’?))
T, = 0.5-+sin(2/5) xcos( 2/} /8)
0.50(2':/2) + 0.5 FO054sin(Z75/5 ) cos( 2/
The rest of the process is similar to our default mechanism in Appendix E.1, except for zeroing all
values for the samples with 7; < 1.2 in addition to zeroing all negative values. Furthermore, instead
of zeroing values that are lower than the 30% quantile, we zero the values that are lower than the 50%
quantile. By incorporating 7;, which is a complicated function of Z, we turn the estimation process
of M | Z to be more challenging, which leads to inaccurate estimates of the weights.

E EXPERIMENTAL SETUP

E.1 GENERAL SETUP

Across all experiments, the data is divided into a training set (50%), a calibration set (20%), a
validation set (10%) used for early stopping, and a test set (20%) for performance evaluation. For
the UT method, we further split the original calibration set equally into a reference set (50%) and
a calibration set (50%). Next, we normalize the feature vectors and response variables so that they
have a zero mean and unit variance. In experiments with missing variables, we impute them using
a linear model that is fitted on the variables that are always observed, out of X, Y, Z. This linear
model is trained using samples from both the training and validation sets. For datasets that are not
originally corrupted, the corruption probability is defined as follows. First, for the MEPS19 dataset,
we fit a random forest model on the entire dataset to predict the 70% and 30% quantiles of Y given
Z, and we use their difference as the initial value. For the other datasets, we take Z as the initial
value; if Z is multi-dimensional, we multiply it by a random vector to convert it into a scalar. We
start by subtracting the minimum value between the 5% quantile and 0O, then divide by the 95%
quantile of these values, and multiply by 2.5. Negative values are then set to zero. Next, we raise
e to the power of the negative of these values and subtract the result from 1. Finally, we zero out
any negative values and those below the 77% quantile. To obtain the corruption probabilities, these
values are normalized to lie between 0.2 and 0.9 and then raised to a power that results in a 20%
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marginal corruption probability. Thus, by definition, the average corruption probability is 20%. In
every experiment, we train a base learning model and then wrap it with a calibration scheme. The
learning model is designed to estimate the 5% and 95% conditional quantiles of Y | X. In Table 3,
we summarize the models employed for each dataset across both tasks. For neural network models,
we use an Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1e-4 and a batch size of
128. The network architecture contains hidden layers with sizes 32, 64, 64, 32, with a dropout rate of
0.1, and uses leaky ReL U as the activation function. We used 100 estimators for both xgboost and
random forest models. The networks are trained for 1000 epochs; however, training stops early if the
validation loss does not improve for 200 epochs, at which point the model with the lowest validation
loss is selected. We used the scikit-learn package (Pedregosa et al., 2011) to construct random forest
models and the xgboost package (Pedregosa et al., 2011). The neural networks are implemented
using the PyTorch package (Paszke et al., 2019). The hyperparameters we employed are the default
ones unless stated otherwise. For PCP, we set the parameter 5 to S = 0.005. In all experiments in
which we employed UT, unless specified otherwise, we used a Full+Linear model for the label
regression model §(x, z), in which a linear model is given both Z and the output of a neural network
model trained using X, Z. Moreover, the conditional errors were sampled using the linear clustering
approach described in Section C.3.1 When applying a Kmeans clustering, we use the default number
of clusters k = 8.

Table 3: The learning models used for each dataset.

Dataset Base learning model  Corruption probability estimator

Facebookl1 (facebook)
Facebook2 (facebook)
Bio (bio)
House (house)
Meps19 (meps_19)
NSLM (Yeager et al., 2019)
Synthetic datasets (Feldman & Romano, 2024)

Neural network
Neural network
Neural network
Neural network
Random forest
XGBoost

Neural network

Neural network
Neural network
Neural network
Neural network
Random forest
XGBoost

Neural network

E.2 INACCURATE WEIGHTS STUDY

We generated 30000 samples from the synthetic datasets in Appendix D.3. As described in
Appendix E, we split each dataset into training, validation, calibration, and test sets. We ap-
plied the error to the weights according to the setup and employed each method using the in-
accurate weights. For the varying error setup, the errors were sampled independently of the
data. The performance was computed for 30 random splits of the data in the constant er-
ror setup. For the varying error setup, we fix the training and calibration set and fix X' to
X't = (2.6752,1.2141,2.0997,4.4819, 3.9244, 4.1068, 4.9509, 1.9368, 4.8397, 1.6686) and Z'***
to Z'*' = (—2.9365, —3.4784,1.3291), and generate 100K random response values Y**' conditional
on these values. The values we fixed for X', 7! were drawn from their marginal distribution.
Since the calibration data, as well as X' Z'¢ are fixed, the validity regions are deterministic and
therefore can be computed accurately. The validity intervals of the varying errors setup are computed
according to Theorem 3 as follows:

5 _ 5maxAn+1 + Wn+1
min — T ~ ;

n—+ 1-— An+1
1
5max:5min < 1.
(5+1)

An+1 Wkwcp — Akwcp Wn+1
Wn+1l€WCP - (’I'L + 1)Wkwcp '

Theorem 3 states that PCP applied with any values of dpin, max in this interval range is guaranteed to
achieve a valid coverage rate.

Above, 9 is set to

5:
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E.3 MACHINE’S SPEC
The resources used for the experiments are:

¢ CPU: Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz, Intel(R) Xeon(R) Gold 5318Y CPU
@ 2.10GHz, Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz.

* GPU: NVIDIA A40, NVIDIA TITAN X (Pascal), NVIDIA 2080 TI, NVIDIA RTX 2060
SUPER.

* OS: Ubuntu 20.04.6.

Experiments typically take at most 10 minutes to run, though actual times may vary with workload.

F ADDITIONAL EXPERIMENTS

F.1 WCP WITH INACCURATE WEIGHTS

We study the coverage rate attained by WCP when applied with various distributions of weight
errors. We employ WCP on the two synthetic datasets described in Appendix D.3. In the first dataset,
Naive CP achieves over-coverage, and in the second one, Naive CP undercovers the response. In
Figure 6 and Figure 7 we display the validity regions of WCP with various distributions for the error
of the weights. These figures show that the validity regions depend on the distribution of the error.
Furthermore, it is indicated by the figures that the validity region is a small interval when Naive
CP undercovers the response while when it overcovers, the validity region spans through the entire
space except for one interval.

F.2 PCP WITH INACCURATE WEIGHTS

In this section, we analyze the coverage rate of PCP when applied with various distributions of weight
errors. We study the performance using the two synthetic datasets described in Appendix D.3. In the
first dataset, Naive CP achieves over-coverage, and in the second one, Naive CP undercovers
the response. Figure 9 and Figure 10 show the validity regions of PCP with various distributions for
the error of the weights. These figures show the effect as observed in Appendix F.1.

F.3 CAUSAL INFERENCE EXPERIMENT: NSLM DATASET

In this causal inference example, our goal is to estimate the uncertainty of individual treatment
effects (Hernan & Robins, 2010). We utilize the semi-synthetic National Study of Learning Mindsets
(NSLM) dataset (Yeager et al., 2019), which deals with behavioral interventions. Further details about
the dataset can be found in Carvalho et al. (2019, Section 2), and Appendix D.2 outlines our adaptation
for this dataset. Here, X; are the individual’s characteristics, Z; are the privileged information,
M; € {0, 1} denotes the binary treatment indicator, and ¥;(0), Y;(1) € R denote the counterfactual
outcomes under control and treatment conditions, respectively. In practice, we only observe one of
them, Y;, which equals to Y;(0) if M; = 0 and to Y;(1) if M; = 1. In this task, our goal is to estimate
the uncertainty of the unknown response under no treatment Y;, 11 = Y,,1(0) at a pre-specified
level 1 — o = 90%. As explained in Feldman & Romano (2024), estimating uncertainty for Y;(0) is
crucial since it can be used to construct a reliable prediction interval for the individual treatment effect
(ITE), Y;(1) — Y;(0), which is of great interest in many causal inference applications (Brand & Xie,
2010; Morgan, 2001; Xie et al., 2012; Florens et al., 2008). Furthermore, Feldman & Romano (2024)
emphasizes that constructing valid prediction sets for Y,,+1(0) is challenging due to the distribution
shift between the observed control responses, which are drawn from Py (y|a7—o. In contrast, the
test control response is drawn from Py-(gy. Moreover, Feldman & Romano (2024) highlight the
difficulty of constructing valid prediction sets for Y;,1(0), as it requires correcting the distribution
shift between the observed control responses, which follow the distribution Py (gy;a7=0, and the test
control responses, which are drawn from PY(O)~

We display the performance of each calibration scheme in Figure 11. This figure indicates that
Naive CPandNaive Imputation fail to achieve the nominal 1 — v = 90% coverage rate. In
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Figure 6: The validity regions of WCP applied with inaccurate weights along with the theoretical
bounds from Theorem 3 displayed in dashed line. Here, the coverage rate is computed over random
draws of 100K test responses Y conditionally on the calibration set, X", and Z'**. Green: valid
coverage, i.e., greater than the coverage rate of WCP with true weights; Orange: invalid coverage. Left:
Distribution of the error. Mid: Naive CP achieves over-coverage. Right: Naive CP achieves
under-coverage.
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Figure 7: The validity regions of WCP applied with inaccurate weights along with the theoretical
bounds from Theorem 3 displayed in dashed line. Here, the coverage rate is computed over random
draws of 100K test responses Y conditionally on the calibration set, X', and Z'**'. Green: valid
coverage, i.e., greater than the coverage rate of WCP with true weights; Orange: invalid coverage. Left:
Distribution of the error. Mid: Naive CP achieves over-coverage. Right: Naive CP achieves
under-coverage.
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Figure 8: The validity regions of PCP applied with inaccurate weights along with the theoretical
bounds from Theorem 3 displayed in dashed line. Here, the coverage rate is computed over random
draws of Y conditionally on the calibration set, X', and Z'*. Green: valid coverage region,
i.e., greater than the coverage rate of WCP with true weights; Orange: invalid coverage region. Left:
Naive CP under-covers the response. Right: Naive CP achieves over-coverage.

contrast, PCP attains a valid coverage rate, despite being employed with estimated weights. Moreover,
our proposed UTI constructs valid uncertainty sets as well, as guaranteed by our theory.

F.4 IMPUTATION AND ERROR SAMPLING METHODS

We study the impact of the label regression model g of UI and the effect of the error sampling
mechanisms from Appendix C.3.1 on the validity of the constructed prediction sets. For this purpose,
we follow the setup detailed in Section 4 and use the same real datasets in a missing response setting.
We apply UI with the following label regression models, aiming to achieve 90% coverage rate:

* Linear: where ¢ is a linear function of both X and Z, implemented using Scikit-learn’s
LinearRegressor (Pedregosa et al., 2011);

e Full: aneural network that takes X and Z as inputs;

e Full+Linear: acombined method in which a linear model is given both Z and the output
of the pre-trained Full model.

Figure 12 presents the performance of UI with the Linear model, showing that UI tends to
overcover the response. This can be explained by the large estimation errors of the linear model,
caused by its limited expressive power, leading to increased uncertainty in the imputed samples. This
high uncertainty drives UI to construct large uncertainty sets.

In contrast, as shown in Figure 13, the Full model achieves a coverage rate that is closer to the
nominal level when applied with linear or K-means clustering error sampling. However, the marginal
error sampling approach, which does not condition on Z, leads to undercoverage. This highlights the
importance of sampling errors conditionally on Z to obtain valid prediction sets.

Finally, Figure 14 illustrates that the Full+Linear model tends to attain the target coverage when
the linear or K-means clustering error sampling techniques are applied. Once again, the marginal
error sampling strategy results in undercoverage, emphasizing that conditioning the error sampling
on the privileged information is necessary to construct reliable uncertainty sets.

To conclude, these experiments demonstrate the importance of both an accurate label regression
model § and a conditional error sampling mechanism to construct prediction sets that are valid in the
missing response setup.

F.5 EMPIRICALLY EVALUATING THE ASSUMPTIONS OF THEOREM 4

In this section, we assess whether the assumptions of Theorem 4 are satisfied in practice, by conduct-
ing two experiments following the protocol in Section 4.3.

In the first experiment, we evaluate the dependence between residual errors Y — g( X't Z'!) and
(i) the predictions §( X', Z's), (ii) the lower bounds C°(X'**!), and (iii) the upper bounds C'* (X'°*!)
of the intervals produced by UI. We assess the dependence by computing the partial correlation
(PC) conditional Z'* between the terms. We emphasize that residual errors were used in place of
R because the latter is unavailable in practice. Likewise, since the true function g* is unknown,
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Figure 9: The validity regions of PCP applied with inaccurate weights along with the theoretical
bounds from Theorem 3 displayed in dashed line. Here, the coverage rate is computed over random
draws of 100K test responses Y conditionally on the calibration set, X", and Z'**. Green: valid
coverage, i.e., greater than the coverage rate of PCP with true weights; Orange: invalid coverage. Left:
Distribution of the error. Mid: Naive CP achieves over-coverage. Right: Naive CP achieves
under-coverage.
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Figure 10: The validity regions of PCP applied with inaccurate weights along with the theoretical
bounds from Theorem 3 displayed in dashed line. Here, the coverage rate is computed over random
draws of 100K test responses Y conditionally on the calibration set, X', and Z'**'. Green: valid
coverage, i.e., greater than the coverage rate of PCP with true weights; Orange: invalid coverage. Left:
Distribution of the error. Mid: Naive CP achieves over-coverage. Right: Naive CP achieves
under-coverage.
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Figure 11: NSLM dataset experiment. The coverage rate and average interval length achieved
by naive conformal prediction (Naive CP), conformal prediction with naive imputations Naive
Imputation, PCP which estimates the corruption probability from Z, and the proposed method
(UT). All methods are applied to attain a coverage rate at level 1 — o = 90%. The metrics are
evaluated over 30 random data splits.
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Figure 12: Linear regression model. The coverage rate and average interval length obtained by UT
with various error sampling methods. Performance metrics are evaluated over 30 random data splits.

we replaced it with its estimator §. These replacements serve as fair alternatives for the unknown
variables. For completeness, we also report the coverage rate attained by UTI and the prediction error
(MSE) of §. All metrics were computed on the test set, and the results are averaged over 10 random
data splits. The empirical results, summarized in Table 4, reveal that there is a non-negligible partial
correlation between the interval endpoints and the residual errors. This suggests that the independence
requirements of Theorem 4 are not exactly satisfied. Nevertheless, the intervals of UT still achieve
the nominal coverage rate. This observation reveals the robustness of the UI procedure: even when
the theoretical conditions are only approximately satisfied, it still constructs valid intervals.

Table 4: Metrics assessing the assumptions of Theorem 4.

Dataset Coverage g MSE g PC C°PC C'PC

Bio 90.72+£0.49 0.56+0.00 —-0.02+0.00 0.03+0.00 —0.02 +0.00
Facebookl 90.96 +0.36 1.84+0.21 —-0.074+0.05 —-0.02+0.04 —0.0340.05
House 91.23+0.36 0.71£0.03 0.154+0.01 0.18 £0.01 0.19+£0.01

In the second experiment, we analyze the setup where the PI is a weak predictor of Y. We follow the
same experimental protocol in Section 4.3 and simulate this setup by adding random Gaussian noise
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Figure 13: Full regression model. The coverage rate and average interval length obtained by UI
with various error sampling methods. Performance metrics are evaluated over 30 random data splits.

to Z, with varying standard deviations. Figure 15 summarizes the performance of UT with these weak
PIs, indicating that as the magnitude of the noise increases, the coverage rate of UI increases. That
is, as the PI becomes a weak predictor of the labels, the uncertainty of the imputed labels increases,
which, in turn, widens the resulting prediction sets. This experiment suggests that UT can still obtain
a valid coverage rate even when the PI is a weak predictor of the labels.

F.6 THE PERFORMANCE OF TRIPLYROBUST

We employ TriplyRobust, which combines CP, PCP that uses either the estimated corruption
probabilities or the true ones, and UT on the datasets from Section 4.3. We present the coverage rate
and interval length in Figure 16. This figure shows that TriplyRobust employed with PCP that
uses estimated weights constructs wider intervals, which is in line with the results in Section 4.3,
in which this version of PCP constructs wider intervals, as its approximations are not sufficiently
accurate. Nevertheless, this figure reveals that combining the three approaches does not significantly
harm the statistical efficiency of the predicted intervals, especially when using oracle or sufficiently
accurate weights.
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Figure 14: Full+Linear regression model. The coverage rate and average interval length obtained
by UI with various error sampling methods. Performance metrics are evaluated over 30 random data

splits.
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Figure 15: Weak PI experiment. The coverage rate as a function of the noise of the PI. The coverage
rate is evaluated over 4 random data splits.
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Figure 16: Missing response experiment. The coverage rate and average interval length obtained by
TriplyRobust employed with PCP that uses either the estimated corruption probabilities or the
true ones. Performance metrics are evaluated over 30 random data splits.
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