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Abstract

Multi-Agent Path Finding is an NP-hard problem that is difficult for current ap-
proaches to solve optimally. Research has shown that bounded suboptimal solvers,
such as Enhanced Conflict-Based Search (ECBS), are more efficient than optimal
solvers in finding a feasible solution with suboptimality guarantees. ECBS is a tree
search algorithm that repeatedly selects nodes from a focal list to expand the tree.
In this work, we propose to use imitation learning and curriculum learning to learn
node-selection strategies for different grid maps and agent sizes. We then deploy
the learned models in ECBS and test their solving performance on unseen instances
drawn from the same distribution as the one used in training. Our approach shows
substantial improvement over the baselines on different grid maps.

1 Introduction

Multi-Agent Path Finding (MAPF) is the problem of finding a set of conflict-free paths for a team
of moving agents on a given graph that minimizes the sum of path costs or the makespan. It has
practical applications in video games [18], distribution centers [17, 11] and traffic controls [7]. MAPF
is NP-hard [25] and optimal solvers, such as Conflict-Based Search (CBS) [22], do not scale well.
Research has shown that Enhanced Conflict-Based Search (ECBS) [1] and its variants [4, 5] can find
bounded suboptimal solutions fast. Based on CBS, ECBS uses focal searches [19] instead of best-first
searches to guarantee bounded suboptimality. The high-level search of ECBS maintains a so-called
focal list that contains a subset of nodes on the open list whose costs are at most w ≥ 1 times the
current lower bound of the optimal cost. From the focal list, ECBS could select an arbitrary node to
expand but the common practice is to select one with the minimum d-value, which is a heuristic value
computed for each node when it is generated and typically, a hard-coded function in the algorithm.

Instead of manually defining d-values, we apply machine learning techniques and propose a novel
data-driven framework for learning node-selection strategies for the high-level focal search. We use
imitation learning [6, 20, 21] and curriculum learning [2] to learn ranking functions from solving
instances that can differentiate nodes that are closer to a solution within our desired suboptimality
bound from those nodes that are far away from one. During the search, the ranking function takes
a node’s features as input and produces a real value as its d-value. By using our d-values, we can
get closer to a desired solution every time we expand a node and, therefore, find the solution more
quickly. In experiment, we show that our approach can scale to large problem instances beyond those
that are solvable by ECBS, the state-of-the-art bounded suboptimal MAPF algorithm.

2 MAPF and Related Work

Given an undirected unweighted graph G = (V,E), the Multi-Agent Path Finding (MAPF) problem
is to find a set of conflict-free paths for a set of agents {a1, . . . , ak}. Each agent ai has a start vertex
si ∈ V and a goal vertex ti ∈ V . Time is discretized into time steps, and, at each time step, every
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agent can either move to an adjacent vertex or wait at its current vertex. A conflict occurs when two
agents are at the same vertex at the same time or they traverse the same edge in opposite directions
between two consecutive time steps. The cost of an agent is defined as the number of time steps until
it reaches its goal and no longer moves. Given w ≥ 1, our goal is to find a conflict-free solution with
the sum of costs that is at most w times the minimum sum of agents’ costs.

CBS is a complete and optimal bi-level tree search on a binary search tree called constraint tree (CT).
On the high level, CBS starts with a root node with an empty set of constraints and expands the CT
by always expanding a node N with the lowest cost NCost. After choosing N , CBS identifies the set
of conflicts NConf in N . If there are no conflicts, CBS returns the solution. Otherwise, it picks one
conflict to resolve and adds two child nodes of N to the CT by adding to the set of constraints at N a
new constraint in one of two conflicting agents to one of the child nodes and the other conflicting
agent in the other child node. Then, we apply the low-level search to each child to re-plan the optimal
path for the affected agent, and record the respective solution and its cost.

ECBS is a bounded-suboptimal version of CBS [1] that is guaranteed to find aw-approximate solution
for given w ≥ 1. ECBS uses focal searches [19] instead of best-first searches in both levels. Consider
a node N . On the low level, ECBS runs a focal search for each agent such that the cost of the path
found is at most w times the cost of its individually cost-minimal path w.r.t. the constraints at N .
Let NLB,i be the lower bound on agent ai’s cost given by the low-level search for ai when node
N is generated and let NLB =

∑k
i=1NLB,i. On the high level, ECBS performs a focal search that

maintains a focal list that contains all nodes N in N such that NCost ≤ wLB, where N is the open
list and LB = minN∈N NLB. Once a solution is found by always expanding a node in the focal list,
it is guaranteed to be a w-approximate solution.

Related Work Optimal MAPF solvers, such as mixed-integer programming(MIP)-based ap-
proaches [14, 15], and CBS [22] and its variants [3, 9, 16], have been developed. Our work is
more related to research on bounded suboptimal solvers. ECBS [1] is the current state-of-the-art
bounded suboptimal solver. Variants of ECBS [5, 4] have been proposed to speed up ECBS to solve
MAPF in environments with certain structures such as warehouses. Machine learning techniques
have been applied to speed up branch-and-bound tree search. [10] is a closely related work that uses
imitation learning to learn node-selection and node-pruning strategies for solving MIP. [23] scales up
[10] by progressively increasing the instance sizes in the form of curriculum learning. Other related
work includes learning to branch [13] and run primal heuristics [12] in tree search for solving MIP.

3 Learning Node-Selection Strategies for ECBS

We introduce our framework for learning node-selection strategies for the high-level focal search of
ECBS. Our framework consists of two phases, model learning and ML-guided search.

3.1 Model Learning

We focus on solving instances with fixed graph G and w. We first learn node-selection strategies to
solve instances with different numbers of agents {k1, . . . , km} where k1 < . . . < km. For each ki,
we learn a node-selection strategy that assigns πi(φ(N)) to node N as its d-value, where φ(N) is
the feature vector of N and πi is a learned ranking function. Therefore, a desired ranking function
would be one that assigns smaller d-values for nodes that are closer to a solution. Our training
algorithm is a curriculum learning algorithm, as shown in Algorithm 1, that takes {k1, . . . , km} and
m sets of training instances {I1, . . . , Im} as input and outputs {π1, . . . , πm}. Each instance in Ii
includes ki agents and is i.i.d. sampled from a given distribution. Initially, π0 is set to an initial
strategy π∗ (e.g., strategies used in previous work [1]) (line 2). To obtain π1 for k1 agents, we deploy
DAgger(π∗, Ii) [21] that learns a ranking function from instances in Ii using π∗ as a starting point.
To obtain πi (i > 1), instead of starting from π∗ again, we start learning from πi−1. We obtain πi
(1 < i ≤ m) iteratively by calling DAgger(πi−1, Ii) that learns a ranking function using πi−1 as the
initial node-selection strategy (line 3-4) until a stopping criterion is met (line 5-7) or i = m. If the
stopping criterion is met before i reaches m, we terminate training (line 7) and simply set πj to πi for
all i < j ≤ m (line 6).

DAgger(π(0), I) is shown in Algorithm 2. The input π(0) and I are the initial ranking function and
the set of training instances. Initially, the dataset D is set to ∅ (line 1). The algorithm runs for R
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Algorithm 1 Training Algorithm: Curriculum Learning

1: Input: Numbers of agents {k1, . . . , km} and training instances {I1, . . . , Im}
2: π0 ← π∗

3: for i = 1 to m do
4: πi ← DAgger(πi−1, Ii)
5: if πi = πi−1 then . Stopping criterion met
6: ∀i < j ≤ m,πj ← πi

7: break
8: return {π1, . . . , πm}

Algorithm 2 DAgger(π(0), I)
1: D = ∅
2: for i = 1 to R do
3: for I in instance set I do
4: D ← D ∪ CollectData(I, π(i−1)) . Call ECBS
5: π(i) ← train a ranking function using D
6: return the best π(j)

iterations (line 2). In iteration i, it collects training data from solving instances in I using the ranking
function π(i−1) obtained in iteration i− 1, aggregates it with D (line 4), and learns a new ranking
function π(i) from D that minimizes a loss function over D (line 5). Finally, the algorithm returns
the best ranking function (line 6) (returns π(0) if it cannot find a better ranking function than π(0)).

Data Collection Given an instance I and a ranking function π, we run ECBS using ranking function
π on I and record the entire tree T . For each node N ∈ T , we compute a set of nine atomic features
{f1, . . . , f9}. The full list of features is deferred to Appendix A. We also obtain the set of interaction
features {fifj : i ≤ j} and the final feature vector φ(N) ∈ Rp is obtained by concatenating all
atomic features and interaction features. During data collection, we run ECBS with a runtime limit to
collect T solutions. If the search exceeds the runtime limit without any solution, we return an empty
set of data. Otherwise, for each node N , we assign a label yN to it based on the minimum distance
Nd between N and any solution found within the subtree rooted at N (Nd =∞ if no solution found)
as follows: 0 if Nd < 10; 1 if 10 ≤ Nd < 30; 2 if 30 ≤ Nd < 60; 3 if 60 ≤ Nd <∞; 4 otherwise.

Learning a Ranking Function We focus on learning a linear ranking function π : Rp →
R : π(φ(N)) = wTφ(N) with parameter w ∈ Rp that minimizes the loss function L(w) =∑
T ∈D l(yT , ŷT ) +

C
2 ||w||

2
2 over training data D, where yT is the ground-truth label vector of all

nodes in T , ŷT is the vector of predicted values resulting from applying π to the feature vector φ(N)
of every node N ∈ T , l(·, ·) is a loss function measuring the difference between yT and ŷT , and
C > 0 is a regularization parameter. The loss function l(·, ·) is based on a weighted pairwise loss.
Specifically, we consider the set of ordered node pairs PT = {(Ni, Nj) ∈ QT : yNi

> yNj
} where

QT is the set of node pairs (Ni, Nj) such that neither Ni nor Nj is an ancestor of the other in T .
The weight wNi,Nj

of each pair (Ni, Nj) ∈ PT is set to e−(di+dj)/rdmax , where di, dj are the depths
of Ni, Nj in T respectively, dmax is the maximum depth of T and r is a damping factor. The loss
function l(·, ·) is the weighted fraction of swapped pairs, defined as

l(yT , ŷT ) =

∑
(Ni,Nj)∈PT :π(φ(Ni))≤π(φ(Nj))

wNi,Nj∑
(Ni,Nj)∈PT

wNi,Nj

. (1)

3.2 ML-Guided Search

After learning ranking functions {πi : i ∈ [m]}, we deploy them in ECBS. Given an instance with
the same underlying graph as training and k agents, we run ECBS with ranking function πj where
j ∈ argmini∈[m]{|k − ki|}. When a node N is generated, we compute the feature vector φ(N) and
set its d-value to πj(φ(N)). The overall complexity for computing the d-value is O(|NConf |).
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Figure 1: Success rates within the runtime limit of 5 minutes. For ECBS+ML, ECBS+ML(ES) and
ECBS+IL, the vertical line with the same color indicates the number of agents in the last iteration
that a ranking function is learned in Algorithm 1.

Figure 2: Success rates with a fixed number of agents varying the runtime limits for each map.

4 Experimental Results

In this section, we demonstrate the efficiency and effectiveness of our solver, ECBS with ML-guided
node selection. We denote our solver as ECBS+ML. We define h1, h2 and h3 to be the node-selection
strategies that use the number of conflicts, the number of conflicting pairs of agents and the number
of conflicting agents as the d-values, respectively. We compare against ECBS using hi and denote
them as ECBS+hi (i = 1, 2, 3). We evaluate our approach on a random map, a warehouse map and a
game map from the MAPF benchmark [24]. We report other experiment setups in Appendix B.

Figure 1 plots the success rates (the percentages of solved instances within the runtime limit of 5
minutes) on all grid maps. Overall, ECBS+ML significantly outperforms the three baselines in
all grid maps. On the game map, in particular, the success rates of the baselines drop below 20%
when the number of agents increases to 170 and the baselines could hardly solve instances with more
than 245 agents, while the success rates of ECBS+ML stay above 76% for as many as 245 agents
and ECBS+ML can solve 16% of the instances with 305 agents. To demonstrate the efficiency of
ECBS+ML further, we show the success rates for different runtime limits on each map in Figure 2.
We show one figure for each map with a fixed number of agents and defer the rest to Appendix C.
Typically, the baselines and ECBS+ML tie on the easy instances but ECBS+ML gain an advantage
on the hard ones, even more for instances with larger numbers of agents (as shown in Appendix C).

To assess the effect of curriculum learning, we perform two ablation analyses. First, we experiment
with ECBS+ML with early stopping, denoted as ECBS+ML(ES). The number of agents in the
last iteration of training in Algorithm 1 is set to the one where the success rate of ECBS+h1 first
drops below 60%. The success rates of ECBS+ML(ES) are shown in Figure 1. ECBS+ML(ES) is
competitive with ECBS+ML and outperform all baselines on the random and warehouse maps, but
its success rates on the game map drop dramatically after early stopping. The results imply that the
learned strategies do not generalize well to larger numbers of agents in some maps and curriculum
learning can help find improved strategies for those cases. Then, we experiment with ECBS+ML
using only imitation learning, denoted as ECBS+IL. ECBS+IL uses the same training algorithm
as ECBS+ML except that, for each number of agents, it learns a ranking function starting from
the given initial ranking function for each agent size without relying on the previously-learned one.
Overall, ECBS+IL can still outperform the baselines but not as significantly as ECBS+ML and
its performance drops faster than ECBS+ML when the number of agents increases. The results
show another two advantages of curriculum learning: (1) it enables learning for one to three more
iterations than ECBS+IL by enabling the algorithm to collect more data for training since it starts
with a higher success rate in DAgger(·, ·); (2) it obtains better node-selection strategies based on
previously-learned strategies, as opposed to ECBS+IL that learns from scratch in every iteration.
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Appendix:
Learning Node-Selection Strategies in Bounded
Suboptimal Conflict-Based Search for Multi-Agent
Path Finding

A Feature List

For each node N ∈ T , we compute the following set of atomic features {f1, . . . , f9}:

1. Features related to the conflicts: number of conflicts |NConf | (denoted as f1), number of
pairs of agents that have at least one conflict (denoted as f2) and number of agents that have
at least one conflict (denoted as f3);

2. Features related to NCost: f4 := NCost, f5 := NCost

LB , f6 := NCost − LB, f7 := NCost − S,
f8 := NCost/S where S is the sum of costs of individually cost-minimal paths over all
agents.

3. The depth of N (denoted as f9).

B Experiment Setup

We implement ECBS in C++. The experiments are conducted on 2.4 GHz Intel Core i7 CPUs with
16GB RAM. For each instance, the runtime limit is set to 5 minutes in both data collection and
testing. The number of solutions T collected during data collection is set to 10. The number of
iterations R for DAgger is set to 10. The damping factor r for weight wNi,Nj is set to 0.3727. r is
chosen such that the root node has weight 1 and a node at depth 0.6dmax has weight e−0.6/r = 0.2.
Since we are using a pairwise loss, we suffer quadratic complexity (O(|T |2)) of the loss computation.
To tackle this issue, we record only the first 10,000 nodes generated for each instance during data
collection. We use an open-source ML package LIBLINEAR [8] in the step of training a ranking
function in Algorithm 2 and use the default values for all parameters in LIBLINEAR where C = 1.
The performance of our algorithms is not sensitive to hyperparameters and all these parameters are
chosen without fine-tuning.

We evaluate our algorithms on three grid maps of different sizes and structures from the MAPF
benchmarks1 [24], including: (1) a random map “random-32-32-20”, a 32× 32 grid map with 20%
randomly blocked cells; (2) a warehouse map “warehouse-10-20-10-2-1”, a 163× 63 grid map with
200 10× 2 rectangle obstacles; (3) a game map “den520d”, a 257× 256 grid map from the video
game Dragon Age: Origins. For testing, we use the “random” scenarios in the benchmarks, yielding
25 instances for each number of agents on each grid map. For training, we generate another 25
instances drawn from the same distribution as the “random” scenarios for each Ii in Algorithm 1.
Parameters related to each individual grid map are listed in Table 2. For each grid map, we fix the
suboptimality factor w, following similar reasonings in previous work [1] where small w values are
chosen for large grid maps and vice versa. Our goal is to obtain a ranking function πi (i ∈ [m]) for
each number of agents in {k1, . . . , km}. The training loss of the learned ranking functions are shown
in Table 2, showing good ML performance of the learned ranking functions. We test the learned
strategies on unseen instances with numbers of agents k1, . . . , km, and report the improvement in
solution performance, which is the end goal of this work.

C Additional Experimental Results

The success rates for different runtime limits varying the number of agents on the random, warehouse
and game maps are shown in Figure 3.

1All data is publicly available at: https://movingai.com/benchmarks/mapf/index.html.
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Map Random Warehouse Game
w 1.1 1.05 1.005
m 10 11 16
k1 75 140 80
km 125 240 305
|V | 819 5,699 28,178

Table 1: Parameters of each grid map. w is the suboptimality factor, m is the number of different
numbers of agents we train and test on, k1 is the number of agents that we start training on, km is
the largest number of agents that we test on, and |V | is the number of empty cells on the grid map.
k2, · · · , km−1 are evenly distributed on [k1, km], i.e., ki = (i− 1)(km − k1)/(m− 1) + k1.

Map Random Warehouse Game
l1 .0075 .0088 .0085

lbm/2c .0330 .0166 .0131
lm .0653 .0283 .0204

Table 2: li ∈ [0, 1] is the loss of πi for ki agents evaluated by Equation (1) averaged over all CTs in
the training data.

Figure 3: Success rates varying problem parameters with different runtime limits.
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