
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE TEST-TIME COMPUTE ALLOCATION VIA
TRAINING-FREE DIFFICULTY PROXIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) excel at complex tasks but incur prohibitive compu-
tational costs, particularly when using techniques like self-consistency that require
multiple generation attempts. This paper addresses the challenge of adaptive test-
time compute allocation. We propose a framework that leverages training-free
difficulty proxies derived directly from the LLM generation process to distribute a
fixed compute budget across the test queries, without requiring specialized training
for the allocation mechanism. Our objective is to maximize the number of solved
instances by dynamically allocating more compute to difficult instances and less
to simpler ones, while adhering to a total budget constraint. We first introduce
several training-free proxies and empirically demonstrate their effectiveness in esti-
mating instance difficulty. We then design an adaptive allocation strategy guided
by these proxies, which is theoretically grounded in a novel bandit formulation.
Experiments across math (MATH, GSM8K), coding (LiveCodeBench), and Q&A
(e.g., GPQA-Diamond) benchmarks demonstrate that our method significantly
outperforms both uniform budget allocation and training-based allocation base-
lines, solving substantially more problems under identical budget constraints. This
work presents a practical and readily deployable approach to enhance the resource
efficiency of LLM inference for demanding reasoning tasks.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in tackling complex
reasoning tasks, pushing the frontiers of intelligence in domains like mathematical reasoning and
code generation (Guo et al., 2025; Team et al., 2023). However, the pursuit of higher performance
often necessitates intensive scaling of test-time compute (Brown et al., 2024; Snell et al., 2024;
Wu et al., 2024), which allows models to think more during inference. Techniques such as self-
consistency (Wang et al., 2023), which select the consensus generation given multiple candidate
solutions, or Best-of-N (Cobbe et al., 2021), which returns the best generation guided by an external
verifier, can dramatically improve inference performance. This is particularly crucial in automatically
verifiable domains, such as math and code generation, where producing numerous diverse generations
significantly increases the probability of finding a correct solution (Brown et al., 2024). Yet, these
methods (Brown et al., 2024; Wang et al., 2023) typically apply a uniform allocation strategy, leading
to unnecessary compute costs and thus being suboptimal.

Problem instances naturally vary in difficulty (Damani et al., 2025; Ren et al., 2021): some are
solvable with a single attempt, while others demand extensive compute. Uniform allocation means
wasting compute on easy instances and potentially under-allocating to difficult ones that could be
solved with more compute. This inefficiency limits the practical deployment of LLM inference
systems, especially when operating under a compute budget constraint, which motivates a need for
adaptive test-time compute allocation.

To achieve effective adaptive allocation, a system must first estimate the difficulty of problem
instances. This is where difficulty proxies become essential, quantifiable metrics that can predict
how difficult an instance is likely to be for the LLM. While recent approaches have explored training
specialized models (Manvi et al., 2024; Muennighoff et al., 2025) or probes to predict problem
difficulty (Damani et al., 2025), these methods suffer from significant practical limitations. They
require substantial labeled data, introduce additional model training overhead, and impose expensive

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

inference costs to deploy, defeating the goal of efficient compute allocation. This motivates a crucial
question insight: what if we could leverage signals already present within the LLM’s generation
process, without requiring any auxiliary model training or data? Training-free proxies for difficulty
estimation offer a fundamentally more efficient and scalable alternative. By extracting proxies directly
from the LLM during inference (e.g., entropy, variance of gradient norms, or generation length), we
can achieve on-the-fly difficulty estimation with minimal overhead. While some recent works have
begun exploring individual proxies such as generation length (Xue et al., 2025) or entropy (Yong et al.,
2025), a systematic investigation of their effectiveness and relative performance for test-time compute
allocation in LLMs remains largely unexplored. This leads us to our central research question:

What signals of problem difficulty do LLMs provide, and how to efficiently allocate a
test-time compute budget based on these signals?

To address this central question, this paper introduces a principled framework and a novel solution for
adaptive test-time compute allocation. Our method begins with a rigorous empirical investigation into
a diverse set of training-free difficulty proxies that are meticulously selected and adapted from prior
work or newly proposed. We systematically evaluate their efficacy by measuring their correlation with
an oracle measure of difficulty, revealing strong predictive capabilities for several candidates. Building
upon these empirically validated proxies, we then formulate the adaptive compute allocation task as
a specialized multi-armed bandit (MAB) problem with arm elimination upon success. Under this
novel MAB framework, we develop our core contribution: DIPA (Difficulty-Informed Probabilistic
Allocation), a theoretically grounded policy that intelligently navigates the exploration-exploitation
trade-off by probabilistically allocating computational resources. Comprehensive experiments on
challenging math, code, and Q&A benchmarks subsequently demonstrate that DIPA significantly
outperforms standard uniform budget allocation and other heuristic strategies, thereby validating the
efficacy of our integrated framework.

This work makes the following key contributions:

• We systematically define and validate diverse training-free difficulty proxies for adaptive test-time
compute allocation, establishing their efficacy in estimating instance difficulty.

• We propose a novel reformulation of Test-Time Compute Allocation as a specialized Multi-Armed
Bandit (MAB) problem with arm elimination upon success, providing the first MAB-based
framework for this LLM inference challenge.

• We introduce DIPA, a novel allocation algorithm that strategically balances exploration and
exploitation through probabilistic allocation based on dynamically updated difficulty estimates.

• We provide theoretical analysis showing DIPA’s regret bound is highly related to difficulty proxy
quality, highlighting the importance of selecting effective proxies.

• Through extensive experiments, we demonstrate DIPA consistently outperforms established base-
lines on both verifiable and non-verifiable domains, confirming its practical efficacy.

2 RELATED WORKS

We discuss the most related works here and extend our discussions in Appx. B.

Adaptive Test-Time Compute Allocation for LLMs. Several approaches have explored adaptive
compute allocation. For LLM voting systems, existing methods include step-by-step sampling with
early stopping criteria based on consistency scores (Aggarwal et al., 2023), as well as LLM-based
filtering of generations introduced by (Chen et al., 2024a; Wang et al., 2025). However, these methods
often depend on posterior estimations that struggle under tight budgets, simplify difficulty to a binary
classification (easy or hard), or incur significant overhead from powerful ranking models (e.g., GPT-4).
DIPA instead starts with a prior difficulty estimation, establishes fine-grained difficulty ranking, and
does not require auxiliary models. Other recent, training-based methods include (Damani et al., 2025),
who trained an LLM-based probe to predict the marginal benefit of additional compute, and (Zhang
et al., 2025b), who estimated the success probability by learning from training data. In contrast, our
DIPA framework provides a training-free adaptive allocation strategy, guided by the dynamically
updated difficulty proxies.

Instance Difficulty Estimation. Prior training-based methods (Ren et al., 2021; Cui et al., 2023;
Liu et al., 2024; Xue et al., 2025; Damani et al., 2025) often rely on training auxiliary difficulty

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

estimators, which require extensive labeled data and training compute. In classical machine learning,
several training-free metrics have been explored, including entropy (Simsek et al., 2022; Huang et al.,
2024; Yong et al., 2025), Variance of Gradients (VoG) (Agarwal et al., 2022), gradient norms inspired
by Out-of-Distribution detection (Huang et al., 2021), and ensemble consistency (Jiang et al., 2021;
Baldock et al., 2021). However, the application of these training-free proxies to test-time compute
allocation in LLMs, and their effective adaptation, remained largely unstudied in LLMs. Our research
presents the first systematic evaluation and utilization of such training-free proxies, derived directly
from the LLM input or generation, specifically for adaptive test-time compute allocation, without
auxiliary model training or extensive labeled data for the difficulty estimation mechanism.

3 PROBLEM FORMULATION

We address adaptive test-time compute allocation for LLMs. Given a set of N instancesX = {xi}
N
i=1,

we consider a total computational budget of T . Let Ti ∈ N0 (where N0 = N ∪ {0} includes the
possibility of allocating zero budget) be the budget allocated to process instance xi. The vector of
allocations is denoted by T = (T1, . . . , TN). Specifically, the budget Ti for xi is interpreted as the
number of generation attempts made for this instance. We consider an indicator function 1(o | xi)
which decides if any single generation o solves the instance xi. In a verifiable task, 1(o | xi) is its
automatic oracle verifier. We discuss the indicator function for non-verifiable tasks in Sec. 5.4.

Our target is to find an allocation strategy that maximizes the total number of instances solved. Let
F (xi;Ti) be a meta indicator function that is 1 if instance xi is solved within its Ti allocated attempts
and 0 otherwise. The objective is to maximize the coverage (i.e., the fraction of solved instances):

max
1

N

N∑
i=1

F (xi;Ti) s.t.
N∑
i=1

Ti = T . (1)

The core challenge addressed in this work is to determine the sequence of per-instance generation
attempts T . This determination relies on readily available, training-free proxies of instance difficulty,
without necessitating model fine-tuning or specialized training for the allocation mechanism itself.

4 TRAINING-FREE PROXIES FOR DIFFICULTY ESTIMATION

4.1 TRAINING-FREE PROXIES

To begin with, we first introduce the following training-free proxies that we aim to study throughout
this paper. Formally, given an input instance x = (x1, · · · , xS), we use LLM to produce m

generations O ≜ {o(i) = (o(i)1 , · · · , o(i)Li
)}mi=1 conditioned on x for the computation of the training-

free proxy. We denote Y ≜ {y(i)}mi=1 as the corresponding final answers extracted from O, and
define the cross-entropy loss on the concatenated sequence x ⊕ o with next token prediction as
CE(x⊕ o) with formal definition in Appx. E.3. Intuitively, an instance is difficult if: (1) the question
or the reasoning process is long (Muennighoff et al., 2025), (2) the LLM is uncertain (Huang et al.,
2024), (3) its prediction is sensitive to input perturbations (Agarwal et al., 2022; Huang et al., 2021),
and (4) there is no obvious consensus within candidate solutions (Baldock et al., 2021). Inspired
by similar intuitions from previous works (in Sec. 2), we formally introduce several training-free
difficulty proxies for LLMs in inference:

Question Length: MQL(x) = |x| = S, Entropy:MEnt(O | x) = 1
m

∑m
i=1 CE(x⊕ o(i)),

Gradient Norm: MGN(O | x) = 1
m

∑m
i=1 Mean{∥∇xCE(x⊕ o(i))∥ | x ∈ x⊕ o},

Variance of Gradient: MVoG(O | x) = 1
m

∑m
i=1 Var{∥∇xCE(x⊕ o(i))∥ | x ∈ x⊕ o},

Generation Consistency: MGC(O | x) = 1
m maxc∈Y

∑m
i=1 I[y

(i) = c], and

Generation Length: MGL(O | x) = 1
m

∑m
i=1 |o

(i)| = 1
m

∑m
i=1 Li.

We denote the input-based and generation-based proxy asM(x) andM(O | x), respectively. For
formulations of other input-based proxiesMEnt(x),MGN(x), andMVoG(x), refer to Appx. E.3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Spearman correlations between proxies and Pass@k−1(τ). Values are reported in mean from
3 trials with m = 3 (all std < 0.03). The input-based proxies (without generation) are highlighted
in purple cell , while generation-based proxies are unshaded. The highest absolute correlation is
highlighted in bold, and the second highest is underlined.

Difficulty Proxy MATH500 GSM8K LiveCodeBench
QM-1.5B Llama-8B QM-1.5B Llama-8B Llama-8B

Level (1-5) 0.488 0.515
MEnt(x) 0.496 0.457 0.088 0.160 0.244
MGN(x) −0.489 −0.443 −0.085 −0.292 −0.430
MVoG(x) −0.468 −0.464 −0.045 −0.316 −0.488
MQL(x) 0.482 0.450 0.382 0.302 0.502
MEnt(O | x) 0.180 0.086 0.454 0.301 0.373
MGN(O | x) −0.311 −0.530 0.276 −0.565 −0.487
MVoG(O | x) −0.286 −0.496 0.226 −0.555 −0.567
MGC(O | x) −0.677 0.651 −0.651 −0.663 −0.213
MGL(O | x) 0.780 0.701 0.592 0.467 0.530

4.2 EMPIRICAL STUDY OF DIFFICULTY ESTIMATION

Oracle Difficulty. To empirically evaluate the effectiveness of the training-free difficulty proxies
introduced above on the estimation of instance difficulty, we first establish a ground-truth measure of
intrinsic instance difficulty, termed the oracle difficulty measure. This oracle quantifies the minimum
number of generations required to achieve a predefined target probability of success τ ∈ [0, 1] in
solving a given problem instance. We define this measure using the inverse of the standard Pass@k

metric, denoted Pass@k−1(τ). The Pass@k metric itself computes the probability of obtaining at
least one correct solution when drawing k samples without replacement from a finite pool of K
available generations, of which K+ are correct. Mathematically, for k ≤ K, Pass@k (Chen et al.,
2021) is given by:

Pass@k = 1−
(
K−K

+

k

)(
K
k

) . (2)

The oracle difficulty Pass@k−1(τ) is then the smallest positive integer k such that Pass@k ≥ τ :

Pass@k−1(τ) ≜ min{k ∈ N+ | Pass@k ≥ τ} . (3)

Intuitively, a lower value of Pass@k−1(τ) indicates an easier instance, as fewer generations are
needed to reach the success threshold τ , while a higher value signifies greater difficulty. This oracle,
therefore, provides a principled benchmark against which the correlation and utility of training-free
difficulty proxies can be rigorously assessed.

Correlation Evaluation. To empirically validate our training-free difficulty proxies, we examine their
Spearman rank correlation with an oracle difficulty measure (Pass@k−1(τ)). For math benchmarks,
MATH500 (Lightman et al., 2023) and GSM8K (Cobbe et al., 2021)), we analyze the correlation
on a math-specific LLM Qwen2.5-Math-1.5B (Yang et al., 2024) and a general LLM Llama3.1-
8B (Grattafiori et al., 2024). For code generation benchmark, LiveCodeBench (Jain et al., 2025), we
analyze on Llama3.1-8B only. The results in Tab. 1 indicate that proxies derived from the generation
process of LLMs, e.g., Generation LengthMGL, VoGMVoG, and Generation ConsistencyMGC,
exhibit robust correlations and excel in different tasks. Specifically, MGL performs the best on
MATH500 for both models,MGC performs the best on GSM8K for both models, andMVoG is the
best proxy on LiveCodeBench. This affirms their utility in guiding instance-aware and task-specific
compute allocation. Among all evaluated metrics, MGL consistently emerges as a particularly
compelling proxy due to its simplicity and strong empirical performance (correlations are always
greater than 0.467). See more discussions in Appx. F.1.

Intriguingly, certain input-based proxies (detailed in Appx. E.3) also prove effective, offering a
valuable, low-cost initial difficulty estimate even before any generation occurs, which can serve as a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

prior for adaptive allocation (see Sec. 5.2). Regarding proxies informed by LLM generations O, their
estimation quality intuitively improves with the sample size m, yet our result in Fig. 5 in Appx. F.1
shows that marginal gains diminish rapidly. A relatively small m (e.g., m = 4) often suffices for
strong difficulty estimation, highlighting the cost-effectiveness of these dynamic proxies.

In summary, our extensive correlation analysis confirms that readily available, training-free signals,
whether derived from the input instance itself or the generation process of LLMs, provide potent
and efficient means to estimate instance difficulty. The strong performances ofMGL,MGC, and
MVoG, showcase those efficient training-free proxies that can significantly inform adaptive compute
allocation strategies for specialized tasks, paving the way for more resource-aware LLM inference.

5 ADAPTIVE TEST-TIME COMPUTE ALLOCATION VIA TRAINING-FREE
PROXIES

Based on our comprehensive study of difficulty proxies in Sec. 4.2, we propose a novel approach for
adaptive test-time compute allocation with LLMs in this section. We reformulate this problem as a
specialized multi-arm bandit (MAB) variant featuring arm elimination upon success and establish the
first general MAB-based framework to address it (Sec. 5.1). Within this framework, we introduce
DIPA (Difficulty-Informed Probabilistic Allocation) as an effective and efficient solution (Sec. 5.2).

5.1 REFORMULATION AS MULTI-ARMED BANDIT VARIANT

We reformulate the adaptive test-time compute allocation problem as a stochastic multi-armed
bandit (MAB) variant characterized by a global budget, arm elimination upon success, and instance-
specific reward dynamics dependent on cumulative interaction. Formally, let the set of N instances
X = {xi}

N
i=1 constitute the set of available arms. The process unfolds over a maximum of T discrete

rounds, where T is the total computational budget. Each round corresponds to a single pull of an arm,
consuming one unit of budget. The state of each arm xi is defined by (si, Ti), where si ∈ {0, 1} is
its current status (0 for unsolved, 1 for solved) and Ti is the cumulative budget (number of pulls)
allocated to arm xi. Initially, si = 0 and Ti = 0 for all i ∈ [N]. We then introduce the following
general framework to solve this MAB reformulation:

A General MAB-Based Framework for Adaptive Test-Time Compute Allocation

In each round t ∈ [T]:
(I) A policy π selects an arm xj from the set of unsolved arms {xi ∈ X | si = 0}.
(II) The budget allocated to xj is incremented: Tj ← Tj + 1.
(III) An outcomeF (xj ;Tj) is observed. IfF (xj ;Tj) = 1, the status of armxj transitions

to solved (sj ← 1).
(IV) rk = 1 if an arm transitions from status 0 to 1 in round t; otherwise, rk = 0.

The objective is then to design a policy π that maximizes the total number of unique arms solved
within the T available pulls:

max
π

T∑
t=1

rk = max
π

N∑
i=1

si . (4)

Since the performance function F (xi;Ti) in the original problem is interpreted as yielding a deter-
ministic binary indicator of success (1 if solved, 0 otherwise) for instance xi given Ti units of budget,
then the optimization in Eq. 1 is equivalent to maximizing the sum in Eq. 4. In this bandit reframing,
Ti (i.e., the cumulative pulls for arm xi after T rounds under policy π) directly corresponds to
the per-instance budget Ti in the original problem. The policy π makes sequential decisions over
up to T rounds, and the set of final cumulative pulls {Ti(π)}

N
i=1 forms an allocation Tπ such that∑

Ti(π) = T . An optimal policy π∗ for Eq. 4 therefore identifies an allocation Tπ
∗ that maximizes

the number of successfully processed instances (those with si = 1), directly addressing the aim of
the original problem under this interpretation of F as a deterministic, binary success function.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Difficulty-Informed Probabilistic Allocation (DIPA)

1: Input: Compute budget T , instance set X = {xi}
N
i=1, input-based proxyMinput, generation-

based proxyMgen
2: Initialization: For each instance xi ∈ X :Mi ←Minput(xi) and Oi ← ∅
3: for each compute allocation step t ∈ [T] do
4: if X = ∅ then
5: break // All instances solved, stop
6: end if
7: Update sampling probabilities: Pk ←

1/Mλ
k∑

xl∈X 1/Mλ
l

for all xk ∈ X

8: Sample xj from X using probabilities {Pk}
9: Produce generation o(t)

j for xj , update Oj ← Oj ∪ {o
(t)
j }, and verify 1(o(t)

j | xj)
10: if 1(o(t)

j | xj) = 1 then
11: X ← X \ {xj} // Remove solved instance
12: else
13: UpdateMj ←Mgen

(
Oj | xj

)
// Update difficulty estimate

14: end if
15: end for
16: Output: The final set of (unsolved) instances X .

5.2 DIFFICULTY-INFORMED PROBABILISTIC ALLOCATION

Building on this multi-armed bandit (MAB) reformulation, we now propose a policy π that strate-
gically leverages training-free proxies of instance difficulty to determine the arm selection process.
This policy is detailed in Algo. 1. The fundamental principle is to probabilistically prioritize arms
(instances) estimated to be easier, thereby aiming to maximize the count of successfully resolved
instances (i.e., si = 1) within the allocated budget T , while concurrently permitting exploration of
instances that might have been erroneously classified as more difficult. This methodology directly
confronts the challenge of determining per-instance allocations Ti without necessitating specialized
training for the allocation mechanism itself.

LetMi represent the difficulty estimate assigned to instance (arm) xi, initialized by an input-based
proxy measureMi ←Minput(xi) (line 2 of Algo. 1). Conventionally, a higher value ofMi signifies
a more challenging instance. Our target is to construct a selection probability for each currently
unsolved arm xi that exhibits an inverse relationship with its estimated difficultyMi. In each round
t ∈ {1, . . . , T}, the set of active (unsolved) instances is denoted by X , which directly corresponds to
the MAB concept of Ut = {xi | xi is unsolved at step t}. The policy selects an arm xj ∈ X for the
subsequent budget allocation (i.e., a generation attempt) based on a probability distribution defined
over this set X . This distribution is formulated as follows: For every unsolved arm xk ∈ X , its
selection probability Pk is updated (line 7 of Algo. 1) based on its current difficulty proxyMk:

Pk = Prob(select xk in step t | X , {Ml}xl∈X) =
wk∑

xl∈X wl

(5)

where wk = 1/Mλ
k is the sample proxy weight and λ ∝ |X | is an active sampling temperature.

Upon the selection of arm xj , a generation o(t)
j is produced and is added to its set of generations Oj

(line 9 of Algo. 1). This step consumes one unit of the compute budget for instance xj . Subsequently,
the correctness of this generation is verified, yielding an outcome 1(o(t)

j | xj). If this outcome
indicates success (e.g., 1(o(t)

j | xj) = 1), instance xj is considered solved and is removed from the
set of active instances, i.e., X ← X \ {xj} (line 11 of Algo. 1). Conversely, if the instance xj is
not solved (1(o(t)

j | xj) ̸= 1), it remains in the set X for subsequent steps. Importantly, as shown
in Algo. 1 (line 13), if arm xj is not solved, its difficulty proxyMj is re-evaluated and updated
using a generation-based proxyMgen(Oj | xj) (e.g., the generation lengthMGL in Sec. 4.1) as
generation-based proxies usually achieve higher correlations with the oracle difficulty (see Sec. 4.2).
This dynamic update ofMj allows the policy to adapt its estimate of instance difficulty based on the
interaction history (the set of generationsOj), refining future selection probabilities. The probabilities
{Pk} will be re-calculated at the beginning of the next iteration based on the potentially updated X
andMi values. If all instances are solved (X = ∅), the process terminates (lines 4-6 of Algo. 1).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This probabilistic allocation policy, informed by a dynamically updated difficulty estimate, presents
several compelling advantages. (a) It facilitates an adaptive allocation of test-time compute, dy-
namically redirecting effort towards instances offering a higher success rate as other instances are
progressively solved or as difficulty estimates are refined. (b) Crucially, the allocation policy itself
is training-free. (c) The probabilistic nature of the selection mechanism inherently balances ex-
ploitation of perceived easy instances with exploration of those deemed harder, mitigating the risk of
prematurely abandoning instances that might be solvable. Consequently, this approach can lead to
enhanced efficiency, potentially achieving a higher coverage for a given total budget T .

5.3 THEORETICAL ANALYSIS OF REGRET BOUND FOR DIPA

To theoretically justify DIPA, we state a concise inversion-based regret bound for DIPA under a static
proxy. Refer to Appx. D for full proof, detailed setups, and more discussions.
Theorem 1 (Regret bound via Kendall–tau inversions). Consider N arms with unknown success
probabilities p1, . . . , pN ∈ [0, 1], ordered so that p1 ≥ · · · ≥ pN . Let a static proxy induce positive
weights w1, . . . , wN . Define the Kendall–tau inversion set Inv := {(i, j) : i < j and wi < wj} and
K := |Inv|. Assume the proxy quality condition: ∃γ ≥ 1 : ∀i, j ∈ N, 1

γ ≤
wi/pi

wj/pj
≤ γ. Then the

cumulative regret R(T), against the optimal policy (selects arm argmaxk∈X pk), satisfies

R(T) ≤
∑

(i,j)∈Inv

γ
(pi − pj)

pi
≤ γ K.

Thm. 1 shows that the cumulative regret is controlled by the proxy quality γ and the size of the
Kendall–tau inversion set |Inv|. Specifically, Inv captures the pairwise ranking errors between the
proxy-induced order and the oracle order of arms. Each element (i, j) ∈ Inv corresponds to a
misordered pair where the proxy ranks the weaker arm j above the stronger arm i.

Remarks on Proxy Quality Assumption. The performance of DIPA depends on the quality of
the difficulty proxies. We formalize proxy quality with a multiplicative error assumption, which
bounds how much the proxy-based weights can deviate from the true success probabilities. A larger
γ indicates a poorer proxy that distorts the relative weights of arms more significantly, leading to
errors in the sampling probability Pk.

Remarks on Regret Bound. The bound ties the R(T) to the ranking error of the proxy: small K
(high rank correlation) yields small regret, independent of the budget T ; when γ = 1 (perfect proxy
alignment to oracle p), the bound collapses to zero with K = 0. This aligns with our empirical
findings in Sec. 6 where difficulty proxies with higher correlations used in DIPA generally perform
better, which also validates our assumption on proxy quality.

5.4 APPLICATION OF DIPA IN NON-VERIFIABLE TASKS

In non-verifiable tasks, we propose integrating an external reward model RM(·): O → R to define
the verification function 1RM(o(t) | x) := 1 if RM(o(t)|x) ≥ RM(o(t−j)|x) ∀j ∈ [1, C] else 0.
Namely, the reward model evaluates generations iteratively and eliminates x when no higher-reward
generation is found for C consecutive attempts, indicating the instance is likely solved. In inference,
only the highest-reward generation for each instance is evaluated (if actually solved).

6 EXPERIMENTS

This section empirically validates our DIPA. We first present main results demonstrating the superiority
of DIPA over baselines in maximizing coverage under fixed budgets (Sec. 6.1), then perform ablation
studies to validate the design choices of DIPA, offering insights into its performance and the efficacy
of different difficulty proxies (Sec. 6.2). Experimental details are in Appx. E.1.

6.1 MAIN RESULTS

In this work, we primarily experiment on verifiable tasks, including MATH500, GSM8K, and
LiveCodeBench, and a non-verifiable task, GPQA-Diamond (Rein et al., 2024), with models Qwen2.5-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2¡1 20 21 22 23 24 25

Budget (£N)

0.2

0.4

0.6

0.8

C
ov

er
ag

e
(%

)

MATH500 (Qwen2.5-Math-1.5B)

2¡1 20 21 22 23 24 25

Budget (£N)

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

GSM8K (Qwen2.5-Math-1.5B)

2¡1 20 21 22 23 24 25

Budget (£N)

0.2

0.4

0.6

0.8

C
ov

er
ag

e
(%

)

MATH500 (Llama3.1-8B)

2¡1 20 21 22 23 24 25

Budget (£N)

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

GSM8K (Llama3.1-8B)

Uniform Easy2Hard(MGL) Hard2Easy(MGL) DIPA(MConst) DIPA(MGL) DIPA(Pass@k¡1)

Figure 1: Performance comparison of DIPA against other allocation strategies across two datasets
and models. The (invisible) coverages of Hard2Easy(MGL) are always less than 0.2 on MATH500.

2¡2 2¡1 20 21 22 23 24

Budget (£N)

0.2

0.4

0.6

C
ov

er
ag

e
(%

)

MATH500 (Qwen2.5-Math-1.5B)

2¡2 2¡1 20 21 22 23 24

Budget (£N)

0.2

0.4

0.6

0.8

1.0
C

ov
er

ag
e

(%
)

GSM8K (Qwen2.5-Math-1.5B)

2¡2 2¡1 20 21 22 23 24

Budget (£N)

0.2

0.4

0.6

C
ov

er
ag

e
(%

)

MATH500 (Llama3.1-8B)

2¡2 2¡1 20 21 22 23 24

Budget (£N)

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

GSM8K (Llama3.1-8B)

0.45

0.50

0.8

0.9

0.45

0.50

0.8

0.9

Uniform MGN MEnt MVoG MGC MGL

Figure 2: Performance comparison of DIPA variants with different proxies across models and datasets.

Math-1.5B and Llama3.1-8B. Our experiments are designed to validate the core claims regarding the
ability of DIPA to leverage difficulty proxies for superior compute allocation.

Compelling Performance of Probabilistic Allocation. We first compare DIPA against three de-
terministic allocation strategies: (1) Uniform, which distributes T equally; (2) Easy2Hard, which
greedily selects the instance with the current lowest estimated difficulty; (3) Hard2Easy, which
conversely selects the instance with the highest estimated difficulty. For DIPA, we evaluate three key
variants: DIPA(MConst) using a uniformly random sampling with a fixed constant difficulty proxy
(effectively ablating the difficulty guidance), our main proposal DIPA(MGL) guided by Generation
Length, our consistently performant proxy shown in Tab. 1, and DIPA(Pass@k−1) with the oracle
difficulty Pass@k−1(τ) defined in Eq. 3, the desired solution we aim to approximate. Experiments
are conducted across varying total budgets (e.g., T up to 25×N , where N is the number of instances).

The compelling results in Fig. 1 show that DIPA consistently outperforms or matches other methods.
Specifically, DIPA is significantly better than uniform allocation, and a lot more as the budget
increases. When compared to deterministic strategies, DIPA(MGL) exhibits similar coverage to
Easy2Hard(MGL) at very small budgets, as both prioritize apparently easy instances. However,
as the budget is increasing (T ≥ 20 ×N), DIPA(MGL) pulls ahead significantly. This superiority
underscores the benefit of the probabilistic nature and dynamic difficulty updates of DIPA. Unlike the
greedy Easy2Hard, DIPA can strategically explore instances initially deemed harder or re-allocate
resources if initial difficulty estimates prove inaccurate, aligning with the exploration-exploitation
balance inherent in our MAB formulation. This adaptability allows DIPA to solve a broader and
more challenging set of problems as more compute becomes available. Crucially, DIPA(MGL)

significantly surpasses DIPA(MConst) across most budget regimes, particularly when T ≤ 21 ×N .
This empirically substantiates our claim that leveraging difficulty information (e.g.,MGL here) is vital
for efficient allocation, especially under tighter budget constraints. The performance gap between
DIPA with effective proxies and the oracle (Pass@k−1(τ)) is observed to be smaller on GSM8K
than on MATH500, which we attribute to the comparatively higher intrinsic difficulty of MATH500
dataset for the models tested.

GL for Math, VoG for Code. To further validate our findings from Sec. 4.2 regarding proxy
quality, we compare variants of DIPA guided by different difficulty proxies. The results, presented in
Fig. 2, demonstrate that most (exceptMEnt) of the investigated training-free proxies enable DIPA to
outperform uniform allocation. More importantly, the performance ranking of DIPA variants guided
by these proxies generally aligns with the Spearman correlations of these proxies reported in Tab. 1.
Specifically, DIPA guided byMGL consistently yields the best performance for both MATH500 and
GSM8K. Conversely, the results on LiveCodeBench in Appx. F.2 demonstrate that the proxyMVoG

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Accuracy comparison on non-verifiable task
GPQA-Diamond with Qwen2.5-1.5B across budgets.

Method 22 ×N 24 ×N 26 ×N
Self-Consistency 0.211 0.199 0.188
Best-of-N 0.205 0.219 0.229
DIPA(MEnt) 0.134 0.224 0.237
DIPA(MGN) 0.189 0.220 0.235
DIPA(MVoG) 0.188 0.229 0.239
DIPA(MGC) 0.222 0.222 0.237
DIPA(MGL) 0.218 0.227 0.242

2¡2 2¡1 20 21 22 23 24 25

Budget (£N)

0.2

0.4

0.6

0.8

C
ov

er
ag

e
(%

)

MATH500

¸=1 ¸=10 ¸∝ jXj (DIPA)

Figure 3: Comparison of different values
of λ applied to Pk on MATH500.

is consistently better, which also aligns with its highest rank correlation. The relatively different
performances directly confirm the significant impact of evaluating the proxy quality across domains,
highlighting the importance of selecting high-fidelity difficulty proxies for practical applications.

Generalization to Non-Verifiable Tasks. We further validate the effectiveness of DIPA when no
oracle verifier is available, where we use an off-the-shelf reward model “Skywork-Reward-V2-Qwen3-
4B” (Liu et al., 2025) in the indicator function 1RM(o | x). We compare DIPA against the two most
common test-time strategies: Self-Consistency and Best-of-N on a challenging Q&A benchmark,
GPQA-Diamond (Rein et al., 2024). To demonstrate its practicality, we report the accuracy (instead of
coverage) across different budgets in Tab. 2. All variants (different proxies) of DIPA outperform both
Self-Consistency and Best-of-N baselines when the budget is ample (i.e., T ≥ 24 ×N), withMGC
andMGL consistently performing better across all budgets. This demonstrates DIPA’s generalization
to non-verifiable domains.

Comparison against Training-Based Difficulty Proxy Method. Compared to the training-based
baseline (Damani et al., 2025) that requires training 4.3×106 parameters for 54 GPU hours, DIPA has
no training overhead and achieves 50× faster inference. All variants of DIPA clearly demonstrated
significant advantages of efficiency and higher coverages compared to the training-based baseline.
Refer to Appx. F.3 for full results.

6.2 ABLATION STUDIES

To dissect the contributions of the components in DIPA, we conduct several ablations to demonstrate
the effectiveness and validate the principled design of DIPA. For example, we studied the role of active
sampling temperature λ in DIPA. The sampling probability Pk (Eq. 5) incorporates λ to modulate
the exploration-exploitation balance. We compare fixed λ values (1, 10) with a dynamic λ ∝ |X |
(where |X | is the count of unsolved instances). Fig. 3 shows that a dynamic λ often performs best. It
encourages exploitation early on (larger |X |, larger λ) and shifts towards exploration as fewer, likely
harder, instances remain (smaller |X |, smaller λ). Due to the space constraint, we presented more
ablations in Appx. F, including (a) DIPA dynamically allocates budget across difficulty levels (in
Appx. F.4), (b) Comparison between generation-based difficulty estimates and static input estimates
(in Appx. F.5), (c) Correlation evaluation for subdomains and analysis of non-solvable problems in
MATH500 (in Appx. F.6), (d) How the entropy loss affects loss-based difficulty proxies, including
MEnt,MGN, andMVoG (in Appx. F.7). Those results confirmed the efficacy and design of DIPA.

7 CONCLUSION

We presented DIPA, a training-free approach for adaptive test-time compute allocation in LLMs. By
leveraging dynamically updated difficulty proxies within a novel MAB framework, DIPA significantly
enhances resource efficiency, solving more problems on challenging benchmarks under fixed compute
budgets. This work offers a practical and theoretically grounded approach for cost-effective and
adaptive LLM inference. Refer to Appx. A for discussions on limitations of this work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper presents DIPA algorithm with the goal of advancing LLM test-time compute efficiency.
Specifically, we focus on improving the efficiency of LLM test-time compute scaling by adaptive
allocation, which can significantly reduce computational resource requirements during LLM inference.
While there could be potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

REPRODUCIBILITY STATEMENT

We discuss the efforts that have been made to ensure reproducibility of our work here. We provided
the source code as part of the supplemental materials. The assumption and the complete proof of our
main theorem are included in Appx. D. The experimental setting and choices of hyperparameters are
detailed in Appx. E.

REFERENCES

Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example difficulty using variance of
gradients. In Proc. CVPR, pp. 10368–10378, 2022.

Pranjal Aggarwal, Aman Madaan, Yiming Yang, and Mausam. Let‘s sample step by step: Adaptive-
consistency for efficient reasoning and coding with LLMs. In Proc. NMNLP, pp. 12375–12396,
2023.

Robert John Nicholas Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through
the lens of example difficulty. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan
(eds.), Proc. NeurIPS, 2021.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more LLM calls all you need? towards the scaling properties of compound AI systems.
In Proc. NeurIPS, 2024a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. A simple and provable scaling
law for the test-time compute of large language models. arXiv preprint arXiv:2411.19477, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Peng Cui, Dan Zhang, Zhijie Deng, Yinpeng Dong, and Jun Zhu. Learning sample difficulty from
pre-trained models for reliable prediction. In Proc. NeurIPS, volume 36, pp. 25390–25408, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard to
think: Input-adaptive allocation of LM computation. In Proc. ICLR, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Hsiu-Yuan Huang, Yutong Yang, Zhaoxi Zhang, Sanwoo Lee, and Yunfang Wu. A survey of
uncertainty estimation in llms: Theory meets practice. arXiv preprint arXiv:2410.15326, 2024.

Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distributional
shifts in the wild. In Proc. NeurIPS, volume 34, pp. 677–689, 2021.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In Proc. ICLR, 2025.

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural
regularities of labeled data in overparameterized models. In Proc. ICML, 2021.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei Shen,
Fuxiang Zhang, Jiacheng Xu, Yang Liu, and Yahui Zhou. Skywork-reward-v2: Scaling preference
data curation via human-ai synergy. arXiv preprint arXiv:2507.01352, 2025.

Linyu Liu, Yu Pan, Xiaocheng Li, and Guanting Chen. Uncertainty estimation and quantification for
llms: A simple supervised approach. arXiv preprint arXiv:2404.15993, 2024.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can predict
if they can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy, Shreyas Padhy, and Balaji Lakshmi-
narayanan. A simple fix to mahalanobis distance for improving near-ood detection. arXiv preprint
arXiv:2106.09022, 2021.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In Proc. NeurIPS, volume 36, pp. 8634–8652,
2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Berfin Simsek, Melissa Hall, and Levent Sagun. Understanding out-of-distribution accuracies through
quantifying difficulty of test samples. arXiv preprint arXiv:2203.15100, 2022.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling test-time compute optimally
can be more effective than scaling llm parameters. In Proc. ICLR, 2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan, Yueqi Zhang, Chuyi Tan, Boyuan Pan, Yao
Hu, and Kan Li. Make every penny count: Difficulty-adaptive self-consistency for cost-efficient
reasoning. In Findings of ACL: NAACL, pp. 6904–6917, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In Proc. ICLR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Proc.
NeurIPS, volume 35, pp. 24824–24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. arXiv
preprint arXiv:2408.00724, 2024.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for LLM problem-solving. In Proc. ICLR, 2025a.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025b.

Boyang Xue, Qi Zhu, Hongru Wang, Rui Wang, Sheng Wang, Hongling Xu, Fei Mi, Yasheng Wang,
Lifeng Shang, Qun Liu, and Kam-Fai Wong. Dast: Difficulty-aware self-training on large language
models. arXiv preprint arXiv:2503.09029, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Xixian Yong, Xiao Zhou, Yingying Zhang, Jinlin Li, Yefeng Zheng, and Xian Wu. Think or not?
exploring thinking efficiency in large reasoning models via an information-theoretic lens. arXiv
preprint arXiv:2505.18237, 2025.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025a.

Kexun Zhang, Shang Zhou, Danqing Wang, William Yang Wang, and Lei Li. Scaling LLM inference
efficiently with optimized sample compute allocation. In Luis Chiruzzo, Alan Ritter, and Lu Wang
(eds.), Proc. NAACL, pp. 7959–7973, 2025b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A LIMITATION

One limitation of this work is that it does not extend to the adaptive reasoning length setting, where
test-time compute scaling would dynamically control the reasoning length (or the number of thinking
tokens) within a single response, rather than generating multiple responses. More test-time compute
means longer reasoning lengths for a single generation. In future research, we aim to extend our
DIPA algorithm to the adaptive length setting for efficient thinking.

B EXTENDED RELATED WORKS

Scaling LLM Test-Time Compute. Recent works Wu et al. (2025a); Snell et al. (2024) have
demonstrated that scaling inference compute with inference strategies can be more computationally
efficient than scaling model parameters. We categorize test-time compute scaling approaches into
two main categories: prompting-based methods and sampling-based. Sampling-based methods
Wang et al. (2023); Chen et al. (2024b); Snell et al. (2024) generate multiple outputs simultaneously,
with intermediate steps or final answers evaluated by verifiers to produce an aggregated result. The
most widely adopted method is to best-of-n or beam search ranked by a verifier (or reward model).
When verifiers are not available, self-consistency Wang et al. (2023) can be employed to select the
consensus answer with majority vote. Prompting-based methods Wei et al. (2022); Bi et al. (2024)
typically involve “thinking with more sequential tokens”, where self-correction Shinn et al. (2023) is
a common method that revises the initial response without external feedback. Our work falls within
the sampling-based category, with our primary goal being to adaptively scale test-time compute for
optimized efficiency.

Efficient Reasoning (ER). Current works on efficient reasoning can be classified into three main
categories Sui et al. (2025): (1) model-based ER Hao et al. (2024); Yeo et al. (2025); Zhang et al.
(2025a), which optimizes the output generation length by training length-aware models, (2) output-
based ER Snell et al. (2024); Wu et al. (2025b), which aims to reduce reasoning length or adaptively
scale test-time compute, and (3) prompt-based ER Han et al. (2024); Ma et al. (2025), which seeks to
adjust reasoning efforts by prompting models using difficulty or length control. Our work belongs
to the second category, where reasoning efficiency is achieved by reducing the number of samples
required during the inference process.

C THE USE OF LARGE LANGUAGE MODELS

We disclose that there is no significant LLM usage in this work. LLMs are only moderately used to
polish writing for a few paragraphs and assist with some code implementations.

D PROOF OF THE REGRET BOUND FOR DIPA

This appendix establishes a regret bound for DIPA that depends only on the pairwise ranking errors
between the proxy-induced order and the oracle order of arms. Intuitively, each misordered pair can
contribute regret only while both arms remain active; after one fires (is solved), it stops contributing
regret.

D.1 SETUP, NOTATION, AND INVERSION COUNT

Let A = {1, . . . , N} index arms, and let the (unknown) success probabilities be p1, . . . , pN ∈ [0, 1].
Without loss of generality, label arms by decreasing oracle probabilities:

p1 ≥ p2 ≥ · · · ≥ pN .

Let the static proxy induce desirability weights wi > 0 and define the proxy order σ such that

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

wσ(1) ≥ wσ(2) ≥ · · · ≥ wσ(N).

Define the Kendall–tau inversion set

Inv :=
{
(i, j) : i < j and wi < wj

}
,

with inversion count K := |Inv|. Thus (i, j) ∈ Inv means the proxy ranks arm j above i despite
pi ≥ pj .

Assumption 1 (Proxy quality γ). There exists γ ≥ 1 such that for all i, j ∈ A,

1

γ
≤ (wi/pi)

(wj/pj)
≤ γ.

Equivalently, wi

wj
∈
[
1
γ ·

pi

pj
, γ · pi

pj

]
.

At round t, let At be the active set, and DIPA selects arm k ∈ At with probability

Pk(t) =
wk∑

u∈At
wu

.

The single-step expected regret is

∆t = max
k∈At

pk −
∑
k∈At

Pk(t) pk.

We study the cumulative regret R(T) =
∑T

t=1 E[∆t].

D.2 PAIRWISE CONTRIBUTION DECOMPOSITION

Fix a time t and let i⋆ ∈ At be the best active arm, i.e., pi⋆ = maxk∈At
pk. Since we have∑

k

Pk(t) pk = pi⋆ Pi
⋆(t) +

∑
j ̸=i

⋆

Pj(t) pj

= pi⋆
(
1−

∑
j ̸=i

⋆

Pj(t)
)

+
∑
j ̸=i

⋆

Pj(t) pj

= pi⋆ −
∑
j ̸=i

⋆

(pi⋆ − pj)Pj(t).

Then
∆t =

∑
j∈At

j ̸=i
⋆

(pi⋆ − pj)Pj(t). (6)

The cumulative regret therefore is

R(T) =

T∑
t=1

∑
j∈At

j ̸=i
⋆
(t)

(pi⋆(t) − pj)E
[
Pj(t)

]
, (7)

where i⋆(t) denotes the best active arm at time t.

We will control the contribution in equation 7 by summing over misordered pairs (i, j) ∈ Inv and
bounding how much total probability mass DIPA allocates to j while both i and j are active.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D.3 TWO-ARM ABSORPTION BOUND FOR A MISORDERED PAIR

Fix an inverted pair (i, j) ∈ Inv (so i < j and pi ≥ pj but wi < wj). Consider the stochastic
sub-process that evolves only until the earlier of: arm i succeeds or arm j succeeds. During rounds
when both i and j are active, define

αt := Pi(t) =
wi∑

u∈At
wu

, βt := Pj(t) =
wj∑

u∈At
wu

.

Let τi,j be the (random) absorption time when either i or j is solved. The total probability mass
allocated to j while the pair is active is

∑τi,j−1
t=1 βt. Define the pairwise contribution to cumulative

regret (dominated by placing mass on j rather than on the best active arm) as

Ci,j :=
T∑

t=1

E
[
(pi − pj)Pj(t)1{i, j ∈ At}

]
.

Now, since the sum over t stops once either i or j is solved, we can replace the upper limit T by τi,j :

Ci,j = (pi − pj) · E
[τi,j−1∑

t=1

βt

]
. (8)

We next upper-bound E[
∑

t<τi,j
βt] using Assumption 1. For rounds t < τi,j ,

βt

αt

=
wj

wi

≤ γ
pj
pi

,
αt

βt

≥ 1

γ

pi
pj

.

Moreover, the per-round absorption probability (either i or j succeeds and is removed) via {i, j} is at
least

νt := αt pi + βt pj ≥ αt pi.

Consider a non-homogeneous geometric process: in a sequence of Bernoulli trials, the success
probability can vary with time: at round t, success occurs with probability νt. The stopping time τ is
the first round where success occurs. Formally, the success probability occurring at time t is:

Pr(τ = t) = νt

t−1∏
s=1

(1− νs)

At each round t, the probability that the process survives until t (i.e., no success yet) is
∏t−1

s=1(1− νs).

So,

E

[
τ∑

t=1

βt

]
=

∞∑
t=1

βt

t−1∏
s=1

(1− νs) =

∞∑
t=1

βt

νt
νt

t−1∏
s=1

(1− νs) =

∞∑
t=1

βt

νt
Pr(τ = t).

This is a convex combination of the ratios βt/αt.

Therefore,

E
[τi,j−1∑

t=1

βt

]
≤ sup

t<τi,j

βt

νt
.

Combining all inequalities above, we have

E
[τi,j−1∑

t=1

βt

]
≤ sup

t<τi,j

βt

νt
≤ sup

t<τi,j

βt

αt pi
=

1

pi
· sup
t<τi,j

βt

αt

≤ γ

pi
·
pj
pi

= γ
pj

p2i
. (9)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The first inequality uses the renewal theory that we can upper-bound the cumulative mass on j by the
largest possible ratio βt/at over the active period, by leveraging the convex combination of βt/at;
the second inequality uses at ≥ αtpi; the last uses Assumption 1.

Combining equation 8 and equation 9 yields

Ci,j ≤ (pi − pj) · γ
pj

p2i
≤ γ

(pi − pj)

pi
, (10)

since pj ≤ pi. In particular, Ci,j ≤ γ for all (i, j) ∈ Inv because pi ∈ (0, 1].

D.4 MAIN THEOREM: T-INDEPENDENT INVERSION BOUND

We now aggregate the pairwise contributions across inversions.
Theorem 2 (simplified). Under Assumption 1 and with static weights w, the cumulative regret of
DIPA after T rounds satisfies

R(T) ≤
∑

(i,j)∈Inv

γ
(pi − pj)

pi
≤ γ K.

where K = |Inv|. In particular, R(T) is independent of T and scales at most linearly with the
inversion count.

Proof. At each round t, decompose the instantaneous regret via equation 6. Partition the sum over j
into two classes: those j that form an inversion with the best active arm i⋆(t), and those that do not.
The non-inverted pairs (i⋆(t), j) have wi

⋆
(t) ≥ wj , hence (heuristically) place less probability mass

on j. The contribution from non-inverted pairs is always less than or equal to what would arise if the
pair were inverted. Therefore, for an upper bound, it suffices to sum over inverted pairs only.

For an inverted pair (i, j) ∈ Inv, its contribution to the regret persists only while both arms are active;
once either is eliminated, (i, j) stops to contribute. Summing over time and applying equation 10, we
have

T∑
t=1

E
[
(pi⋆(t) − pj)Pj(t) · 1{i, j ∈ At}

]
≤ γ

(pi − pj)

pi
,

where we used i⋆(t) ∈ {i, j} while both are active, and pi⋆(t) ≤ pi for (i, j) ∈ Inv by oracle ordering.
Summing over all (i, j) ∈ Inv gives the first inequality in Thm. 2. The second inequality follows by
noting (pi − pj)/pi ≤ 1 and summing K terms.

D.5 REMARKS

To simplify the proof, we use the static weights for proxies. When weights are dynamically updated
over time, the same argument applies piecewise between update epochs; if updates reduce inversions
monotonically in expectation, the bound remains T -independent and improves with calibration.
Empirically, we also verified in Appx. F.5 that the dynamically updated weight has consistently higher
coverages than its static invariant, indicating achieving a lower regret.

E EXPERIMENTAL DETAILS

E.1 EXPERIMENT SETTING

Models and Datasets. We primarily experiment with three LLMs including Qwen2.5-Math-1.5B-
Instruct Yang et al. (2024), Qwen2.5-1.5B-Instruct Yang et al. (2024), and Llama3.1-8B Grattafiori
et al. (2024). To conduct experiments on a verifiable domain (e.g., mathematical reasoning), we use
the official test split from MATH500 and GSM8K, with an oracle verifier to check if the answer is
correct.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Evaluation. Since both the generation process is stochastic and our DIPA method employs proba-
bilistic sampling, we conducted three independent runs using 3 random seeds for our experiments.
The reported coverage or accuracy represents the average across these three runs, rounded to the third
decimal place.

Hyperparameters. For each question from the test dataset, we randomly sampled 500 responses
independently by applying the prompt template in Appx. E.2, where zero-shot evaluation is used.
For sampling parameters, we set temperature to 0.7, top p to 0.8, repetition penalty to 1.05, and
max tokens to 512. For calculating the correlation in Tab. 1, if there is no any attempt is correct
within the 500 responses, we manually set its Pass@k−1(τ) = 1000. In practice, due to the precision
of floating number, we set τ = 0.99.

Computational Resources. All experiments are conducted on a server of NVIDIA 8×H100 PCIe
(81559MB). Sampling 500 responses from each dataset (i.e., MATH500 and GSM8K) typically
requires less than 2 GPU hours, and calculating difficulty proxies for all responses usually require
less than 48 GPU hours.

E.2 PROMPT TEMPLATE

Prompt Template for Mathematical Reasoning

System: Please reason step by step, and put your final
answer within \\boxed{}.

User: [Problem Content]

E.3 DETAILS OF DIFFICULTY PROXIES

We formally define how the entropy loss is calculated here. Note that S is the sequence length of the
input instance and Li is the sequence length of the corresponding generation.

CE(x⊕ o) =
1

S + Li − 1

(
−

S∑
s=1

log p(xs|x≺s)−
Li−1∑
l=1

log p(ol|x,o≺l)

)
(11)

For input-based proxies, we calculate the cross-entropy loss on the input tokens, instead of the whole
sequence (i.e., input tokens + generation tokens). We define the input-based cross-entropy loss on the
input tokens x with next token prediction as:

CE(x) =
1

S − 1

(
−

S−1∑
s=1

log p(xs|x≺s)

)

We formally introduce several training-free difficulty proxies for LLMs:

Entropy: MEnt(x) ≜ CE(x) . (12)

Gradient Norm: MGN(x) ≜ Mean {∥∇xCE(x)∥ | x ∈ x} . (13)

Variance of Gradient: MVoG(x) ≜ Var {∥∇xCE(x)∥ | x ∈ x} . (14)

We also provide the ablation to justify our choice of calculating the loss over the entire sequence
length in Appx. F.7.

Implementation of Proxies with Negative Correlation As we prioritize solving easier questions,
we place higher probability mass on them by applying Eq. 5. For proxies that have a negative
correlation (e.g.,MEnt) with the oracle difficulty, we use its inverse in Eq. 5 (e.g., 1/MEnt).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F ADDITIONAL RESULTS

F.1 RESULTS ON CORRELATION EVALUATION

We provide additional empirical results to demonstrate the valid correlation of the selected proxies.
Among all evaluated metrics, Generation Length consistently emerges as a particularly compelling
proxy due to its simplicity and strong empirical performance. This is visually underscored in Fig. 4,
which reveals a clear positive relationship between Generation Length and the oracle difficulty,
reinforcing the intuition that more complex problems often necessitate longer reasoning chains.
The relationship between the sample size for estimating the correlation and the correlation value is
shown in Fig. 5, where we see the marginal gains diminish rapidly, confirming the practical usage of
difficulty estimation using those proxies.

200 300 400 500
Generation Length

100

101

102

103

p
as
s@
k
¡
1
(¿
)

Generation Length v.s. pass@k¡1(¿)

Figure 4: Scatter plot of Generation Length
for instances in MATH500 and their oracle
difficulties.

21 23 25 27

Sample Size m

0.2

0.4

0.6

0.8

|S
pe

ar
m

an
 C

or
re

la
tio

n|

Correlation of Difficulty Proxies with pass@k¡1(¿)

MEnt(O j x)
MVoG(O j x)
MGC(O j x)
MGL(O j x)

Figure 5: Comparison of correlations between
difficulty proxies and Pass@k−1(τ) across
different sample size m on MATH500.

F.2 RESULTS ON LIVECODEBENCH

We extend our evaluation of DIPA to a popular code generation task LiveCodeBench (Jain et al.,
2025). The results in Tab. 3 show that the proxyMVoG performs the best among all selected proxies,
aligning with its highest rank correlation reported in Tab. 1.

Table 3: Coverage Comparison on LiveCodeBench with Llama3.1-8B

Allocation T = 2−1 ×N T = 21 ×N T = 23 ×N T = 25 ×N
Uniform 0.103 0.265 0.375 0.474
DIPA(MGN) 0.145 0.274 0.371 0.503
DIPA(MEnt) 0.063 0.181 0.341 0.484
DIPA(MVoG) 0.150 0.278 0.377 0.518
DIPA(MGC) 0.101 0.270 0.366 0.501
DIPA(MGL) 0.133 0.278 0.373 0.507

F.3 COMPARISON WITH TRAINING-BASED METHOD

To highlight the efficiency of the proposed training-free approach, we compare DIPA with the recent
difficulty-adaptive inference method from Damani et al. (2025), which uses training-based difficulty
estimation. As the implementation of Damani et al. (2025) is not publicly available, we have
implemented the method from Damani et al. (2025) using parameter-efficient fine-tuning (LoRA)
on Qwen2.5-1.5B base LM, training it on 12k MATH training data as specified in their work for the
math setting. Both our method and Damani et al. (2025) (at inference) are evaluated on MATH500.
We report the comparison of coverage in Tab. 4 and that of computational resources in Tab. 5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Comparison of coverages against the training-based baseline on MATH500 with Qwen2.5-
Math-1.5B

Method T = 2−1 ×N T = 21 ×N T = 23 ×N T = 25 ×N
Damani et al. (2025) 0.0 0.409 0.594 0.677
DIPA(MVoG) 0.281 0.540 0.677 0.758
DIPA(MGC) 0.241 0.573 0.689 0.759
DIPA(MGL) 0.333 0.565 0.692 0.765

Table 5: Comparison against baseline on GPU hours, training parameters, and inference time on
MATH500 with base model Qwen2.5-1.5B as the proxy in Damani et al. (2025).

Method # Trainable Param. Training (h) Inference (s)

Damani et al. (2025) 4.3× 106 53.93 105.75
DIPA(MVoG) 0 0 1.97
DIPA(MGC) 0 0 0.81
DIPA(MGL) 0 0 1.62

F.4 DYNAMIC BUDGET ALLOCATION ACROSS DIFFICULTY LEVELS

Fig. 6 shows the adaptive budget distribution of DIPA. With small total budgets T , DIPA prioritizes
easier instances (e.g., Levels 1-2) for quick wins. As T increases, it shifts resources to harder
instances (e.g., Levels 4-5), reflecting an optimal strategy to maximize solved problems. This
dynamic reallocation, driven by instance completions and updated difficulty estimates, is a key
strength.

F.5 IMPORTANCE OF DYNAMIC, GENERATION-BASED DIFFICULTY UPDATES

We ablate the difficulty update mechanism (Algo. 1, Line 13) by comparing: (1) DIPA with only
initial input-based proxyMinit, (2) DIPA with generation-based proxyMgen (evaluated using first
m attempts, then static), and (3) DIPA (our full method with continuous update). Fig. 7 shows that
our full method, i.e.,Minit&Mgen(DIPA), outperforms its static variants especially in the low-budget
regime. This confirms that generation-based proxies provide more refined signals with interaction,
and continuous updates allow DIPA to correct initial misjudgments and adapt its allocation effectively.

F.6 FURTHER ANALYSIS ON MATH500

Problem Types. As math problems contain different subdomains (i.e., problem types), we further
analyze the Spearman correlation of different proxies under varying problem types. The result shown
in Tab. 6 indicates that proxyMGL (i.e., Generation Length) consistently performs well across all

2¡2 20 22 24

Budget (£N)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
llo

ca
te

d
B

ud
ge

t R
at

io
 (%

)

MATH500 (w/ Difficulty Level)

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 6: Allocation outcome of DIPA on MATH500 varying difficulty levels. The allocated budget
ratio is calculated based on the budget spent on each difficulty level across different budgets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2¡2 2¡1 20 21 22 23 24 25

Budget (£N)

0.2

0.4

0.6

0.8

C
ov

er
ag

e
(%

)

MATH500

Mgen Minput Minput&Mgen (DIPA)

Figure 7: Comparison of difficulty update mechanisms on MATH500.

problem types and has a lowest variance of correlations, which suggests its robustness and generality
on different subdomains.

Table 6: Correlation comparisons of different proxies separated by problem type on MATH500.

Type MGL MGC MEnt MVoG

Algebra 0.818 -0.760 -0.099 -0.317
Counting & Probability 0.667 -0.630 -0.084 -0.158
Geometry 0.746 -0.573 -0.477 -0.005
Intermediate Algebra 0.561 -0.467 -0.182 -0.064
Number Theory 0.803 -0.675 0.103 -0.269
Prealgebra 0.663 -0.670 -0.352 0.014
Precalculus 0.616 -0.271 0.157 -0.366

Variance 0.009 0.027 0.052 0.024

Non-Solvable Problems. Although MATH500 has human-annotated difficulty level (i.e., Level
1-5), we further study its oracle difficulty (based on Pass@k−1(τ)) by categorizing the problems
using Pass@k−1(τ), where Pass@k−1(τ) = 1 represents easy problems that can be solved using
a single attempt, Pass@k−1(τ) > 500 represents potentially non-solvable problems within 500
attempts, and 1 < Pass@k−1(τ) ≤ 500 represent problems that are solvable with varying difficulty.
The distribution of the three categories of problems is shown in Fig. 8, where the easy problems
(i.e, Pass@k−1(τ) = 1) have 28% problem instances of the whole test set. This suggests that an
allocation algorithm should uses a moderate exploration (or non-zero probability) that at least attempt
every problem once if the budget allows to cover easy problems.

In addition, the relative large proportion (i.e., 20%) of non-solvable problems with Pass@k−1(τ) >
500 in Fig. 8 indicates that the efficiency of an allocation algorithm can be further improved if those
non-solvable problems could be effectively identified (potentially through our proposed difficulty
proxies) to avoid non-necessary budget cost.

F.7 SEQUENCE LOSS OR GENERATION LOSS

We further study the difficulty proxies that are associated with the entropy loss (or its back-propagated
gradients). To justify our choice of calculating the entropy loss on the entire sequence (i.e., CE(x⊕o)),
we compare the correlations produced by those proxies with entropy loss only on the generation
tokens (i.e., CE(o)). The result in Fig. 9 shows that the correlations are consistently higher when
using the entropy loss calculated on the entire sequence, which confirms our choice.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Pass@k¡1 =1 1 < Pass@k¡1 ∙ 500 Pass@k¡1 > 500
0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
 (%

)

MATH500

Figure 8: Percentage of problems in MATH500 that are categorized into three difficulty levels.

MVoG MEnt MGN

0.0

0.1

0.2

0.3

0.4

0.5

|S
pe

ar
m

an
 C

or
re

la
tio

n|

MATH500 (Qwen2.5-Math-1.5B)

Generation Loss
Sequence Loss

Figure 9: Correlation comparison across different proxies using different loss calculation methods.

F.8 RESULTS ON OTHER MODELS

In addition to the results on Qwen2.5-Math-1.5B and Llama3.1-8B provided in Fig. 1 and 2, we also
conduct similar experiments using the general model (not math finetuned) Qwen2.5-1.5B. As shown
in Fig. 10, we find DIPA(MGL) consistently achieves the best performance against other baseline
allocation strategies on both MATH500 and GSM8K, demonstrating a comparable performance with
DIPA using the oracle difficulty proxy Pass@k−1. We attribute the larger gap between DIPA(MGL)

and DIPA(Pass@k−1) on MATH500 to its greater problem difficulties.

The result in Fig. 11 demonstrates the performance comparison of DIPA using different proxies,
where we find most of the proxies achieve higher coverage than the uniform allocation strategy and
MGL (Generation Length) being the most robust and effective one.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

2¡1 20 21 22 23 24 25

Budget (£N)

0.2

0.4

0.6

0.8

C
ov

er
ag

e
(%

)

MATH500 (Qwen2.5-1.5B)

2¡1 20 21 22 23 24 25

Budget (£N)

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

GSM8K (Qwen2.5-1.5B)

Uniform Easy2Hard(MGL) Hard2Easy(MGL) DIPA(MConst) DIPA(MGL) DIPA(Pass@k¡1)

Figure 10: Performance comparison of DIPA against other allocation strategies across two datasets
with Qwen2.5-1.5B. The (invisiable) coverages of Hard2Easy(MGL) are always less than 0.1 on
MATH500.

2¡2 2¡1 20 21 22 23 24

Budget (£N)

0.2

0.4

0.6

C
ov

er
ag

e
(%

)

MATH500 (Qwen2.5-1.5B)

2¡2 2¡1 20 21 22 23 24

Budget (£N)

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
(%

)

GSM8K (Qwen2.5-1.5B)

0.40

0.45

0.50

0.8

0.9

Uniform MGN MEnt MVoG MGC MGL

Figure 11: Performance comparison of DIPA variants with different proxies on MATH500 and
GSM8K with Qwen2.5-1.5B.

22

	Introduction
	Related Works
	Problem Formulation
	Training-Free Proxies for Difficulty Estimation
	Training-Free Proxies
	Empirical Study of Difficulty Estimation

	Adaptive Test-Time Compute Allocation via Training-Free Proxies
	Reformulation as Multi-Armed Bandit Variant
	Difficulty-Informed Probabilistic Allocation
	Theoretical Analysis of Regret Bound for DIPA
	Application of DIPA in Non-Verifiable Tasks

	Experiments
	Main Results
	Ablation Studies

	Conclusion
	Limitation
	Extended Related Works
	The Use of Large Language Models
	Proof of The Regret Bound for DIPA
	Setup, notation, and inversion count
	Pairwise contribution decomposition
	Two-arm absorption bound for a misordered pair
	Main theorem: T-independent inversion bound
	Remarks

	Experimental Details
	Experiment Setting
	Prompt Template
	Details of Difficulty Proxies

	Additional Results
	Results on Correlation Evaluation
	Results on LiveCodeBench
	Comparison with Training-Based Method
	Dynamic Budget Allocation Across Difficulty Levels
	Importance of Dynamic, Generation-Based Difficulty Updates
	Further Analysis on MATH500
	Sequence Loss or Generation Loss
	Results on Other Models

