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ABSTRACT

Large language models (LLMs) excel at complex tasks but incur prohibitive compu-
tational costs, particularly when using techniques like self-consistency that require
multiple generation attempts. This paper addresses the challenge of adaptive test-
time compute allocation. We propose a framework that leverages training-free
difficulty proxies derived directly from the LLM generation process to distribute a
fixed compute budget across the test queries, without requiring specialized training
for the allocation mechanism. Our objective is to maximize the number of solved
instances by dynamically allocating more compute to difficult instances and less
to simpler ones, while adhering to a total budget constraint. We first introduce
several training-free proxies and empirically demonstrate their effectiveness in esti-
mating instance difficulty. We then design an adaptive allocation strategy guided
by these proxies, which is theoretically grounded in a novel bandit formulation.
Experiments across math (MATH, GSM8K), coding (LiveCodeBench), and Q&A
(e.g., GPQA-Diamond) benchmarks demonstrate that our method significantly
outperforms both uniform budget allocation and training-based allocation base-
lines, solving substantially more problems under identical budget constraints. This
work presents a practical and readily deployable approach to enhance the resource
efficiency of LLM inference for demanding reasoning tasks.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in tackling complex
reasoning tasks, pushing the frontiers of intelligence in domains like mathematical reasoning and
code generation (Guo et al., 2025; Team et al., 2023). However, the pursuit of higher performance
often necessitates intensive scaling of test-time compute (Brown et al., 2024; Snell et al., 2024;
Wu et al., 2024), which allows models to think more during inference. Techniques such as self-
consistency (Wang et al., 2023), which select the consensus generation given multiple candidate
solutions, or Best-of-N (Cobbe et al., 2021), which returns the best generation guided by an external
verifier, can dramatically improve inference performance. This is particularly crucial in automatically
verifiable domains, such as math and code generation, where producing numerous diverse generations
significantly increases the probability of finding a correct solution (Brown et al., 2024). Yet, these
methods (Brown et al., 2024; Wang et al., 2023) typically apply a uniform allocation strategy, leading
to unnecessary compute costs and thus being suboptimal.

Problem instances naturally vary in difficulty (Damani et al., 2025; Ren et al., 2021): some are
solvable with a single attempt, while others demand extensive compute. Uniform allocation means
wasting compute on easy instances and potentially under-allocating to difficult ones that could be
solved with more compute. This inefficiency limits the practical deployment of LLM inference
systems, especially when operating under a compute budget constraint, which motivates a need for
adaptive test-time compute allocation.

To achieve effective adaptive allocation, a system must first estimate the difficulty of problem
instances. This is where difficulty proxies become essential, quantifiable metrics that can predict
how difficult an instance is likely to be for the LLM. While recent approaches have explored training
specialized models (Manvi et al., 2024; Muennighoff et al., 2025) or probes to predict problem
difficulty (Damani et al., 2025), these methods suffer from significant practical limitations. They
require substantial labeled data, introduce additional model training overhead, and impose expensive
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inference costs to deploy, defeating the goal of efficient compute allocation. This motivates a crucial
question insight: what if we could leverage signals already present within the LLM’s generation
process, without requiring any auxiliary model training or data? Training-free proxies for difficulty
estimation offer a fundamentally more efficient and scalable alternative. By extracting proxies directly
from the LLM during inference (e.g., entropy, variance of gradient norms, or generation length), we
can achieve on-the-fly difficulty estimation with minimal overhead. While some recent works have
begun exploring individual proxies such as generation length (Xue et al., 2025) or entropy (Yong et al.,
2025), a systematic investigation of their effectiveness and relative performance for test-time compute
allocation in LLMs remains largely unexplored. This leads us to our central research question:

What signals of problem difficulty do LLMs provide, and how to efficiently allocate a
test-time compute budget based on these signals?

To address this central question, this paper introduces a principled framework and a novel solution for
adaptive test-time compute allocation. Our method begins with a rigorous empirical investigation into
a diverse set of training-free difficulty proxies that are meticulously selected and adapted from prior
work or newly proposed. We systematically evaluate their efficacy by measuring their correlation with
an oracle measure of difficulty, revealing strong predictive capabilities for several candidates. Building
upon these empirically validated proxies, we then formulate the adaptive compute allocation task as
a specialized multi-armed bandit (MAB) problem with arm elimination upon success. Under this
novel MAB framework, we develop our core contribution: DIPA (Difficulty-Informed Probabilistic
Allocation), a theoretically grounded policy that intelligently navigates the exploration-exploitation
trade-off by probabilistically allocating computational resources. Comprehensive experiments on
challenging math, code, and Q&A benchmarks subsequently demonstrate that DIPA significantly
outperforms standard uniform budget allocation and other heuristic strategies, thereby validating the
efficacy of our integrated framework.

This work makes the following key contributions:

• We systematically define and validate diverse training-free difficulty proxies for adaptive test-time
compute allocation, establishing their efficacy in estimating instance difficulty.

• We propose a novel reformulation of Test-Time Compute Allocation as a specialized Multi-Armed
Bandit (MAB) problem with arm elimination upon success, providing the first MAB-based
framework for this LLM inference challenge.

• We introduce DIPA, a novel allocation algorithm that strategically balances exploration and
exploitation through probabilistic allocation based on dynamically updated difficulty estimates.

• We provide theoretical analysis showing DIPA’s regret bound is highly related to difficulty proxy
quality, highlighting the importance of selecting effective proxies.

• Through extensive experiments, we demonstrate DIPA consistently outperforms established base-
lines on both verifiable and non-verifiable domains, confirming its practical efficacy.

2 RELATED WORKS

We discuss the most related works here and extend our discussions in Appx. B.

Adaptive Test-Time Compute Allocation for LLMs. Several approaches have explored adaptive
compute allocation. For LLM voting systems, existing methods include step-by-step sampling with
early stopping criteria based on consistency scores (Aggarwal et al., 2023), as well as LLM-based
filtering of generations introduced by (Chen et al., 2024a; Wang et al., 2025). However, these methods
often depend on posterior estimations that struggle under tight budgets, simplify difficulty to a binary
classification (easy or hard), or incur significant overhead from powerful ranking models (e.g., GPT-4).
DIPA instead starts with a prior difficulty estimation, establishes fine-grained difficulty ranking, and
does not require auxiliary models. Other recent, training-based methods include (Damani et al., 2025),
who trained an LLM-based probe to predict the marginal benefit of additional compute, and (Zhang
et al., 2025b), who estimated the success probability by learning from training data. In contrast, our
DIPA framework provides a training-free adaptive allocation strategy, guided by the dynamically
updated difficulty proxies.

Instance Difficulty Estimation. Prior training-based methods (Ren et al., 2021; Cui et al., 2023;
Liu et al., 2024; Xue et al., 2025; Damani et al., 2025) often rely on training auxiliary difficulty
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estimators, which require extensive labeled data and training compute. In classical machine learning,
several training-free metrics have been explored, including entropy (Simsek et al., 2022; Huang et al.,
2024; Yong et al., 2025), Variance of Gradients (VoG) (Agarwal et al., 2022), gradient norms inspired
by Out-of-Distribution detection (Huang et al., 2021), and ensemble consistency (Jiang et al., 2021;
Baldock et al., 2021). However, the application of these training-free proxies to test-time compute
allocation in LLMs, and their effective adaptation, remained largely unstudied in LLMs. Our research
presents the first systematic evaluation and utilization of such training-free proxies, derived directly
from the LLM input or generation, specifically for adaptive test-time compute allocation, without
auxiliary model training or extensive labeled data for the difficulty estimation mechanism.

3 PROBLEM FORMULATION

We address adaptive test-time compute allocation for LLMs. Given a set of N instancesX = {xi}
N
i=1,

we consider a total computational budget of T . Let Ti ∈ N0 (where N0 = N ∪ {0} includes the
possibility of allocating zero budget) be the budget allocated to process instance xi. The vector of
allocations is denoted by T = (T1, . . . , TN ). Specifically, the budget Ti for xi is interpreted as the
number of generation attempts made for this instance. We consider an indicator function 1(o | xi)
which decides if any single generation o solves the instance xi. In a verifiable task, 1(o | xi) is its
automatic oracle verifier. We discuss the indicator function for non-verifiable tasks in Sec. 5.4.

Our target is to find an allocation strategy that maximizes the total number of instances solved. Let
F (xi;Ti) be a meta indicator function that is 1 if instance xi is solved within its Ti allocated attempts
and 0 otherwise. The objective is to maximize the coverage (i.e., the fraction of solved instances):

max
1

N

N∑
i=1

F (xi;Ti) s.t.
N∑
i=1

Ti = T . (1)

The core challenge addressed in this work is to determine the sequence of per-instance generation
attempts T . This determination relies on readily available, training-free proxies of instance difficulty,
without necessitating model fine-tuning or specialized training for the allocation mechanism itself.

4 TRAINING-FREE PROXIES FOR DIFFICULTY ESTIMATION

4.1 TRAINING-FREE PROXIES

To begin with, we first introduce the following training-free proxies that we aim to study throughout
this paper. Formally, given an input instance x = (x1, · · · , xS), we use LLM to produce m

generations O ≜ {o(i) = (o(i)1 , · · · , o(i)Li
)}mi=1 conditioned on x for the computation of the training-

free proxy. We denote Y ≜ {y(i)}mi=1 as the corresponding final answers extracted from O, and
define the cross-entropy loss on the concatenated sequence x ⊕ o with next token prediction as
CE(x⊕ o) with formal definition in Appx. E.3. Intuitively, an instance is difficult if: (1) the question
or the reasoning process is long (Muennighoff et al., 2025), (2) the LLM is uncertain (Huang et al.,
2024), (3) its prediction is sensitive to input perturbations (Agarwal et al., 2022; Huang et al., 2021),
and (4) there is no obvious consensus within candidate solutions (Baldock et al., 2021). Inspired
by similar intuitions from previous works (in Sec. 2), we formally introduce several training-free
difficulty proxies for LLMs in inference:

Question Length: MQL(x) = |x| = S, Entropy:MEnt(O | x) = 1
m

∑m
i=1 CE(x⊕ o(i)),

Gradient Norm: MGN(O | x) = 1
m

∑m
i=1 Mean{∥∇xCE(x⊕ o(i))∥ | x ∈ x⊕ o},

Variance of Gradient: MVoG(O | x) = 1
m

∑m
i=1 Var{∥∇xCE(x⊕ o(i))∥ | x ∈ x⊕ o},

Generation Consistency: MGC(O | x) = 1
m maxc∈Y

∑m
i=1 I[y

(i) = c], and

Generation Length: MGL(O | x) = 1
m

∑m
i=1 |o

(i)| = 1
m

∑m
i=1 Li.

We denote the input-based and generation-based proxy asM(x) andM(O | x), respectively. For
formulations of other input-based proxiesMEnt(x),MGN(x), andMVoG(x), refer to Appx. E.3.
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Table 1: Spearman correlations between proxies and Pass@k−1(τ). Values are reported in mean from
3 trials with m = 3 (all std < 0.03). The input-based proxies (without generation) are highlighted
in purple cell , while generation-based proxies are unshaded. The highest absolute correlation is
highlighted in bold, and the second highest is underlined.

Difficulty Proxy MATH500 GSM8K LiveCodeBench
QM-1.5B Llama-8B QM-1.5B Llama-8B Llama-8B

Level (1-5) 0.488 0.515
MEnt(x) 0.496 0.457 0.088 0.160 0.244
MGN(x) −0.489 −0.443 −0.085 −0.292 −0.430
MVoG(x) −0.468 −0.464 −0.045 −0.316 −0.488
MQL(x) 0.482 0.450 0.382 0.302 0.502
MEnt(O | x) 0.180 0.086 0.454 0.301 0.373
MGN(O | x) −0.311 −0.530 0.276 −0.565 −0.487
MVoG(O | x) −0.286 −0.496 0.226 −0.555 −0.567
MGC(O | x) −0.677 0.651 −0.651 −0.663 −0.213
MGL(O | x) 0.780 0.701 0.592 0.467 0.530

4.2 EMPIRICAL STUDY OF DIFFICULTY ESTIMATION

Oracle Difficulty. To empirically evaluate the effectiveness of the training-free difficulty proxies
introduced above on the estimation of instance difficulty, we first establish a ground-truth measure of
intrinsic instance difficulty, termed the oracle difficulty measure. This oracle quantifies the minimum
number of generations required to achieve a predefined target probability of success τ ∈ [0, 1] in
solving a given problem instance. We define this measure using the inverse of the standard Pass@k

metric, denoted Pass@k−1(τ). The Pass@k metric itself computes the probability of obtaining at
least one correct solution when drawing k samples without replacement from a finite pool of K
available generations, of which K+ are correct. Mathematically, for k ≤ K, Pass@k (Chen et al.,
2021) is given by:

Pass@k = 1−
(
K−K

+

k

)(
K
k

) . (2)

The oracle difficulty Pass@k−1(τ) is then the smallest positive integer k such that Pass@k ≥ τ :

Pass@k−1(τ) ≜ min{k ∈ N+ | Pass@k ≥ τ} . (3)

Intuitively, a lower value of Pass@k−1(τ) indicates an easier instance, as fewer generations are
needed to reach the success threshold τ , while a higher value signifies greater difficulty. This oracle,
therefore, provides a principled benchmark against which the correlation and utility of training-free
difficulty proxies can be rigorously assessed.

Correlation Evaluation. To empirically validate our training-free difficulty proxies, we examine their
Spearman rank correlation with an oracle difficulty measure (Pass@k−1(τ)). For math benchmarks,
MATH500 (Lightman et al., 2023) and GSM8K (Cobbe et al., 2021)), we analyze the correlation
on a math-specific LLM Qwen2.5-Math-1.5B (Yang et al., 2024) and a general LLM Llama3.1-
8B (Grattafiori et al., 2024). For code generation benchmark, LiveCodeBench (Jain et al., 2025), we
analyze on Llama3.1-8B only. The results in Tab. 1 indicate that proxies derived from the generation
process of LLMs, e.g., Generation LengthMGL, VoGMVoG, and Generation ConsistencyMGC,
exhibit robust correlations and excel in different tasks. Specifically, MGL performs the best on
MATH500 for both models,MGC performs the best on GSM8K for both models, andMVoG is the
best proxy on LiveCodeBench. This affirms their utility in guiding instance-aware and task-specific
compute allocation. Among all evaluated metrics, MGL consistently emerges as a particularly
compelling proxy due to its simplicity and strong empirical performance (correlations are always
greater than 0.467). See more discussions in Appx. F.1.

Intriguingly, certain input-based proxies (detailed in Appx. E.3) also prove effective, offering a
valuable, low-cost initial difficulty estimate even before any generation occurs, which can serve as a
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prior for adaptive allocation (see Sec. 5.2). Regarding proxies informed by LLM generations O, their
estimation quality intuitively improves with the sample size m, yet our result in Fig. 5 in Appx. F.1
shows that marginal gains diminish rapidly. A relatively small m (e.g., m = 4) often suffices for
strong difficulty estimation, highlighting the cost-effectiveness of these dynamic proxies.

In summary, our extensive correlation analysis confirms that readily available, training-free signals,
whether derived from the input instance itself or the generation process of LLMs, provide potent
and efficient means to estimate instance difficulty. The strong performances ofMGL,MGC, and
MVoG, showcase those efficient training-free proxies that can significantly inform adaptive compute
allocation strategies for specialized tasks, paving the way for more resource-aware LLM inference.

5 ADAPTIVE TEST-TIME COMPUTE ALLOCATION VIA TRAINING-FREE
PROXIES

Based on our comprehensive study of difficulty proxies in Sec. 4.2, we propose a novel approach for
adaptive test-time compute allocation with LLMs in this section. We reformulate this problem as a
specialized multi-arm bandit (MAB) variant featuring arm elimination upon success and establish the
first general MAB-based framework to address it (Sec. 5.1). Within this framework, we introduce
DIPA (Difficulty-Informed Probabilistic Allocation) as an effective and efficient solution (Sec. 5.2).

5.1 REFORMULATION AS MULTI-ARMED BANDIT VARIANT

We reformulate the adaptive test-time compute allocation problem as a stochastic multi-armed
bandit (MAB) variant characterized by a global budget, arm elimination upon success, and instance-
specific reward dynamics dependent on cumulative interaction. Formally, let the set of N instances
X = {xi}

N
i=1 constitute the set of available arms. The process unfolds over a maximum of T discrete

rounds, where T is the total computational budget. Each round corresponds to a single pull of an arm,
consuming one unit of budget. The state of each arm xi is defined by (si, Ti), where si ∈ {0, 1} is
its current status (0 for unsolved, 1 for solved) and Ti is the cumulative budget (number of pulls)
allocated to arm xi. Initially, si = 0 and Ti = 0 for all i ∈ [N ]. We then introduce the following
general framework to solve this MAB reformulation:

A General MAB-Based Framework for Adaptive Test-Time Compute Allocation

In each round t ∈ [T ]:
(I) A policy π selects an arm xj from the set of unsolved arms {xi ∈ X | si = 0}.
(II) The budget allocated to xj is incremented: Tj ← Tj + 1.
(III) An outcomeF (xj ;Tj) is observed. IfF (xj ;Tj) = 1, the status of armxj transitions

to solved (sj ← 1).
(IV) rk = 1 if an arm transitions from status 0 to 1 in round t; otherwise, rk = 0.

The objective is then to design a policy π that maximizes the total number of unique arms solved
within the T available pulls:

max
π

T∑
t=1

rk = max
π

N∑
i=1

si . (4)

Since the performance function F (xi;Ti) in the original problem is interpreted as yielding a deter-
ministic binary indicator of success (1 if solved, 0 otherwise) for instance xi given Ti units of budget,
then the optimization in Eq. 1 is equivalent to maximizing the sum in Eq. 4. In this bandit reframing,
Ti (i.e., the cumulative pulls for arm xi after T rounds under policy π) directly corresponds to
the per-instance budget Ti in the original problem. The policy π makes sequential decisions over
up to T rounds, and the set of final cumulative pulls {Ti(π)}

N
i=1 forms an allocation Tπ such that∑

Ti(π) = T . An optimal policy π∗ for Eq. 4 therefore identifies an allocation Tπ
∗ that maximizes

the number of successfully processed instances (those with si = 1), directly addressing the aim of
the original problem under this interpretation of F as a deterministic, binary success function.
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Algorithm 1 Difficulty-Informed Probabilistic Allocation (DIPA)

1: Input: Compute budget T , instance set X = {xi}
N
i=1, input-based proxyMinput, generation-

based proxyMgen
2: Initialization: For each instance xi ∈ X :Mi ←Minput(xi) and Oi ← ∅
3: for each compute allocation step t ∈ [T ] do
4: if X = ∅ then
5: break // All instances solved, stop
6: end if
7: Update sampling probabilities: Pk ←

1/Mλ
k∑

xl∈X 1/Mλ
l

for all xk ∈ X

8: Sample xj from X using probabilities {Pk}
9: Produce generation o(t)

j for xj , update Oj ← Oj ∪ {o
(t)
j }, and verify 1(o(t)

j | xj)
10: if 1(o(t)

j | xj) = 1 then
11: X ← X \ {xj} // Remove solved instance
12: else
13: UpdateMj ←Mgen

(
Oj | xj

)
// Update difficulty estimate

14: end if
15: end for
16: Output: The final set of (unsolved) instances X .

5.2 DIFFICULTY-INFORMED PROBABILISTIC ALLOCATION

Building on this multi-armed bandit (MAB) reformulation, we now propose a policy π that strate-
gically leverages training-free proxies of instance difficulty to determine the arm selection process.
This policy is detailed in Algo. 1. The fundamental principle is to probabilistically prioritize arms
(instances) estimated to be easier, thereby aiming to maximize the count of successfully resolved
instances (i.e., si = 1) within the allocated budget T , while concurrently permitting exploration of
instances that might have been erroneously classified as more difficult. This methodology directly
confronts the challenge of determining per-instance allocations Ti without necessitating specialized
training for the allocation mechanism itself.

LetMi represent the difficulty estimate assigned to instance (arm) xi, initialized by an input-based
proxy measureMi ←Minput(xi) (line 2 of Algo. 1). Conventionally, a higher value ofMi signifies
a more challenging instance. Our target is to construct a selection probability for each currently
unsolved arm xi that exhibits an inverse relationship with its estimated difficultyMi. In each round
t ∈ {1, . . . , T}, the set of active (unsolved) instances is denoted by X , which directly corresponds to
the MAB concept of Ut = {xi | xi is unsolved at step t}. The policy selects an arm xj ∈ X for the
subsequent budget allocation (i.e., a generation attempt) based on a probability distribution defined
over this set X . This distribution is formulated as follows: For every unsolved arm xk ∈ X , its
selection probability Pk is updated (line 7 of Algo. 1) based on its current difficulty proxyMk:

Pk = Prob(select xk in step t | X , {Ml}xl∈X ) =
wk∑

xl∈X wl

(5)

where wk = 1/Mλ
k is the sample proxy weight and λ ∝ |X | is an active sampling temperature.

Upon the selection of arm xj , a generation o(t)
j is produced and is added to its set of generations Oj

(line 9 of Algo. 1). This step consumes one unit of the compute budget for instance xj . Subsequently,
the correctness of this generation is verified, yielding an outcome 1(o(t)

j | xj). If this outcome
indicates success (e.g., 1(o(t)

j | xj) = 1), instance xj is considered solved and is removed from the
set of active instances, i.e., X ← X \ {xj} (line 11 of Algo. 1). Conversely, if the instance xj is
not solved (1(o(t)

j | xj) ̸= 1), it remains in the set X for subsequent steps. Importantly, as shown
in Algo. 1 (line 13), if arm xj is not solved, its difficulty proxyMj is re-evaluated and updated
using a generation-based proxyMgen(Oj | xj) (e.g., the generation lengthMGL in Sec. 4.1) as
generation-based proxies usually achieve higher correlations with the oracle difficulty (see Sec. 4.2).
This dynamic update ofMj allows the policy to adapt its estimate of instance difficulty based on the
interaction history (the set of generationsOj), refining future selection probabilities. The probabilities
{Pk} will be re-calculated at the beginning of the next iteration based on the potentially updated X
andMi values. If all instances are solved (X = ∅), the process terminates (lines 4-6 of Algo. 1).
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This probabilistic allocation policy, informed by a dynamically updated difficulty estimate, presents
several compelling advantages. (a) It facilitates an adaptive allocation of test-time compute, dy-
namically redirecting effort towards instances offering a higher success rate as other instances are
progressively solved or as difficulty estimates are refined. (b) Crucially, the allocation policy itself
is training-free. (c) The probabilistic nature of the selection mechanism inherently balances ex-
ploitation of perceived easy instances with exploration of those deemed harder, mitigating the risk of
prematurely abandoning instances that might be solvable. Consequently, this approach can lead to
enhanced efficiency, potentially achieving a higher coverage for a given total budget T .

5.3 THEORETICAL ANALYSIS OF REGRET BOUND FOR DIPA

To theoretically justify DIPA, we state a concise inversion-based regret bound for DIPA under a static
proxy. Refer to Appx. D for full proof, detailed setups, and more discussions.
Theorem 1 (Regret bound via Kendall–tau inversions). Consider N arms with unknown success
probabilities p1, . . . , pN ∈ [0, 1], ordered so that p1 ≥ · · · ≥ pN . Let a static proxy induce positive
weights w1, . . . , wN . Define the Kendall–tau inversion set Inv := {(i, j) : i < j and wi < wj} and
K := |Inv|. Assume the proxy quality condition: ∃γ ≥ 1 : ∀i, j ∈ N, 1

γ ≤
wi/pi

wj/pj
≤ γ. Then the

cumulative regret R(T ), against the optimal policy (selects arm argmaxk∈X pk), satisfies

R(T ) ≤
∑

(i,j)∈Inv

γ
(pi − pj)

pi
≤ γ K.

Thm. 1 shows that the cumulative regret is controlled by the proxy quality γ and the size of the
Kendall–tau inversion set |Inv|. Specifically, Inv captures the pairwise ranking errors between the
proxy-induced order and the oracle order of arms. Each element (i, j) ∈ Inv corresponds to a
misordered pair where the proxy ranks the weaker arm j above the stronger arm i.

Remarks on Proxy Quality Assumption. The performance of DIPA depends on the quality of
the difficulty proxies. We formalize proxy quality with a multiplicative error assumption, which
bounds how much the proxy-based weights can deviate from the true success probabilities. A larger
γ indicates a poorer proxy that distorts the relative weights of arms more significantly, leading to
errors in the sampling probability Pk.

Remarks on Regret Bound. The bound ties the R(T ) to the ranking error of the proxy: small K
(high rank correlation) yields small regret, independent of the budget T ; when γ = 1 (perfect proxy
alignment to oracle p), the bound collapses to zero with K = 0. This aligns with our empirical
findings in Sec. 6 where difficulty proxies with higher correlations used in DIPA generally perform
better, which also validates our assumption on proxy quality.

5.4 APPLICATION OF DIPA IN NON-VERIFIABLE TASKS

In non-verifiable tasks, we propose integrating an external reward model RM(·): O → R to define
the verification function 1RM(o(t) | x) := 1 if RM(o(t)|x) ≥ RM(o(t−j)|x) ∀j ∈ [1, C] else 0.
Namely, the reward model evaluates generations iteratively and eliminates x when no higher-reward
generation is found for C consecutive attempts, indicating the instance is likely solved. In inference,
only the highest-reward generation for each instance is evaluated (if actually solved).

6 EXPERIMENTS

This section empirically validates our DIPA. We first present main results demonstrating the superiority
of DIPA over baselines in maximizing coverage under fixed budgets (Sec. 6.1), then perform ablation
studies to validate the design choices of DIPA, offering insights into its performance and the efficacy
of different difficulty proxies (Sec. 6.2). Experimental details are in Appx. E.1.

6.1 MAIN RESULTS

In this work, we primarily experiment on verifiable tasks, including MATH500, GSM8K, and
LiveCodeBench, and a non-verifiable task, GPQA-Diamond (Rein et al., 2024), with models Qwen2.5-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2¡1 20 21 22 23 24 25

Budget (£N)

0.2

0.4

0.6

0.8

C
ov

er
ag

e 
(%

)

MATH500 (Qwen2.5-Math-1.5B)

2¡1 20 21 22 23 24 25

Budget (£N)

0.4

0.6

0.8

1.0

C
ov

er
ag

e 
(%

)

GSM8K (Qwen2.5-Math-1.5B)

2¡1 20 21 22 23 24 25

Budget (£N)

0.2

0.4

0.6

0.8

C
ov

er
ag

e 
(%

)

MATH500 (Llama3.1-8B)

2¡1 20 21 22 23 24 25

Budget (£N)

0.4

0.6

0.8

1.0

C
ov

er
ag

e 
(%

)

GSM8K (Llama3.1-8B)

Uniform Easy2Hard(MGL) Hard2Easy(MGL) DIPA(MConst) DIPA(MGL) DIPA(Pass@k¡1)

Figure 1: Performance comparison of DIPA against other allocation strategies across two datasets
and models. The (invisible) coverages of Hard2Easy(MGL) are always less than 0.2 on MATH500.
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Figure 2: Performance comparison of DIPA variants with different proxies across models and datasets.

Math-1.5B and Llama3.1-8B. Our experiments are designed to validate the core claims regarding the
ability of DIPA to leverage difficulty proxies for superior compute allocation.

Compelling Performance of Probabilistic Allocation. We first compare DIPA against three de-
terministic allocation strategies: (1) Uniform, which distributes T equally; (2) Easy2Hard, which
greedily selects the instance with the current lowest estimated difficulty; (3) Hard2Easy, which
conversely selects the instance with the highest estimated difficulty. For DIPA, we evaluate three key
variants: DIPA(MConst) using a uniformly random sampling with a fixed constant difficulty proxy
(effectively ablating the difficulty guidance), our main proposal DIPA(MGL) guided by Generation
Length, our consistently performant proxy shown in Tab. 1, and DIPA(Pass@k−1) with the oracle
difficulty Pass@k−1(τ) defined in Eq. 3, the desired solution we aim to approximate. Experiments
are conducted across varying total budgets (e.g., T up to 25×N , where N is the number of instances).

The compelling results in Fig. 1 show that DIPA consistently outperforms or matches other methods.
Specifically, DIPA is significantly better than uniform allocation, and a lot more as the budget
increases. When compared to deterministic strategies, DIPA(MGL) exhibits similar coverage to
Easy2Hard(MGL) at very small budgets, as both prioritize apparently easy instances. However,
as the budget is increasing (T ≥ 20 ×N ), DIPA(MGL) pulls ahead significantly. This superiority
underscores the benefit of the probabilistic nature and dynamic difficulty updates of DIPA. Unlike the
greedy Easy2Hard, DIPA can strategically explore instances initially deemed harder or re-allocate
resources if initial difficulty estimates prove inaccurate, aligning with the exploration-exploitation
balance inherent in our MAB formulation. This adaptability allows DIPA to solve a broader and
more challenging set of problems as more compute becomes available. Crucially, DIPA(MGL)

significantly surpasses DIPA(MConst) across most budget regimes, particularly when T ≤ 21 ×N .
This empirically substantiates our claim that leveraging difficulty information (e.g.,MGL here) is vital
for efficient allocation, especially under tighter budget constraints. The performance gap between
DIPA with effective proxies and the oracle (Pass@k−1(τ)) is observed to be smaller on GSM8K
than on MATH500, which we attribute to the comparatively higher intrinsic difficulty of MATH500
dataset for the models tested.

GL for Math, VoG for Code. To further validate our findings from Sec. 4.2 regarding proxy
quality, we compare variants of DIPA guided by different difficulty proxies. The results, presented in
Fig. 2, demonstrate that most (exceptMEnt) of the investigated training-free proxies enable DIPA to
outperform uniform allocation. More importantly, the performance ranking of DIPA variants guided
by these proxies generally aligns with the Spearman correlations of these proxies reported in Tab. 1.
Specifically, DIPA guided byMGL consistently yields the best performance for both MATH500 and
GSM8K. Conversely, the results on LiveCodeBench in Appx. F.2 demonstrate that the proxyMVoG
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Table 2: Accuracy comparison on non-verifiable task
GPQA-Diamond with Qwen2.5-1.5B across budgets.

Method 22 ×N 24 ×N 26 ×N
Self-Consistency 0.211 0.199 0.188
Best-of-N 0.205 0.219 0.229
DIPA(MEnt) 0.134 0.224 0.237
DIPA(MGN) 0.189 0.220 0.235
DIPA(MVoG) 0.188 0.229 0.239
DIPA(MGC) 0.222 0.222 0.237
DIPA(MGL) 0.218 0.227 0.242
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Figure 3: Comparison of different values
of λ applied to Pk on MATH500.

is consistently better, which also aligns with its highest rank correlation. The relatively different
performances directly confirm the significant impact of evaluating the proxy quality across domains,
highlighting the importance of selecting high-fidelity difficulty proxies for practical applications.

Generalization to Non-Verifiable Tasks. We further validate the effectiveness of DIPA when no
oracle verifier is available, where we use an off-the-shelf reward model “Skywork-Reward-V2-Qwen3-
4B” (Liu et al., 2025) in the indicator function 1RM(o | x). We compare DIPA against the two most
common test-time strategies: Self-Consistency and Best-of-N on a challenging Q&A benchmark,
GPQA-Diamond (Rein et al., 2024). To demonstrate its practicality, we report the accuracy (instead of
coverage) across different budgets in Tab. 2. All variants (different proxies) of DIPA outperform both
Self-Consistency and Best-of-N baselines when the budget is ample (i.e., T ≥ 24 ×N ), withMGC
andMGL consistently performing better across all budgets. This demonstrates DIPA’s generalization
to non-verifiable domains.

Comparison against Training-Based Difficulty Proxy Method. Compared to the training-based
baseline (Damani et al., 2025) that requires training 4.3×106 parameters for 54 GPU hours, DIPA has
no training overhead and achieves 50× faster inference. All variants of DIPA clearly demonstrated
significant advantages of efficiency and higher coverages compared to the training-based baseline.
Refer to Appx. F.3 for full results.

6.2 ABLATION STUDIES

To dissect the contributions of the components in DIPA, we conduct several ablations to demonstrate
the effectiveness and validate the principled design of DIPA. For example, we studied the role of active
sampling temperature λ in DIPA. The sampling probability Pk (Eq. 5) incorporates λ to modulate
the exploration-exploitation balance. We compare fixed λ values (1, 10) with a dynamic λ ∝ |X |
(where |X | is the count of unsolved instances). Fig. 3 shows that a dynamic λ often performs best. It
encourages exploitation early on (larger |X |, larger λ) and shifts towards exploration as fewer, likely
harder, instances remain (smaller |X |, smaller λ). Due to the space constraint, we presented more
ablations in Appx. F, including (a) DIPA dynamically allocates budget across difficulty levels (in
Appx. F.4), (b) Comparison between generation-based difficulty estimates and static input estimates
(in Appx. F.5), (c) Correlation evaluation for subdomains and analysis of non-solvable problems in
MATH500 (in Appx. F.6), (d) How the entropy loss affects loss-based difficulty proxies, including
MEnt,MGN, andMVoG (in Appx. F.7). Those results confirmed the efficacy and design of DIPA.

7 CONCLUSION

We presented DIPA, a training-free approach for adaptive test-time compute allocation in LLMs. By
leveraging dynamically updated difficulty proxies within a novel MAB framework, DIPA significantly
enhances resource efficiency, solving more problems on challenging benchmarks under fixed compute
budgets. This work offers a practical and theoretically grounded approach for cost-effective and
adaptive LLM inference. Refer to Appx. A for discussions on limitations of this work.
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ETHIC STATEMENT

This paper presents DIPA algorithm with the goal of advancing LLM test-time compute efficiency.
Specifically, we focus on improving the efficiency of LLM test-time compute scaling by adaptive
allocation, which can significantly reduce computational resource requirements during LLM inference.
While there could be potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

REPRODUCIBILITY STATEMENT

We discuss the efforts that have been made to ensure reproducibility of our work here. We provided
the source code as part of the supplemental materials. The assumption and the complete proof of our
main theorem are included in Appx. D. The experimental setting and choices of hyperparameters are
detailed in Appx. E.
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APPENDIX

A LIMITATION

One limitation of this work is that it does not extend to the adaptive reasoning length setting, where
test-time compute scaling would dynamically control the reasoning length (or the number of thinking
tokens) within a single response, rather than generating multiple responses. More test-time compute
means longer reasoning lengths for a single generation. In future research, we aim to extend our
DIPA algorithm to the adaptive length setting for efficient thinking.

B EXTENDED RELATED WORKS

Scaling LLM Test-Time Compute. Recent works Wu et al. (2025a); Snell et al. (2024) have
demonstrated that scaling inference compute with inference strategies can be more computationally
efficient than scaling model parameters. We categorize test-time compute scaling approaches into
two main categories: prompting-based methods and sampling-based. Sampling-based methods
Wang et al. (2023); Chen et al. (2024b); Snell et al. (2024) generate multiple outputs simultaneously,
with intermediate steps or final answers evaluated by verifiers to produce an aggregated result. The
most widely adopted method is to best-of-n or beam search ranked by a verifier (or reward model).
When verifiers are not available, self-consistency Wang et al. (2023) can be employed to select the
consensus answer with majority vote. Prompting-based methods Wei et al. (2022); Bi et al. (2024)
typically involve “thinking with more sequential tokens”, where self-correction Shinn et al. (2023) is
a common method that revises the initial response without external feedback. Our work falls within
the sampling-based category, with our primary goal being to adaptively scale test-time compute for
optimized efficiency.

Efficient Reasoning (ER). Current works on efficient reasoning can be classified into three main
categories Sui et al. (2025): (1) model-based ER Hao et al. (2024); Yeo et al. (2025); Zhang et al.
(2025a), which optimizes the output generation length by training length-aware models, (2) output-
based ER Snell et al. (2024); Wu et al. (2025b), which aims to reduce reasoning length or adaptively
scale test-time compute, and (3) prompt-based ER Han et al. (2024); Ma et al. (2025), which seeks to
adjust reasoning efforts by prompting models using difficulty or length control. Our work belongs
to the second category, where reasoning efficiency is achieved by reducing the number of samples
required during the inference process.

C THE USE OF LARGE LANGUAGE MODELS

We disclose that there is no significant LLM usage in this work. LLMs are only moderately used to
polish writing for a few paragraphs and assist with some code implementations.

D PROOF OF THE REGRET BOUND FOR DIPA

This appendix establishes a regret bound for DIPA that depends only on the pairwise ranking errors
between the proxy-induced order and the oracle order of arms. Intuitively, each misordered pair can
contribute regret only while both arms remain active; after one fires (is solved), it stops contributing
regret.

D.1 SETUP, NOTATION, AND INVERSION COUNT

Let A = {1, . . . , N} index arms, and let the (unknown) success probabilities be p1, . . . , pN ∈ [0, 1].
Without loss of generality, label arms by decreasing oracle probabilities:

p1 ≥ p2 ≥ · · · ≥ pN .

Let the static proxy induce desirability weights wi > 0 and define the proxy order σ such that
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wσ(1) ≥ wσ(2) ≥ · · · ≥ wσ(N).

Define the Kendall–tau inversion set

Inv :=
{
(i, j) : i < j and wi < wj

}
,

with inversion count K := |Inv|. Thus (i, j) ∈ Inv means the proxy ranks arm j above i despite
pi ≥ pj .

Assumption 1 (Proxy quality γ). There exists γ ≥ 1 such that for all i, j ∈ A,

1

γ
≤ (wi/pi)

(wj/pj)
≤ γ.

Equivalently, wi

wj
∈
[
1
γ ·

pi

pj
, γ · pi

pj

]
.

At round t, let At be the active set, and DIPA selects arm k ∈ At with probability

Pk(t) =
wk∑

u∈At
wu

.

The single-step expected regret is

∆t = max
k∈At

pk −
∑
k∈At

Pk(t) pk.

We study the cumulative regret R(T ) =
∑T

t=1 E[∆t].

D.2 PAIRWISE CONTRIBUTION DECOMPOSITION

Fix a time t and let i⋆ ∈ At be the best active arm, i.e., pi⋆ = maxk∈At
pk. Since we have∑

k

Pk(t) pk = pi⋆ Pi
⋆(t) +

∑
j ̸=i

⋆

Pj(t) pj

= pi⋆
(
1−

∑
j ̸=i

⋆

Pj(t)
)

+
∑
j ̸=i

⋆

Pj(t) pj

= pi⋆ −
∑
j ̸=i

⋆

(pi⋆ − pj)Pj(t).

Then
∆t =

∑
j∈At

j ̸=i
⋆

(pi⋆ − pj)Pj(t). (6)

The cumulative regret therefore is

R(T ) =

T∑
t=1

∑
j∈At

j ̸=i
⋆
(t)

(pi⋆(t) − pj)E
[
Pj(t)

]
, (7)

where i⋆(t) denotes the best active arm at time t.

We will control the contribution in equation 7 by summing over misordered pairs (i, j) ∈ Inv and
bounding how much total probability mass DIPA allocates to j while both i and j are active.
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D.3 TWO-ARM ABSORPTION BOUND FOR A MISORDERED PAIR

Fix an inverted pair (i, j) ∈ Inv (so i < j and pi ≥ pj but wi < wj). Consider the stochastic
sub-process that evolves only until the earlier of: arm i succeeds or arm j succeeds. During rounds
when both i and j are active, define

αt := Pi(t) =
wi∑

u∈At
wu

, βt := Pj(t) =
wj∑

u∈At
wu

.

Let τi,j be the (random) absorption time when either i or j is solved. The total probability mass
allocated to j while the pair is active is

∑τi,j−1
t=1 βt. Define the pairwise contribution to cumulative

regret (dominated by placing mass on j rather than on the best active arm) as

Ci,j :=
T∑

t=1

E
[
(pi − pj)Pj(t)1{i, j ∈ At}

]
.

Now, since the sum over t stops once either i or j is solved, we can replace the upper limit T by τi,j :

Ci,j = (pi − pj) · E
[ τi,j−1∑

t=1

βt

]
. (8)

We next upper-bound E[
∑

t<τi,j
βt] using Assumption 1. For rounds t < τi,j ,

βt

αt

=
wj

wi

≤ γ
pj
pi

,
αt

βt

≥ 1

γ

pi
pj

.

Moreover, the per-round absorption probability (either i or j succeeds and is removed) via {i, j} is at
least

νt := αt pi + βt pj ≥ αt pi.

Consider a non-homogeneous geometric process: in a sequence of Bernoulli trials, the success
probability can vary with time: at round t, success occurs with probability νt. The stopping time τ is
the first round where success occurs. Formally, the success probability occurring at time t is:

Pr(τ = t) = νt

t−1∏
s=1

(1− νs)

At each round t, the probability that the process survives until t (i.e., no success yet) is
∏t−1

s=1(1− νs).

So,

E

[
τ∑

t=1

βt

]
=

∞∑
t=1

βt

t−1∏
s=1

(1− νs) =

∞∑
t=1

βt

νt
νt

t−1∏
s=1

(1− νs) =

∞∑
t=1

βt

νt
Pr(τ = t).

This is a convex combination of the ratios βt/αt.

Therefore,

E
[ τi,j−1∑

t=1

βt

]
≤ sup

t<τi,j

βt

νt
.

Combining all inequalities above, we have

E
[ τi,j−1∑

t=1

βt

]
≤ sup

t<τi,j

βt

νt
≤ sup

t<τi,j

βt

αt pi
=

1

pi
· sup
t<τi,j

βt

αt

≤ γ

pi
·
pj
pi

= γ
pj

p2i
. (9)
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The first inequality uses the renewal theory that we can upper-bound the cumulative mass on j by the
largest possible ratio βt/at over the active period, by leveraging the convex combination of βt/at;
the second inequality uses at ≥ αtpi; the last uses Assumption 1.

Combining equation 8 and equation 9 yields

Ci,j ≤ (pi − pj) · γ
pj

p2i
≤ γ

(pi − pj)

pi
, (10)

since pj ≤ pi. In particular, Ci,j ≤ γ for all (i, j) ∈ Inv because pi ∈ (0, 1].

D.4 MAIN THEOREM: T-INDEPENDENT INVERSION BOUND

We now aggregate the pairwise contributions across inversions.
Theorem 2 (simplified). Under Assumption 1 and with static weights w, the cumulative regret of
DIPA after T rounds satisfies

R(T ) ≤
∑

(i,j)∈Inv

γ
(pi − pj)

pi
≤ γ K.

where K = |Inv|. In particular, R(T ) is independent of T and scales at most linearly with the
inversion count.

Proof. At each round t, decompose the instantaneous regret via equation 6. Partition the sum over j
into two classes: those j that form an inversion with the best active arm i⋆(t), and those that do not.
The non-inverted pairs (i⋆(t), j) have wi

⋆
(t) ≥ wj , hence (heuristically) place less probability mass

on j. The contribution from non-inverted pairs is always less than or equal to what would arise if the
pair were inverted. Therefore, for an upper bound, it suffices to sum over inverted pairs only.

For an inverted pair (i, j) ∈ Inv, its contribution to the regret persists only while both arms are active;
once either is eliminated, (i, j) stops to contribute. Summing over time and applying equation 10, we
have

T∑
t=1

E
[
(pi⋆(t) − pj)Pj(t) · 1{i, j ∈ At}

]
≤ γ

(pi − pj)

pi
,

where we used i⋆(t) ∈ {i, j} while both are active, and pi⋆(t) ≤ pi for (i, j) ∈ Inv by oracle ordering.
Summing over all (i, j) ∈ Inv gives the first inequality in Thm. 2. The second inequality follows by
noting (pi − pj)/pi ≤ 1 and summing K terms.

D.5 REMARKS

To simplify the proof, we use the static weights for proxies. When weights are dynamically updated
over time, the same argument applies piecewise between update epochs; if updates reduce inversions
monotonically in expectation, the bound remains T -independent and improves with calibration.
Empirically, we also verified in Appx. F.5 that the dynamically updated weight has consistently higher
coverages than its static invariant, indicating achieving a lower regret.

E EXPERIMENTAL DETAILS

E.1 EXPERIMENT SETTING

Models and Datasets. We primarily experiment with three LLMs including Qwen2.5-Math-1.5B-
Instruct Yang et al. (2024), Qwen2.5-1.5B-Instruct Yang et al. (2024), and Llama3.1-8B Grattafiori
et al. (2024). To conduct experiments on a verifiable domain (e.g., mathematical reasoning), we use
the official test split from MATH500 and GSM8K, with an oracle verifier to check if the answer is
correct.
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Evaluation. Since both the generation process is stochastic and our DIPA method employs proba-
bilistic sampling, we conducted three independent runs using 3 random seeds for our experiments.
The reported coverage or accuracy represents the average across these three runs, rounded to the third
decimal place.

Hyperparameters. For each question from the test dataset, we randomly sampled 500 responses
independently by applying the prompt template in Appx. E.2, where zero-shot evaluation is used.
For sampling parameters, we set temperature to 0.7, top p to 0.8, repetition penalty to 1.05, and
max tokens to 512. For calculating the correlation in Tab. 1, if there is no any attempt is correct
within the 500 responses, we manually set its Pass@k−1(τ) = 1000. In practice, due to the precision
of floating number, we set τ = 0.99.

Computational Resources. All experiments are conducted on a server of NVIDIA 8×H100 PCIe
(81559MB). Sampling 500 responses from each dataset (i.e., MATH500 and GSM8K) typically
requires less than 2 GPU hours, and calculating difficulty proxies for all responses usually require
less than 48 GPU hours.

E.2 PROMPT TEMPLATE

Prompt Template for Mathematical Reasoning

System: Please reason step by step, and put your final
answer within \\boxed{}.

User: [Problem Content]

E.3 DETAILS OF DIFFICULTY PROXIES

We formally define how the entropy loss is calculated here. Note that S is the sequence length of the
input instance and Li is the sequence length of the corresponding generation.

CE(x⊕ o) =
1

S + Li − 1

(
−

S∑
s=1

log p(xs|x≺s)−
Li−1∑
l=1

log p(ol|x,o≺l)

)
(11)

For input-based proxies, we calculate the cross-entropy loss on the input tokens, instead of the whole
sequence (i.e., input tokens + generation tokens). We define the input-based cross-entropy loss on the
input tokens x with next token prediction as:

CE(x) =
1

S − 1

(
−

S−1∑
s=1

log p(xs|x≺s)

)

We formally introduce several training-free difficulty proxies for LLMs:

Entropy: MEnt(x) ≜ CE(x) . (12)

Gradient Norm: MGN(x) ≜ Mean {∥∇xCE(x)∥ | x ∈ x} . (13)

Variance of Gradient: MVoG(x) ≜ Var {∥∇xCE(x)∥ | x ∈ x} . (14)

We also provide the ablation to justify our choice of calculating the loss over the entire sequence
length in Appx. F.7.

Implementation of Proxies with Negative Correlation As we prioritize solving easier questions,
we place higher probability mass on them by applying Eq. 5. For proxies that have a negative
correlation (e.g.,MEnt) with the oracle difficulty, we use its inverse in Eq. 5 (e.g., 1/MEnt).
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F ADDITIONAL RESULTS

F.1 RESULTS ON CORRELATION EVALUATION

We provide additional empirical results to demonstrate the valid correlation of the selected proxies.
Among all evaluated metrics, Generation Length consistently emerges as a particularly compelling
proxy due to its simplicity and strong empirical performance. This is visually underscored in Fig. 4,
which reveals a clear positive relationship between Generation Length and the oracle difficulty,
reinforcing the intuition that more complex problems often necessitate longer reasoning chains.
The relationship between the sample size for estimating the correlation and the correlation value is
shown in Fig. 5, where we see the marginal gains diminish rapidly, confirming the practical usage of
difficulty estimation using those proxies.
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Generation Length v.s. pass@k¡1(¿)

Figure 4: Scatter plot of Generation Length
for instances in MATH500 and their oracle
difficulties.
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Figure 5: Comparison of correlations between
difficulty proxies and Pass@k−1(τ) across
different sample size m on MATH500.

F.2 RESULTS ON LIVECODEBENCH

We extend our evaluation of DIPA to a popular code generation task LiveCodeBench (Jain et al.,
2025). The results in Tab. 3 show that the proxyMVoG performs the best among all selected proxies,
aligning with its highest rank correlation reported in Tab. 1.

Table 3: Coverage Comparison on LiveCodeBench with Llama3.1-8B

Allocation T = 2−1 ×N T = 21 ×N T = 23 ×N T = 25 ×N
Uniform 0.103 0.265 0.375 0.474
DIPA(MGN) 0.145 0.274 0.371 0.503
DIPA(MEnt) 0.063 0.181 0.341 0.484
DIPA(MVoG) 0.150 0.278 0.377 0.518
DIPA(MGC) 0.101 0.270 0.366 0.501
DIPA(MGL) 0.133 0.278 0.373 0.507

F.3 COMPARISON WITH TRAINING-BASED METHOD

To highlight the efficiency of the proposed training-free approach, we compare DIPA with the recent
difficulty-adaptive inference method from Damani et al. (2025), which uses training-based difficulty
estimation. As the implementation of Damani et al. (2025) is not publicly available, we have
implemented the method from Damani et al. (2025) using parameter-efficient fine-tuning (LoRA)
on Qwen2.5-1.5B base LM, training it on 12k MATH training data as specified in their work for the
math setting. Both our method and Damani et al. (2025) (at inference) are evaluated on MATH500.
We report the comparison of coverage in Tab. 4 and that of computational resources in Tab. 5.
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Table 4: Comparison of coverages against the training-based baseline on MATH500 with Qwen2.5-
Math-1.5B

Method T = 2−1 ×N T = 21 ×N T = 23 ×N T = 25 ×N
Damani et al. (2025) 0.0 0.409 0.594 0.677
DIPA(MVoG) 0.281 0.540 0.677 0.758
DIPA(MGC) 0.241 0.573 0.689 0.759
DIPA(MGL) 0.333 0.565 0.692 0.765

Table 5: Comparison against baseline on GPU hours, training parameters, and inference time on
MATH500 with base model Qwen2.5-1.5B as the proxy in Damani et al. (2025).

Method # Trainable Param. Training (h) Inference (s)

Damani et al. (2025) 4.3× 106 53.93 105.75
DIPA(MVoG) 0 0 1.97
DIPA(MGC) 0 0 0.81
DIPA(MGL) 0 0 1.62

F.4 DYNAMIC BUDGET ALLOCATION ACROSS DIFFICULTY LEVELS

Fig. 6 shows the adaptive budget distribution of DIPA. With small total budgets T , DIPA prioritizes
easier instances (e.g., Levels 1-2) for quick wins. As T increases, it shifts resources to harder
instances (e.g., Levels 4-5), reflecting an optimal strategy to maximize solved problems. This
dynamic reallocation, driven by instance completions and updated difficulty estimates, is a key
strength.

F.5 IMPORTANCE OF DYNAMIC, GENERATION-BASED DIFFICULTY UPDATES

We ablate the difficulty update mechanism (Algo. 1, Line 13) by comparing: (1) DIPA with only
initial input-based proxyMinit, (2) DIPA with generation-based proxyMgen (evaluated using first
m attempts, then static), and (3) DIPA (our full method with continuous update). Fig. 7 shows that
our full method, i.e.,Minit&Mgen(DIPA), outperforms its static variants especially in the low-budget
regime. This confirms that generation-based proxies provide more refined signals with interaction,
and continuous updates allow DIPA to correct initial misjudgments and adapt its allocation effectively.

F.6 FURTHER ANALYSIS ON MATH500

Problem Types. As math problems contain different subdomains (i.e., problem types), we further
analyze the Spearman correlation of different proxies under varying problem types. The result shown
in Tab. 6 indicates that proxyMGL (i.e., Generation Length) consistently performs well across all
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Figure 6: Allocation outcome of DIPA on MATH500 varying difficulty levels. The allocated budget
ratio is calculated based on the budget spent on each difficulty level across different budgets.
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Figure 7: Comparison of difficulty update mechanisms on MATH500.

problem types and has a lowest variance of correlations, which suggests its robustness and generality
on different subdomains.

Table 6: Correlation comparisons of different proxies separated by problem type on MATH500.

Type MGL MGC MEnt MVoG

Algebra 0.818 -0.760 -0.099 -0.317
Counting & Probability 0.667 -0.630 -0.084 -0.158
Geometry 0.746 -0.573 -0.477 -0.005
Intermediate Algebra 0.561 -0.467 -0.182 -0.064
Number Theory 0.803 -0.675 0.103 -0.269
Prealgebra 0.663 -0.670 -0.352 0.014
Precalculus 0.616 -0.271 0.157 -0.366

Variance 0.009 0.027 0.052 0.024

Non-Solvable Problems. Although MATH500 has human-annotated difficulty level (i.e., Level
1-5), we further study its oracle difficulty (based on Pass@k−1(τ)) by categorizing the problems
using Pass@k−1(τ), where Pass@k−1(τ) = 1 represents easy problems that can be solved using
a single attempt, Pass@k−1(τ) > 500 represents potentially non-solvable problems within 500
attempts, and 1 < Pass@k−1(τ) ≤ 500 represent problems that are solvable with varying difficulty.
The distribution of the three categories of problems is shown in Fig. 8, where the easy problems
(i.e, Pass@k−1(τ) = 1) have 28% problem instances of the whole test set. This suggests that an
allocation algorithm should uses a moderate exploration (or non-zero probability) that at least attempt
every problem once if the budget allows to cover easy problems.

In addition, the relative large proportion (i.e., 20%) of non-solvable problems with Pass@k−1(τ) >
500 in Fig. 8 indicates that the efficiency of an allocation algorithm can be further improved if those
non-solvable problems could be effectively identified (potentially through our proposed difficulty
proxies) to avoid non-necessary budget cost.

F.7 SEQUENCE LOSS OR GENERATION LOSS

We further study the difficulty proxies that are associated with the entropy loss (or its back-propagated
gradients). To justify our choice of calculating the entropy loss on the entire sequence (i.e., CE(x⊕o)),
we compare the correlations produced by those proxies with entropy loss only on the generation
tokens (i.e., CE(o)). The result in Fig. 9 shows that the correlations are consistently higher when
using the entropy loss calculated on the entire sequence, which confirms our choice.
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Figure 8: Percentage of problems in MATH500 that are categorized into three difficulty levels.
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Figure 9: Correlation comparison across different proxies using different loss calculation methods.

F.8 RESULTS ON OTHER MODELS

In addition to the results on Qwen2.5-Math-1.5B and Llama3.1-8B provided in Fig. 1 and 2, we also
conduct similar experiments using the general model (not math finetuned) Qwen2.5-1.5B. As shown
in Fig. 10, we find DIPA(MGL) consistently achieves the best performance against other baseline
allocation strategies on both MATH500 and GSM8K, demonstrating a comparable performance with
DIPA using the oracle difficulty proxy Pass@k−1. We attribute the larger gap between DIPA(MGL)

and DIPA(Pass@k−1) on MATH500 to its greater problem difficulties.

The result in Fig. 11 demonstrates the performance comparison of DIPA using different proxies,
where we find most of the proxies achieve higher coverage than the uniform allocation strategy and
MGL (Generation Length) being the most robust and effective one.
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Figure 10: Performance comparison of DIPA against other allocation strategies across two datasets
with Qwen2.5-1.5B. The (invisiable) coverages of Hard2Easy(MGL) are always less than 0.1 on
MATH500.
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Figure 11: Performance comparison of DIPA variants with different proxies on MATH500 and
GSM8K with Qwen2.5-1.5B.
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