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ABSTRACT

Deepfake generators evolve quickly, making exhaustive data collection and re-
peated retraining impractical. We argue that model merging is a natural fit for
deepfake detection: unlike generic multi-task settings with disjoint labels, deep-
fake specialists share the same binary decision and differ in generator-specific arti-
facts. Empirically, we show that simple weight averaging preserves Real represen-
tations while attenuating Fake-specific cues. Building upon these findings, we pro-
pose Real-aware Residual Model Merging (R2M), a training-free parameter-space
merging framework. R2M estimates a shared Real component via a low-rank fac-
torization of task vectors, decomposes each specialist into a Real-aligned part and
a Fake residual, denoises residuals with layerwise rank truncation, and aggregates
them with per-task norm matching to prevent any single generator from dominat-
ing. A concise rationale explains why a simple head suffices: the Real component
induces a common separation direction in feature space, while truncated residu-
als contribute only minor off-axis variations. Across in-distribution, cross-dataset,
and unseen-dataset, R2M outperforms joint training and other merging baselines.
Importantly, R2M is also composable: when a new forgery family appears, we
fine-tune one specialist and re-merge, eliminating the need for retraining.

Figure 1: Conceptual timeline of deepfakes: all thumbnails are synthetic (fake), and the number of
generative models grows explosively from early face swaps to commercial/unknown GenAI

1 INTRODUCTION

As sketched in Fig.1, deepfakes have progressed from simple face splicing to photorealistic syn-
thesis powered by modern generative models (Li et al., 2019; Chen et al., 2020; Tolosana et al.,
2020; Rombach et al., 2022a). Recent systems preserve identity while controlling lip movements
and expressions, and high-quality content can now be produced by anyone through simple prompts
on widely available generative services and APIs (Prajwal et al., 2020; Park & Owens, 2025). This
accelerates the spread of both legitimate media and potentially harmful content, including financial
fraud, copyright violations, and political disinformation, necessitating more reliable detection.

Because of rapid diversification, exhaustively collecting per-algorithm data and retraining is infea-
sible. Even if sufficient data were available, joint training on heterogeneous forgeries suffers from
interference (Yu et al., 2020; Standley et al., 2020), while maintaining one specialist per genera-
tor is operationally costly (Shiohara & Yamasaki, 2022; Yan et al., 2024b). We therefore adopt a
model merging approach: specialists are fine-tuned on their own data and then combined in param-
eter space to form a single detector, enabling rapid adaptation without retraining (Izmailov et al.,
2018; Wortsman et al., 2022; Ilharco et al., 2022). To the best of our knowledge, model merging has
not been systematically explored for deepfake detection. In addition to this structural motivation,
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we provide empirical evidence that averaging specialist parameters consistently retains real features
while attenuating generator-specific fake cues.
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Figure 2: Similarity between each special-
ist and the weight-averaged model (WA)
on Real, Own-Fake, and Other-Fake. FS, FR,
and EFS denote Face Swap, Face Reenact-
ment, and Entire Face Synthesis. Specialists
are highly aligned with WA on Real, while
Own-Fake shows a clear drop relative to both
Real and Other-Fake, consistent with WA
preserving shared Real structure and cancel-
ing generator-specific residuals.

To ground this choice, we analyze how a weight-
averaged (WA) model (Izmailov et al., 2018) com-
pares to its specialists. We take per-forgery-family
specialists finetuned from the same pretrained back-
bone and construct a WA model by averaging their
parameters without retraining. For clarity, we denote
the three forgery families in DF40 (Yan et al., 2024b)
as FS (FaceSwap), FR (FaceReenactment), and EFS
(Entire Face Synthesis). We measure the similarity
between each specialist and the WA model on three
data types: Real images, Own-Fake (fake images
produced by that specialist’s forgery family), and
Other-Fake (fake images from the remaining fami-
lies), using cosine similarity of pre-logit features.

The pattern is consistent across forgery families.
On Real images, all specialists remain highly sim-
ilar to the WA model, indicating that WA preserves
the shared Real structure. On Own-Fake, similarity
drops relative to both Real and Other-Fake, since
strong generator-specific fake cues emerge and reduce alignment with WA. In contrast, Other-Fake
carries weaker specialist-specific signals, so similarity to WA remains higher. Fig.2 visualizes this
trend for FS, FR, and EFS, supporting the view that WA preserves shared Real structure while sup-
pressing generator-specific Fake residuals. These observations motivate a domain-tailored merge
strategy for deepfakes: retaining the Real component while recombining Fake-specific residuals.

Building on these observations, we tailor merging to the structure of deepfake detection. Unlike
typical multi-task settings with disjoint label spaces, our specialists share the same binary label
space (Real or Fake). In practice, cues for Real are stable across datasets, whereas cues for Fake
are generator-specific and volatile. A suitable merging rule should therefore preserve the common
structure among specialists while aggregating their complementary, generator-specific knowledge.

Figure 3: Overview of Real-aware Residual Model Merg-
ing (R2M). Specialist detectors are fine-tuned indepen-
dently. We then factorize their task vectors into a shared
Real subspace and generator-specific residuals, keep a sin-
gle Real core, and recombine denoised, norm-matched
residuals into a merged detector.

Method overview. We propose
Real-aware Residual Model Merg-
ing (R2M)(Fig. 3). We estimate a
shared Real component through
low-rank factorization (e.g., SVD)
of specialists’ task vectors, treating
the dominant directions as a core
Real subspace. Each task vector is
then decomposed into a Real-aligned
part and a residual that captures
generator-specific Fake evidence. We
keep one shared Real component,
denoise residuals with low-rank trun-
cation, and merge the residuals with
per-task norm matching to prevent
any single generator from dominating the decision. The procedure is composable: integrating a new
generator only requires finetuning its specialist and adding its residual to the merge. We detail the
method in §3.

Mechanistic intuition. Uniform weight averaging tends to suppress generator-specific residuals and
emphasize a shared Real component, consistent with our similarity probes. R2M makes this behavior
explicit: it preserves the Real core and retains generator-specific Fake residuals, combining them
at matched scales. From a local linear perspective around the pretrained model, the factorization
recovers Real-aligned directions, while informative residual energy concentrates in a low-alignment
subspace that carries generator-dependent artifacts. We present this rationale in §3.2 and demonstrate
improvements in both seen-task retention and generalization to unseen forgeries in §4.
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Contributions.

• We introduce R2M, a training-free recipe that preserves a shared Real component while composing
denoised, norm-matched Fake residuals.

• We provide a concise rationale linking parameter-space factorization to feature-space geometry,
explaining why weight averaging specializes to Real and why R2M decouples Real and Fake effects.

• We show consistent, reliable improvements over strong baselines. Furthermore, the merge is com-
posable, enabling rapid incorporation of new forgery families.

2 RELATED WORKS

Deepfake detection. Deepfake technology has advanced rapidly over time. Early systems focused
on simple local manipulations within the face region (fac, 2019; Li et al., 2020a; Liu et al., 2023b).
The advent of GAN-based generators markedly improved synthesis quality (Choi et al., 2018; Thies
et al., 2019; Richardson et al., 2021), followed by diffusion-based models that improved fidelity and
enabled finer-grained control over generation (Rombach et al., 2022a). Beyond basic face replace-
ment, talking-head and reenactment methods now preserve identity while naturally controlling facial
expressions, emotions, speech content, lip synchronization, and head motion (Nirkin et al., 2019; Li
et al., 2024; Mukhopadhyay et al., 2024; Guo et al., 2024). Commercial generative platforms such as
Veo, Kling, and Wan 1 further lowered the barrier to producing high-quality synthetic videos. While
the same techniques power legitimate creative media, they also facilitate realistic manipulations with
significant privacy and safety risks.

On the detection side, prior work has evolved along several complementary approaches. Data
augmentation via blending (Li et al., 2020b; Shiohara & Yamasaki, 2022; Lin et al., 2024) and
frequency-domain analysis (Jeong et al., 2022; Tan et al., 2024; Zhou et al., 2024) are representa-
tive strategies. To cope with the continual emergence of new generators, recent studies emphasize
generalization to unseen forgeries (Yan et al., 2023; Choi et al., 2024b; Cui et al., 2025). For ex-
ample, Shiohara & Yamasaki (2022) generated pseudo-fakes through self-blending for training, and
Yan et al. (2023) extracted common forgery features to improve transfer. Tan et al. (2024) leveraged
high-frequency cues, while Lin et al. (2024) proposed temporally aware self-blending with curricu-
lum learning. In parallel, Cui et al. (2025) improved efficiency with an adaptor-based architecture,
and Sun et al. (2025) incorporated vision–language signals for detection. Yan et al. (2024a) further
study generalizable AI-generated image detection by using SVD to construct orthogonal semantic
and forgery subspaces in a vision foundation model, freezing the principal components and learning
forgeries in the orthogonal residual subspace.

Despite these advances, robust generalization remains challenging under rapid diversification of gen-
eration methods and the proliferation of commercial tools. We therefore advocate a complementary
perspective for deployment: model merging as a practical mechanism for deepfake detection. Rather
than retraining an all-in-one detector whenever new forgeries appear, separately finetuned special-
ists can be combined into a single model in parameter space, enabling swift incorporation of new
forgery families without full retraining.

Model merging. Model merging combines task-specific experts into a single model by operating
directly in parameter space, typically without additional training. A basic approach is weight av-
eraging (WA) (Izmailov et al., 2018), which averages parameters across experts. In the context of
fine-tuning large pretrained models, WA underlies “model soups” and often improves accuracy and
robustness without inference overhead (Wortsman et al., 2022). Beyond uniform averaging, task
arithmetic represented each task by a task vector (the difference between fine-tuned and pretrained
weights) and edits model behavior by adding or negating such vectors; combining multiple task
vectors can yield multi-task capability (Ilharco et al., 2022). TIES-Merging addressed interference
when merging by trimming small updates, resolving sign conflicts, and merging only sign-aligned
parameters, achieving stronger multitask performance across modalities (Yadav et al., 2023). Recent
work further revisits WA through the task-vector lens, showing that centering task vectors around the
weight average and applying low-rank approximations to those vectors (CART) can substantially

1Veo : https://deepmind.google/models/veo Kling AI: https://klingai.com; Wan:
https://wan.video/
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improve merged performance by reducing cross-task interference (Choi et al., 2024a). Orthogonal
directions include Fisher-weighted averaging, which weights parameters by local curvature when
merging (Matena & Raffel, 2022). Recent studies also explore low-rank and interference-aware
merging for parameter-efficient fine-tuning and cross-modal settings (Lee et al., 2025).

Positioning of Our Work. To the best of knowledge, model merging has not been systematically
tailored to deepfake detection. Prior methods are largely task-agnostic, treating all task updates sym-
metrically. In contrast, our setting exhibits a structural asymmetry (shared Real vs. generator-specific
Fake). We leverage this structure by explicitly preserving a shared Real component and recombining
denoised, norm-matched Fake residuals, yielding a single detector that remains composable as new
forgery families emerge. Our approach is complementary to training-time generalization methods :
they aim to train a single detector with stronger cross-generator generalization, whereas we address
how to merge multiple already-trained specialists in parameter space. In principle, specialists trained
with such objectives could themselves be merged via R2M.

3 METHOD

Prior model merging methods are commonly designed for multi-task settings with disjoint label
spaces and focus on mitigating cross-task interference (Wortsman et al., 2022; Ilharco et al., 2022;
Ainsworth et al., 2022; Yadav et al., 2023). Deepfake detection differs: specialists share the same
Real vs. Fake label space; variation arises from generator-specific artifacts. We therefore sepa-
rate what specialists have in common (a shared Real component) from what they learn differently
(generator-specific Fake residuals) and recompose them into a single detector. Before aggregation,
we perform per-task norm matching on residuals to equalize their energy, so that no single spe-
cialist dominates the merge. Our approach is a training-free, parameter-space merging method that
preserves the strengths of specialists while improving generalization to unseen generators.

We denote the network parameters by θ ∈ RD and write θ0 for the pretrained weights. For each
task i ∈ [N ] = {1, . . . , N}, targeting detection of forgeries produced by a particular manipulation
method, let Di ⊂ X ×{0, 1} denote the dataset containing both real samples and the corresponding
forgeries (labels y ∈ {0 (Real), 1 (Fake)}). The specialist finetuned on task i is denoted by θi, and
its task vector (Ilharco et al., 2022) is defined as τi := θi−θ0. We construct a single merged model
θ⋆ = Merge

(
θ0, {θi}Ni=1

)
using the closed-form rule described in §3; with no further training or

gradient updates performed during merging.

3.1 SVD-BASED DISENTANGLEMENT AND RANK-TRUNCATED DENOISING

Task matrix, centering, and Real core. The task vectors {τi}Ni=1 of specialists are stacked row-
wise:

M =

τ⊤1...
τ⊤N

 ∈ RN×D, τ̄ = 1
N

N∑
i=1

τi. (1)

Then, centering across parameters is performed using the all-ones vector 1 ∈ RN :

Mc = M − 1 τ̄⊤, Mc = Uc Σc V
⊤
c . (2)

Let Vc,k denote the top-k right singular vectors. We can define the Real projector and core:

Πreal := Vc,kV
⊤
c,k, τcore := Πreal τ̄ = 1

N

N∑
i=1

Πreal τi. (3)

This extracts a low-rank component shared across specialists and aligned with Real.

Residuals and layerwise rank-r truncation. We form mean-centered residuals as δi := τi − τ̄ .
For each attention and MLP block, we apply layerwise SVD to corresponding matrix slice of δi and
keep only the top-r singular components; yielding the truncated residual δ̃i. (Complete notation for
truncated SVDs is provided in §A.1.)

4
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Across-task merge and final parameters (training-free). Each truncated residual is normalized
and rescaled to the mean residual norm to avoid dominance:

mmean =
1

N

N∑
i=1

∥∥δ̃i∥∥2, δ̂i = mmean
δ̃i∥∥δ̃i∥∥2 + ε

. (4)

Using uniform weights, we simply average the normalized residuals:

τ resmerge =
1

N

N∑
i=1

δ̂i. (5)

The global residual scale is set relative to the Real core, after which we define the merged parameters:

η = α
∥∥τcore∥∥2, θR2M(α, r) = θ0 + τcore + η τ resmerge. (6)

All operations are closed-form, with no additional training or gradient updates. The only tunable
hyperparameters are α (global residual scale) and r (per-layer SVD-r truncation; we set k = 1).

3.2 WHY A SIMPLE HEAD SUFFICES AFTER R2 MERGING

Notation. Let the penultimate features be ϕ(x; θ) ∈ Rd. For each task i ∈ [N ] and label y ∈ {0, 1}
(Fake=1, Real=0), we define the corresponding class means and covariances

µi,y(θ) := E[ϕ(x; θ) | i, y] , Σi,y(θ) := Cov[ϕ(x; θ) | i, y] . (7)

Then, the Real–Fake separation vector is defined as:

∆RF
i (θ) := µi,1(θ)− µi,0(θ). (8)

and the Jacobian at θ0 is written as:

J(x) :=
∂ϕ(x; θ)

∂θ

∣∣∣
θ=θ0

∈ Rd×D, Hi := E[J(x) | i, 1] − E[J(x) | i, 0]. (9)

We use ∥·∥2 for vector Euclidean norm, ∥·∥op for the matrix operator norm, and ∥·∥F for the Frobe-
nius norm. For a unit vector u, let Pu⊥ := I − uu⊤ denote the orthogonal projector. We use ∠(a, b)
for the principal angle between nonzero vectors, defined by cos∠(a, b) = ⟨a, b⟩/(∥a∥2∥b∥2). Unless
otherwise specified, v denotes the top right singular vector of the centered task matrix Mc (§3.1).

Theoretical Conditions (R1–R3). We prove the following mild properties around θ0 (§A):

(R1) Local linearity with bounded remainder. For small ∆θ,

∆RF
i (θ0 +∆θ) = ∆RF

i (θ0) + Hi ∆θ + Ri(∆θ), ∥Ri(∆θ)∥ ≤ C ∥∆θ∥2. (10)

i.e., a small parameter displacement induces an approximately linear change in the Real–
Fake separation through Hi.

(R2) Recovery of a shared Real axis by SVD. Writing τi = aiv
⋆+ζi with E[ζi] = 0 and bounded

covariance, the top right singular vector v of Mc satisfies

sin∠(v, v⋆) ≤ γ, (11)

i.e., SVD on Mc recovers (up to a small angle γ) the common Real direction v⋆.
(R3) Off-axis control after truncation and norm matching. With layerwise top-r truncation of

centered residuals and per-task norm matching,∥∥Pu⊥ Hi

(
η τ resmerge

) ∥∥ ≤ ε′,
∥∥Hi τcore

∥∥ for some ε′ ∈ [0, 1). (12)

i.e., retaining only the leading singular components and equalizing residual norms bounds
the off-axis response relative to the core push.

Proposition 1 (Directional alignment and averaged-head sufficiency under R2M). Let θ⋆ = θ0 +
τcore+η τ resmerge be the R2M parameters from §3.1. Under (R1)–(R3), there exists a unit u ∈ Rd such
that the merged Real–Fake separation vectors are nearly collinear:

sin∠
(
∆RF

i (θ⋆), u
)
≤ ε

1− ε
, ∀i ∈ [N ]. (13)

5
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We denote by wsp
i the linear classification head (logit weights) of specialist i, and define their aver-

age head accordingly.

w̄ :=
1

N

N∑
i=1

wsp
i . (14)

Then, there exist positive scalars ci > 0 and a vector q such that

wsp
i ≈ ci q, w̄ ≈ c̄ q, c̄ = 1

N

∑
i

ci > 0, (15)

and the scores si(x) = ⟨wsp
i , ϕ(x; θ⋆)⟩ and s̄(x) = ⟨w̄, ϕ(x; θ⋆)⟩ differ only by a positive, task-

dependent scaling. Consequently, the score rankings are preserved, and the AUC match up to this
rescaling.

Intuition and implications for deepfakes. (R2) shows that applying SVD to centered task vec-
tors recovers a shared Real axis; the core update moves every task along this axis. (R3) ensures
that top-r truncation and norm matching suppress off-axis drift from residuals, so that the Real–
Fake separation vectors {∆RF

i (θ⋆)}i concentrate in a narrow cone around a common direction u
in equation 13. This collinearity implies specialist heads align to the same effective direction on
ϕ(x; θ⋆); their average w̄ remains aligned, making a single, simple head effective without loss in
AUC. This behavior matches the structure of deepfake detection: Real cues are stable and shared,
whereas Fake cues are generator-specific and volatile. The proposed R2M exploits this asymmetry
by isolating a low-rank Real core and recombining denoised, balanced Fake residuals, yielding a
deployment-friendly detector that retains in-domain strength and generalizes to unseen generators.

4 EXPERIMENTS

Benchmark and protocols (DF40). We evaluated on DF40 (Yan et al., 2024b), a recent and compre-
hensive deepfake detection benchmark that implements 40 distinct manipulation/generation meth-
ods across four forgery categories: face swapping (FS), face reenactment (FR), entire-face synthesis
(EFS), and face editing (FE). We followed the DF40 naming of data “domains” (e.g., FF++ (Rossler
et al., 2019) and Celeb-DF/CDF (Li et al., 2020c)). DF40 standardizes three evaluation protocols: (i)
Protocol 1 (cross-forgery, same domain): train and test within the same data domain while varying
forgery methods; (ii) Protocol 2 (cross-domain, same forgery): train and test on the same forgery
category while changing the data domain; (iii) Protocol 3 (unknown forgery & domain): train on
seen forgeries/domains and test on unseen forgeries and domains to simulate open-set conditions.
These protocol definitions, the four-category taxonomy (FS/FR/EFS/FE), and the FF++/CDF do-
mains were adopted from DF40.

Model roster and training policy. We trained three specialists, one per forgery category: θFS on
the union of FS methods, θFR on the union of FR methods, and θEFS on the union of EFS methods
(8 methods per category; total 24 methods). In addition, we trained a single all-in-one model jointly
on the union of all these 24 methods. Across all models, the backbone is CLIP-L/14 (Radford et al.,
2021); we use its pooler output as the embedding and a binary linear head trained with standard
cross-entropy. Our goal is not to maximize in-domain AUC but to study model merging as a simple,
training-free framework to cope with the rapidly proliferating forgery types. The specialist recipe is
model-agnostic: any stronger detector can replace our specialists without changing the merge. All
training strictly followed the official DF40 splits; no data from Protocol 3 was used for training or
tuning. Merging was entirely training-free; hyperparameters (k = 1, r, α) were chosen once on seen
validation (Protocols 1–2) and reused across protocols. Hyperparameter ablations appear in § C.4,
and the full list of forgery methods with the optimization schedule is provided in § C.

Metrics: seen retention and unseen transfer. On each task i, we evaluated the image-level
area under the ROC curve (Fawcett, 2006), AUCi(θ) ∈ [0, 1], on the held-out test split Dte

i .
We quantified matching between the merged model and the specialist on its own task via the
per-task AUC drop : Dropi := AUCi(θi) − AUCi(θ⋆), and aggregated by the worst-case:
Dropmax := maxi∈[N ] Dropi. Smaller values are better ; we reported these empirically. Let
Dunseen denote data from generators or datasets not used for finetuning, and let AUCunseen(θ)
represent the corresponding AUC. We compared the merged model to specialist baselines via
Gainunseen := AUCunseen(θ⋆) − maxi∈[N ] AUCunseen(θi), where positive values indicate
improved zero-shot generalization over the best specialist.

6
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Table 1: Seen AUC (higher is better). Columns are category×domain + domain-wise means. Best
results are shown in bold, second-best are underlined.

Protocol1 - FF Protocol2 - CDF

Method FS FR EFS Mean FS FR EFS Mean

Our DF40-compliant training
Specialist–FS 0.995 0.912 0.766 0.891 0.959 0.690 0.603 0.751
Specialist–FR 0.923 0.999 0.742 0.888 0.505 0.915 0.099 0.506
Specialist–EFS 0.676 0.814 0.999 0.830 0.618 0.621 0.989 0.742
All-in-one 0.962 0.997 0.978 0.979 0.759 0.860 0.366 0.662

Training-free merging baselines
Weight Averaging 0.968 0.997 0.982 0.982 0.825 0.909 0.767 0.834
Task Arithmetic 0.956 0.995 0.965 0.972 0.741 0.888 0.926 0.852
TIES-Merging 0.959 0.993 0.961 0.971 0.819 0.898 0.891 0.869
CART 0.976 0.994 0.995 0.988 0.851 0.874 0.907 0.877
R2M (ours) 0.977 0.992 0.996 0.988 0.902 0.912 0.942 0.919

Table 2: Unseen AUC (higher is better) on DF40 Protocol 3. Unseen datasets: DeepFaceLab (Liu
et al., 2023b), HeyGen (hey), Midjourney (mid), WhichIsReal (whi), StarGAN (Choi et al., 2018),
StarGAN v2 (Choi et al., 2020), StyleCLIP (Patashnik et al., 2021), CollabDiff (Huang et al., 2023).

Method DeepFace
Lab

Hey
Gen

Mid
journey

WhichIs
Real

Star
Gan

StarGan
v2

Style
Clip

Collab
Diff Mean

Our DF40-compliant training
Specialist–FS 0.892 0.573 0.334 0.364 0.887 0.640 0.608 0.596 0.612
Specialist–FR 0.812 0.546 0.603 0.228 0.697 0.433 0.053 0.141 0.439
Specialist–EFS 0.709 0.398 0.561 0.694 0.901 0.777 0.952 0.997 0.749
All-in-one 0.884 0.561 0.177 0.512 0.860 0.714 0.761 0.854 0.665

Training-free merging baselines (same backbone)
WA 0.930 0.626 0.613 0.455 0.953 0.728 0.635 0.848 0.724
TA 0.887 0.541 0.695 0.255 0.891 0.579 0.504 0.622 0.622
TM 0.897 0.579 0.545 0.327 0.912 0.598 0.668 0.627 0.644
CART 0.943 0.608 0.559 0.497 0.975 0.780 0.813 0.955 0.766
R2M (ours) 0.946 0.617 0.551 0.492 0.973 0.778 0.860 0.974 0.774

For Protocols 1–2 (seen settings), we evaluated Seen-task retention using the DROP metric (lower is
better). For Protocol 3 (unseen setting), we summarized zero-shot generalization by Unseen transfer
(GAIN) (higher is better). Hyperparameters and thresholds were selected on seen validation and
were not tuned on Protocol 3. We followed DF40’s official train/test splits and per-protocol settings;
no training was performed during merging. We evaluated standard merging variants alongside our
method; precise formulations and hyperparameter grids appear in §B.1.

Tuning protocol. For parameters that change the internal composition of task vectors (TIES (Ya-
dav et al., 2023) sparsity, CART(Choi et al., 2024a) rank, R2M rank), we sweep {0.1, 0.3, 0.5, 0.7}.
For global magnitude scalars (Task Arithmetic (Ilharco et al., 2022), CART), we sweep {0.5, 1.0}.
For R2M, we sweep the normalization coefficient α ∈ {0.4, 0.5, 0.6} in ηeff = α∥τcore∥/∥τ resmerge∥
in equation 6. To ensure fair comparison, we used the same grids across all merged models, together
with the same averaged head.

4.1 SEEN RETENTION ON DF40 (PROTOCOLS 1–2)

We first summarized per-category AUCs on the seen domains (FF++; Protocol 1) in Table 1.

(i) Training-free model merging fits deepfake detection. Even plain Weight Averaging achieves a
strong FF mean AUC of 0.982, essentially matching the jointly trained All-in-one model (0.979).
This indicates substantial cross-task parameter sharing in this domain and suggests that weight-space
merging is a natural, effective paradigm for deepfake detection.

(ii) CART and R2M retain specialists almost perfectly on FF (saturation). Both CART and R2M
reach the same FF mean AUC 0.988, with category-wise values tightly tracking the specialists
(e.g., FS: 0.976/0.977 vs 0.995; FR: 0.994/0.992 vs 0.999; EFS: 0.995/0.996 vs 0.999). In terms of
retention, this corresponds to very small DROP (on the order of 10−2), showing that on the in-domain
FF setting the problem is near-saturated across merging methods.

(iii) Cross-domain seen transfer (CDF; Protocol 2). When the domain shifts from FF++ to Celeb-DF
while keeping the manipulation types fixed, our method shows a clear advantage over other training-
free mergers. R2M attains the best CDF mean AUC (0.919), outperforming CART (0.877), TIES
(0.869), Task Arithmetic (0.852), and Weight Averaging (0.834). Although each specialist remains
the upper bound on its own category within CDF, the merged R2M backbone generalizes substan-
tially better than other closed-form mergers under this domain shift. This indicates that the Real-
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(a) Seen-task retention (FF&CDF): DROP = Best
specialist AUC − Merged AUC (lower is better).
Columns are {FF, CDF}×{FS, FR, EFS}.
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(b) Unseen transfer (Protocol 3): GAIN = Merged
AUC − Best specialist AUC (higher is better) over 8
unseen forgeries.

Figure 4: Training-free merging summary (DF40). Left: seen-task retention; smaller DROP is
better. Right: unseen transfer; larger GAIN is better.

aware residual decomposition not only preserves seen-task skill on FF but also confers improved
robustness across domains.

As summarized in Table 1, we quantify seen-task retention with DROP (best specialist AUC minus
merged model AUC) in Fig.4a. Consistent with our three observations, R2M exhibits the dark-
est cells (lower is better), while the All-in-one model shows notably lighter cells especially at
CDF–EFS, indicating poor cross-domain retention. Closed-form mergers (WA/TIES/CART) are
generally darker than All-in-one, but R2M is uniformly strongest.

4.2 UNSEEN GENERALIZATION ON DF40 (PROTOCOL 3)
Table 2 reports per-forgery AUC on unseen generators, along with the macro mean; we contextualize
results using GAIN in Fig.4b, defined as the improvement over the best specialist in each column.

(i) Merging prevents catastrophic failures and improves macro performance. While the All-in-one
model collapses on MidJourney (AUC = 0.177), all training-free merging variants avoid such
failure (e.g., Weight Averaging 0.613, CART 0.559, R2M 0.551). In macro terms, merging is consis-
tently competitive or superior to All-in-one: Weight Averaging averages 0.724, CART 0.766, and
R2M 0.774, the best among training-free methods.

(ii) Specialists reveal structure in the unseen space. Specialist–EFS is notably strong on several
unseen generators driven by image synthesis models, e.g., stargan 0.901, starganv2 0.777,
styleclip 0.952, CollabDiff 0.997, suggesting that entire-face synthesis induces artifacts
aligned with EFS-trained cues. Conversely, for unfamiliar content-generation platforms such as
MidJourney, specialist performance is limited (best specialist 0.603), and joint training can be
brittle (All-in-one 0.177). In unseen transfer (Protocol 3; Fig.4b), R2M shows the largest bright
area GAIN, consistently outperforming the best specialist on the eight unseen forgeries, while other
mergers exhibit mixed or negligible gains.
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Mean Seen Drop (lower is better)
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All-in-one

Weight Averaging

Task Arithmetic
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CARTR2M (ours)

Drop Gain Pareto (overall means)

Figure 5: Drop-Gain Pareto (overall means).
Each point is a merged model; x=mean DROP
(lower is better), y=mean GAIN (higher is better).

(iii) R2M delivers the strongest overall zero-
shot transfer, with balanced gains. Rela-
tive to the best specialist per column, R2M
shows positive GAIN on several unseen gen-
erators (deepfacelab +0.054, heygen
+0.044, stargan +0.072, starganv2
+0.001), while remaining competitive on the
rest (MidJourney −0.052, whichisreal
−0.202, styleclip −0.092, CollabDiff
−0.023). Importantly, the merged backbones
(CART/R2M) substantially reduce worst-case
behavior compared to All-in-one, indicating
that training-free merging yields more robust
out-of-distribution generalization. At the macro
level, both CART and R2M also outperform specialist-only baselines: their mean unseen AUCs
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Task Arithmetic

Weight Averaging
Seen (Protocols 1 & 2): Task 3 vs Task 6  (bold = mean)

Tasks
Task 3
Task 6

(a) Seen AUC vs. #specialists N . Dumbbells
compare N=3 (●) vs. N=6 (■) for each
method; Details in § C.3

.

0.55 0.60 0.65 0.70 0.75
AUC (mean across 8 unseen forgeries)

Weight Averaging

Task Arithmetic

CART

R2M (ours)

Unseen (Protocol 3): Task 3 vs Task 6 (MEANS only)

Tasks
Task 3
Task 6

(b) Unseen AUC vs. #specialists N . Each dumbbell
shows the method’s mean AUC over the eight unseen
forgeries, comparing N=3 (●) to N=6 (■).

Figure 6: Scaling with #specialists N (Task 3 → Task 6). (a) Seen performance per category
(means in bold); (b) Unseen performance as the mean over the eight forgeries. Across N , baselines
(WA/TA/CART) shift more, while R2M changes less, indicating stronger retention and more stable
transfer when scaling up specialists.

(0.766 and 0.774, respectively) exceed the average of specialists (0.600) by large margins and
even surpass the strongest single specialist (EFS, 0.749) by +0.017 (CART) and +0.025 (R2M).

In the Drop–Gain Pareto plot (Fig.5), the All-in-one model sits far to the right, indicating the largest
retention loss, whereas training-free mergers cluster on the left with markedly smaller DROP. Among
these, R2M lies in the upper-left corner, achieving the best results (lowest DROP, highest GAIN).
CART comes next with similarly low DROP but a smaller GAIN. The remaining mergers are ordered
mainly by GAIN: Weight Averaging > TIES > Task Arithmetic.
4.3 SCALABILITY AND INCREMENTAL MERGING

Scaling with #specialists N . We investigated how merging performance scales as the number of
specialists grows from N=3 to N=6. The left panel of Fig.6 shows seen performance (AUC) per
task/domain, while the right panel shows unseen performance (AUC) averaged over the eight forg-
eries. Across baselines, increasing N causes noticeably larger shifts (longer dumbbells), reflecting
greater degradation on seen tasks and more volatile transfer on unseen data. In contrast, R2M ex-
hibits consistently smaller movement, indicating better retention under scale.

FS

FR

EFS

Midjourney

0.70
0.80

0.90
1.00

Fast Integration Across Merging Algorithms

WA
TA
CART
R2M

Figure 7: Fast integration (AUC). Radar plot
over four forgery types (FS-FF, FR-FF, EFS-
FF, Midjourney) comparing WA, TA, CART, and
R2M. Final AUCs: WA = [0.954, 0.990, 0.979,
0.964], TA = [0.951, 0.989, 0.959, 0.836], CART
= [0.974, 0.988, 0.991, 0.835], R2M = [0.974,
0.995, 0.992, 0.982]. R2M delivers the high-
est Midjourney AUC (0.982) with no regression
on legacy forgery types, demonstrating plasticity
without forgetting.

Fast integration of new deepfake methods.
We next study how R2M behaves when a new
forgery method appears after deployment. In
practice, there are two distinct scenarios: (i)
the new generator is semantically and visually
close to an existing forgery family, and (ii) it
is substantially different and lies far outside the
training distribution.

Case 1: new generator similar to an exist-
ing family (Uniface). We first consider Uni-
face, an FS-style method that is not used
when training the original specialists. Start-
ing from three specialists trained on eight
FS/FR/EFS generators (FS, FR, EFS), the
merged model (FS+FR+EFS) already achieves
strong performance on Uniface, with AUCs
[0.977, 0.992, 0.996, 0.972] on (FS, FR, EFS,
Uniface), respectively. We then train a ded-
icated Uniface specialist and merge four
specialists (FS, FR, EFS, Uniface) with
R2M. After merging, the AUCs become
[0.976, 0.991, 0.996, 0.989] on the same four
tasks. Thus, even without an additional special-
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ist, R2M generalizes well to a new method that is aligned with an existing family (Uniface AUC
0.972), and once a specialist is available it further improves Uniface (0.989) while keeping the
legacy FS/FR/EFS performance essentially unchanged (differences ≤ 0.001). This illustrates that
R2M can integrate “more of the same” forgery types with minimal interference to existing domains.

Case 2: new generator far from existing families (Midjourney). We then evaluate a previously un-
seen text-to-image generator (Midjourney), which is much more visually diverse than DF40’s face-
centric forgeries. We finetune a single specialist on DF40–Midjourney using an 80/20 train/test split
with strict disjointness, and then update the deployed model via one-shot merging. Fig.7 summa-
rizes four forgery types (FS-FF, FR-FF, EFS-FF, Midjourney) across four merging algorithms. The
R2M curve (red) encloses the largest area, indicating consistently strong detection across all forgery
types, including the newly introduced Midjourney. WA forms the next largest envelope but remains
slightly inside R2M on most axes. In contrast, TA and CART exhibit notably smaller coverage on
the Midjourney axis, reflecting limited plasticity to the new generator. Overall, these patterns sug-
gest that WA serves as a competitive baseline, while the per-task norm matching in R2M further
stabilizes merging, integrating heterogeneous, newly arriving specialists without degrading legacy
performance.

4.4 MERGING SPECIALISTS WITH HETEROGENEOUS REAL DOMAINS

Table 3: Merging six specialists with heteroge-
neous real distributions. AUC on six domains
for the individual specialists (FS-ff, FR-ff, EFS-
ff, FS-cdf, FR-cdf, EFS-cdf), and for the merged
models obtained by CART and R2M.

Model FS-ff FR-ff EFS-ff FS-cdf FR-cdf EFS-cdf

FS-ff 0.995 0.912 0.766 0.959 0.696 0.621
FR-ff 0.923 0.9996 0.742 0.503 0.923 0.106
EFS-ff 0.676 0.814 0.999 0.635 0.608 0.988
FS-cdf 0.754 0.647 0.616 0.9999 0.989 0.982
FR-cdf 0.557 0.849 0.532 0.991 0.9999 0.929
EFS-cdf 0.329 0.244 0.923 0.955 0.961 0.9999

CART 0.867 0.957 0.954 0.998 0.994 0.996
R2M 0.901 0.969 0.962 0.996 0.994 0.996

Our analysis so far has used DF40, in which all
real images are drawn from FF. One may there-
fore question whether the observed “shared
Real” structure persists when the real dis-
tribution is more heterogeneous. We address
this by constructing a more challenging setting
where specialists are trained on two distinct real
datasets and then merged.

Setup. In addition to the three FF-based spe-
cialists (FS-ff, FR-ff, EFS-ff), we train three
more specialists that use CDF as the real source
(FS-cdf, FR-cdf, EFS-cdf) while keeping the
same forgery families. We then merge all six
specialists into a single detector using either
CART or R2M, and evaluate AUC on each of
the six domains ({FS-ff, FR-ff, EFS-ff, FS-cdf, FR-cdf, EFS-cdf}). Training details and the full
construction of this setting are provided in the § B.2

Results. Table 3 reports the cross-domain performance of six individual specialists, with the merged
models obtained by CART and R2M. As expected, asking a single model to cover six specialists
trained on two different real distributions is substantially more challenging than the original FF++-
only case. Nevertheless, R2M consistently achieves higher AUC than CART on the harder FF++
domains, while matching CART on the saturated CDF domains. This indicates that the SVD-based
Real core in R2M continues to provide a stabilizing shared subspace even when Real comes from
multiple datasets, and that R2M degrades more gracefully than CART as real diversity increases.

5 CONCLUSION

We framed deepfake detection as a structurally natural case for model merging: specialists share a
binary decision while differing in generator-specific artifacts. Our probes showed that simple weight
averaging preserves Real structure and suppresses generator-specific cues, motivating a domain-
tailored merge. We introduced R2M, a training-free parameter-space procedure that isolates a shared
Real component and aggregates denoised, norm-matched Fake residuals. The resulting single de-
tector retains in-domain strength, improves transfer to unseen generators, and is composable: new
forgeries are handled by fine-tuning one specialist and merging it with the existing model, without
retraining prior components. Looking ahead, scaling to broader specialist collections covering addi-
tional generators, backbones, and modalities should further amplify the benefits of merging. Beyond
this, we see promising directions in extending hierarchical, self-expanding merging schemes that
group related specialists and recursively compose their cores. Another important avenue is robust-
ness checks against poisoned or untrusted specialists, moving toward a safe, continuously updatable
deepfake defense pipeline.
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A THEORY PROOFS

A.1 PRELIMINARIES: ASSUMPTIONS, NOTATION, AND TOOLS

We gather the standing assumptions and basic results used in the proofs.

Assumptions (Smoothness). Throughout, the feature map ϕ(·; θ) is twice continuously differen-
tiable in θ on a neighborhood N of θ0. Its Jacobian

J(x; θ) :=
∂ϕ(x; θ)

∂θ
∈ Rd×D (A.1)

is locally L-Lipschitz in θ uniformly in x ∈ X :

∥J(x; θ1)− J(x; θ2)∥op ≤ L ∥θ1 − θ2∥2 ∀ θ1, θ2 ∈ N . (A.2)

Notation (recap). We restate only the symbols used in the proofs for self-containment. For task
i ∈ [N ] and label y ∈ {0, 1} (Fake=1, Real=0), recall

µi,y(θ) = E[ϕ(x; θ) | i, y] , Σi,y(θ) = Cov[ϕ(x; θ) | i, y] , ∆RF
i (θ) = µi,1(θ)− µi,0(θ).

(A.3)
Write Hi := E[J(x; θ0) | i, 1] − E[J(x; θ0) | i, 0] and use ∥ · ∥2 (vector), ∥ · ∥op (operator), and
∥ · ∥F (Frobenius) norms. For a unit u ∈ Rd, Pu⊥ := I−uu⊤ is the orthogonal projector. The angle
between nonzero vectors satisfies cos∠(a, b) = ⟨a, b⟩/(∥a∥2∥b∥2).

Task vectors and SVD. Let τi := θi − θ0, τ̄ := 1
N

∑N
i=1 τi, and

M =

τ⊤1...
τ⊤N

 ∈ RN×D, Mc = M − 1 τ̄⊤. (A.4)

Let Mc = UcΣcV
⊤
c be a compact SVD and denote by v the top right singular vector.

Residuals and layerwise top-r truncation. Define the mean-centered residuals δi := τi − τ̄ . For
any layer ℓ and task i, let W (ℓ)

i be the matrix slice extracted from δi (attention/MLP blocks). Write

its compact SVD W
(ℓ)
i = U

(ℓ)
i Σ

(ℓ)
i V

(ℓ)
i

⊤
and keep only the top-r singular components:

W̃
(ℓ)
i := SVDr

(
W

(ℓ)
i

)
= U

(ℓ)
i,r Σ

(ℓ)
i,r

(
V

(ℓ)
i,r

)⊤
. (A.5)

Replacing every targeted layer W (ℓ)
i by W̃

(ℓ)
i and reassembling yields the truncated residual δ̃i. We

use SVDr(·) throughout to denote the operator that retains the top-r singular components at the
layer level (cf. Sec. 3.1).

Matrix tools: perturbation and low-rank approximation. We rely on classical subspace per-
turbation bounds (Wedin’s and Davis–Kahan’s sin–Θ theorems) and on the Eckart–Young–Mirsky
theorem for best low-rank approximation (Wedin, 1972; Davis & Kahan, 1970; Eckart & Young,
1936). These are standard in PCA/spectral analyses and low-rank denoising (Von Luxburg, 2007),
and we invoke them in R2 (subspace recovery) and R3 (tail-energy control), respectively.

A.2 PROOF OF R1 (LOCAL LINEARITY WITH BOUNDED REMAINDER)

Lemma 1 (R1). For small ∆θ,

∆RF
i (θ0 +∆θ) = ∆RF

i (θ0) + Hi ∆θ + Ri(∆θ), ∥Ri(∆θ)∥2 ≤ C ∥∆θ∥22, (A.6)

for some constant C > 0 depending on the Lipschitz constant in equation A.2.

Proof. Fix i and y ∈ {0, 1}. By the mean-value form of Taylor’s theorem for vector-valued maps,

µi,y(θ0 +∆θ) = µi,y(θ0) +
(
E[J(x; θ0) | i, y]

)
∆θ + ri,y(∆θ), (A.7)
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with remainder bounded (using equation A.2 and Jensen) by

∥ri,y(∆θ)∥2 ≤ L
2 ∥∆θ∥22. (A.8)

Subtracting the expressions for y = 0 from y = 1 yields

∆RF
i (θ0 +∆θ) = ∆RF

i (θ0) + Hi ∆θ + Ri(∆θ), Ri(∆θ) := ri,1(∆θ)− ri,0(∆θ), (A.9)

and thus ∥Ri(∆θ)∥2 ≤ L ∥∆θ∥22 =: C∥∆θ∥22.

A.3 PROOF OF R2 (SVD RECOVERS THE SHARED REAL AXIS)

Lemma 2 (R2). Assume the decomposition τi = aiv
⋆ + ζi with E[ζi] = 0, Cov(ζi) ⪯ σ2I , and

Var(ai) = σ2
a > 0. Let Mc be the row-centered task matrix and v its top right singular vector. If the

spectral gap σa∥v⋆∥2 ≫ σ holds, then

sin∠(v, v⋆) ≤ γ :=
∥Z⊤

c ∥op
∥Acv⋆∥2 − ∥Z⊤

c ∥op
, (A.10)

where Ac stacks (ai − ā) and Zc stacks (ζi − ζ̄).

Proof. Centering removes the mean: Mc = Acv
⋆⊤+Zc, with Ac ∈ RN×1 (the column of (ai− ā))

and Zc ∈ RN×D. Then

M⊤
c Mc = v⋆A⊤

c Acv
⋆⊤ + v⋆A⊤

c Zc + Z⊤
c Acv

⋆⊤ + Z⊤
c Zc. (A.11)

The rank-one signal part is S := v⋆A⊤
c Acv

⋆⊤ with top eigenvector v⋆ and eigenvalue ∥Acv
⋆∥22 =

∥Ac∥22 ∥v⋆∥22. The remainder E := M⊤
c Mc − S satisfies ∥E∥op ≤ 2∥Z⊤

c ∥op∥Ac∥2 + ∥Z⊤
c Zc∥op;

by the covariance bound and concentration (or in expectation), we have ∥Z⊤
c ∥op = O(σ

√
N) and

∥Ac∥2 = Θ(σa

√
N). Under the stated gap condition, the Davis–Kahan sin–Θ theorem gives

sin∠(v, v⋆) ≤ ∥E∥op
λ1(S)− λ2(S)− ∥E∥op

≤ ∥Z⊤
c ∥op

∥Acv⋆∥2 − ∥Z⊤
c ∥op

, (A.12)

where we used that S is rank-one (so λ2(S) = 0) and absorbed constants. The bound vanishes as
σ/(σa∥v⋆∥2) → 0.

A.4 PROOF OF R3 (OFF-AXIS CONTROL AFTER TOP-r TRUNCATION AND NORM MATCHING)

Lemma 3 (R3). Let δi := τi − τ̄ and let δ̃i be their layerwise top-r truncated versions (best rank-r
approximations in ∥ · ∥F ). Define norm-matched residuals

mmean :=
1

N

N∑
j=1

∥δ̃j∥2, δ̂i := mmean
δ̃i

∥δ̃i∥2 + ε
, (A.13)

for a small ε > 0. Let τmerge
res := 1

N

∑N
j=1 δ̂j and θ⋆ = θ0 + τcore + η τmerge

res . For any unit u ∈ Rd,∥∥Pu⊥ Hi(η τ
merge
res )

∥∥ ≤ ε′
∥∥Hi τcore

∥∥ for some ε′ ∈ [0, 1), (A.14)

where one can take

ε′ = C α (κu+τ̄r)
∥Hi∥op mmean

∥Hiτcore∥2
, κu :=

1

N

N∑
j=1

∥Pu⊥δj∥F
∥δj∥F

, τ̄r :=
1

N

N∑
j=1

(∑
ℓ>r σℓ(δj)

2
)1/2

∥δj∥F
,

(A.15)
for a universal constant C > 0. In particular, fixing r and choosing η = α∥τcore∥2 with α > 0 small
enough ensures ε′ < 1.

Proof. By submultiplicativity and orthogonality of Pu⊥ ,

∥∥Pu⊥Hi(η τ
merge
res )

∥∥ ≤ ∥Hi∥op η
∥∥Pu⊥τmerge

res

∥∥ ≤ ∥Hi∥op η
1

N

N∑
j=1

∥∥Pu⊥ δ̂j
∥∥. (A.16)
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For each task j, by the triangle inequality and the Eckart–Young–Mirsky theorem,

∥Pu⊥ δ̃j∥F ≤ ∥Pu⊥δj∥F + ∥δj − δ̃j∥F ≤ ∥Pu⊥δj∥F +
(∑

ℓ>r σℓ(δj)
2
)1/2

. (A.17)

Aggregating layerwise slices to the parameter vector and using norm matching ∥δ̂j∥2 ≈ mmean (up
to a universal constant C due to block aggregation) yields

∥Pu⊥ δ̂j∥2 ≤ Cmmean

(
∥Pu⊥δj∥F
∥δj∥F

+

(∑
ℓ>r σℓ(δj)

2
)1/2

∥δj∥F

)
. (A.18)

Averaging over j gives
1

N

N∑
j=1

∥Pu⊥ δ̂j∥2 ≤ Cmmean (κu + τ̄r). (A.19)

Plugging this bound into equation A.16 and setting η = α∥τcore∥2,∥∥Pu⊥Hi(η τ
merge
res )

∥∥ ≤ C ∥Hi∥op α (κu + τ̄r)mmean ∥τcore∥2. (A.20)

Since ∥Hiτcore∥2 ≥ c0 ∥τcore∥2 for some task-dependent c0 > 0 (nondegenerate response along the
core), we obtain∥∥Pu⊥Hi(η τ

merge
res )

∥∥ ≤ C α (κu + τ̄r)
∥Hi∥op mmean

∥Hiτcore∥2︸ ︷︷ ︸
=: ε′

∥Hiτcore∥2. (A.21)

Choosing α > 0 small enough ensures ε′ < 1, completing the proof.

A.5 PROOF OF PROPOSITION 1

Proposition 2 (Restatement of Proposition 1). Let θ⋆ = θ0 + τcore + η τ resmerge. Under (R1)–(R3),
there exists a unit u ∈ Rd such that

sin∠
(
∆RF

i (θ⋆), u
)
≤ ε

1− ε
, ∀i ∈ [N ]. (A.22)

Let wsp
i be the linear head (logit weights) of specialist i, and w̄ = 1

N

∑
i w

sp
i . Then there exist

ci > 0 and a vector q with

wsp
i ≈ ci q, w̄ ≈ c̄ q, c̄ = 1

N

∑
i

ci > 0, (A.23)

and the scores si(x) = ⟨wsp
i , ϕ(x; θ⋆)⟩ and s̄(x) = ⟨w̄, ϕ(x; θ⋆)⟩ differ by a positive scale, hence

preserve AUC.

Proof. By R2, the top right singular vector v of Mc approximates the shared Real axis v⋆:
sin∠(v, v⋆) ≤ γ. Consider the R2M update ∆θ = τcore + η τmerge

res . By R1 (local linearity),

∆RF
i (θ⋆) = ∆RF

i (θ0) + Hiτcore + Hi(η τ
merge
res ) + Ri(∆θ), ∥Ri(∆θ)∥ ≤ C∥∆θ∥22. (A.24)

Let u be the (unit) common response direction to the core, i.e. Hiv ≈ siu with si > 0 (R2
gives dominance of this mode; continuity yields a uniform u). Then Hiτcore = (v⊤τcore)Hiv ≈
(v⊤τcore)siu. By R3 (off-axis control after truncation and norm matching),∥∥Pu⊥ Hi(η τ

merge
res )

∥∥
2
≤ ε′

∥∥Hiτcore
∥∥
2
, ε′ ∈ [0, 1). (A.25)

Absorbing ∥Ri(∆θ)∥ = O(∥∆θ∥22) into ε (small η), the off-axis component of ∆RF
i (θ⋆) is at most

an ε-fraction of the on-axis magnitude, giving

sin∠
(
∆RF

i (θ⋆), u
)
≤ ε

1− ε
. (A.26)

Thus {∆RF
i (θ⋆)}i are nearly colinear (directional alignment).

For heads, denote the pooled within-class covariance by Σ(θ⋆). Since ∆RF
i (θ⋆) ≈ αiu with αi > 0,

any specialist head trained to separate Real/Fake aligns to the same effective direction q on ϕ(x; θ⋆)
up to a positive scale ci (e.g., in the LDA idealization w⋆

i ∝ Σ(θ⋆)
−1∆RF

i (θ⋆) = ciq). Hence
wsp

i ≈ ciq and w̄ ≈ c̄q. Consequently si(x) and s̄(x) differ by a positive scalar across inputs,
preserving score rankings and AUC.
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B IMPLEMENTATION DETAILS AND MERGING BASELINES

B.1 BACKBONES, HEADS, AND CLOSED-FORM MERGING

Let θ0 be the pretrained weights and τi = θi − θ0 the task vector of specialist i among N .

• Pretrained (θ0): zero-shot without finetuning.
• Specialists ({θi}): one model per forgery method.
• All-in-one: single model trained on the union of seen forgeries.

• Model-merging (closed-form, no retraining). For any merged backbone θ̂, we attached
the same averaged specialist’s head ϕ̄ = 1

N

∑N
i=1 ϕi and evaluated (θ̂, ϕ̄) for all variants.

– Weight Averaging: θavg = θ0 +
1
N

∑N
i=1 τi (no hyperparameters).

– Task Arithmetic: θta(α) = θ0 + α · 1
N

∑N
i=1 τi, with α∈{0.5, 1.0}.

– TIES-Merging: we keep top-p per-task magnitudes, drop sign-conflicted coordinates,
and then sum: θties(p) = θavg +

∑N
i=1 Mp(τi), with p∈{0.1, 0.3, 0.5, 0.7}.

– CART (origin-shifted low-rank): we form θavg, shift origin, apply per-layer SVD
truncation with rank r, and scale: θcart(η, r) = θavg + η τ̂ (r), with η ∈ {0.5, 1.0},
r∈{0.1, 0.3, 0.5, 0.7};

– R2M-Merging(ours): θR2M(α, r) = θ0+τcore +ηeff τ resmerge, α∈{0.4, 0.5, 0.6}, r∈
{0.1, 0.3, 0.5, 0.7}.

B.2 TRAINING DETAILS

We strictly follow the official DF40 protocol without deviations in preprocessing, augmentation,
optimization, or evaluation.

Protocol. Video I/O: H.264 compression level c23; we sample 8 frames per clip for both train-
ing and testing at 224×224 resolution. Batching and system: batch size 16 for training and testing;
1 GPU; manualSeed=1024. Inputs: no masks (with mask=false) and no facial landmarks
(with landmark=false). Normalization: per-channel mean and standard deviation are set to
(0.5, 0.5, 0.5).

Data augmentation. Random horizontal flip (p=0.5); small rotations within ±10◦ (p=0.5); Gaus-
sian blur with kernel size 3–7 (p=0.5); brightness and contrast jitter within ±0.1 (each with p=0.5);
JPEG quality jitter in [40, 100].

Optimization. Adam by default with lr=1 × 10−5, β1=0.9, β2=0.999, ϵ=10−8, and weight
decay 5×10−4. When SGD is used, we set lr=2 × 10−4, momentum 0.9, and the same weight
decay. We do not use a learning-rate scheduler. Training runs for 3 epochs.

Specialist task sets. Task = 3 (three specialists; 24 total):

FS (8): fsgan, faceswap, facedancer, blendface, simswap, mobileswap, e4s,
inswap.

FR (8): MRAA, facevid2vid, fomm, sadtalker, hyperreenact, mcnet,
one shot free, wav2lip.

EFS (8): SiT, ddpm, DiT, sd2.1, pixart, rddm, VQGAN, StyleGAN2.

Task = 6 (six specialists; 31 total):

S1: FS (5) = uniface, simswap, mobileswap, faceswap, fsgan.

S2: FS (4) = inswap, blendface, e4s, facedancer.

S3: FR (6) = sadtalker, tpsm, fomm, MRAA, facevid2vid, pirender.

S4: FR (6) = hyperreenact, danet, lia, mcnet, one shot free, wav2lip.
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S5: EFS (5) = pixart, StyleGANXL, StyleGAN3, DiT, ddpm.

S6: EFS (5) = rddm, StyleGAN2, SiT, VQGAN, sd2.1.

Details of the heterogeneous Real experiment (FF++ + CDF) Datasets and Real/Fake com-
position.

In addition to the three FF++-based specialists used in the main experiments (FS-ff, FR-ff, EFS-ff),
we construct three further specialists whose Real data come from CDF (FS-cdf, FR-cdf, EFS-cdf).
Since DF40 does not use CDF for training in its original protocol, we randomly split all available
CDF videos into train/test/val sets for both Real and Fake, yielding:

• FSAll Real: train/test/val = 1 282 / 320 / 1 602; FSAll Fake: 4 129 / 1 032 / 5 161.
• FRAll Real: 1 709 / 427 / 2 136; FRAll Fake: 6 216 / 1 554 / 7 770.
• EFSAll Real: 1 424 / 356 / 1 780; EFSAll Fake: 7 104 / 1 776 / 8 880.

Each CDF-based specialist (FS-cdf, FR-cdf, EFS-cdf) is trained on the corresponding split using
exactly the same architecture, data augmentations, and optimization hyperparameters as the FF++-
based specialists.

Datasets and citations. fsgan (Nirkin et al., 2019), faceswap (fac, 2019), simswap (Chen
et al., 2020), facedancer (Rosberg et al., 2023), blendface (Shiohara et al., 2023),
mobileswap (Xu et al., 2022b), e4s (Liu et al., 2023c), inswap (ins). uniface (Xu et al.,
2022a), pirender (Ren et al., 2021), danet (Hong et al., 2022), lia (Wang et al., 2022),
tpsm (Zhao & Zhang, 2022), MRAA (Siarohin et al., 2021), facevid2vid (Wang et al., 2019),
fomm (Siarohin et al., 2019), sadtalker (Zhang et al., 2023), hyperreenact (Bounareli et al.,
2023), mcnet (Hong & Xu, 2023), one shot free (Wang et al., 2021), wav2lip (Prajwal et al.,
2020). VQGAN (Esser et al., 2021), StyleGAN2 (Karras et al., 2020), StyleGAN3 (Karras et al.,
2021), StyleGANXL (Sauer et al., 2022), sd2.1 (Rombach et al., 2022b), ddpm (Ho et al., 2020),
rddm (Liu et al., 2023a), pixart (Chen et al., 2024), DiT (Peebles & Xie, 2023), SiT (Atito
et al., 2021).

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EFFECT OF DIFFERENT LINEAR HEADS AFTER MERGING

In the main paper, we use a single shared linear head after merging, obtained by averaging the
specialist heads. This design choice implicitly assumes that the merged embedding (Real core +
Fake residuals) is the dominant factor, and that the exact choice of linear head has limited impact.
To validate this assumption, we perform an ablation in which we keep the merged backbone fixed
and vary only the linear head.

Setup. We start from the R2M-merged detector reported in Table 1 (Protocols 1 and 2). Let hFS,
hFR, and hEFS denote the final linear heads of the FS, FR, and EFS specialists, respectively. We
attach each of these heads to the same R2M-merged backbone (without any further training) and
compare their AUCs with the shared (averaged) head used in the main paper. Across both Protocol 1
(FF++ Real) and Protocol 2 (CDF Real), the average AUC differences between the shared head
and the three specialist heads are below 0.002, confirming that R2M’s gains mainly come from the
merged embedding rather than the specific choice of linear head.

Results on seen domains (FF++ and CDF). Table A.1 shows the AUCs on FF++ and CDF do-
mains. The three heads yield almost identical performance on top of the merged backbone: across
six domains, differences between hFS, hFR, and hEFS are on the order of 10−3, and their FF++/CDF
means differ by at most 1 × 10−3. This supports our claim that the merged embedding learned by
R2M dominates performance, and that the precise choice of head has only a minor effect.

Discussion. Across both protocol 1 and protocol 2, swapping the FS/FR/EFS heads on top of the
same merged backbone yields only marginal differences in AUC (typically ≤ 0.001). This empiri-
cally justifies our design choice in the main paper: R2M’s benefit comes primarily from the merged
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Table A.1: Linear head ablation on seen domains. AUC on three FF++ domains (FS-FF, FR-FF,
EFS-FF) and three CDF domains (FS-CDF, FR-CDF, EFS-CDF). “Avg. head” denotes the used av-
erage head in the main paper. The remaining rows correspond to attaching the FS/FR/EFS specialist
heads to the same R2M-merged backbone without further training.

FF++ domains CDF domains

FS-FF FR-FF EFS-FF Mean FS-CDF FR-CDF EFS-CDF Mean

Avg. head 0.977 0.992 0.996 0.988 0.902 0.912 0.942 0.919

FS head 0.9771 0.9921 0.9953 0.9882 0.9021 0.9117 0.9423 0.9187
FR head 0.9763 0.9923 0.9963 0.9883 0.9017 0.9119 0.9418 0.9185
EFS head 0.9769 0.9921 0.9954 0.9881 0.9014 0.9120 0.9416 0.9183

embedding (shared Real core + Fake residuals), and a simple shared linear head is sufficient in
practice.

C.2 NUMERICAL VALUES FOR DROP–GAIN ANALYSIS (FIGS.4)

Figs. 4 in the main text visualize the trade-off between (i) performance retention on seen tasks and
(ii) performance gain on unseen forgeries, using heatmaps. For completeness and to facilitate precise
comparison across methods, we report in this section the exact numerical values underlying those
figures.

Table A.2 lists these drops for all merging methods shown in Fig. 4a.

Table A.2: Numerical values for Fig. 4a (Seen Drop heatmap). Drop is defined as best specialist
AUC − merged AUC; lower is better. Rows correspond to (task, domain) pairs and columns to
merging methods.

Task–domain All-in-one Weight Avg. Task Arith. TIES-Merging CART R2M (ours)

FS-ff 0.033 0.027 0.039 0.036 0.019 0.018
FR-ff 0.002 0.002 0.004 0.006 0.005 0.007
EFS-ff 0.021 0.017 0.034 0.038 0.004 0.003
FS-cdf 0.200 0.134 0.218 0.140 0.108 0.057
FR-cdf 0.055 0.006 0.027 0.017 0.041 0.003
EFS-cdf 0.623 0.222 0.063 0.098 0.082 0.047

Table A.3 reports these gains for all methods in Fig. 4b.

Table A.3: Numerical values for Fig. 4b (Unseen Gain heatmap). Gain is defined as merged AUC
− best specialist AUC; higher is better. Rows correspond to unseen forgery generators and columns
to merging methods.

Forgery All-in-one Weight Avg. Task Arith. TIES-Merging CART R2M (ours)

DeepFaceLab -0.008 0.038 -0.005 0.005 0.051 0.054
HeyGen -0.012 0.053 -0.032 0.006 0.035 0.044
MidJourney -0.426 0.010 0.092 -0.058 -0.044 -0.052
WhichIsReal -0.182 -0.239 -0.439 -0.367 -0.197 -0.202
StarGAN -0.041 0.052 -0.010 0.011 0.074 0.072
StarGANv2 -0.063 -0.049 -0.198 -0.179 0.003 0.001
StyleCLIP -0.191 -0.317 -0.448 -0.284 -0.139 -0.092
CollabDiff -0.143 -0.149 -0.375 -0.370 -0.042 -0.023

These tables make explicit that R2M attains the smallest mean seen drop and the highest (or near-
highest) gains on many unseen generators, while degrading more gracefully than other merging
baselines when performance drops are unavoidable.
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C.3 TASK-3 VS. TASK-6 CONFIGURATIONS (FIGS.6)

In the main text, we compare two R2M configurations (Task-3 vs. Task-6. Both configurations are
evaluated on the six seen settings from Table 1 (FS/FR/EFS under Protocols 1 and 2) and on the eight
unseen generators from Protocol 3. The difference between Task-3 and Task-6 lies only in how we
structure the merge in parameter space: Task-3 uses three residual directions (one per forgery family:
FS, FR, EFS), whereas Task-6 refines them into six residual directions by splitting each family
into two sub-groups (e.g., two FS-style subgroups, two FR-style, two EFS-style), while keeping
the evaluation data fixed. Supplementary grouped dumbbell plots (Figs. 6a and 6b) visualize these
comparisons by connecting, for each method, its AUC under Task-3 (circle) and Task-6 (square).

Seen settings (Protocols 1 & 2). Table A.4 reports, for each of the six seen evaluation settings
from Table 1, the AUCs of four merging baselines under Task-3 and Task-6. These are exactly the
values used to draw the grouped dumbbells on seen data.

Table A.4: Task-3 vs. Task-6 on seen evaluation settings. AUC on the six seen settings (FS/FR/EFS
under Protocols 1 and 2) for four merging methods under Task-3 and Task-6. The evaluation data are
identical across Task-3 and Task-6; only the merge configuration (3 residuals vs. 6 residuals) differs.
These values correspond to the segments in the seen grouped dumbbell plot.

Weight Averaging Task Arithmetic CART R2M (ours)

Seen setting T3 T6 T3 T6 T3 T6 T3 T6

(1) FS, Protocol 1 0.968 0.956 0.956 0.506 0.976 0.978 0.977 0.981
(2) FR, Protocol 1 0.997 0.996 0.995 0.570 0.994 0.997 0.992 0.998
(3) EFS, Protocol 1 0.982 0.971 0.965 0.558 0.995 0.964 0.996 0.978
(4) FS, Protocol 2 0.825 0.641 0.741 0.569 0.851 0.707 0.902 0.789
(5) FR, Protocol 2 0.909 0.883 0.888 0.637 0.874 0.855 0.912 0.902
(6) EFS, Protocol 2 0.767 0.413 0.926 0.569 0.907 0.325 0.942 0.723

Unseen forgeries (Protocol 3). For the eight unseen generators (DeepFaceLab, HeyGen, Mid-
Journey, WhichIsReal, StarGAN, StarGANv2, StyleCLIP, CollabDiff), we summarize the mean
AUC across all generators for each method in Table A.5. These are the values used for the bold
“mean-only” dumbbells in the unseen plot.

Table A.5: Task-3 vs. Task-6 on unseen forgeries (mean AUC). Mean AUC across 8 unseen gen-
erators for four merging methods under Task-3 and Task-6. The evaluation protocol (unseen gener-
ators) is fixed; only the merge configuration differs.

Method Task-3 mean Task-6 mean

Weight Averaging 0.724 0.684
Task Arithmetic 0.622 0.553
CART 0.766 0.660
R2M (ours) 0.774 0.771

C.4 ABLATIONS OF R2M COMPONENTS

We ablate the two scalar knobs in equation 6 the residual rank ratio r (fractional SVD rank for
the residual) and the merge-strength scale α in the norm-normalized η. Across α ∈ {0.4, 0.5, 0.6},
increasing r consistently improves the Protocol 1 (FF) AUCs for all categories (FS/FR/EFS) un-
til a clear plateau around r ∈ [0.5, 0.7] (Fig.A.1). In particular, the configuration α=0.5 with
r ∈ [0.5, 0.7] yields FF mean AUCs of 0.987–0.987, matching the best settings while avoiding
the instability observed at lower ranks. We therefore fix this setting when evaluating on Protocol 2
(CDF) and on Protocol 3 (unseen).
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Figure A.1: R2M ablation on residual rank r and merge-strength scale α. Each curve varies r
for a fixed α ∈ {0.4, 0.5, 0.6}; y-axis shows per-category AUC on FF.

Trend w.r.t. rank (r). Prior work (e.g., CART) notes that increasing the SVD rank can amplify
cross-task interference and hurt generalization. In our setting, however, we first estimate a shared
Real core from the top-k directions of the centered task matrix and add this core, while the resid-
ual path is built around the averaged origin and aggregated with norm-normalized scaling. This
centering-and-scaling design cancels much of the destructive across-task drift before any truncation,
so raising the residual rank exposes additional informative variation rather than amplifying interfer-
ence. Empirically, increasing r to 0.5∼0.7 improves AUC without instability, indicating that useful
residual structure is recovered while nuisance coupling remains controlled.

Trend w.r.t. merge strength (α). The norm-normalized scaling of η reduces sensitivity to the ab-
solute magnitudes of the core and residual updates. When the residual rank is small (r ∈ {0.1, 0.3}),
smaller α is preferable: stronger scaling can over-amplify a too-low-rank residual and slightly hurt
performance (e.g., at r=0.1 the FF mean AUC is higher with α=0.4 than with α=0.6). As the resid-
ual rank increases, this dependence diminishes: once r≥0.5, the curves largely saturate and the gap
between α=0.4, 0.5, 0.6 becomes negligible. We therefore adopt a robust operating point around
α=0.5 with r=0.7 for CDF and unseen evaluations.
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