KNOBGEN: CONTROLLING THE SOPHISTICATION OF ARTWORK IN SKETCH-BASED DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

Figure 1: **KnobGen**. Our method democratizes sketch-based image generation by effectively handling a broad spectrum of sketch complexity and user drawing ability—from novice sketches to those made by seasoned artists—while maintaining the natural appearance of the image.

Abstract

Recent advances in diffusion models have significantly improved text-to-image (T2I) generation, but they often struggle to balance fine-grained precision with high-level control. Methods like ControlNet and T2I-Adapter excel at following sketches by seasoned artists but tend to be overly rigid, replicating unintentional flaws in sketches from novice users. Meanwhile, coarse-grained methods, such as sketch-based abstraction frameworks, offer more accessible input handling but lack the precise control needed for detailed, professional use. To address these limitations, we propose **KnobGen**, a dual-pathway framework that democratizes sketch-based image generation by seamlessly adapting to varying levels of sketch complexity and user skill. KnobGen uses a *Coarse-Grained Controller* (CGC) module for high-level semantics and a *Fine-Grained Controller* (FGC) module for detailed refinement. The relative strength of these two modules can be adjusted

through our **knob** inference mechanism to align with the user's specific needs. These mechanisms ensure that KnobGen can flexibly generate images from both novice sketches and those drawn by seasoned artists. This maintains control over the final output while preserving the natural appearance of the image, as evidenced on the MultiGen-20M dataset and a newly collected sketch dataset.

1 INTRODUCTION

054

056

057

060

061 062

063

064

065

066

067

068

069

079

081 082

084

085

087

880

089

Diffusion models (DMs) have revolutionized text-to-image (T2I) generation by generating visually rich images based on text prompts, excelling at capturing various levels of detail—from textures to high-level semantics (Saharia et al., 2022; Rombach et al., 2022; Nichol et al., 2021; Ramesh et al., 2021; Navard & Yilmaz, 2024). Despite their success, one of the primary limitations of these models is their inability to precisely convey spatial layout of the user-provided sketches. While text prompts can describe scenes, they struggle to capture complex spatial features, which makes it challenging to align generated images with user intent. This is particularly intensified when these users vary in skill and experience (Chowdhury et al., 2023; Song et al., 2017; Yang et al., 2023; Jiang et al., 2024).

To improve spatial control, sketch-conditioned DMs like ControlNet (Zhang et al., 2023), T2I-Adapter (Mou et al., 2024), and ControlNet++ (Li et al., 2024) have introduced mechanisms to allow users to input sketches that guide the generated image. However, these approaches primarily cater to artistic sketches with intricate details, which poses a challenge for novice users. When presented with rough sketches, these models rigidly align to unintentional flaws, producing results that misinterpret the user's intent and fail to achieve the desired visual outcome. Furthermore, we observed that the quality and alignment of the generated images with the input sketch are highly sensitive to the weighting parameter that governs the model's dependence on the condition, Figure 2.

Figure 2: Qualitative results demonstrating the impact of varying the weighting scheme in T2I-Adapter model. Lower weights result in images that poorly align with the input sketch in terms of spatial conformity, while higher weights improve spatial conformity of the generated image to the input sketch. However, higher weight compromises the natural appearance of the generated images.

090 In contrast, some frameworks like (Koley et al., 2024)¹ have attempted to address the needs of novice 091 users by introducing sketch abstraction. Although this democratizes the generation process, Koley 092 et al. (2024) is limited to covering only 125 categories of sketch subjects and cannot handle unseen 093 categories, significantly limiting the generalizability of the pre-trained DM to a limited number of 094 subjects. Moreover, its abstraction-aware framework is not suitable for artistic-level sketches whose 095 purpose is to guide the DM to follow a particular spatial layout. Additionally, the removal of the 096 text-based conditioning in DM makes these models ignore the semantic power provided by text 097 in diffusion models trained on large-scale image-text pairs. Additionally, it limits their ability to differentiate between visually similar but semantically distinct objects- such as zebra and horse. 098

In a nutshell, existing methods for sketch-based image generation tend to focus on either end of the user-level spectrum. Professional-oriented models like ControlNet and T2I-Adapter are designed to handle only artistic-grade sketches Fig. 3.a, while amateur-oriented approaches Koley et al. (2024), cater to novice sketches without text guidance Fig. 3.b. These methods often fail to integrate both fine-grained and coarse-grained control, limiting their adaptability across different user types and sketch complexities.

To address these challenges, we propose **KnobGen**, a dual-pathway framework designed to empower a pre-trained DM with the capability to handle both professional and amateur-oriented ap-

¹The code and model weights at the time of submission were unavailable, preventing result reproduction.

Figure 3: **Comparison across various sketch-control in DM.** (a) fine-grained control based method such as ControlNet or T2I-adapter rigidly resembles a novice sketch resulting in an unrealistic image (b) abstraction-aware frameworks such as Koley et al. (2024) fails to capture fine graineddetials without text guidance(c) while our proposed KnobGen smoothes out the imperfection of the user drawing and preserves the features of the novice sketch. FGC: Fine-grained Controller, CGC: Coarse-grained Controller, E_T: Text Encoder, E_I: Image Encoder, DM: Diffusion Model.

proaches. KnobGen seamlessly integrates fine-grained and coarse-grained sketch control into a
 unified architecture, allowing it to adapt to varying levels of sketch complexity and user expertise.
 Our model is built on two key pathways, *Macro Pathway* and *Micro Pathway*. The Macro Pathway
 extracts the high-level visual and language semantics from the sketch image and the text prompt
 using CLIP encoders and injects them into the DM via our proposed Coarse-Grained Controller
 (CGC). The Micro Pathway injects low-level, detailed features and semantics directly from sketch
 through our Fine-Grained Controller (FGC) module.

Additionally, we propose two new approaches for training and inference in order to maintain a ro-bust control of the Micro and Macro Pathways in the conditional generation. First, we introduce **Modulator**, a mechanism dynamically adjusting the influence of the FGC during training, ensuring that the CGC dominates in the early training phase to prevent overfitting to low-level sketch fea-tures extracted by the FGC module. This allows the model to optimally rely on both Pathways to capture high- and low-level spatial and semantic features. At inference, the Knob mechanism offers user-driven control during denoising steps, allowing adjustment of the level of fidelity between the generated image and the user's inputs- sketch and text- by manipulating Micro and Macro Path-ways. These new training and inference approaches ensure that KnobGen effectively handles not only novice sketches but also artistic-grade ones, adapting to varying levels of sketch complexity and user preferences.

- Our key contributions are as follows:
 - **Dual-Pathway Framework for Sketch-Based Image Generation**: KnobGen proposes an add-on framework to DMs that handles image generation flexibly for a broad spectrum of users, from novice to seasoned artists, through our proposed micro-macro path.
 - **Training Modulator for Balanced Coarse-Fine Grained Incorporation**: Our dynamic modulator regulates the influence of our CGC and FGC modules throughout the training. This prevents premature overfitting to fine details, allowing the model to first capture high-level spatial coherence before gradually introducing more specific features.
 - Inference Knob for Adaptive Image Generation: Our inference-time Knob mechanism allows users to control the level of fidelity between the generated image and the inputs, i.e. sketch image and text. Our Knob mechanism tweaks the level of abstraction and details of the generated image adaptively based on the user's preference.
 - 2 RELATED WORK
 - 2.1 DIFFUSION MODELS

Recent advances in DM have enabled high-quality image generation with improved sample diversity (Ho et al., 2020; Dhariwal & Nichol, 2021; Ho & Salimans, 2021; Nichol et al., 2021; Saharia et al., 2022; Shamshiri et al., 2024; Ramesh et al., 2022; Perera et al., 2024; Peebles & Xie, 2023), often exceeding the performance of Generative Adversarial Networks (GAN) (Goodfellow et al., 2014; Karras et al., 2019; 2021; Sauer et al., 2022). DMs are built on the concept of diffusion processes, where data are progressively corrupted by noise over several timesteps. The models learn to reverse

Figure 4: **KnobGen vs. baseline on novice sketches**. KnobGen handles amateurish sketches by injecting features from the Micro and Macro Pathways in a controlled manner. Dual pathway design ensures that the generated image is faithful to the spatial layout of the original input sketch and the image has a natural appearance. Baseline methods, however, exhibit difficulty in maintaining these desired properties in their generations.

187

188

189

192 this process by iteratively denoising noisy samples, transforming pure noise back into the original 193 data distribution. Several studies, such as DDIM (Song et al., 2021), DPM-solver (Lu et al., 2022), 194 and Progressive Distillation (Salimans & Ho, 2022), have focused on accelerating DMs' generation 195 process through more efficient sampling methodologies. To address the high computational costs of 196 training and sampling, recent research has successfully employed strategies to project the original data into a lower-dimensional manifold, with DMs being trained within this latent space. Represen-197 tative methods include LSGM (Vahdat et al., 2021), LDM (Rombach et al., 2022), and DALLE-2 198 (Ramesh et al., 2022), all of which leverage this latent space approach to improve efficiency while 199 maintaining high generation quality.

200 201 202

203

2.2 TEXT-TO-IMAGE DIFFUSION

In addition to producing high-quality and diverse samples, DMs offer superior controllability, espe-204 cially when guided by textual prompts (Rombach et al., 2022; Xue et al., 2023; Chen et al., 2024; 205 Podell et al., 2024; Esser et al., 2024). Imagen (Saharia et al., 2022) employs a pretrained large 206 language model (e.g., T5 (Raffel et al., 2020)) and a cascade architecture to achieve high-resolution, 207 photorealistic image generation. LDM (Rombach et al., 2022), also known as Stable Diffusion 208 (SD), performs the diffusion process in the latent space with textual information injected into the 209 underlying UNet through a cross-attention mechanism, allowing for reduced computational com-210 plexity and improved generation fidelity. To further address challenges when handling complex text 211 prompts with multiple objects and object-attribution bindings, RPG (Yang et al., 2024) proposed 212 a training-free framework that harnesses the chain-of-thought reasoning capabilities of multimodal 213 large language models (LLMs) to enhance the compositionality of T2I generation. Ranni (Feng et al., 2024) tackles this problem by introducing a semantic panel that serves as an intermediary 214 between text prompts and images; an LLM is finetuned to generate semantic panels from text which 215 are then embedded and injected into the DM for direct composition. Our proposed method aligns

with the SD paradigm but diverges by incorporating a composite module that combines textual infor-mation with coarse-grained information from sketch inputs, thereby injecting more comprehensive high-level semantics into the diffusion model.

2.3 CONDITIONAL DIFFUSION WITH SEMANTIC MAPS

As textual prompts often lack the ability to convey detailed information, recent research has ex-plored conditioning DMs on more complex or fine-grained semantic maps, such as sketches, depth maps, normal maps, etc. Works such as T2I-Adapter (Mou et al., 2024), ControlNet (Zhang et al., 2023), and SCEdit (Jiang et al., 2024), leverage pretrained T2I models but employ different mechanisms to interpret and integrate these detailed conditions into the diffusion process. UniControl (Qin et al., 2023) proposes a task-aware module to unify N different conditions (i.e. N = 9) in a single network, achieving promising multi-condition generation with significantly fewer model parame-ters compared to a multi-ControlNet approach. While Koley et al. (2024) attempts to democratize sketch-based diffusion models, their approach faces several significant limitations, as discussed in the Introduction section. In contrast, our dual-pathway method integrates both fine-grained and coarse-grained sketch conditions while maintaining the option for textual prompts. This design offers greater flexibility and control, accommodating users ranging from amateurs to professionals.

METHOD

3.1 PRELIMINARY

Stable Diffusion Diffusion models (Ho et al., 2020) define a generative process by gradually adding noise to input data z_0 through a Markovian forward diffusion process $q(z_t|z_0)$. At each timestep t, noise is introduced into the data as follows:

$$z_t = \sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \tag{1}$$

where ϵ is sampled from a standard Gaussian distribution, and $\bar{\alpha}_t = \prod_{s=0}^t \alpha_s$, with $\alpha_t = 1 - \beta_t$ representing a differentiable function of the timestep t. The diffusion process gradually converts z_0 into pure Gaussian noise z_T over time.

The training objective for diffusion models is to learn a denoising network ϵ_{θ} that predicts the added noise ϵ at each timestep t. The loss function, commonly referred to as the denoising score matching objective, is expressed as:

$$\mathcal{L}(\epsilon_{\theta}) = \sum_{t=1}^{T} \mathbb{E}_{z_0 \sim q(z_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\|\epsilon_{\theta}(\sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon) - \epsilon \|_2^2 \right].$$
(2)

In controllable generation tasks (Zhang et al., 2023; Mou et al., 2024), where both image condition c_v and text prompt c_t are provided, the diffusion loss function can be extended to include these conditioning inputs. The loss at timestep t is modified as:

$$\mathcal{L}_{\text{train}} = \mathbb{E}_{z_0, t, c_t, c_v, \epsilon \sim \mathcal{N}(0, 1)} \left[\| \epsilon_\theta(z_t, t, c_t, c_v) - \epsilon \|_2^2 \right], \tag{3}$$

where c_v and c_t represent the visual and textual conditioning inputs, respectively.

During inference, given an initial noise vector $z_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, the final image x_0 is recovered through a step-by-step denoising process (Ho et al., 2020), where the denoised estimate at each step t is calculated as:

$$z_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(z_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(z_t, t, c_t, c_v) \right) + \sigma_t \epsilon, \tag{4}$$

with ϵ_{θ} being the noise predicted by the U-Net (Ronneberger et al., 2015) at timestep t, and $\sigma_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$ representing the variance of the posterior Gaussian distribution $p_{\theta}(z_0)$. This iterative process gradually refines z_t until it converges to the denoised image z_0 .

274 275 3.2 DUAL PATHWAY

Our model introduces a dual-pathway framework that harmonizes high-level semantic abstraction with precise, low-level control over visual details, Figure 5. The integration of the CGC module and FGC module enables KnobGen to adaptively inject high-level semantics and low-level features throughout the denoising process. This design ensures that the model can scale its output complexity based on user input, thus supporting a wide spectrum of sketch sophistication levels, from amateur to professional-grade sketches.

282 283

3.2.1 MACRO PATHWAY

Diffusion models typically rely on text-based conditioning using CLIP text encoders (Radford et al., 2021) to capture high-level semantics (Ramesh et al., 2021; Saharia et al., 2022; Nichol et al., 2021), but this approach often misses out on structural cues inherent to other modalities, such as sketches.
Although models such as CLIP (Radford et al., 2021) encode visual features and textual semantics, they remain biased toward coarse-grained features (Bianchi et al., 2024; Wang et al., 2023). In our CGC module, Figure 5.B, we used this fact to our advantage to fuse a high-level visual and linguistic understanding to control DM generation by incorporating both text and image embeddings through a cross-attention mechanisms.

Figure 5: Overview of KnobGen during training and inference. A illustrates the training process,
where the CGC and FGC modules are dynamically balanced by the modulator. B expands on the
CGC module, detailing how high-level semantics from both text and image inputs are integrated. C
shows the inference process, including the knob mechanism that allows user-driven control over the
level of fine-grained detail in the final image.

315

316 **Coarse-grained Controller (CGC):** In our CGC module, we leverage the trained CLIP text 317 encoder and its corresponding image encoder variant available in the pretrained Stable Diffusion 318 Model (Rombach et al., 2022). Our CGC module first takes the raw sketch image (condition) and 319 prompt as input. Using the CLIP image and text encoders, the CGC module first projects them into $x_i \in \mathbb{R}^{256 \times 1024}$ and $x_p \in \mathbb{R}^{77 \times 768}$ which are the image and text embeddings. A cross-attention 320 321 mechanism then fuses these embeddings to produce a multimodal representation that combines textual semantics and visual cues, Figure 5.B. This enables the diffusion process to encode the high-322 level semantics from text while explicitly integrating spatial features from the sketch using the Clip 323 image encoder. The cross-attended embeddings are injected into layers of the denoising U-Net to

preserve the coarse-grained visual-textual features throughout the diffusion process. Detailed discussion of the CGC module can be found in the Appendix B.

3.2.2 MICRO PATHWAY

For artistic users, preserving fine-grained details such as object boundaries and textures is essential. The **Fine-Grained Controller (FGC)** is designed to address these requirements by integrating pretrained modules such as ControlNet (Zhang et al., 2023) and the T2I-Adapter (Mou et al., 2024), which excel in capturing these intricate features. Our Micro Pathway can utilize any pretrained fine-grained controller module which shows the flexibility of our proposed framework.

Incorporating these modules into our micro pathway allows the model to capture detailed, sketchbased features at multiple denoising stages. This pathway complements the coarse-grained features extracted by the CGC module, ensuring that the model not only preserves high-level semantic coherence, but also maintains visual fidelity and spatial accuracy with respect to sketch. Additionally, the FGC module ensures that the model handles professional-grade sketches with precision.

339 340 341

327

328

3.3 MODULATOR AT TRAINING

One of the key innovations in KnobGen is the *tanh-based* modulator, which regulates the contributions of the micro and macro pathways during training, Fig 5.A. Based on our experiments in section 4.4, the incorporation of micro pathway in the early epochs of training process overshadows the effect of our macro pathway. Not only does this phenomenon lead to a model that overfits low-level features of the sketch, but it also prevents the model from generalizing to broader spatial and conceptual features. To mitigate this, we employ a modulator that progressively increases the impact of the Micro Pathway, i.e. the FGC module, during training. The modulator is based on a smooth tanh function:

349 350

351

- 352 353
- 354 355

 $m_t = m_{\min} + \frac{1}{2} \left(1 + \tanh(\underbrace{k \cdot \frac{t}{T} - 3}_{\psi}) \right) \cdot (m_{\max} - m_{\min})$ (5)

Here, t is the current epoch, T is the total number of epochs of training, $k = 6, \psi \in [-3,3]$, 356 $m_{\min} = 0.2$ and $m_{\max} = 1$ where m_{\min} and m_{\max} define the range within which the modulator 357 effect (in percent), i.e. m_t , will vary over the course of the epochs. In order to choose m_{\min} , we 358 heuristically found that the maximum lower bound for negligible effect of the FGC is at $m_{\min} = 0.2$. 359 We did not conduct an extensive hyperparameter search for m_{\min} and only chose this value based on 360 our observation of different case studies, Figure 2. As seen in Figure 5.A, the *module* ensures that 361 diffusion is more affected by the Macro Pathway and less by the Micro Pathway in the early stages 362 of training. As the training progresses, m_t for the Micro Pathway approaches 1 and as a result our FGC module will have an equal impact in the training as that of the CGC. By gradually modulating 364 the influence of the Micro Pathway, we prevent the premature weakening of high-level spatial layout presented by the Macro Pathway, and ensure that both pathways contribute optimally throughout the 365 training process. The effectiveness of our modulator is experimented in section 4.4. 366

367 368

369

3.4 INFERENCE KNOB

In typical diffusion models, the early denoising steps during inference focus on generating highlevel spatial features, while the later steps refine finer details (Ho et al., 2020; Meng et al., 2021). In our dual-pathway model, this mechanism is explicitly implemented by our proposed *inference-time Knob*. This is essentially a user-controlled tool that determines the range of how much abstraction or rigid alignment with respect to the input sketch is desired by the user, Fig 5.C.

We introduce γ variable as our **Knob** parameter. Let the total number of denoising steps be *S*, and γ represent the step at which fine-grained details cease to influence the denoising process. The inference knob influnce the impact of the CGC and FGC modules at inference-time, allowing users to adjust γ depending on their desired level of detail:

Figure 6: Impact of the knob mechanism across varying sketch complexities. From top to bottom, the sketches increase in complexity. The horizontal color spectrum represents the knob values, with light blue on the left (γ =20) indicating minimal reliance on the sketch, and dark blue on the right (γ =50) representing maximal reliance.

$$f_{\ell}(t) = \begin{cases} f_{\text{coarse}}(t) + f_{\text{fine}}(t), & \text{if } t \leq \gamma, \\ f_{\text{coarse}}(t), & \text{if } t > \gamma, \end{cases} \quad \forall \, \ell \in \{ U \text{-} Net \, layers \},$$

In this equation, t represents the current denoising step during the inference. The parameter γ acts as the knob value, determining the threshold at which the injection of fine-grained features ceases. When the denoising step t is less than or equal to γ , both coarse-grained features $f_{\text{coarse}}(t)$ and finegrained features $f_{\text{fine}}(t)$, generated by the macro and micro pathways respectively, are injected into the U-Net across layers, denoted by ℓ . However, when t exceeds γ , only the coarse-grained features $f_{\text{coarse}}(t)$ are injected into the U-Net.

A lower γ value results in more abstract outputs with respect to the original input sketch, while a higher value makes the model produce images that closely match the sketch's finer details. This adaptive control allows KnobGen to accommodate a wide range of user preferences and input complexities, ensuring that both novice and artists can generate images that align with their expectations, Figure 6. The effectiveness of our proposed Knob mechanism is illustrated in Appendix(C.2).

4 EXPERIMENT

421 422 423

420

382

384

385 386

392

393

396

397

399

400

401

We conducted several qualitative and quantitative experiments to validate the effectiveness of Knob-Gen. The qualitative experiments showcase the effectiveness of our approach in guiding the DM based across different sketch complexities. The qualitative experiments evaluate our model against widely-used baselines on different generation metrics such as CLIP and FID scores. We used pretrained ControlNet and T2I-Adapter as our FGC module throught all our experimentation. According to the parameters defined in section 3.4, $\gamma = 20$ and S = 50. These values were heuristically selected and were used consistently in all experiments and baselines.

The extension of the qualitative experiments is available in the Appendix (C). Furthermore, details about the setup used in the training and evaluation are discussed at length in the Appendix (A).

432 4.1 QUALITATIVE RESULTS

Our qualitative results demonstrate the flexibility and effectiveness of KnobGen in handling varying sketch qualities. As shown in Figure 1, KnobGen is able to seamlessly adapt to sketches from rough amateur drawings to refined professional ones, highlighting its ability to cover the entire spectrum of user expertise. Figure 6 illustrates the impact of our knob mechanism, where increasing the knob value (left to right) progressively improves the fidelity to the sketch input. This dynamic adjustment enables precise control over the level of detail, allowing users to fine-tune generation outputs. More qualitative results are provided in the Appendix (C.2).

441 442

443

444

445

446

447

448

449

4.2 COMPARISON VS. BASELINES

In order to conduct a fair comparative study, we evaluated KnobGen against baselines such as (Mou et al., 2024; Li et al., 2024; Zhang et al., 2023) on professional-grade sketches, novice ones and a spectrum in between. Figure 4 illustrates the superior quality of the novice-based sketch conditioning using our method against all the other baselines. KnobGen not only captures the spatial layout of the input sketch thanks to the CGC module but also extends beyond it by generating fine-grained details through the FGC module which ultimately produces a naturally appealing images. Whereas the baselines either rigidly conditions themselves on the imperfect input sketch or does not follow the spatial layout desired by the user.

Models	CNet	T2I	UC	CNet++	ADiff	KG-CN	KG-T2I
CLIP ↑	0.3214	0.3152	0.3210	0.3204	0.2988	0.3353	0.3271
$\mathbf{FID}\downarrow$	106.25	109.75	95.30	99.51	119.01	93.87	98.41
Aesthetic \uparrow	0.5182	0.5093	0.5133	<u>0.5253</u>	0.4751	0.5349	0.5208

Table 1: Comparison of various models on CLIP score (higher is better), FID score (lower is better), and Aesthetic score (higher is better). The models include ControlNet (CNet), T2I-Adapter (T2I), UniControl (UC), ControlNet++ (CNet++), AnimateDiff (ADiff), KnobGen with ControlNet as the Fine-Grained Controller (KG-CN), and KnobGen with T2I-Adapter as the Fine-Grained Controller (KG-T2I). KnobGen variants (KG-CN and KG-T2I) consistently outperform other models. The number of sketches used for the evaluation is 600.

465

457

458

459

460

4.3 QUANTITATIVE RESULTS

Table 1 provides a quantitative comparison between state-of-the-art DM models and KnobGen. We 466 evaluated our model with two different FGC module plugins, that is, ControlNet and T2I-Adapter. 467 We call our KnobGen whose FGC module is ControlNet KG-CN and with the T2I-Adapter KG-468 T2I. We measure performance using the CLIP score (prompt-image alignment), Fréchet Inception 469 Distance (FID) and Aesthetic score (for more information, see Appendix A). KG-CN achieves the 470 highest CLIP score of 0.3353, surpassing the best baseline of 0.3214. KG-CN also gives the lowest 471 FID score (93.87) and the highest aesthetic score (0.5349), demonstrating superior image quality 472 and realism. We use a stratified sampling method based on pixel count to evaluate professional and 473 amateur sketches, ensuring robustness across varying complexity levels. Our results demonstrate 474 KnobGen's effectiveness in generating high-quality images, regardless of input skill level.

- 475
- 476 4.4 ABLATION STUDY 477

One of the key innovations in our methodology is the introduction of the Modulator, a mechanism designed to enhance the training process of our proposed CGC module. We conducted an experiment where we trained two versions of KnobGen with Modulator and without it. To assess the effectiveness of the Modulator at the inference, we excluded the FGC module after 20 denoising steps in the image generation process (S = 50, and $\gamma = 20$, please refer to section 3.4). Excluding the FGC module imposes the conditioning of DM to be done by the CGC module. This experimental configuration demonstrates the power of our CGC module.

Figure 7. presents the results of these experiments, showcasing images generated with and without the Modulator. The comparative analysis reveals that the model trained with the Modulator exhibits

Figure 7: **Comparative results showcasing the impact of the Modulator in the training process**. The top side of the figure displays results generated by the model trained without the Modulator, while the bottom part illustrates outputs from the model trained with the Modulator.

a significantly enhanced ability to integrate *sketch-based coarse-grained guidance* into the image generation process. This indicates that the Modulator not only improves the model's overall performance but also ensures that the CGC's influence is effectively optimized during training, resulting in higher-quality, more accurate image synthesis.

5 CONCLUSION

In this paper, we presented KnobGen, a dual-pathway framework designed to address the limitations of existing sketch-based diffusion models by providing flexible control over both fine-grained and coarse-grained features. Unlike previous methods that focus on detailed precision or broad abstrac-tion, KnobGen leverages both pathways to achieve a balanced integration of high-level semantic understanding and low-level visual details. Our novel modulator dynamically governs the interac-tion between these pathways during training, preventing over-reliance on fine-grained information and ensuring that coarse-grained features are well-established. Additionally, our inference knob mechanism offers user-friendly control over the level of professionalism in the final generated im-age, allowing the model to adapt to a spectrum of sketching abilities—from amateur to professional. By incorporating these mechanisms, KnobGen effectively bridges the gap between user's input and model robustness. Our approach sets a new standard for sketch-based image generation, balancing precision and abstraction in a unified, adaptable framework.

527 REPRODUCIBILITY STATEMENT

Our experiment setups are concisely described in Section 4, with additional implementation details
 provided in Appendix Sections A and B. We will make our code publicly available to facilitate the
 reproduction of our results upon acceptance of this paper.

References

Lorenzo Bianchi, Fabio Carrara, Nicola Messina, and Fabrizio Falchi. Is clip the main roadblock for fine-grained open-world perception? *arXiv preprint arXiv:2404.03539*, 2024.

Junsong Chen, Jincheng YU, Chongjian GE, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-\$\alpha\$: Fast training of diffusion transformer
for photorealistic text-to-image synthesis. In *The Twelfth International Conference on Learning Representations*, 2024.

540 541 542 543	Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Aneeshan Sain, Subhadeep Koley, Tao Xiang, and Yi-Zhe Song. Scenetrilogy: On human scene-sketch and its complementarity with photo and text. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 10972–10983, 2023.
544 545 546	Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural information processing systems, 34:8780–8794, 2021.
547 548 549 550	Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In <i>Forty-first International Conference on Machine Learning</i> , 2024.
551 552 553 554	Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming text-to- image diffusion for accurate instruction following. In <i>Proceedings of the IEEE/CVF Conference</i> on Computer Vision and Pattern Recognition, pp. 4744–4753, 2024.
555 556 557	Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. <i>Advances in neural information processing systems</i> , 27, 2014.
558 559 560	Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. <i>arXiv preprint arXiv:2307.04725</i> , 2023.
561 562 563 564	Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. <i>Advances in neural information processing systems</i> , 30, 2017.
565 566 567	Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications, 2021.
568 569	Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–6851, 2020.
570 571 572	Håkon Hukkelås. A Pytorch Implementation of the Fréchet Inception Distance (FID). https://github.com/hukkelas/pytorch-frechet-inception-distance, August 2020. Version 1.0.0.
573 574 575 576	Zeyinzi Jiang, Chaojie Mao, Yulin Pan, Zhen Han, and Jingfeng Zhang. Scedit: Efficient and con- trollable image diffusion generation via skip connection editing. In <i>Proceedings of the IEEE/CVF</i> <i>Conference on Computer Vision and Pattern Recognition</i> , pp. 8995–9004, 2024.
577 578 579	Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 4401–4410, 2019.
580 581 582 583	Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free generative adversarial networks. <i>Advances in neural information processing systems</i> , 34:852–863, 2021.
584 585 586	Junjie Ke, Keren Ye, Jiahui Yu, Yonghui Wu, Peyman Milanfar, and Feng Yang. Vila: Learning image aesthetics from user comments with vision-language pretraining. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 10041–10051, 2023.
587 588 589 590 591	Subhadeep Koley, Ayan Kumar Bhunia, Deeptanshu Sekhri, Aneeshan Sain, Pinaki Nath Chowd- hury, Tao Xiang, and Yi-Zhe Song. It's all about your sketch: Democratising sketch control in diffusion models. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern</i> <i>Recognition</i> , pp. 7204–7214, 2024.
592 593	Ming Li, Taojiannan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, and Chen Chen. Controlnet++: Improving conditional controls with efficient consistency feedback. <i>arXiv</i> preprint arXiv:2404.07987, 2024.

594 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast 595 ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural 596 Information Processing Systems, 35:5775–5787, 2022. 597 Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Yihan Yuan, and Stefano Ermon. Sdedit: 598 Image synthesis and editing with stochastic differential equations. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14104–14113, 2021. 600 601 Amin Karimi Monsefi, Kishore Prakash Sailaja, Ali Alilooee, Ser-Nam Lim, and Rajiv Ramnath. 602 Detailclip: Detail-oriented clip for fine-grained tasks. arXiv preprint arXiv:2409.06809, 2024. 603 604 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. 605 T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 4296– 606 4304, 2024. 607 608 Pouyan Navard and Alper Yilmaz. A probabilistic-based drift correction module for visual inertial 609 slams. arXiv preprint arXiv:2404.10140, 2024. 610 611 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, 612 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with 613 text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021. 614 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, 615 Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in 616 pytorch. In NIPS-W, 2017. 617 618 William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of 619 the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023. 620 Shehan Perera, Pouyan Navard, and Alper Yilmaz. Segformer3d: an efficient transformer for 3d 621 medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision 622 and Pattern Recognition, pp. 4981-4988, 2024. 623 624 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe 625 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image 626 synthesis. In The Twelfth International Conference on Learning Representations, 2024. 627 628 Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Car-629 los Niebles, Caiming Xiong, Silvio Savarese, et al. Unicontrol: A unified diffusion model for controllable visual generation in the wild. arXiv preprint arXiv:2305.11147, 2023. 630 631 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, 632 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual 633 models from natural language supervision. In International conference on machine learning, pp. 634 8748-8763. PMLR, 2021. 635 636 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi 637 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text 638 transformer. Journal of machine learning research, 21(140):1-67, 2020. 639 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, 640 and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine 641 learning, pp. 8821–8831. Pmlr, 2021. 642 643 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-644 conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022. 645 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-646 resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-647

ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

- 648 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-649 ical image segmentation. In Medical image computing and computer-assisted intervention-650 MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-651 ings, part III 18, pp. 234–241. Springer, 2015. 652 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar 653 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic 654 text-to-image diffusion models with deep language understanding. Advances in neural informa-655 tion processing systems, 35:36479–36494, 2022. 656 657 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In International Conference on Learning Representations, 2022. URL https://openreview. 658 net/forum?id=TIdIXIpzhoI. 659 660 Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse 661 datasets. In ACM SIGGRAPH 2022 conference proceedings, pp. 1–10, 2022. 662 Alireza Shamshiri, Kyeong Rok Ryu, and June Young Park. Text mining and natural language 663 processing in construction. Automation in Construction, 158:105200, 2024. doi: https://doi.org/ 664 10.1016/j.autcon.2023.105200. 665 666 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-667 tional Conference on Learning Representations, 2021. 668 Jifei Song, Yi-Zhe Song, Tao Xiang, and Timothy Hospedales. Fine-grained image retrieval: the 669 text/sketch input dilemma. In The 28th British machine vision conference, 2017. 670 671 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-672 ing the inception architecture for computer vision. In Proceedings of the IEEE conference on 673 computer vision and pattern recognition, pp. 2818–2826, 2016. 674 Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. 675 Advances in neural information processing systems, 34:11287–11302, 2021. 676 677 Ziyang Wang, Yi-Lin Sung, Feng Cheng, Gedas Bertasius, and Mohit Bansal. Unified coarse-to-fine 678 alignment for video-text retrieval. In Proceedings of the IEEE/CVF International Conference on 679 Computer Vision, pp. 2816–2827, 2023. 680 Saining Xie and Zhuowen Tu. Holistically-nested edge detection, 2015. URL https://arxiv. 681 org/abs/1504.06375. 682 683 Zeyue Xue, Guanglu Song, Qiushan Guo, Boxiao Liu, Zhuofan Zong, Yu Liu, and Ping Luo. 684 Raphael: Text-to-image generation via large mixture of diffusion paths. In Advances in Neu-685 ral Information Processing Systems, 2023. 686 Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and 687 Fang Wen. Paint by example: Exemplar-based image editing with diffusion models. In Pro-688 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18381– 689 18391, 2023. 690 Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and CUI Bin. Mastering text-691 to-image diffusion: Recaptioning, planning, and generating with multimodal llms. In Forty-first 692 International Conference on Machine Learning, 2024. 693 694 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 696 pp. 3836-3847, 2023. 697 699 700
- 701

702 APPENDIX 703

SETUP

In this appendix, we provide additional details about the model architecture and supplementary 705 results that further demonstrate the robustness of our approach. These sections aim to provide a 706 deeper understanding of the technical components and showcase more comprehensive comparisons.

- Appendix A: details the setup of training and evaluation in KnobGen.
- Appendix B: expands on the details of the proposed CGC module.
- Appendix C: provides more qualitative results.
- 712 713

А

714

751

704

707 708

709

710

711

Dataset: We utilized the MultiGen-20M dataset, as introduced by Qin et al. (2023), to train and 715 evaluate our model. The dataset offers various conditions, making it a suitable choice for our ap-716 proach. We selected 20,000 images for training, focusing specifically on those with the Holistically-717 nested Edge Detection (HED) (Xie & Tu, 2015) condition. However, we modified the KnobGen 718 condition by applying a thresholding technique, where pixels below a threshold value of 50 were 719 set to zero, and those above were set to one. This threshold value was chosen through simple visual 720 comparisons of several samples using different thresholds, allowing us to identify the most effective 721 value. This modification essentially transforms the HED condition into a sketch. For evaluation, 722 we curated two distinct sets of images. The first evaluation set consisted of 500 randomly selected 723 samples, which are similar to a sketch drawn by a seasoned artist (we followed the thresholding 724 technique for this part), allowing us to measure our model's effectiveness in professional settings. To further test the robustness and adaptability of our approach, we compiled a second evaluation set 725 of 100 hand-drawn images created by non-professional individuals. This diverse testing set enabled 726 us to demonstrate the model's ability to generalize across a broad spectrum of users, ensuring it can 727 handle both professionally designed and amateur drawings with high robustness. 728

729 Baselines: In this work, we evaluate the performance of our proposed model against several state-730 of-the-art (SOTA) diffusion-based models. Specifically, we conduct both qualitative and quantitative 731 comparisons with prominent models such as ControlNet (Zhang et al., 2023), T2I-Adapter (Mou 732 et al., 2024), AnimateDiff (Guo et al., 2023), UniControl (Qin et al., 2023), and ControlNet++ (Li 733 et al., 2024). These models have achieved significant advances in fine-grained control of image 734 generation by incorporating sketch-based conditions into the diffusion process. Since AnimateDiff 735 is a video-based DM, we only use the first frame of the generated video by it as the comparison 736 point. 737

738 **Evaluation:** We perform qualitative and quantitative evaluation. In the qualitative evaluation, we 739 compare our model's performance across different scenarios of varying input conditions and com-740 plexities. For quantitative evaluation, we utilize several metrics to assess the quality of the generated images. First, we calculate the Fréchet Inception Distance (FID) (Heusel et al., 2017; Karras et al., 741 2019), which measures the similarity between generated and natural images using a pre-trained In-742 ceptionV3 model (Szegedy et al., 2016). Lower FID values indicate better generation quality; we 743 used Hukkelås (2020) implementation for our evaluation, which used the default pre-trained Incep-744 tionV3 model available in Pytorch (Paszke et al., 2017). To evaluate the alignment between the 745 generated images and the text prompts, we use CLIP (Radford et al., 2021), specifically the pre-746 trained DetailCLIP model (Monsefi et al., 2024) with a Vision Transformer (ViT-B/16) backbone. 747 Higher CLIP scores signify better alignment between the generated images and their corresponding 748 prompts. Finally, we assess the realism and aesthetic quality of the generated images using the met-749 ric proposed by (Ke et al., 2023), where higher scores reflect more realistic and visually appealing 750 images.

752 **Implementation Details:** Our proposed *KnobGen* framework is built on top of Stable Diffusion 753 v1.5 (Rombach et al., 2022), with the original parameters kept frozen throughout training. For the Fine-Grained Controller (FGC) module, we employed two different pre-trained models to demon-754 strate the flexibility and effectiveness of our approach across multiple setups. Specifically, we in-755 tegrated ControlNet (Zhang et al., 2023) and T2I-Adapter (Mou et al., 2024), both of which had their parameters frozen and were not updated during training. The architecture and integration of these components are illustrated in Figure 5. We trained the CGC module for a total of 2000 epochs using 16 A100 GPUs. During the initial 1500 epochs, we employed the modulator mechanism, as described in Section 3.3, with a learning rate of 1e - 5. In the final 500 epochs, we fine-tuned the CGC model with a reduced learning rate of 1e - 6 to ensure robustness and to improve the quality of the generated images.

B MODEL ARCHITECTURE

The CFC module plays a critical role in our model by integrating and aligning visual and textual
information for effective image generation. The primary goal of the CFC is to ensure that features
derived from both the input sketch image and the text prompt are jointly fused, allowing the model
to generate more contextually relevant and visually coherent outputs. The CFC module has around
100M trainable parameters.

Figure 8: Overview of the Cross-Feature Conditioning (CFC) module. The module integrates visual and textual features through a series of transformer blocks with cross-attention. In the diagram, X_i represents the encoded image features from a sketch, while X_p denotes the encoded text prompt. The CFC module conditions the text features based on the image input, allowing for fine-grained control and alignment between visual and textual inputs during the image generation process.

To achieve this, we designed the CFC module using a transformer-based architecture that leverages cross-attention between image and text features; Figure 8 shows the CFC overview. Below, we explain the architecture and functionality in detail:

Architecture: The CFC module is composed of three key components: convolutional layers for feature transformation, transformer layers for cross-attention, and fully connected layers for output projection. The module takes two inputs—visual features (encoded input image) and text features (encoded text prompt)—and processes them jointly to output contextually conditioned text features.

- 1D Convolutional Layers: The input to the CFC module consists of two tensors: an encoded image tensor $x_i \in \mathbb{R}^{\text{batch} \times 256 \times 1024}$, which comes from CLIP image encoder, and an encoded text tensor $x_p \in \mathbb{R}^{\text{batch} \times 77 \times 768}$, which comes from text encoder of CLIP like all the prompt conditioned DM. We then pass these embeddings through 1D convolutional layers to project the input channels (1024 for images and 768 for text) into a common hidden dimension of 1024 channels. This transformation ensures that both modalities can be effectively combined in the cross-attention mechanism.
- Transformer Layers for Cross-Attention: The core of the CFC module lies in its eight layers of transformers that perform cross-attention. These layers allow the model to fuse infor-

mation from both the image and text features. Specifically, the image tensor serves as the memory input for the transformer, while the text tensor undergoes cross-attention, attending to the visual information. This design enables the model to enhance text-based features by conditioning them on the spatial and structural content of the image. The resulting enriched text features better capture the contextual relevance of the image, leading to more semantically meaningful generation.

Fully Connected Layers: After passing through the transformer layers, the output text tensor is reduced back to its original sequence length (77 tokens) and further processed through two fully connected layers. These layers refine the text features, ensuring that the final output has the desired dimensionality (batch, 77, 768) and captures the relevant information for conditioning the image generation process.

822 **Reasoning Behind the Design:** The CFC module is specifically designed to address the need for 823 strong alignment between visual and textual inputs during image generation. By using a crossattention mechanism, the module ensures that the text features are not treated independently of 824 the visual content, but rather, are conditioned on the image's features as well. This approach is 825 particularly useful when fine-grained control is needed to generate images that aligns to both the 826 textual description and visual input, making it highly effective in scenarios where accurate text-827 to-image alignment is crucial. Additionally, the use of pre-trained models ensures that the model 828 benefits from robust initial feature extraction which further improves generation quality as a result. 829

830 831

832

810

811

812

813

814

815

821

C MORE QUALITATIVE RESULT

This section contains more qualitative results to complement the evaluations presented in the main paper. We provide visual examples of different use cases, including scenarios involving amateur and professional sketches.

836

838

837 C.1 INFERENCE KNOB MECHANISM FOR BASELINES

One of the important ablation studies was to evaluate the performance of fine-grained controller
 models, such as the T2I-Adapter, when they utilize our Knob mechanism. This ablation study was
 particularly performed to demonstrate the effectiveness of our proposed CGC module.

Models such as T2I-Adapter are traditionally designed for precise, detail-oriented image generation
but lack the flexibility to accommodate broader, more abstract inputs like rough sketches or varying
user skills. To explore this issue, we integrated the Knob system into the T2I-Adapter model without
our CGC module.

846 Figure 9 showed that while the T2I-Adapter performs exceptionally well in generating high-fidelity 847 images from professional-grade inputs, it struggles to maintain this quality when dealing with 848 rougher or less detailed sketches. This limitation arises from the absence of a Macro Pathway in the T2I-Adapter's architecture, which makes the model overly reliant on precise input details. Without 849 the ability to capture broader, high-level semantic information through a coarse-grained approach, 850 the model becomes highly sensitive to adjustments made by the Knob mechanism. As a result, T2I-851 Adapter fails to deliver consistently good results across a diverse range of users, particularly those 852 providing amateur or less-defined sketches. Additionally, we observed that after a certain point, 853 increasing the Knob value no longer meaningfully affects the generation output. This suggests that 854 the sketch condition in T2I-Adapter influences the generation primarily in the early denoising steps, 855 with diminishing effects in the later steps. However, further investigation of this behavior is outside 856 the scope of this study. 857

While the Knob system is designed to balance coarse and fine-grained controls dynamically, the lack
of a dedicated coarse-grained module in T2I-Adapter causes the model to lose spatial coherence
when we apply our Knob mechanism for it, especially when the knob has low value. This issue
became particularly evident when trying to generate images based on prompt only, as the model
struggled to infer the missing spatial structure, leading to distorted or incoherent outputs.

In contrast, the KnobGen framework, including the CGC and FGC, demonstrated superior flexibility and performance. By incorporating both high-level abstractions and detailed refinements, KnobGen

Figure 9: Effect of the Knob mechanism on the fine-grained models (T2I-Adapter). The image demonstrates how increasing the Knob value influences the generated output. While the T2I-Adapter performs well with precise, detailed sketches, it struggles with rougher sketches and fails to maintain spatial consistency as the Knob value increases. Beyond a certain threshold, the sketch has minimal impact on the final output, highlighting the model's sensitivity to early-stage adjustments and its limitations in handling coarse-grained information.

could adapt dynamically to the varying levels of detail in the input sketches. The CGC in KnobGen helps preserve the overall structure and semantics of the image, while the FGC ensures that fine details are accurately rendered.

C.2 MORE QUALITATIVE RESULTS

In this section, we present additional qualitative results to demonstrate the effectiveness and versatility of our proposed KnobGen framework further. Figure 10 and 11 showcases the model's ability to handle a wide range of input sketches, from highly detailed professional-grade drawings to rough, amateur sketches.

918					31511	
919		2000	All Parties and			
920						
921	MASS		STATE I			
922	4 AUR			and the second		
923		15 0	· (~~~~		$\langle \alpha \rangle$	
924	> stal	\$ 620]	and the second s	5-15-h		
925						
926	M_{λ}	1 Port	\œ́/		3	
927		/ / a /!		~		
928	A wedding picture	Portrait of a	A closeup	Closeup photo		
929	of a groom looking	lady next	old young boy	out old man	Song Seung-heon	
930	at the bride	to a palm tree	, , ,			
931 032				1		
933	A CROCK	5700				
934	- A - A - A - A - A - A - A - A - A - A	3 1017				
935	C. agt ac			A 14		
936	HTTP: The second		MIN CAD			
937		Gan				
938		5 11	(1)			
939		$\zeta 2$		\ {15-25 \]		
940			Ň			
941				Three people		
942	Girl in market	A young man with	A woman in a	next to	Two children	
943	Dassa Benin	long tringes	formal dress	each other	building a tall tower	
944						
945			ROCKEHMAN			
946	金叉小	Co CON	Contraction of the second seco	(in the second	35'	
947				1	NASA	
948	1514			8		
949	- may .	\sim	read and the real			
950			ALS .		(2))	
951		¥ >5	KNAL /			
952	74 8 / 1	RAN V		B B	GHE	
954	$I \setminus \mathcal{X} \setminus \Lambda$	_	1 145		O HAN	
955		A alagay man	Poster of	A Tsar soldier in a	A balding	
956	Men apparel	holding a mirror,	Rocketman	uniform	old man	
957		UK 1840				
958	新新教育的		and the second			
959		1-2				
960	K K-d	1 day				
961						
962	A CARE II	1 CMI		KA MAD		
963			$\left(\right)$			
964		28	6 5 F		1 ~ 12	

967

968

969

Tenor Andrea

Andrew Carnegie

Slim cut striped silk

1à

A female priest laughing

Side portrait of a lady wearing a beautiful earing

Figure 10: More qualitative results on novice and professional-grade sketches

Figure 11: More knob spectrum results