
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAVA: SCALABLE LEARNING-AGNOSTIC
DATA VALUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Selecting data for training machine learning models is crucial since large, web-
scraped, real datasets contain noisy artifacts that affect the quality and relevance of
individual data points. These noisy artifacts will impact model performance. We
formulate this problem as a data valuation task, assigning a value to data points in
the training set according to how similar or dissimilar they are to a clean and curated
validation set. Recently, LAVA (Just et al., 2023) demonstrated the use of optimal
transport (OT) between a large noisy training dataset and a clean validation set,
to value training data efficiently, without the dependency on model performance.
However, the LAVA algorithm requires the entire dataset as an input, this limits its
application to larger datasets. Inspired by the scalability of stochastic (gradient)
approaches which carry out computations on batches of data points instead of the
entire dataset, we analogously propose SAVA, a scalable variant of LAVA with its
computation on batches of data points. Intuitively, SAVA follows the same scheme
as LAVA which leverages the hierarchically defined OT for data valuation. However,
while LAVA processes the whole dataset, SAVA divides the dataset into batches of
data points, and carries out the OT problem computation on those batches. We
perform extensive experiments, to demonstrate that SAVA can scale to large datasets
with millions of data points and doesn’t trade off data valuation performance.

1 INTRODUCTION

Neural scaling laws empirically show that the generalization error decreases according to a power
law as the data a model trains on increases. This has been shown for natural language processing,
vision, and speech (Kaplan et al., 2020; Henighan et al., 2020; Rosenfeld et al., 2019; Zhai et al.,
2022; Radford et al., 2023). However, training neural networks on larger and larger datasets for
moderate improvements in model accuracy is inefficient. Furthermore, production neural network
models need to be continuously updated given new utterances that enter into common everyday
parlance (Lazaridou et al., 2021; Baby et al., 2022). It has been shown both in theory and in practice
that sub-power law, exponential scaling of model performance with dataset size is possible by
carefully selecting informative data and pruning uninformative data (Sorscher et al., 2022), and that
generalization improves with training speed (Lyle et al., 2020). Therefore, valuing and selecting data
points that are informative: which have not been seen by the model, which do not have noisy labels,
and which are relevant to the task we want to solve—are not outliers—can help to not only decrease
training times, and reduce compute costs, but also improve overall test performance (Mindermann
et al., 2022; Tirumala et al., 2023).

Popular data selection and data pruning methods use variations of the model loss to value data
points (Jiang et al., 2019; Pruthi et al., 2020; Paul et al., 2021). Crucially, these methods depend on
the model used, and they are vulnerable to prioritizing data points with noisy labels or noisy features;
data points that do not resemble the target validation set. When treating data valuation as a function
of model performance, we introduce a dependency on a neural network model. This is the case when
valuing a point using the leave-one-out (LOO) error, i.e., the change of model performance when the
point is omitted from training. To rid our dependence on a neural network model, a promising idea is
to leverage optimal transport (OT) between a training distribution and a clean validation distribution
as a proxy to directly measure the value of data points in the training set in a model-agnostic fashion.
In particular, the validation performance of each point in the training set can be estimated using
the hierarchically defined Wasserstein between the training and the validation set (Alvarez-Melis

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Validation

Tr
ai

ni
ng

 Distance between two (labeled) points

Distance between two batches

Large noisy training set SAVA

Clean validation set

Training set valuation scores

Valuation score for a point

Figure 1: Overview of the proposed SAVA method. On the left-hand side, SAVA values data
points in a noisy training dataset by comparing to a clean validation dataset. SAVA performs scalable
data valuation by solving multiple cheap and small OT problems on batches of datapoints (on the
right-hand side). Notation in Orange denotes OT distances and plans over training and validation
batches, while notation in Green denotes OT distances over datapoints in a batch. OT(µ̄t, µ̄v) denotes
the OT distance between training and validation batches and π̄∗(µ̄t, µ̄v) is the associated optimal
transport plan, Eq. (11). OT(µBi , µB′

j
) is the OT distance between the batch Bi from the training set

and the batch B′
j in the validation set where we use the feature-label distance, Eq. (1) as the ground

cost for labeled data points in these batches. sk is SAVA’s final valuation score for training labeled
data point zk, Eq. (12). The hatched box denotes the summation over the validation batches to value
the data point zk. We provide a visualization of these artifacts generated by SAVA in Figure 12.

& Fusi, 2020; Just et al., 2023). LAVA (Just et al., 2023) has been shown to successfully value data
by measuring the sensitivity of the hierarchically defined Wasserstein between training data points
and validation distributions in a model-agnostic fashion. However, LAVA requires significant RAM
consumption since its memory complexity grows quadratically O(N2) with the dataset size N . This
hinders LAVA from scaling to large datasets.

In this paper, we present SAVA, a scalable variant of LAVA, for data valuation. Our method completely
addresses the bottleneck of RAM requirements in LAVA. Intuitively, SAVA performs the OT com-
putations on batches instead of on the entire dataset like LAVA (hence the analogy to the stochastic
approach to (sub)gradient computation). Specifically, SAVA uses ideas from hierarchical optimal
transport (Yurochkin et al., 2019; Lee et al., 2019) to enable OT calculations on batches instead of the
entire dataset. We can scale up OT-based data valuation using SAVA to large real-world web-scrapped
datasets. On benchmark problems SAVA performs comparably to LAVA while being able to scale
to datasets two orders of magnitude larger without memory issues, while LAVA is limited due to
hardware memory constraints.

Contributions:

1. We introduce a novel scalable data valuation method called SAVA that leverages the (sub)gradient
of hierarchical optimal transport (Yurochkin et al., 2019; Lee et al., 2019) which performs OT
computations on batches of data points, enabling OT-based data valuation to large datasets.

2. We correct the essential theoretical result on the trade-off for using entropic regularization to
compute the OT (sub)gradient in LAVA (Just et al., 2023, Theorem 2).1 Consequently, by building
upon our refined theory, we derive the exact trade-off to estimate the (sub)gradient of hierarchical OT
with entropic regularization in our framework.

3. We provide an extensive experimental analysis to demonstrate the improved scalability with
increasing dataset sizes with respect to baselines.

1see Appendix C.1 for the discussion

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 OPTIMAL TRANSPORT FOR DATA VALUATION

2.1 OPTIMAL TRANSPORT FOR LABELED DATASETS

Let X be the feature space, and V be the number of labels. We write ft : X 7→ {0, 1}V and fv : X 7→
{0, 1}V for the labeling functions for training and validation data respectively. Given the training set
Dt = {(xi, ft(xi))}Ni=1 and the validation set Dv = {(x′

i, fv(x
′
i))}

N ′

i=1, the corresponding measures
for sets Dt,Dv are µt(x, y) = 1

N

∑N
i=1 δ(xi,yi) and µv(x

′, y′) = 1
N ′

∑N ′

i=1 δ(x′
i,y

′
i)

respectively
where δ is the Dirac function, and y, y′ are labels of x, x′ respectively. For simplicity, let Z = (X ,Y)
where Y is the space of labels. For ease of reading, we summarize all notations in Appendix Table 1.

Following Alvarez-Melis & Fusi (2020), we compute the distance between two labels by leveraging
the OT distance between the conditional distributions of the features given each label, i.e., µt(·|yt) =
µt(·)I[ft(·)=yt]∫
µt(·)I[ft(·)=yt]

for label yt in µt, where I is the indicator function.

Let d be the metric of the feature space X , e.g., the Euclidean distance. The distance between labels
yt and yv is OTd(µt(·|yt), µv(·|yv)), i.e., the metric of the label space Y . Consequently, the cost
between feature-label pairs in Z = (X ,Y) is

C((xt, yt), (xv, yv)) = d(xt, xv) + cOTd(µt(·|yt), µv(·|yv)), (1)

where c > 0 is a weight coefficient. Therefore, with the cost matrix C, we can use the OT on the
represented measures µt, µv to compute the distance between the training and validation sets, i.e.,
d(Dt,Dv), without relying on external models or parameters as follows

d(Dt,Dv) := OTC(µt, µv) = min
π∈Π(µt,µv)

∫
Z×Z

C(z, z′)dπ(z, z′), (2)

where Π(µt, µv) is the set of transportation couplings with marginals as µt and µv. To simplify
notations, we drop C, and use OT when the context is clear. We further write π∗ for the optimal
transport plan in Eq. (2). In practice, we leverage the entropic regularization (Cuturi, 2013) to reduce
the OT complexity into quadratic (from super cubic) w.r.t. the number of input supports, defined as

OTε(µt, µv) = min
π∈Π(µt,µv)

∫
Z×Z

C(z, z′)dπ(z, z′) + εH(π | µt ⊗ µv), (3)

where ⊗ is the product measure operator, and H(π | µt ⊗ µv) =
∫
Z×Z log

(
dπ

dµtdµv

)
dπ.

Additionally, the OT problem in Eq. (2) is a constrained convex minimization, it is naturally paired
with a dual problem, i.e., constrained concave maximization problem, as follows:

OTC(µt, µv) = max
(f,g)∈R(C)

⟨f, µt⟩+ ⟨g, µv⟩ , (4)

where R(C) = {(f, g) ∈ C(Z)× C(Z) : ∀(z, z′), f(z) + g(z′) ≤ C(z, z′)}, C is a collection of
continuous functions, and ⟨f, µt⟩ =

∫
Z f(z)dµt(z), similarly for ⟨g, µv⟩.

2.2 LAVA: DATA VALUATION VIA CALIBRATED OT GRADIENTS

As mentioned in Just et al. (2023), the OT distance is known to be insensitive to small differences
while also being not robust to large deviations. This feature is naturally suitable for detecting
abnormal data points, i.e., disregarding normal variations in distances between clean data while being
sensitive to abnormal distances of outlying points. Therefore, the (sub)gradient of the OT distance
w.r.t. the probability mass associated with each point can be leveraged as a surrogate to measure the
contribution of that point. More precisely, the (sub)gradient of the OT distance w.r.t. the probability
mass of data points in the two datasets can be expressed:

∇µt
OT(f∗, g∗) = (f∗)T , ∇µv

OT(f∗, g∗) = (g∗)T . (5)

The dual solution is unique, up to a constant due to the redundant constraint
∑N

i=1 µt(zi) =∑M
i=1 µv(z

′
i) = 1. Therefore, for measuring the subgradients of the OT w.r.t. the probability

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: A summary of notations. We use column vectors in all notations.

Variable Definition

z = (x, y) ∈ R|X | × {0, 1}V Datapoint feature and label where V is #label and X is a feature space

Dt,Dv Datasets for training Dt = {(xi, ft(xi))}Ni=1 and validation Dv =
{
(x′

j , fv(x
′
j))
}N ′

j=1

B = {Bi}Kt
i=1, B

′ = {B′
j}

Kv
j=1 Disjoined batches for Dt and Dv where Kt,Kv are the number of batches

Bi = {zk}Ni

k=1 Batch of datapoints where Ni is the size of the training batch Bi

B′
j = {zl}

N ′
j

l=1 Batch of datapoints where N ′
j is the size of the validation batch B′

j

µBi
= 1

Ni

∑Ni

t=1 δ(zt) Measure over labeled datapoints for the batch Bi

µt(x, y) =
1
N

∑N
i=1 δ(xi,yi) Measure over training set

µv(x, y) =
1
N ′

∑N ′

i=1 δ(xi,yi) Measure over validation set
µ̄t =

1
Kt

∑Kt

i=1 δ(Bi) Measure over batches for the training set
µ̄v = 1

Kv

∑Kv

j=1 δ(B′
j)

Measure over batches for the validation set
C̄ ∈ RKt×Kv

+ Cost matrix over batches, each element C̄i,j = d(Bi, B
′
j)

C ∈ RNi×N ′
j

+ Cost matrix over labeled datapoints within Bi and B′
j , each element Ckl = d(zk, z

′
l)

f∗ ∈ RNi , g∗ ∈ RN ′
j Dual solutions of the OT over a cost matrix C ∈ RNi×N ′

j

π∗ ∈ RNi×N ′
j OT plan over a cost matrix C ∈ RNi×N ′

j

f̄∗ ∈ RKt , ḡ∗ ∈ RKv OT dual solutions over a cost matrix over batches C̄ ∈ RKt×Kv

π̄∗ ∈ RKt×Kv OT plan over a cost matrix between batches C̄ ∈ RKt×Kv

OTC(µt, µv) OT solution to the opt. problem with cost C over training and validation set measures

mass of a given data point in each dataset, Just et al. (2023) we calculate the calibrated gradients
(i.e., a sum of all elements equals to a zero vector)2 as

∂OT(µt, µv)

∂µt(zi)
= f∗

i −
∑

j∈{1,...,N}\i

f∗
j

N − 1
. (6)

The calibrated gradients predict how the OT distance changes as more probability mass is shifted to a
given data point. This can be interpreted as a measurement of the contribution of the data point to the
OT. Additionally, if we want a training set to match the distribution of the validation dataset, then
either removing or reducing the mass of data points with large positive gradients, while increasing
the mass of data points with large negative gradients can be expected to reduce their OT distance.
Therefore, as demonstrated in Just et al. (2023), the calibrated gradients provide a powerful tool to
detect and prune abnormal or irrelevant data in various applications.

Memory Limitation. While being used with the current best practice, the Sinkhorn algorithm for
entropic regularized OT (Cuturi, 2013) still runs in quadratic memory complexity O(N2) with the
dataset size N , as it requires performing operations on the entire dataset, using the full pairwise cost
matrix. Consequently, the memory and RAM requirements for the Sinkhorn algorithm primarily
depend on the dataset size N . Additionally, notice that a dense square (float) matrix of size N = 105

will require at least 74 GB of RAM and N = 106 will take 7450 GB of RAM which is prohibitively
expensive. Therefore, LAVA is limited to small datasets.

Scalability. Inspired by the scalability of stochastic (gradient) approaches where the computation
is carried out on batches of data points instead of the whole dataset as in the traditional gradient,
we follow this simple but effective scheme to propose an analog for OT, named SAVA which is a
scalable variant of LAVA with its OT computation on batches. Intuitively, SAVA also leverages the
hierarchically defined OT as in LAVA, but it performs OT on batches of data points instead of on the
entire dataset as in LAVA. We introduce SAVA in the next section.

The scalable OT-based data valuation we introduced in this section focuses on the (sub)gradient
of the OT instead of the OT distance itself. Therefore, popular scalable OT approaches, sliced-
Wasserstein (Rabin et al., 2011) or Sobolev transport (Le et al., 2022), may not be suitable. In the
next section, we introduce our novel scalable approach for computing the (sub)gradient of the OT
using hierarchical OT (Yurochkin et al., 2019; Lee et al., 2019). We focus on the problem of data
valuation but our work can be applied to other large dataset applications where the (sub)gradient of
the OT is required.

2To remove the degree of freedom which comes from the fact that one among all row/column sum constraints
for the transport polytope is redundant, among the OT subgradients, we fix the zero-sum subgradient following
the convention in Cuturi & Doucet (2014) and the calibrated approach in LAVA (Just et al., 2023).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Scalable Data Valuation (SAVA) algorithm. From Lines 1 to 5, we solve multiple OT
problems between batches. In Line 6, we solve the OT problem across batches: OTC̄(µ̄t, µ̄v), to
obtain π̄∗(µ̄t, µ̄v). From Lines 7 to 10, we estimate valuation scores for training data using the plan
π̄∗(µ̄t, µ̄v) and potentials f∗(µBi

, µB′
j
) computed in the previous steps.

Input: a threshold ε for Sinkhorn algorithm, let z = (x, y)
Output: training data values sk for all k ∈ [Ni] for all i ∈ [Kt].

1 for i = 1, ...,Kt do
2 for j = 1, ...,Kv do
3 Compute Ckl

(
Bi, B

′
j

)
,∀k ∈ [Ni],∀l ∈ [N ′

j] by using Eq. (8).
4 Compute f∗(µBi

, µB
′
j
), g∗(µBi

, µB
′
j
) by solving OTC(µBi

, µB
′
j
).

5 Set C̄ij(µ̄t, µ̄v) = OTC(µBi
, µB

′
j
). // distance d(Bi, B

′
j) on batches.

6 Compute π̄∗(µ̄t, µ̄v) ∈ RKt×Kv by solving OTC̄(µ̄t, µ̄v) using Eq. (11).
7 for i = 1, ...,Kt do
8 for k = 1, ..., Ni do

9 Compute
∂OT(µBi

,µ
B

′
j
)

∂µBi
(zk)

, ∀j ∈ [Kv] using Eq. (14).

10 Compute sk = ∂HOT(µt,µv)
∂µt(zl)

using Eq. (13). // valuation score for zk ∈ Bi.

3 SAVA: SCALABLE DATA VALUATION

We present SAVA, a scalable data valuation method, scaling LAVA to large-scale datasets. Instead of
solving a single (but expensive) OT problem for distributions on the entire datasets, i.e., OT(µt, µv)

in LAVA with the pairwise cost matrix size RN×N ′
, we consider solving multiple (cheaper) OT

problems for distributions on batches of data points. For this purpose, our algorithm performs data
valuation on two levels of hierarchy: across batches, and across data points within two batches. Thus,
SAVA can complement LAVA for large-scale applications.

Hierarchical OT. We follow the idea in hierarchical OT approach (Yurochkin et al., 2019; Lee
et al., 2019) to partition the training dataset Dt of N samples into Kt disjoint batches B = {Bi}Kt

i=1.
Similarly, for the validation set Dv of N ′ samples into Kv disjoint batches B′ =

{
B′

j

}Kv

j=1
. Addition-

ally, for all i ∈ [Kt], j ∈ [Kv], let the number of samples in batches Bi, B
′
j as Ni, N

′
j respectively.

The corresponding measures of the training and validation sets w.r.t. the batches are defined as:
µ̄t(B) = 1

Kt

∑Kt

i=1 δ(Bi) and µ̄v(B
′) = 1

Kv

∑Kv

j=1 δ(B′
j)

respectively. We then define a distance
between the datasets as the hierarchical optimal transport (HOT) between the measures µt, µv as OT
distance for corresponding represented measures on batches, i.e., µ̄t and µ̄v as in Sec. 2.1 as follows:

d(µt, µv) := HOT(µt, µv) := OT(µ̄t, µ̄v). (7)

It is worth noting that HOT finds the optimal coupling at the batch level, but not at the support data
point level as in the classic OT. Therefore, it can be seen that

OT(µt, µv) ≤ HOT(µt, µv).

The equality happens when either each batch only has one support or each dataset only has one batch.

Our goal is to estimate the (sub)gradient ∂d(µt,µv)
∂µt(zk)

= ∂HOT(µt,µv)
∂µt(zk)

where HOT(µt, µv) is defined in
the Eq. (7). Computing this derivative involves two OT estimation steps including (i) OT between
individual data points within two batches to compute d(Bi, B

′
j) := OT(µBi , µB′

j
), where µBi , µB′

j

are corresponding measures for batches Bi, B
′
j respectively, and subsequently a cost matrix C̄ on

pairwise batches for input measures over batches; (ii) d(µt, µv) = HOT(µt, µv) := OTC̄(µ̄t, µ̄v).

Pairwise cost between batches. We estimate the distance between two batches as the OT problem
between Bi and Bj , i.e., d(Bi, B

′
j) := OT(Bi, B

′
j) as discussed in Sec. 2.1 by viewing the OT

problem between two labeled (sub)datasets or batches Bi and B′
j .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

More precisely, to solve this OT problem, we calculate the pairwise cost for data points between two
batches Ckl(Bi, B

′
j) ∈ RNi×N ′

j , where ∀k ∈ [Ni],∀l ∈ [N ′
j], the element Ckl(Bi, B

′
j) is the cost

between two labeled data points (xk, yk) ∈ Bi and (x′
l, y

′
l) ∈ B′

j , calculated as

Ckl

(
Bi, B

′
j

)
= d(xk, x

′
l) + cOTd

(
µBi(·|yk), µB′

j
(·|y′l)

)
. (8)

Given the cost matrix C(Bi, B
′
j), we solve OTC(µBi

, µB
′
j
) to get dual solutions

f∗(µBi , µB′
j
), g∗(µBi , µB′

j
), and the OT distance for d(Bi, B

′
j), i.e., OTC(µBi , µB′

j
).

We repeat this process and solve the OT problem for each pair (Bi, B
′
j), i.e., the OT problem

for distributions on batches of data points, across the training and validation datasets, for all i ∈
[Kt], j ∈ [Kv]. This enables us to define the cost matrix for pairwise batches in µ̄t, µ̄v, denoted as
C̄(µ̄t, µ̄v) ∈ RKt×Kv

+ where we recall that Kt and Kv are the number of batches in training and
validation sets. Hence, for this cost matrix C̄, the element C̄ij is computed as OT(µBi

, µB′
j
), for all

i ∈ [Kt],∀j ∈ [Kv].

Batch valuation. Given the pairwise cost matrix across batches C̄, we compute the data valuation for
each batch via the (sub)gradient of the distance OTC̄(µ̄t, µ̄v) w.r.t. the probability mass of batches in
the two datasets, i.e., ∂OTC̄(µ̄t,µ̄v)

∂µ̄t(Bi)
. These partial derivatives measure the contribution of the batches

to the OT distance, i.e., shifting more probability mass to the batch would result in an increase or
decrease of the dataset distance, respectively.

More precisely, let f̄∗, ḡ∗ be the optimal dual variables of OTC̄(µ̄t, µ̄v), then the data valuation of the
batch Bi in the training set Dt is estimated as follows:

∂OTC̄(µ̄t, µ̄v)

∂µ̄t(Bi)
= f̄∗

i . (9)

Since the optimal dual variables are only unique up to a constant, we follow Just et al. (2023) to
normalize these optimal dual variables such that the sum of all elements is equal to a zero vector:

∂OTC̄(µ̄t, µ̄v)

∂µ̄t(Bi)
= f̄∗

i −
∑

j∈{1,...,Kt}\i

f̄∗
j

Kt − 1
. (10)

Using batch valuation for data point valuation. After solving the OT problem over batches,
we obtain the optimal transport plan π̄∗(µ̄t, µ̄v) which is used to compute the data valuation over
individual data points:

π̄∗(µ̄t, µ̄v) = diag(ū∗) exp
(
− C̄(µ̄t, µ̄v)

ε

)
diag(v̄∗), (11)

where diag(·) is matrix diagonal operator, (ū∗, v̄∗) is a dual solution from Sinkhorn algorithm.
Additionally, we have ū∗ = exp(− 1

2 −
f̄∗

ε), v̄∗ = exp(− 1
2 −

ḡ∗

ε) following Cuturi (2013, Lemma 2).

For a data point z ∈ Bi ⊂ Dt, its data valuation score can be computed as follows:
Kv∑
j=1

π̄∗
ij(µ̄t, µ̄v)

∂OT(µBi , µB′
j
)

∂µBi
(z)

. (12)

Using HOT, we can measure the (sub)gradients of the OT distance w.r.t. the probability mass of a
given data point in each dataset via the calibrated gradient summarized in the following Lemma 1.
We refer to Appendix Table 1 for the notations.
Lemma 1. The calibrated gradient for a data point zk in the batch Bi in Dt can be computed as:

∂HOT(µt, µv)

∂µt(zk)
=

Kv∑
j=1

π̄∗
ij(µ̄t, µ̄v)

∂OT(µBi , µB′
j
)

∂µBi
(zk)

, (13)

where the calibrated gradient of OT for measures on batches is calculated as follows:

∂OT(µBi , µB′
j
)

∂µBi
(zk)

= f∗
k (µBi

, µB′
j
) −

∑
l∈{1,...,Ni}\k

f∗
l (µBi , µB′

j
)

Ni − 1
,∀j ∈ [Kv]. (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

It is common practice to compute the OT via its entropic regularization, using the Sinkhorn algorithm
(Cuturi, 2013). We quantify the deviation in the calibrated gradients caused by the entropy regularizer.
This analysis shows the potential impact of the deviation on applications built on these gradients.

We refine the theoretical result (Just et al., 2023, Theorem 2), which uses entropic regularization
to approximate the OT (sub)gradient in two aspects. Firstly, we take into account the non-negative
constraint of the OT plan π ≥ 0 in the dual formulation. Secondly, we correct the discrete formulation
for entropic regularization (see Appendix C.1 for the discussion).

Theorem 2 (Refined Theorem 2 in Just et al. (2023)). The difference between calibrated gradients
for two data points in Dt and Dv can be calculated as

∂OT(µt, µv)

∂µt (zi)
− ∂OT(µt, µv)

∂µt (zk)
=

∂OTε (µt, µv)

∂µt (zi)
− ∂OTε (µt, µv)

∂µt (zk)

+ ε
N

N − 1

(
log

(π∗
ε)ij /µt(zi)

(π∗
ε)kj /µt(zk)

+
h∗
kj − h∗

ij

ε

)
, (15)

where h∗ is the corresponding optimal dual variable, accounting for non-negative constraint on the
transportation plan π ≥ 0 in the primal OT formulation.

Proof. Refer to Appendix C.2 for the proof.

The term in the brackets (in blue) is the key difference between our new result and the previous one
derived in LAVA (Just et al., 2023, Theorem 2).

Lemma 3. Let HOT(µt, µv) and OTε(µt, µv) be the HOT and entropic regularized OT between the
measures µt and µv associated with the two datasets Dt and Dv respectively. The difference between
the calibrated gradients for two data points {zl, zh} ∈ Bi ⊂ Dt can be calculated as

∂HOT(µt, µv)

∂µt(zk)
− ∂HOT(µt, µv)

∂µt(zl)
=

Kv∑
j=1

π̄∗
ij(µ̄t, µ̄v)

[∂OTε(µBi
, µB′

j
)

∂µBi
(zk)

−
∂OTε(µBi

, µB′
j
)

∂µBi
(zl)

+ ε
Ni

Ni − 1

(
log

(π̄∗
ε)k,j/µt(zk)

(π̄∗
ε)l,j/µt(zl)

+
h∗
lj − h∗

kj

ε

)]
. (16)

Proof. Refer to Appendix C.3 for the proof.

We make a similar observation in LAVA that the ground-truth (sub)gradient difference between two
training points zk and zl is calculated based on the HOT formulation and can be approximated by the
entropic regularized formulation OTε, such as via the Sinkhorn algorithm (Cuturi, 2013). In other
words, we can calculate the ground-truth difference based on the solutions to the regularized problem
plus some calibration terms that scale with ε. In addition, in our case with HOT, the (sub)gradient
difference also depends on the additional optimal assignment across batches π̄∗(µ̄t, µ̄v) which is
again estimated by the Sinkhorn algorithm.

4 PROPERTIES AND DISCUSSIONS

The SAVA Algorithm. We outline the computational steps of SAVA in Algorithm 1. From lines 1
to 5, we solve multiple OT tasks for data points between two batches Bi, B

′
j . We obtain the dual

solution f∗(µBi , µB′
j
) ∈ RNi . Additionally, these OT distances are used to fill in the cost matrix for

pairwise batches C̄ij(µ̄t, µ̄v) = OT(µBi , µB′
j
). Here, the cost matrix C is of size Ni ×N ′

j where the

batch sizes Ni, N
′
j ≪ N . The required memory complexity is at least Õ(N2

i).

In line 6 Algorithm 1, we solve the OT problem across batches OTC̄(µ̄t, µ̄v) to obtain π̄∗(µ̄t, µ̄v).
The cost matrix is small, of size Kt × Kv, so less expensive compared to working with the full
dataset Just et al. (2023). Finally, from Lines 7 to 10, we estimate valuation scores for training data
using the auxiliary matrices computed in the previous steps, including f∗(µBi , µB′

j
) and π̄∗(µ̄t, µ̄v).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.1 0.5 1.0 2.0 5.0
Training Set Size ×104

0.0

0.2

0.4

0.6

0.8

1.0
De

te
ct

io
n

ra
te

Backdoor Detection (10%)

0.1 0.5 1.0 2.0 5.0
Training Set Size ×104

0.0

0.2

0.4

0.6

0.8

1.0
Poison Detection (10%)

LAVA LAVA OOM Batch-wise LAVA Random KNN Shapley TracInCP Inf. Func. Data OOB SAVA

0.1 0.5 1.0 2.0 5.0
Training Set Size ×104

0.0

0.2

0.4

0.6

0.8

1.0
Noisy Features (30%)

0.1 0.5 1.0 2.0 5.0
Training Set Size ×104

0.0

0.2

0.4

0.6

0.8

Noisy Labels (30%)

Figure 2: SAVA can value the full CIFAR10 dataset with various corruptions, while LAVA has
out-of-memory (OOM) issues. We sort training examples by the highest OT gradients in Eq. (6) and
Eq. (12) for LAVA and SAVA respectively, and use the fraction of corrupted data recovered for a prefix
of size N/4 as the detection rate (where N is the training set size). The star symbol (⋆) denotes the
point at which LAVA is unable to continue valuing training due GPU out-of memory (OOM) errors.

SAVA Memory Requirements. The Sinkhorn algorithm computational complexity is at least Õ(N2)
where N is the number of samples. This comes from the main OT step of OT(µt, µv) over the full
cost matrix C of size N×N ′ to subsequently calculate the calibrated gradient in Eq. (6) where N and
N ′ are the training and validation dataset sizes. SAVA overcomes this limitation by solving multiple
smaller OT problems OT(µBi , µB′

j
) on distributions for batches of data points only: if batches Bi

and B′
j are of size Ni and N ′

j respectively, then the memory complexity is at least Õ(Ni ×N ′
j). For

an analysis of the time complexity see Appendix D.

Practical Implementation with Caching. While yielding a significant memory improvement, SAVA’s
runtime is not necessarily faster than LAVA. To speed up SAVA, we propose to implement Algorithm 1
by caching the label-to-label costs between points in the validation and training batches: OTd(·, ·) in
Sec. 2.1 so that it is only calculated once in the first iteration of Algorithm 1 and reused for subsequent
batches. This significantly reduces SAVA runtimes with no detriment to performance Figure 9. All
experimental results in Section 5, unless otherwise stated, implement this caching strategy.

Batch Sizes. If we consider Eq. (7), HOT provides the upper bound for the OT since its optimal
coupling is on batches of data points. HOT recovers the OT when either batch only has one support or
each dataset only has one batch. Consequently, up to a certain batch size, when increasing the batch
size Ni, HOT converges to the OT, but its memory complexity also increases, i.e., Õ(N2

i) → Õ(N2).
On the other hand, if the batch size Ni is too small, the number of batches Kt will be large. As a
result, the memory complexity will also be high (i.e., for solving OTC̄(µ̄t, µ̄v) in Algorithm 1). Thus,
the batch size will trade off the memory complexity and the approximation of HOT to OT.

5 EXPERIMENTS

We aim to the test two following hypotheses: 1. Can SAVA scale and overcome the memory complexity
issues which hinder LAVA while maintaining similar performance? 2. Can SAVA scale to a large
real-world noisy dataset with over a million data points?

5.1 DATASET CORRUPTION DETECTION

We test the scalability of SAVA versus LAVA (Just et al., 2023) by leveraging the CIFAR10 dataset,
introducing a corruption to a percentage of the training data, but keeping the validation set clean. We
then assign a value to each data point in the training set. Following Pruthi et al. (2020); Just et al.
(2023), we sort the training examples by their values. An effective data valuation method would rank
corrupted examples in a prefix of ordered points. We use the fraction of corrupted data recovered by
the prefix of size N/4 as our detection rate (see an example in Appendix F, Figure 5).

Setup. We consider 4 different corruptions (see Appendix E for details) applied to training data
following Just et al. (2023): (i) noisy labels, (ii) noisy features, (iii) backdoor attacks and (iv) poison
detections. All experiments are run on a Tesla K80 Nvidia GPUs with 12GB GPU RAM. Unless
otherwise stated, all results reported are a mean ±1 standard deviation over 5 independent runs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Baselines. Our main baseline is LAVA. For SAVA and LAVA we use features from a pre-trained
ResNet18 (He et al., 2016). For SAVA, we use a default batch size of Ni = 1024 which is its main
hyperparameter.3 We consider KNN Shapley (Jia et al., 2019a), the Shapley value measures the
marginal improvement in the utility of a data point and uses KNN to approximate the Shapley value.
KNN Shapley also uses ResNet18 features to calculate Shapley values, we tune k as its performance
is sensitive to this hyperparameter. We consider TracInCP (Pruthi et al., 2020) which measures the
influence of each training point by measuring the difference in the loss at the beginning versus the end
of training. We also compare with Influence Function (Koh & Liang, 2017) which approximates the
effect of holding out a training point on the test error, it uses expensive approximations of the Hessian
to calculate the influence of a training point. We also consider Data-OOB (Kwon & Zou, 2023)
which uses bagging estimators to value data points, data points are embedded using a pre-trained
feature extractor, and the bagging estimator is a decision tree (see Appendix G.1 for implementation
details). We finally consider a naive OT baseline which obtains values for data points at a batch level,
and aggregates values across validation batches; the baseline essentially performs LAVA only at a
data point level within a batch and averaging values across validation batches. We call this baseline
Batch-wise LAVA. Although Batch-wise LAVA obtains good corruption detection results, it is very
sensitive to the batch size (see Appendix H.6).

Noisy labels. We corrupt 30% of the labels in the training set by randomly assigning the target a
different label. From Figure 2, we can see that LAVA has an out-of-memory (OOM) issue when
valuing the full training set of 50K points. In contrast, SAVA, Batch-wise LAVA, KNN Shapley and
Data-OOB can consistently value and detect all corruptions when inspecting 12.5K ordered samples
by values. Influence Functions matches the performance of SAVA, but is very expensive to run on
large datasets. TracInCP is unable to detect noisy labels better than random selection, similar to the
observations in Just et al. (2023). Consequently, when pruning 30% of the data, SAVA can consistently
improve its accuracy on the test set as the training set size increases Appendix H.1.

Noisy features. We add Gaussian noise to 30% of the training images to simulate feature corruptions
that might occur in real datasets. From Figure 2, LAVA obtains good performance for moderate
dataset sizes, but for training set sizes above 10K, some runs have OOM errors when embedding
the entire training set into memory and when calculating the full cost matrix for OT problem. In
contrast, SAVA can consistently value and detect corruptions. Batch-wise LAVA is also able to scale
and gets similar performance to SAVA. As can KNN Shapley and Data-OOB, albeit its detection rate
is lower than SAVA; as we prune 30% of the data for larger and larger dataset sizes performance of
SAVA outperforms KNN Shapley Figure 7. TracInCP and Influence Functions both struggle to detect
noisy data points, both methods were originally shown to detect noisy labels, so we do not expect
them to work well beyond noisy label detection.

Backdoor attacks. We corrupt 10% of the data with a Trojan square attack (Liu et al., 2018). SAVA,
Batch-wise LAVA and KNN Shapley can scale as the dataset size increases while LAVA has an OOM
error when valuing the largest dataset with 50k points. TracInCP and Influence Functions both
struggle to detect backdoored training points and have long runtimes. Data-OOB also struggles
to value data points in this scenario, this is in line with recent surveys which show less strong
performance when valuing data with noisy features Jiang et al. (2023).

Poisoning attacks. We corrupt 10% of the data with a poison frogs attack (Shafahi et al., 2018). We
find in Figure 2 that SAVA and Batch-wise LAVA can scale and maintain a high detection rate. In
contrast, KNN Shapley struggles to detect corrupted data points after inspecting 25% of the ordered
training data. TracInCP, Data-OOB and Influence Functions struggle to detect the corrupted data.

5.2 LARGE SCALE VALUATION AND PRUNING

We test our second hypothesis: whether SAVA can scale to a large real-world dataset. We consider
the web-scrapped dataset Clothing1M (Xiao et al., 2015) where the training set has over 1M images
whose labels are noisy and unreliable. However, the validation set has been curated. Clothing1M
is a 14-way image classification problem and has been used for previous work on online data
selection (Mindermann et al., 2022). We consider SAVA and other data pruning methods as baselines
to remove low-value training data points before training a ResNet18 classifier.

3See Appendix H for the study of the sensitivity of the batch size Ni in SAVA.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4
Proportion of Data Pruned

67

68

69

70

Te
st

 A
cc

ur
ac

y No Pruning
SAVA
Random Pruning
Supervised Prototypes
EL2N
Batch-wise LAVA

Figure 3: SAVA can scale to a large web-
scrapped dataset. We use SAVA and other base-
lines, to value data points and then prune a certain
percentage of the noisy training set. The resulting
dataset is used for training a classifier.

We compare to Batch-wise LAVA, introduced
in Section 5.1. We also compare to EL2N (Paul
et al., 2021) which values training points using
the loss on several partially trained networks
to decide which points to remove. We train
10 models for 10 epochs, we perform a cross-
validate a sliding window of values to decide
which EL2N values to keep (see Appendix G.2.2
for details). We also consider supervised proto-
types (Sorscher et al., 2022) which prunes image
embeddings according to how similar they look
to cluster centers after clustering image embed-
dings (see Appendix G.2.3 for details).

If we were to train a classifier on the full noisy
training set, we would obtain an accuracy of
67.6± 0.2, this remains constant as we randomly prune more data. Supervised prototypes obtains
better results than random, and improves slightly over random pruning. This is expected since
supervised prototypes is a semantic deduplication method and ignores label information. SAVA,
Batch-wise LAVA and EL2N perform well and we find that SAVA performs better than both EL2N
and Batch-wise LAVA. This shows the benefit of the SAVA’s weighting of the (sub)gradient of the
OT across the validation dataset using optimal plan across batches π̄∗(µ̄t, µ̄v) rather than Batch-wise
LAVA’s uniform weighting. SAVA produces the best accuracy model of 70.0± 0.2 in Figure 3.

6 CONCLUSIONS

We have presented a scalable extension to LAVA to address the challenges posed by large-scale
datasets. Instead of relying on the expensive OT computation on the whole dataset, our proposed
SAVA algorithm involves jointly optimizing multiple smaller OT tasks across batches of data points and
within individual batches. We empirically show that SAVA maintains performance in data valuation
tasks while successfully scaling up to handle a large real-world noisy dataset. This makes the data
valuation task feasible for large-scale datasets. Our proposed method, along with the theoretical
correction (Just et al., 2023, Theorem 2), will complement, strengthen and improve (in terms of
efficiency) OT-based data valuation.

Limitations. HOT finds the optimal coupling at the batch level, but not at the global level as in the
traditional OT, i.e., OT(µt, µv) ≤ HOT(µt, µv), which makes the validation error bound looser (Just
et al., 2023, Eq. (1), Theorem 1). However, our experiments indicate little performance degradation
for small datasets between SAVA and LAVA. See Appendix B for further discussion on limitations.

REPRODUCIBILITY STATEMENT

We have described in detail our algorithm in Section 3 with Algorithm 1. All implementation details
for our method and baselines are described in Section 5 and expanded on in Appendix G. The source
code to reproduce our experiments is included in our submission supplementary material. We will
open-source our code upon acceptance of our paper.

REFERENCES

Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Morcos. Semdedup: Data-
efficient learning at web-scale through semantic deduplication. arXiv preprint arXiv:2303.09540,
2023. 25

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances
in Neural Information Processing Systems, 33:21428–21439, 2020. 1, 3, 20

Deepak Baby, Pasquale D’Alterio, and Valentin Mendelev. Incremental learning for rnn-transducer
based speech recognition models. 2022. 1, 23

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. In International Conference on Learning Representations, 2019. 25

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural
Information Processing Systems, pp. 2292–2300, 2013. 3, 4, 6, 7, 16

M. Cuturi and A. Doucet. Fast computation of Wasserstein barycenters. In International conference
on machine learning, pp. 685–693, 2014. 4

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In International
conference on machine learning, pp. 1367–1376. PMLR, 2018. 18

Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using the query
by committee algorithm. Machine learning, 28:133–168, 1997. 25

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In International Conference on Machine Learning, pp. 1183–1192. PMLR, 2017. 25

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-
scale optimal transport. In Advances in neural information processing systems, pp. 3440–3448,
2016. 16

Aude Genevay, Gabriel Peyre, and Marco Cuturi. Learning generative models with sinkhorn diver-
gences. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and
Statistics, pp. 1608–1617, 2018. 16

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International Conference on Machine Learning, pp. 2242–2251. PMLR, 2019. 24

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016. 9, 23

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020. 1

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
classification and preference learning. arXiv preprint arXiv:1112.5745, 2011. 25

Ruoxi Jia, David Dao, Boxin Wang, Frances A Hubis, Nezihe M Gürel, Bo Li, Ce Zhang, Costas J
Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor algorithms.
Proceedings of the VLDB Endowment, 12(11):1610–1623, 2019a. 9, 24

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167–1176. PMLR, 2019b. 24

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R Ganger,
Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating deep
learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019. 1

Kevin Fu Jiang, Weixin Liang, James Zou, and Yongchan Kwon. Opendataval: a unified benchmark
for data valuation. 2023. URL https://openreview.net/forum?id=eEK99egXeB. 9,
25

Tyler B Johnson and Carlos Guestrin. Training deep models faster with robust, approximate impor-
tance sampling. Advances in Neural Information Processing Systems, 31, 2018. 25

Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi Jia.
Lava: Data valuation without pre-specified learning algorithms. In International Conference on
Learning Representations, 2023. 1, 2, 3, 4, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 23, 25

11

https://openreview.net/forum?id=eEK99egXeB

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020. 1

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International Conference on Machine Learning, pp. 2525–2534. PMLR,
2018. 25

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. Advances in Neural Information Processing Systems,
32, 2019. 25

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, pp. 1885–1894. PMLR, 2017. 9, 24

Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation framework
for machine learning. In International Conference on AI and Statistics, 2022. 24

Yongchan Kwon and James Zou. Data-oob: Out-of-bag estimate as a simple and efficient data value.
In International Conference on Machine Learning, pp. 18135–18152. PMLR, 2023. 9, 24

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun Terzi,
Mai Gimenez, Cyprien de Masson d’Autume, Tomas Kocisky, Sebastian Ruder, et al. Mind the gap:
Assessing temporal generalization in neural language models. Advances in Neural Information
Processing Systems, 34:29348–29363, 2021. 1

Tam Le, Truyen Nguyen, Dinh Phung, and Viet Anh Nguyen. Sobolev transport: A scalable metric
for probability measures with graph metrics. In International Conference on Artificial Intelligence
and Statistics, pp. 9844–9868. PMLR, 2022. 4

John Lee, Max Dabagia, Eva Dyer, and Christopher Rozell. Hierarchical optimal transport for
multimodal distribution alignment. Advances in Neural Information Processing Systems, 32, 2019.
2, 4, 5, 15

Mingkun Li and Ishwar K Sethi. Confidence-based active learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(8):1251–1261, 2006. 25

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In 25th Annual Network And Distributed System
Security Symposium (NDSS 2018). Internet Soc, 2018. 9, 19

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks. arXiv
preprint arXiv:1511.06343, 2015. 25

Clare Lyle, Lisa Schut, Robin Ru, Yarin Gal, and Mark van der Wilk. A bayesian perspective on
training speed and model selection. Advances in Neural Information Processing Systems, 33:
10396–10408, 2020. 1

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Conference
on Machine Learning, pp. 15630–15649. PMLR, 2022. 1, 9, 25

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pp. 6950–6960.
PMLR, 2020. 25

Dongmin Park, Dimitris Papailiopoulos, and Kangwook Lee. Active learning is a strong baseline for
data subset selection. In Has it Trained Yet? NeurIPS 2022 Workshop, 2022. 25

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:
20596–20607, 2021. 1, 10, 21, 25

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends® in
Machine Learning, 11(5-6):355–607, 2019. 25

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020. 1, 8, 9, 19, 20, 24

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application
to texture mixing. In International Conference on Scale Space and Variational Methods in
Computer Vision, pp. 435–446, 2011. 4

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on
Machine Learning, pp. 28492–28518. PMLR, 2023. 1, 19

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In International Conference on Machine Learning, pp. 4334–4343. PMLR,
2018. 25

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. In International Conference on Learning Representations,
2019. 1

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018. 25

Burr Settles. Active learning literature survey. 2009. 25

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.
Advances in Neural Information Processing Systems, 31, 2018. 9, 19, 20

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022. 1, 10, 25

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari S Morcos. D4: Improving llm
pretraining via document de-duplication and diversification. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. 1, 25

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
2018. 25

Jiachen T Wang, Yuqing Zhu, Yu-Xiang Wang, Ruoxi Jia, and Prateek Mittal. Threshold knn-shapley:
A linear-time and privacy-friendly approach to data valuation. arXiv preprint arXiv:2308.15709,
2023. 24

Jiachen T Wang, Prateek Mittal, and Ruoxi Jia. Efficient data shapley for weighted nearest neighbor
algorithms. In International Conference on Artificial Intelligence and Statistics, pp. 2557–2565.
PMLR, 2024. 24

Tianhao Wang and Ruoxi Jia. Data banzhaf: A data valuation framework with maximal robustness to
learning stochasticity. arXiv preprint arXiv:2205.15466, 2022. 24

Zhaoxuan Wu, Yao Shu, and Bryan Kian Hsiang Low. Davinz: Data valuation using deep neural
networks at initialization. In International Conference on Machine Learning, pp. 24150–24176.
PMLR, 2022. 24

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy
labeled data for image classification. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2691–2699, 2015. 9, 19

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
models via importance resampling. Advances in Neural Information Processing Systems, 36:
34201–34227, 2023. 25

Xinyi Xu, Zhaoxuan Wu, Chuan Sheng Foo, and Bryan Kian Hsiang Low. Validation free and
replication robust volume-based data valuation. Advances in Neural Information Processing
Systems, 34:10837–10848, 2021. 24

Tom Yan and Ariel D Procaccia. If you like shapley then you’ll love the core. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 5751–5759, 2021. 24

Mikhail Yurochkin, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, and Justin M Solomon.
Hierarchical optimal transport for document representation. Advances in Neural Information
Processing Systems, 32, 2019. 2, 4, 5, 15

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022. 1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

In this appendix, we provide discussion regarding the border impact of our work in §A and the
limitations of our work in §B. We also provide details of theoretical results in §C, describe the data
corruptions used in our experiments in §E. In §F, we further discuss how we calculate detection
rates and discuss data valuation rankings. We also give details for the implementations used in the
experiments in §G. In §H, we provide further empirical results. In §I, we present and discuss further
related works. We also provide a visualization for the artifacts in SAVA in §J, and other further
discussions in §K.

APPENDIX A BROADER IMPACT

Data selection in deep learning for training neural networks can significantly enhance the efficiency
and effectiveness of model training. By enabling faster training and improved generalization perfor-
mance, data selection techniques reduce the computational resources and time required, leading to
notable environmental benefits such as lower energy consumption and reduced carbon footprint. By
using, an optimal transport approach to data valuation ensures high-quality, relevant data is selected,
improving model performance. However, this approach also carries risks: a malicious actor could
curate a harmful validation dataset, leading to the training of models on dangerous or unethical
data. This underscores the importance of vigilance and ethical considerations in dataset creation and
curation.

APPENDIX B LIMITATIONS

One theoretical limitation stated in Section 6 regards a looser validation error bound (Just et al.,
2023, Eq. (1), Theorem 1) due to the use of hierarchical optimal transport (Yurochkin et al., 2019;
Lee et al., 2019). However, the validation error bound for SAVA remains useful as in LAVA since it
can be interpreted that minimizing either the OT or hierarchical OT between training and validation
sets, and will bound the model’s validation error. As we observe in practice, there is little difference
in performance between SAVA and LAVA (Just et al., 2023). Another limitation of OT-based data
valuation methods is their dependence on a clean validation dataset.

Another limitation of our work is that the ground cost we consider is limited to labeled datasets.4 We
have not explored different ground truth costs for text data or speech data.

APPENDIX C DETAILS OF THEORETICAL RESULTS

C.1 EXISTING THEOREM 2 IN JUST ET AL. (2023)

Theorem 4 (restated Theorem 2 in Just et al. (2023)). The difference between calibrated gradients
for two data points in Dt and Dv can be calculated as

∂OT(µt, µv)

∂µt (zi)
− ∂OT(µt, µv)

∂µt (zk)
=

∂OTε (µt, µv)

∂µt (zi)
− ∂OTε (µt, µv)

∂µt (zk)
− ε

N

N − 1

(
1

(π∗
ε)kj

− 1

(π∗
ε)ij

)
(C.1)

The above theorem analyzes the trade-off of using entropic regularization to estimate the OT gradient.
However, the theoretical result suffers two key drawbacks that we correct below:

1. The original derivation ignores the positive constraint when deriving its dual formulation:
π ≥ 0. This positivity is essential to have the OT plan in the valid domain.

4For unlabelled datasets, in some sense, it is equivalent to set the weight coefficient c = 0, to ignore the
contribution of label information for the ground cost.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2. In the proof of (Just et al., 2023, Theorem 2), the authors have incorrectly5 written the
relative entropy (i.e., Kullback-Leibler divergence) term for the discrete case

H(πε|µt ⊗ µv) =

N∑
i=1

N ′∑
j=1

log
(πε)ij

µt(zi)µv(zj)
. (C.2)

However, the correct term should be written as follows as used in (Cuturi, 2013; Genevay
et al., 2016; 2018)

H(πε|µt ⊗ µv) =

N∑
i=1

N ′∑
j=1

(πε)ij log
(πε)ij

µt(zi)µv(zj)
. (C.3)

C.2 PROOF OF THEOREM 2

Theorem 5 (restated Theorem 2 in the main paper). The difference between calibrated gradients for
two data points in Dt and Dv can be calculated as

∂OT(µt, µv)

∂µt (zi)
− ∂OT(µt, µv)

∂µt (zk)
=

∂OTε (µt, µv)

∂µt (zi)
− ∂OTε (µt, µv)

∂µt (zk)

+ ε
N

N − 1

(
log

(π∗
ε)ij /µt(zi)

(π∗
ε)kj /µt(zk)

+
h∗
kj − h∗

ij

ε

)
(C.4)

where h∗ is the corresponding optimal dual variable, accounting for non-negative constraint on the
transportation plan π ≥ 0 in the primal OT formulation.

Proof. Using the same notation as in LAVA (Just et al., 2023), the Lagrangian function for the
standard OT formulation between datasets Dt and Dv

L(π, h, f, g) = ⟨π,C⟩+ ⟨h, π⟩+
N∑
i=1

fi
(
π⊤
i IN ′ − ai

)
+

N ′∑
j=1

gj

(
I⊤Nπj − bj

)
, (C.5)

where we consider the dual variable h for the corresponding constraint π ≥ 0 in the primal OT,
which was overlooked in LAVA. Additionally, fi with 1 ≤ i ≤ N and gj with 1 ≤ j ≤ N ′ are
corresponding dual variables for the marginal constraints in OT.

The Lagrangian function for entropic regularized OT formulation between datasets Dt and Dv is

Lε (πε, fε, gε) = ⟨πε, C⟩+ ε

N∑
i=1

N ′∑
j=1

(πε)ij log
(πε)ij

µt (zi)µv (zj)

+

N∑
i=1

(fε)i

(
(πε)

⊤
i IN ′ − µt (zi)

)
+

N ′∑
j=1

(gε)j

(
I⊤N (πε)j − µv (zj)

)
, (C.6)

where we correct the discrete formulation of entropic regularization (used in LAVA) in the second
term on the right-hand side. We have used the following notations:

• IN ′ = (1, 1, · · · , 1) ∈ RN ′×1. Similarly, IN ∈ RN×1.

• π is a primal variable (i.e., the OT assignment matrix or transporation plan). π⊤
i is the ith

row of the matrix π. πj is the jth column of matrix π.

• The subscript ε indicates primal/dual variables for corresponding entropic regularized OT.

Using the first-order necessary condition, we have

∇Lπ (π
∗, h∗, f∗, g∗) = 0 (C.7)

∇ (Lε)π (π
∗
ε , f

∗
ε , g

∗
ε) = 0 (C.8)

5This could be a typo within the derivation from Just et al. (2023)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where π∗ is the optimal solution to the primal formulation, and (h∗, f∗, g∗) are optimal solution to
the dual problem.

For ∀i ∈ {1, 2, . . . , N}, and ∀j ∈ {1, 2, . . . N ′}, we have

∇Lπ (π
∗, h∗, f∗, g∗)ij = Cij + h∗

ij + f∗
i + g∗j = 0 (C.9)

∇ (Lε)π (π
∗
ε , f

∗
ε , g

∗
ε)ij = Cij + ε

(
log

(π∗
ε)ij

µt(zi)µv(zj)
+ 1

)
+ (fε)

∗
i + (gε)

∗
j = 0. (C.10)

Let’s subtract Eq. (C.10) from Eq. (C.9), we have[
f∗
i − (fε)

∗
i

]
+
[
g∗j − (gε)

∗
j

]
+ h∗

ij − ε

(
log

(π∗
ε)ij

µt(zi)µv(zj)
+ 1

)
= 0. (C.11)

Similarly, ∀k ̸= i, k ∈ {1, 2 . . . N}, we have[
f∗
k − (fε)

∗
k

]
+
[
g∗j − (gε)

∗
j

]
+ h∗

kj − ε

(
log

(π∗
ε)kj

µt(zk)µv(zj)
+ 1

)
= 0. (C.12)

Let’s subtract Eq. (C.12) from Eq. (C.11) and rearrange, we have

[
(fε)

∗
i − (fε)

∗
k

]
− (f∗

i − f∗
k) =

(
h∗
ij − h∗

kj

)
− ε

[
log

(π∗
ε)ij /µt(zi)

(π∗
ε)kj /µt(zk)

]
. (C.13)

Additionally, from the definition of the calibrated (sub)gradient, we have

∂OT (µt, µv
)

∂µt (zi)
− ∂OT (µt, µv)

∂µt (zk)
=

N

N − 1
(f∗

i − f∗
k) (C.14)

∂OTε (µt, µv)

∂µt (zi)
− ∂OTε (µt, µv)

∂µt (zk)
=

N

N − 1

[
(fε)

∗
i − (fε)

∗
k

]
. (C.15)

Let’s substract Eq. (C.14) from Eq. (C.15) and rearrange, we have

∂OTε (µt, µv)

∂µt (zi)
− ∂OTε (µt, µv)

∂µt (zk)
=

∂OT (µt, µv)

∂µt (zi)
− ∂OT (µt, µv)

∂µt (zk)
(C.16)

+
N

N − 1

[
(fε)

∗
i − (fε)

∗
k − (f∗

i − f∗
k)
]
. (C.17)

Plugging Eq. (C.13) in Eq. (C.17), we have

∂OTε (µt, µv)

∂µt (zi)
− ∂OTε (µt, µv)

∂µt (zk)
=
∂OT(µt, µv)

∂µt (zi)
− ∂OT(µt, µv)

∂µt (zk)

− ε
N

N − 1

(
log

(π∗
ε)ij /µt(zi)

(π∗
ε)kj /µt(zk)

+
h∗
kj − h∗

ij

ε

)
. (C.18)

Rearranging it again to be aligned with the result in Just et al. (2023), we conclude the proof

∂OT(µt, µv)

∂µt (zi)
− ∂OT(µt, µv)

∂µt (zk)

=
∂OTε (µt, µv)

∂µt (zi)
− ∂OTε (µt, µv)

∂µt (zk)
− ε

N

N − 1

(
log

(π∗
ε)ij /µt(zi)

(π∗
ε)kj /µt(zk)

+
h∗
kj − h∗

ij

ε

)
. (C.19)

The term log
(π∗

ε)ij/µt(zi)

(π∗
ε)kj/µt(zk)

is a correction with respect to the corrected discrete formula for entropic

regularization. In addition, we have an extra term
h∗
kj−h∗

ij

ε where h∗ is the corresponding optimal
dual variable, which accounts for π ≥ 0 in the primal OT formulation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.3 PROOF OF LEMMA 3

We present the Proof of Lemma 3 as follows by building upon the refined theory in Theorem 2 (i.e.,
the corrected version for Theorem 2 in Just et al. (2023)).

Lemma 6 (restated Lemma 3 in the main paper). Let HOT(µt, µv) and OTε(µt, µv) be the HOT and
entropic regularized OT between the measures µt and µv associated with the two datasets Dt and Dv

respectively. The difference between the calibrated gradients for two data points {zl, zh} ∈ Bi ⊂ Dt

can be calculated as

∂HOT(µt, µv)

∂µt(zk)
− ∂HOT(µt, µv)

∂µt(zl)
=

Kv∑
j=1

π̄∗
ij(µ̄t, µ̄v)

[∂OTε(µBi
, µB′

j
)

∂µBi(zk)
−

∂OTε(µBi
, µB′

j
)

∂µBi(zl)

+ ε
Ni

Ni − 1

(
log

(π̄∗
ε)k,j/µt(zk)

(π̄∗
ε)l,j/µt(zl)

+
h∗
lj − h∗

kj

ε

)]
, (C.20)

where h∗ is the corresponding optimal dual variable, accounting for nonnegative constraint on the
transportation plan (i.e., π̄∗ ≥ 0) in the primal OT formulation.

Proof. Let OT(µt, µv) be the OT formulation between empirical measures µt and µv , we present the
proof as follows

∂HOT(µt, µv)

∂µt(zk)
− ∂HOT(µt, µv)

∂µt(zl)

=
∑Kv

j=1 π̄
∗
ij(µ̄t, µ̄v)

[∂OT(µBi
,µB′

j
)

∂µBi
(zk)

−
∂OT(µBi

,µB′
j
)

∂µBi
(zl)

]
(C.21)

=
∑Kv

j=1 π̄
∗
ij(µ̄t, µ̄v)

[∂OTε(µBi
,µB′

j
)

∂µBi
(zk)

−
∂OTε(µBi

,µB′
j
)

∂µBi
(zl)

+ε Ni

Ni−1

(
log

(π̄∗
ε)k,j/µt(zk)

(π̄∗
ε)l,j/µt(zl)

+
h∗
lj−h∗

kj

ε

)]
, (C.22)

where Eq. (C.21) follows the definition of HOT and Eq. (C.22) utilizes our Theorem 2.

APPENDIX D SAVA TIME COMPLEXITY

Time Complexity

LAVA V × V ′ ×Nyi
×N ′

y′
j
× logNyi

+N ×N ′ × logN

SAVA V × V ′ ×Niyi
×N ′

jy′
j

× logNiyi
+Kt ×Kv ×Ni ×N ′

j logNi +Kt ×Kv × logKt

Table 2: Time complexity comparison for LAVA and SAVA methods. V and V ′ are the number of
classes in the training and validation sets, the classes are the same for the experiments in this paper.
N and N ′ are the number of points in the training and validation sets, Nyi

and N ′
y′
j

are the number
of points from training class yi and validation class y′j . Ni and N ′

j are the number of points in the
training and validation batch. Kt and Kv are the number of batches in the training and validation
sets.

For simplicity, we assume N ≥ N ′, then Sinkhorn complexity is Õ(N×N ′×log(N)) (Dvurechensky
et al., 2018).

For LAVA, for the training dataset (i.e., big dataset), let V be the number of classes, Nyi
be

the number of instances in class yi, then the total number of samples N =
∑

i Nyi
. Note that

we use V ′, N ′, N ′
y′
j

for the validation dataset (i.e., small dataset), and for simplicity, we assume
that N ≥ N ′ and Nyi

≥ N ′
y′
j
. To compute class-wise Wasserstein distance, we need to solve

V × V ′ OT problems with the complexity Õ(Nyi × N ′
y′
j
× logNyi). Totally, the complexity is

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 4: Examples of the data corruptions used in our experimental setup. Examples of data
from the CIFAR10 dataset where the images have corruptions: noisy features, trojan square, and
poison frogs corruptions respectively.

∑V
i=1

∑V ′

j=1 Õ(Nyi
×N ′

y′
j
× logNyi

). Additionally, we also need to solve OT between two datasets

with complexity Õ(N ×N ′ × logN).

For SAVA, with the label-to-label caching implementation, for the classwise Wasserstein distance,
the total complexity is

∑V
i=1

∑V ′

j=1 Õ(Niyi
× N ′

jy′
j

× logNiyi
) where for each class yi, y

′
j , we

sample Niyi
, N ′

jy′
j

respectively for these classes. Let Ni, N
′
j be the number of samples in batches

and Kt,Kv be the number of batches respectively, the total complexity to solve all batch level OT
problems is

∑Kv

i=1

∑Kt

j=1 Õ(Ni×N ′
j× logNi). Additionally, we need to solve one more OT problem

between batches Õ(Kv ×Kt × logKv). These time complexities are summarized in Table 2.

APPENDIX E DATA CORRUPTIONS DESCRIPTIONS

We consider 4 different corruptions in our experiments (Section 5) that are applied to the training set
following the settings in Just et al. (2023):

Noisy labels. We corrupt a proportion of the labels in the training set by randomly assigning the
target a different label. This is a common corruption found in webscale vision (Xiao et al., 2015) and
speech (Radford et al., 2023) for instance.

Noisy features. We add Gaussian noise to a certain proportion of the images in the training set to
simulate common background noise corruptions that might occur in real datasets.

Backdoor attacks. A certain proportion of the training set is corrupted with a Trojan square
attack Liu et al. (2018), e.g., corrupted images have 10× 10 pixel square trigger mask added with
random noise and are relabeled to the trojan “airplane” class, see Figure 4 for an example of a
corrupted image.

Poison detections A certain proportion of training data from a specific base class is poisoned such
that the features look similar to a target class (Shafahi et al., 2018). Our target is the cat class from
the CIFAR10 dataset, which is a randomly chosen image of a cat from the test set. We take a certain
percentage of the base class which, in our case is the frog class from the CIFAR10 training dataset.
Then we optimize the poisoned images themselves using gradient descent such that the feature spaces
are close in Euclidean distance to the target cat image’s features using a pre-trained feature extractor
model (in our case a pre-trained ResNet18 model). This means that the poisoned images contain
features that look like the cat class and the labels are kept the same, meaning that this is a very
difficult attack to detect, and the features of frogs are poisoned to look like cats and labels remain
uncorrupted. See Figure 4 for an example of a poisoned frog image.

APPENDIX F DATA VALUATION RANKINGS

Corrupt data points are likely to be assigned a high value (a low value for KNN Shapley) and so
can be used for ranking the data by importance. Therefore, following Pruthi et al. (2020), we sort

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 2000 4000
Data Value Ranking

0.00

0.25

0.50

0.75

1.00

De
te

ct
io

n
ra

te LAVA
Random
KNN Shapley
TracInCP
SAVA

Figure 5: Data value rankings for various methods for the 10% poison frogs corruption. The number
of corrupt datapoints in the prefix determines the detection rate. The black dashed line represents the
N/4 prefix which is used for calculating the detection rates in Figure 2 and Figure 7.

the training examples by their value in descending order (ascending order for KNN Shapley). An
effective data valuation method would rank corrupted examples toward the start of the data valuation
ranking. We use the fraction of corrupted data recovered by the prefix of size N/4 as our detection
rate to measure the effectiveness of various methods in Figure 2. See Figure 5 for an example of this
using a poison frogs (Shafahi et al., 2018) corruption on 10% of a dataset of size 5k on CIFAR10.

APPENDIX G IMPLEMENTATION DETAILS

G.1 CIFAR10 CORRUPTION DETECTION

We use a single Nvidia K80 GPU to run all experiments.

SAVA. For both SAVA and LAVA the metric between label spaces is computed using the the exact
OT distances between conditional empirical measures for each label and we do not use Gaussian
approximations proposed in Alvarez-Melis & Fusi (2020).

TracInCP. In practice, TracInCP measures the influence of a training point by the dot product
of the gradient of the NN model parameters evaluated on the validation set and the gradient of the
NN model parameters evaluated on the specific training points, summed throughout training using
saved checkpoints of a ResNet18 model trained for 100 epochs and achieves a test accuracy of 83%
and training accuracy of 99%. We calculate gradients over the entire model and use every second
checkpoint to calculate TracInCP values, these design choices result in fewer approximations than
the original implementation (Pruthi et al., 2020).

Influence Functions. We use the following repository for obtaining results on influence
functions with default parameters https://github.com/nimarb/pytorch_influence_
functions.

KNN Shapley. The method is very sensitive to k which is a hyperparameter in the KNN algorithm
used to approximate the expensive calculation of the Shapley value. We do a grid search over
k ∈ {5, 10, 20, 50, 100, 200, 500, 1,000, 2,000} on a validation set of size 1,000 and training set of
size 2,000, where the validation set is taken from the CIFAR10 training set. Our implementation is
the same as that used in the LAVA.

Data-OOB . We use the default hyperparameters and use the implementation https://github.
com/ykwon0407/dataoob.

Pruning. For the pruning experiments we greedily prune N/4 of the ranked points with the lowest
value; the highest gradient of the OT for SAVA and LAVA. We then train a ResNet18 with the SGD
optimizer with weight decay of 5 × 10−4 and momentum of 0.9 for 200 epochs with a learning
rate schedule where for the first 100 epochs the learning rate is 0.1, then for the next 50 epochs the
learning rate is 0.01, then the final 50 epochs the learning rate is 0.001.

20

https://github.com/nimarb/pytorch_influence_functions
https://github.com/nimarb/pytorch_influence_functions
https://github.com/ykwon0407/dataoob
https://github.com/ykwon0407/dataoob

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1 2 3 4 5
Task

75

80

85

90

95

Pr
un

ed
 Te

st
 A

cc
.

Noisy Labels

LAVA
LAVA OOM
KNN_SV
SAVA

1 2 3 4 5
Task

60

70

80

90

Noisy Features

Figure 6: SAVA can value more data as a dataset incrementally increases in size. For each task,
we value the data and prune 30% of the data which we then train a CNN to obtain a test accuracy.
Left: 30% noisy labels setting. Right: 30% noisy feature setting. The star symbol (⋆) denotes the
point at which LAVA is unable to continue valuing training due GPU out-of memory errors.

G.2 CLOTHING1M

For all experiments, we use a node with 8 Nvidia K80 GPUs.

We use a ResNet18 model for feature extraction and for obtaining a final performance metric. We use
an Adam optimizer with a weight decay of 0.002. Since the pruned datasets can be of different sizes
depending on the amount of pruning. We train for a fixed number of 100k steps. We use a learning
rate schedule where for the first 30k steps the learning rate is 0.1 then the next 30k steps the learning
rate is 0.05 then the next 20k steps the learning rate is 0.01, then the next 10k steps the learning rate
is 0.001, then the next 5k steps the learning rate is 0.0001 then for the final 5k steps the learning rate
is 0.00001.

G.2.1 SAVA

SAVA has remarkably few design choices in comparison to other data pruning methods like EL2N Ap-
pendix G.2.2 and supervised prototypes Appendix G.2.3. We train a ResNet18 encoder using the
clean training set of size 47,570. Note we do not use this training set to obtain final accuracies
in Figure 3, we only use the large noisy training set for obtaining the results in Figure 3. We use a
batch size of 2048 for valuation and we use label-2-label matrix caching Appendix H.

G.2.2 EL2N

To obtain values for the points in our noisy training set to then decide which training points to prune,
we obtain our EL2N scores by training for 10 epochs 10 separate ResNet18 models on the clean
training set of size 47,570.

We also hyperparameter optimize the offset ∈ {0.0, 0.05, 0.1} using a sliding window which covers
90% of points §4 (Paul et al., 2021). This is to decide which range of ranked values to keep/ prune.
We find that using an offset of 0.0 worked best, so high values of the EL2N score will get pruned.

G.2.3 SUPERVISED PROTOTYPES

We train an image encoder using a classification objective on the clean training set provided in the
Clothing1M dataset of size 47,570. Note, that we do not use this dataset to train to augment the
pruned noisy training sets after valuation and so are not used for the results in Figure 3.

We use mini-batch K-means clustering to obtain centroids for our image embeddings. We tune the
mini-batch K-means learning rate over the grid {0.1, 0.05, 0.01, 0.005, 0.001} and the number of
centroids over the grid {1,000, 2,000, 5,000, 10,000} using the intra cluster mean-squared error on
the validation dataset.

The best configuration uses a k-means clustering learning rate of 0.05 and 10,000 cluster centers.
Then we can obtain cosine distances between every data point and its assigned cluster center and
prune points which look the most prototypical before training a classifier on the pruned dataset.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.5 1.0 2.0 5.0
Training Set Size ×104

50

60

70

80

90

Pr
un

ed
 Te

st
 A

cc
.

Noisy Features (30%)
LAVA LAVA OOM KNN Shapley SAVA

0.5 1.0 2.0 5.0
Training Set Size ×104

60

70

80

90
Noisy Labels (30%)

Figure 7: SAVA can scale to the full CIFAR10 dataset enabling better data selection performance.
After valuation, we prune a prefix of size N/4 and train a ResNet18 model on the remaining points to
report test accuracy. The symbol (⋆) denotes the point at which LAVA is unable to continue valuing
training due to GPU out-of memory (OOM) errors.

Algorithm 2 Incremental learning experimental setup.
Input: noisy training dataset initally empty Dt := ∅ and clean validation set Dv, data pruning
proportion p ∈ [0, 1].
Output: trained model M.
for Tt = 1, ..., T do

Get new data DTt .
Merge DTt with existing dataset Dt := Dt ∪ DTt .
Get valuation scores for Dt by comparing to Dv .
Prune a proportion p with the highest data values: D̃t.
Train model M on D̃t and evaluate M on Dv .

APPENDIX H ADDITIONAL EXPERIMENTS

H.1 CORRUPTION EXPERIMENTS PRUNING PERFORMANCE

We can prune the N/4 data points and train a classifier on the pruned dataset in Figure 7. SAVA can
value a larger and larger pool of training data. The subsequently pruned dataset provides better and
better performance as more clean data - which resembles the validation set - is used for training. In
contrast, LAVA has an OOM issue for the largest dataset when running the Sinkhorn algorithm on a
training set of size 50K. As a result, the performance of the ResNet18 model does not improve when
valuing larger training sets with LAVA.

128 256 512 102420484096
Batch size

0.900

0.925

0.950

0.975

De
te

ct
io

n
ra

te

128 256 512 102420484096
Batch size

1

2

Ru
nt

im
e

(s
ec

s.)

×104

Figure 8: SAVA performance as function of the batch size, Ni. The CIFAR10 dataset with noisy
label detection. Left: Detection rate. Right: detection runtimes in seconds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.1 0.5 1.0 2.0 5.0
Training Set Size ×104

0.750

0.775

0.800

0.825

0.850

De
te

ct
io

n
ra

te

0.1 0.5 1.0 2.0 5.0
Training Set Size ×104

102

103

104

Ru
nt

im
e

(s
ec

.)

SAVA
LAVA
KNN Shapley
Batchwise LAVA + l2l
SAVA + l2l

Figure 9: Label-to-label matrix caching significantly reduces runtime. Left: SAVA with and
without label-2-label (l2l) matrix caching performs similarly in detecting noisy label corruption.
Right: SAVA with l2l runs just a quickly as LAVA in terms of runtime in seconds on the same GPU.

H.2 INCREMENTAL LEARNING

We split the CIFAR10 dataset into 5 equally sized partitions with all classes, and we incrementally
build up the dataset such that it grows in size as one would train a production system (Baby et al.,
2022). We inject the data with noisy labels and noisy feature corruptions, then perform the data
valuation. We compare our proposed method with LAVA (Just et al., 2023). After valuing our training
set which is incrementally updated and grows in size throughout the incremental learning, we greedily
discard 30% of the data that are the most dissimilar to the validation set and train on the pruned
dataset. We report the final accuracy of a ResNet18 (He et al., 2016) model. We summarize this
experimental setup in Algorithm 2.

H.3 PERFORMANCE AS A FUNCTION OF BATCH SIZE

Following the discussion on the batch size in Section 4, we measure our model performance w.r.t.
different batch sizes Ni ∈ {128, 256, ..., 4,096}. We show that the performance converges with
increasing batch sizes. In this particular setting, the batch sizes of 1,024, 2,048, and 4,096 will
perform comparably in terms of detection rate while the batch size of 4,096 will consume less time
for computation of the cost across batches, since there are less and Kt is lower.

H.4 LABEL-TO-LABEL DISTANCE CACHING

We study the difference in performance and runtime between SAVA Algorithm 1 and using SAVA with
label-to-label (l2l) matrix caching discussed in Section 4 using CIFAR10 with noisy label corruptions.
We show that there are almost identical detection rates between the two variants of SAVA with and
without l2l caching Figure 9. Meanwhile, the runtime is significantly reduced using this caching
strategy and is similar to LAVA despite having to solve a quadratic number of small batch-level OT
problems.

H.5 CONSTRUCTING BATCHES

We explore two options for constructing the batches including random sampling and stratified
sampling in Figure 10. Since (uniformly) random sampling could result in a batch with an uneven
distribution of classes, this could degrade the calculation of the class-wise Wasserstein distance Eq.
(8). To mitigate, against any imbalance we compare random sampling versus stratified sampling
which evenly samples from each class to construct a batch. When valuing 10k points from the
CIFAR10 dataset with corrupted features, we find little difference in detection rates between these
two sampling schemes. This might be a consideration when the ratio of the number of classes in the
dataset to the batch size is higher.

H.6 ON THE ROBUSTNESS OF BATCH-WISE LAVA

From the corruption detection experiments, we established that Batch-wise LAVA has remarkable
performance section 5.1. However, as we vary the batch-size we notice that for small batch-sizes

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

128 256 512 1024 2048 4096
Batch size

0.6

0.7

0.8

De
te

ct
io

n
ra

te

Strat. Sampling
Rand. Sampling

Figure 10: Randomly sampling data for batch construction is robust. Detection rates for SAVA
for random sampling to construct a batch versus stratified sampling which evenly samples data from
different classes. The detection rates are calculated after valuation by inspecting the fraction of
corrupted data for a prefix of size N/4 for CIFAR10 with noisy features.

128 256 512 102420484096
Batch size

0.2

0.4

0.6

0.8

De
te

ct
io

n
ra

te

Backdoor Det.

128 256 512 102420484096
Batch size

0.8

0.9

1.0

Poison Det.
Batch-wise LAVA SAVA

128 256 512 102420484096
Batch size

0.4

0.6

0.8

1.0
Noisy Features

128 256 512 102420484096
Batch size

0.75

0.80

0.85

0.90

0.95

Noisy Labels

Figure 11: Batch-wise LAVA is not robust to different batchsizes. For 4 different corruptions on a
training dataset of size 5k with validation dataset size 2k we measure the detection rate for varying
batch sizes for SAVA and Batch-wise LAVA. The dashed grey line centered on 1024 denotes the batch
size used in Figure 2.

and large batch-sizes Batch-wise LAVA performance deteriorates dramatically Figure 11. For small
batches this is due to Batch-wise LAVA not having enough clean points in the validation batch to
detect corrupt data points in the training batch. For large batches the final batch in the dataloader
is usually smaller than the specified batch-size and so these data points in the final batch will also
suffer from not enough points in the validation batch to compare against. SAVA is able to overcome
this issue since the information from all batches is aggregated and weighted by the optimal plan
between batches, π∗

ij(µ̄t, µ̄v), in lines 7 and 10 in Algorithm 1.

APPENDIX I RELATED WORKS

Data valuation. A simple way to value a datapoint is through the leave-out-out (LOO) error; i.e. the
change in performance when the point is omitted, this is inefficient to perform in practice. Influence
functions (Koh & Liang, 2017) approximate LOO retraining using expensive approximations of the
Hessian of the NN weights. In a similar vein, TracIn (Pruthi et al., 2020) traces the influence of a
training point on a test point by looking at the difference in the loss throughout training. Another
way to value data is by using data Shapley values Ghorbani & Zou (2019); Jia et al. (2019b),
extensions include the Beta Shapley (Kwon & Zou, 2022). K-nearest neighbour models can address
the computation cost of the data Shapley (Jia et al., 2019a; Wang et al., 2023; 2024). Instead of using
the Shapley value one can use “the core” from the game theory literature for data valuation (Yan
& Procaccia, 2021). An entire dataset can be valued by its diversity, practically this can be done
by assessing its volume: the determinant of the left Gram (Xu et al., 2021). An initialized model
can also be utilized for data valuation where sets are available from contributors (Wu et al., 2022).
The Banzhaf value can also be used for data valuation (Wang & Jia, 2022). Data valuation using
out-of-bag estimators have also been shown to be effective (Kwon & Zou, 2023). Our approach
builds upon LAVA which uses the gradient OT distance between the validation and training sets to

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

assign a value to training points (Just et al., 2023). The OpenDataVal benchmark is available with
many implementations of data valuation methods (Jiang et al., 2023).

Active learning. Active learning is characterized by selecting points from an unlabeled pool of data
for labeling and then using the newly labeled datapoint to update a model (Settles, 2009). Active
learning is related to data valuation since a notion of importance is needed to value unlabeled points
to then select a label. Unlabeled samples can be valued by using the prediction disagreement from
a probabilistic model (Houlsby et al., 2011), this disagreement can also be obtained from multiple
models (Freund et al., 1997). This approach of using the disagreement of a probabilistic model can
also be thought of as selecting points to label which are the most uncertain via the predictive entropy
using probabilistic neural networks (Gal et al., 2017; Kirsch et al., 2019). Alternatively picking
points to label can be thought of as a summarization problem by obtaining a coreset of representative
data (Sener & Savarese, 2018; Mirzasoleiman et al., 2020; Coleman et al., 2019). Samples to be
labeled can be selected by interpreting the classifier output probabilities as a confidence (Li & Sethi,
2006).

Data selection. Active learning is used to select points to label and so its importance metric doesn’t
use label information, however, it has been shown to achieve competitive results for data selection;
speeding up the generalization curve over the course of training (Park et al., 2022). The influence
a point has on the training loss as a metric of informativeness has been shown to accelerate the
training of neural networks (Loshchilov & Hutter, 2015). Similarly picking points that reduce the
variance of the gradient speeds up training (Katharopoulos & Fleuret, 2018; Johnson & Guestrin,
2018). Instead of focusing on the training loss, one can select data according to the influence
on the validation loss (Mindermann et al., 2022). Instead of selecting data to train on, one can
equivalently prune away uninformative data. The data’s contribution of the gradient norm of the loss
with respect to model parameters is a natural measure for deciding which datapoints to prune from a
dataset (Paul et al., 2021). One can also prune data by how similar embeddings are to a cluster center
or prototype (Sorscher et al., 2022) and by assessing diversity within each cluster (Abbas et al., 2023;
Tirumala et al., 2023). It has also been shown that pruning data according to how easy they are to
be forgotten over the course of training - as a measure of difficulty - results in training on less data
while maintaining performance (Toneva et al., 2018). These data selection methods although related,
do not directly measure the importance of each training datapoint with respect to a clean validation
set like LAVA (Just et al., 2023) and SAVA. Meta-learning is also used to learn datapoint importance
weights by evaluating with a clean validation set (Ren et al., 2018). Similarly to LAVA and SAVA the
distributional distance between a clean validation set and a large noisy dataset can be assessed using
n-grams in NLP for selecting data to train large language models (Xie et al., 2023).

APPENDIX J SAVA VISUALIZATION

To gain insight into how the estimated OT matrices from our proposed SAVA, we visualize the artifacts
Algorithm 1 in Figure 12.

APPENDIX K OTHER DISCUSSIONS

Overfitting and Approximation. Recently, Peyré & Cuturi (2019, §8.4) revealed an important
property that solving exactly the OT problem may lead to overfitting. Therefore, investing excessive
efforts to compute OT exactly would not only be expensive but also self-defeating since it would
lead to overfitting within the computation of OT itself. As a result, our batch approximation can
be considered as a regularization for OT. We show empirically for certain cases that the batch
approximation (SAVA) performs better than the original OT (LAVA) in terms of quality while we
surpass LAVA in memory requirement.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Costs Across Batches Plan Across Batches

Cost Across Datapoints in Plan Across Datapoints in

Figure 12: Visualization of the main artifacts in Algorithm 1. For a noisy CIFAR10 valuation
problem with a training and validation set size of 10k and SAVA batch size of 1024, we visualize the
main artifacts of the SAVA algorithm for illustrative purposes. From left to right, from the top row to
the bottom row: the first matrix is the cost matrix between batches: C̄(µ̄t, µ̄v) and then the optimal
plan π̄∗(µ̄t, µ̄v) is the associated plan which is the solution to the optimal transport problem. In the
second row we visualize C(µBi , µB′

j
) the optimal transport distance between points in the final batch

Bi from the training set and the final batch B′
j in the validation set and its corresponding optimal

plan π∗(µBi
, µB′

j
), we have used a log transform to on the optimal plan between datapoints to help

viewing it.

26

	Introduction
	Optimal Transport for Data Valuation
	Optimal Transport for Labeled Datasets
	LAVA: Data valuation via calibrated OT gradients

	SAVA: Scalable Data Valuation
	Properties and Discussions
	Experiments
	Dataset Corruption Detection
	Large Scale Valuation and Pruning

	Conclusions
	Broader Impact
	Limitations
	Details of Theoretical Results
	Existing Theorem 2 in just2023lava
	Proof of Theorem 2
	Proof of Lemma 3

	SAVA Time Complexity
	Data Corruptions Descriptions
	Data Valuation Rankings
	Implementation Details
	CIFAR10 Corruption Detection
	Clothing1M
	SAVA
	EL2N
	Supervised Prototypes

	Additional Experiments
	Corruption Experiments Pruning Performance
	Incremental learning
	Performance as a function of batch size
	Label-to-label distance caching
	Constructing batches
	On the robustness of Batch-wise LAVA

	Related Works
	SAVA Visualization
	Other Discussions

