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ABSTRACT

Many crucial scientific problems involve designing novel molecules with desired
properties, which can be formulated as an expensive black-box optimization prob-
lem over the discrete chemical space. Computational methods have achieved ini-
tial success but still struggle with simultaneously optimizing multiple compet-
ing properties in a sample-efficient manner. In this work, we propose a multi-
objective Bayesian optimization (MOBO) algorithm leveraging the hypernetwork-
based GFlowNets (HN-GFN) as an acquisition function optimizer, with the pur-
pose of sampling a diverse batch of candidate molecular graphs from an approxi-
mate Pareto front. Using a single preference-conditioned hypernetwork, HN-GFN
learns to explore various trade-offs between objectives. Inspired by reinforcement
learning, we further propose a hindsight-like off-policy strategy to share high-
performing molecules among different preferences in order to speed up learning
for HN-GFN. Through synthetic experiments, we illustrate that HN-GFN has ad-
equate capacity to generalize over preferences. Extensive experiments show that
our framework outperforms the best baselines by a large margin in terms of hy-
pervolume in various real-world MOBO settings.

1 INTRODUCTION

Designing novel molecular structures with desired properties, also referred to as molecular optimiza-
tion, is a crucial task with great application potential in scientific fields ranging from drug discovery
to material design. Molecular optimization can be naturally formulated as a black-box optimization
problem over the discrete chemical space, which is combinatorially large (Polishchuk et al., 2013).
Recent years have witnessed the trend of leveraging computational methods, such as deep generative
models (Jin et al., 2018) and combinatorial optimization algorithms (You et al., 2018; Jensen, 2019),
to facilitate the optimization. However, the applicability of most prior approaches in real-world
scenarios is hindered by two practical constraints: (i) realistic oracles (e.g., wet-lab experiments
and high-fidelity simulations) require substantial costs to synthesize and evaluate molecules (Gao
et al., 2022), and (ii) chemists commonly seek to optimize multiple properties of interest simulta-
neously (Jin et al., 2020b). For example, in addition to effectively inhibiting a disease-associated
target, an ideal drug is desired to be easily synthesizable and non-toxic.

Bayesian optimization (BO) (Jones et al., 1998; Shahriari et al., 2015) provides a sample-efficient
framework for globally optimizing expensive black-box functions. The basic idea is to construct
a cheap-to-evaluate surrogate model, typically a Gaussian Process (GP) (Rasmussen, 2003), to ap-
proximate the true function (also known as the oracle) on the observed dataset. The core objective
of BO is to optimize an acquisition function (built upon the surrogate model) in order to obtain in-
formative candidates with high utility for the next round of evaluations. This loop is repeated until
the evaluation budget is exhausted. Owing to the fact that a large batch of candidates can be evalu-
ated in parallel in biochemical experiments, we perform batch BO (with large-batch and low-round
settings (Angermueller et al., 2020)) to significantly shorten the entire cycle of optimization.

As multi-objective optimization (MOO) problems are prevalent in scientific and engineering appli-
cations, MOBO also received broad attention and achieved promising performance by effectively
optimizing differentiable acquisition functions (Daulton et al., 2020). Nevertheless, it is less promi-
nent in discrete problems, especially considering batch settings. The difficulty lies in the fact that no
gradients can be leveraged to navigate the discrete space for efficient and effective optimization of
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Figure 1: MOBO loop for molecular optimization using an evidential surrogate model M for un-
certainty estimation and HN-GFN for acquisition function optimization. In each round, the policy
πθ is trained with reward function Rλ, where λ is sampled from Dir(α) per iteration. A new batch
of candidates is sampled from the approximate Pareto front according to λtarget ∈ Λ.

the acquisition function. Although most of the existing discrete molecular optimization methods can
be adopted as the acquisition function optimizer to alleviate this issue, they suffer from the following
limitations. 1) Most approaches do not explicitly discuss the diversity of the proposed candidates,
which is a key consideration in batch settings as the surrogate model cannot exactly reproduce the
oracle’s full behaviors. Therefore, we not only want to cover more high modes of the surrogate
model but also to obtain candidates that bring additional information about the search space. 2)
Most multi-objective methods (Xie et al., 2021; Fu et al., 2022) simply rely on a scalarization func-
tion, parameterized by a predefined preference vector reflecting the trade-off between objectives,
and turn the MOO problem into a single-objective one. Unfortunately, an ideal trade-off is unclear
before optimization (even with domain knowledge), and many potential trade-offs of interest are
worth exploring. In principle, it is possible to independently train multiple optimization models,
each conditioned on a distinct preference vector, to cover the objective space. Practically, this trivial
strategy cannot efficiently scale with the number of objectives (Navon et al., 2021).

The recently proposed GFlowNets (Bengio et al., 2021a) are a class of generative models over
discrete objects (e.g., molecular graphs) that aim to learn a stochastic policy for sequentially con-
structing objects with a probability proportional to a reward function (e.g., the acquisition function).
Hence, GFlowNets possess merit in generating diverse and high-reward objects, which makes them
appealing in the batch BO context where exploration plays a significant role (Jain et al., 2022).

In this work, we present a MOBO algorithm based on GFlowNets for sample-efficient multi-
objective molecular optimization. We propose a hypernetwork-based GFlowNet (HN-GFN) as the
acquisition function optimizer within MOBO to sample a diverse batch of candidates from an ap-
proximate Pareto front. Instead of defining a fixed reward function as usual in past work (Ben-
gio et al., 2021a), we train a unified GFlowNet on the distribution of reward functions (random
scalarizations parameterized by preference vectors) and control the policy using a single preference-
conditioned hypernetwork. While sampling candidates, HN-GFN explores various trade-offs be-
tween competing objectives flexibly by varying the input preference vector. Inspired by Hindsight
Experience Replay (Andrychowicz et al., 2017) in RL, we further introduce a hindsight-like off-
policy strategy to share high-performing molecules among different preferences and speed up learn-
ing for HN-GFN. As detailed in our reported experiments, we first evaluate HN-GFN through syn-
thetic experiments to verify that HN-GFN is capable of generalizing over preference vectors, then
apply the proposed framework to real-world scenarios. Remarkably, our framework outperforms the
best baselines by 60% and 24% (relative improvement in terms of hypervolume in the settings with
two and four objectives), respectively. Our key contributions are summarized below:

• We propose HN-GFN, a unified GFlowNet that can efficiently sample candidates from an
approximate Pareto front using a single hypernetwork.
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• We introduce a hindsight-like off-policy strategy to speed up learning in HN-GFN.

• Experiments verify that our MOBO algorithm based on HN-GFN can find high-quality
Pareto front more efficiently compared to state-of-the-art baselines.

2 RELATED WORK

Molecular optimization. Recently, molecular optimization has been approached with a wide va-
riety of computational methods, which can be mainly grouped into three categories: 1) Latent space
optimization (LSO) methods perform the optimization over the low-dimensional continuous latent
space learned by generative models such as variational autoencoders (VAEs) (Gómez-Bombarelli
et al., 2018; Maus et al., 2022). These methods require the latent representations to be discrim-
inative, but the training of the generative model is decoupled from the optimization objectives,
imposing challenges for optimization (Tripp et al., 2020). Instead of navigating the latent space,
combinatorial optimization methods search for the desired molecular structures directly in the ex-
plicit discrete space with 2) evolutionary algorithms (Jensen, 2019) and 3) deep neural networks
to guide the searching (You et al., 2018). However, most prior methods only focus on optimizing
a single property, from non-biological properties such as drug-likeliness (QED) (Bickerton et al.,
2012) and synthetic accessibility (SA) (Ertl & Schuffenhauer, 2009), to biological properties that
measure the binding energy to a protein target (Bengio et al., 2021a). Despite the above advances,
multi-objective molecular optimization has recently received wide attention (Jin et al., 2020b; Xie
et al., 2021; Fu et al., 2022). For example, MARS (Xie et al., 2021) employs Markov chain Monte
Carlo (MCMC) sampling to find novel molecules satisfying several properties. However, most ap-
proaches require a notoriously large number of oracle calls to evaluate molecules on-the-fly (Jin
et al., 2020b; Xie et al., 2021). In contrast, we tackle this problem in a sample-efficient manner.

GFlowNet. GFlowNets (Bengio et al., 2021a) aim to sample composite objects proportionally to
a reward function, instead of maximizing it as usual in RL (Sutton & Barto, 2018). GFlowNets are
related to the MCMC methods due to the same objective, while amortizing the high cost of sampling
(mixing between modes) over training a generative model (Zhang et al., 2022). GFlowNets have
made impressive progress in various applications, such as active learning (Jain et al., 2022), discrete
probabilistic modeling (Zhang et al., 2022), and Bayesian structure learning (Deleu et al., 2022). For
a thorough discussion and mathematical treatment, we refer the readers to Bengio et al. (2021a;b)

Bayesian Optimization for discrete spaces. While the application of BO in continuous domains
has proliferated during the last decade, effort in applying it to discrete spaces is lacking. It is
much more challenging to construct surrogate models and optimize acquisition functions in dis-
crete spaces, compared to continuous spaces. One common approach is to define GPs with discrete
kernels (Moss et al., 2020) and solve the acquisition function optimization problem with evolution-
ary algorithms (Kandasamy et al., 2018). Moreover, AmortizedBO (Swersky et al., 2020) proposes
to augment the evolutionary algorithms with RL.

Multi-objective Bayesian Optimization. BO has been widely used in MOO problems for effi-
ciently optimizing multiple competing black-box functions. Most popular approaches are based
on hypervolume improvement (Daulton et al., 2020), random scalarizations (Knowles, 2006; Paria
et al., 2020), and entropy search (Hernández-Lobato et al., 2016). While there have been several
approaches that take parallel evaluations (Bradford et al., 2018; Konakovic Lukovic et al., 2020)
and diversity (Konakovic Lukovic et al., 2020) into account, they are limited to continuous domains.

3 BACKGROUND

3.1 PROBLEM FORMULATION

We address the problem of searching over a discrete chemical space X to find molecular graphs x ∈
X that maximize a vector-valued objective f(x) =

(
f1(x), f2(x), . . . , fM (x)

)
: X → RM , where

fm is a black-box function (also known as the oracle) evaluating a certain property of molecules.
Practically, realistic oracles are extremely expensive to evaluate with either high-fidelity simulations
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or wet-lab experiments. We thus propose to perform optimization in as few oracle evaluations as
possible, since the sample efficiency is paramount in such a scenario.

There is typically no single optimal solution to the MOO problem, as different objectives may con-
tradict each other. Consequently, the goal is to recover the Pareto front – the set of Pareto optimal
solutions which cannot be improved in any one objective without deteriorating another (Ehrgott,
2005; Miettinen, 2012). In the context of maximization, a solution f(x) is said to Pareto dominates
another solution f(x′) iff fm(x) ≥ fm(x′) ∀m = 1, . . . ,M and ∃m′ such that fm′(x) > fm′(x′),
and we denote f(x) ≻ f(x′). A solution f(x∗) is Pareto optimal if not Pareto dominated by any
solution. The Pareto front can be written as P∗ = {f(x∗) : {f(x) : f(x) ≻ f(x∗) } = ∅}.

The quality of a finite approximate Pareto front P is commonly measured by hypervolume (HV) (Zit-
zler & Thiele, 1999) – the M-dimensional Lebesgue measure λM of the space dominated by P and
bounded from below by a given reference point r ∈ RM : HV (P, r) = λM (∪|P|

i=1[r, yi]), where
[r, yi] denotes the hyper-rectangle bounded by r and yi = f(xi).

3.2 BATCH BAYESIAN OPTIMIZATION

Bayesian optimization (BO) (Shahriari et al., 2015) provides a model-based iterative framework for
sample-efficient black-box optimization. Given an observed dataset D, BO relies on a Bayesian
surrogate model M to estimate a posterior distribution over the true oracle evaluations. Equipped
with the surrogate model, an acquisition function a : X → R is induced to assign the utility values to
candidate objects for deciding which to next evaluate the oracle. Compared with the costly oracle,
the cheap-to-evaluate acquisition function can be efficiently optimized. We consider the scenario
where the oracle is given an evaluation budget of N rounds with fixed batches of size b.

To be precise, we have access to a random initial dataset D0 = {(x0
i , y

0
i )}ni=1, where y0i = f(x0

i )
is true oracle evaluation. In each round i ∈ {1, . . . , N}, the acquisition function is maximized to
yield a batch of candidates Bi = {xi

j}bj=1 to be evaluated in parallel on the oracle yij = f(xi
j). The

observed dataset Di−1 is then augmented for the next round: Di = Di−1 ∪ {(xi
1, y

i
j)}bj=1.

4 METHOD

In this section, we present the proposed MOBO algorithm based on hypernetwork-based GFlowNet
(HN-GFN), shown in Figure 1. Our key idea is to extend GFlowNets as the acquisition function
optimizer for MOBO, with the objective to sample a diverse batch of candidates from the approx-
imate Pareto front. To begin, we introduce GFlowNets in the context of molecule design, then de-
scribe how GFlowNet can be biased by a preference-conditioned hypernetwork to sample molecules
according to various trade-offs between objectives. Next, we propose a hindsight-like off-policy
strategy to speed up learning in HN-GFN. Lastly, we introduce the evidential surrogate model.

4.1 PRELIMINARIES

GFlowNets (Bengio et al., 2021a) seek to learn a stochastic policy π for sequentially constructing
discrete objects x ∈ X with a probability π(x) ∝ R(x), where X is a compositional space and
R : X → R≥0 is a non-negative reward function. The generation process of object x ∈ X can
be represented by a sequence of discrete actions a ∈ A that incrementally modify a partially con-
structed object, which is denoted as state s ∈ S . Let generation process begin at a special initial
state s0 and terminate with a special action indicating that the object is complete (s = x ∈ X ), the
construction of an object x can be defined as a complete trajectory τ = (s0 → s1 → · · · → sn = x).

Following fragment-based molecule design (Bengio et al., 2021a; Xie et al., 2021), we first define a
vocabulary of building blocks (molecule fragments), then generate molecular graphs by sequentially
attaching a fragment to an atom of the partially constructed molecules. There are multiple action
sequences leading to the same state, and no fragment deleting actions, the space of possible action
sequences can thus be denoted by a directed acyclic graph (DAG) G = (S, E), where the edges in E
are transitions s → s′ from one state to another. To learn the aforementioned desired policy, Bengio
et al. (2021a) propose to see the DAG structure as a flow network.
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Markovian flows. Bengio et al. (2021b) first define a trajectory flow F : T → R≥0 on the set
of all complete trajectories T to measure the unnormalized density. The edge flow and state flow
can then be defined as F (s → s′) =

∑
s→s′∈τ F (τ) and F (s) =

∑
s∈τ F (τ), respectively. The

trajectory flow F determines a probability measure P (τ) = F (τ)∑
τ∈T F (τ) . If flow F is Markovian, the

forward transition probabilities PF can be computed as PF (s
′|s) = F (s→s′)

F (s) .

Flow matching objective. A flow is consistent if the following flow consistency equation is satis-
fied ∀s ∈ S:

F (s) =
∑

s′∈PaG(s)

F (s′ → s) = R(s) +
∑

s′′:s∈PaG(s′′)

F (s → s′′) (1)

where PaG(s) is a set of parents of s in G. As proved in Bengio et al. (2021a), if the flow consistency
equation is satisfied with R(s) = 0 for non-terminal state s and F (x) = R(x) ≥ 0 for terminal state
x, a policy π defined by the forward transition probability π(s′|s) = PF (s

′|s) samples object x with
a probability π(x) ∝ R(x). GFlowNets propose to approximate the edge flow F (s → s′) using a
neural network Fθ(s, s

′) with enough capacity, such that the flow consistency equation is respected
at convergence. To achieve this, Bengio et al. (2021a) define a temporal difference-like (Sutton &
Barto, 2018) learning objective, called flow-matching (FM):

LFM(s,R; θ) =

(
log

∑
s′∈PaG(s) Fθ(s

′, s)

R(s) +
∑

s′′:s∈PaG(s′′) Fθ(s, s′′)

)2

(2)

Bengio et al. (2021a) prove that we can use any exploratory policy π̃ with full support to sample
training trajectories and obtain the consistent flow Fθ(s, s

′) by minimizing the FM objective. Con-
sequently, a policy defined by this approximate flow πθ(s

′|s) = PFθ
(s′|s) = Fθ(s→s′)

Fθ(s)
can also

sample objects x with a probability πθ(x) proportionally to reward R(x). Practically, the training
trajectories are sampled from an exploratory policy which is a mixture between PFθ

and a uniform
distribution over allowed actions (Bengio et al., 2021a).

4.2 HYPERNETWORK-BASED GFLOWNETS

Our proposed HN-GFN aims at sampling a diverse batch of candidates from the approximate Pareto
front with a unified model. A common approach to MOO is to decompose it into a set of scalar
optimization problems with different scalarization functions and apply standard single-objective
optimization methods to gradually approximate the Pareto front (Knowles, 2006; Zhang & Li, 2007).
We here consider convex combinations (weighted sum) of the objectives. Let λ = (λi, · · · , λM ) ∈
SM be a preference vector defining the trade-off between the competing properties, where SM =
{λ ∈ Rm|

∑
i λi = 1, λi ≥ 0} is the M − 1 simplex. Then the scalarization function can be

formulated as sλ(x) =
∑

i λif
i(x).

To support parallel evaluations in BO, one can obtain candidates according to different scalariza-
tions (Daulton et al., 2020). Practically, this approach hardly scales efficiently with the number
of objectives for discrete problems. Taking GFlowNet as an example, we need to train multiple
GFlowNets independently for each choice of the reward function Rλ(x) = sλ(x) to cover the ob-
jective space:

θ∗λ = argmin
θ

Es∈SLFM(s,Rλ) (3)

Our key motivation is to design a unified GFlowNet to sample candidates according to different
reward functions, even ones not seen during training. Instead of defining the reward function with a
fixed preference vector λ, we propose to train a preference-conditioned GFlowNet on a distribution
of reward functions Rλ, where the preference vector λ is sampled from a simplex SM :

θ∗ = argmin
θ

Eλ∈SM
Es∈SLFM(s,Rλ) (4)

Note that the preliminary concept of conditional GFlowNet was originally introduced in Bengio
et al. (2021b). We study and instantiate this concept, aiming to facilitate MOO in the context of
molecule design.
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Remarks. Our proposed optimization scheme of training a single model to fit a family of loss
functions fits into the framework of YOTO (Dosovitskiy & Djolonga, 2019). As proved in Doso-
vitskiy & Djolonga (2019), assuming an infinite model capacity, the proposed optimization scheme
(Eq. 4) is as powerful as the original one (Eq. 3), since the solutions to both loss functions coincide.
Nevertheless, the assumption of infinite capacity is extremely strict and hardly holds, so how to
design the conditioning mechanism in practice becomes crucial.

4.2.1 HYPERNETWORK-BASED CONDITIONING MECHANISM

We propose to condition the GFlowNets on the preference vectors via hypernetworks (Ha et al.,
2016). Hypernetworks are deep networks that generate the weights of a target network based on
inputs. In vanilla GFlowNets, the flow predictor Fθ is parameterized with the MPNN (Gilmer et al.,
2017) over the graph of molecular fragments, with two prediction heads approximating F (s, s′) and
F (s) based on the node and graph representations respectively. These two heads are parameterized
with multi-layer perceptrons (MLPs).

One can view the training of HN-GFN as learning an agent to perform multiple policies that corre-
spond to different goals (reward functions R) defined in the same environment (state space S and
action space A). Therefore, we propose to only condition the weights of prediction heads θpred with
hypernetworks, while sharing the weights of MPNN θmpnn, leading to more generalizable state repre-
sentations. More precisely, a hypernetwork h(·;ϕ) takes as inputs the preference vector λ to output
the weights θpred = h(λ;ϕ) of prediction heads in the flow predictor Fθ. For brevity, we write
θ = (θmpnn, θpred). Following Navon et al. (2021), we parametrize h using a MLP with multiple
heads, each generating weights for different layers of the target network.

4.2.2 AS THE ACQUISITION FUNCTION OPTIMIZER

Training. At each iteration, we first randomly sample a new preference vector λ from a Dirichlet
distribution Dir(α). Then the HN-GFN is trained in a usual manner with the reward function set
as Rλ(x) = a(µ(sλ(x)), σ(sλ(x));M), where µ and σ are posterior mean and standard deviation
estimated by M.

Sampling. At each round i, we use the trained HN-GFN to sample a diverse batch of b candidates.
Let Λi be the set of l target preference vectors λi

target. We sample b
l molecules per λi

target ∈ Λi and
evaluate them on the oracle in parallel. In practice, we simply sample λi

target from Dir(α), but it
is worth noting that this prior distribution can also be defined adaptively based on the trade-off of
interest. As the number of objectives increases, we choose a larger l to cover the objective space.

4.3 HINDSIGHT-LIKE OFF-POLICY STRATEGY

Resorting to the conditioning mechanism, HN-GFN can learn a family of policies to achieve various
goals, i.e., one can treat sampling high-reward molecules for a particular preference vector as a
separate goal. As verified empirically in Jain et al. (2022), since the FM objective is off-policy and
offline, we can use offline trajectories to train the target policy for better exploration, so long as the
assumption of full support holds. Our key insight is that each policy can learn from the valuable
experience (high-reward molecules) of other similar policies.

To achieve this, inspired by Hindsight Experience Replay (Andrychowicz et al., 2017) in RL, we
propose to share high-performing molecules among policies by re-examining them with different
preference vectors. Because there are infinite possible preference vectors, here we only focus on Λi,
which are based on to sample candidates at round i, and build a replay buffer for each λi

target ∈ Λi.
After sampling some trajectories during training, we store in the replay buffers the complete object
x with the reward Rλi

target
(x).

Algorithm 2 describes the training procedure for HN-GFN with the proposed hindsight-like strategy.
At each iteration, we first sample a preference vector from a mixture between Dir(α) and a uniform
distribution over Λi: (1 − γ)Dir(α) + γUniform. If Λ is chosen, we construct half of the training
batch with offline trajectories from the corresponding replay buffer of molecules encountered with
the highest rewards. Otherwise, we incorporate offline trajectories from the current observed dataset
Di instead to ensure that HN-GFN samples correctly in the vicinity of the observed Pareto set.
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Figure 2: Left: The distribution of Top-100 JNK3 scores over different preference vectors. Right:
The progression of the average Top-20 rewards over the course of training of the HN-GFN in opti-
mizing GSK3β and JNK3 with different strategies.

4.4 EVIDENTIAL SURROGATE MODEL

While GPs are well-established in continuous spaces, they scale poorly with the number of obser-
vations and do not perform well in discrete spaces (Swersky et al., 2020). There has been signif-
icant work in efficiently training non-Bayesian neural networks to estimate the uncertainty (Gal &
Ghahramani, 2016). In this work, we use evidential deep learning (Amini et al., 2020) to explicitly
learn the epistemic uncertainty. Compared with the widely used MC Dropout (Gal & Ghahramani,
2016) and Deep Ensembles (Lakshminarayanan et al., 2017), evidential deep learning presents the
advantages of faster inference speed and superior calibrated uncertainty (Soleimany et al., 2021). As
for the acquisition function, we use Upper Confidence Bound (Srinivas et al., 2010) to incorporate
epistemic uncertainty. To be precise, the objectives are modeled with a single multi-task network
and the acquisition function is applied to the scalarization. See Appendix C.3 for more discussion.

5 EXPERIMENTS

We first verify that HN-GFN has adequate capacity to generalize over preference vectors in a syn-
thetic scenario. Next, we evaluate the effectiveness of the proposed MOBO algorithm based on
HN-GFN in practical scenarios, which are more in line with real-world molecular optimization.
Implementation details and additional results are provided in the Appendix.

5.1 SYNTHETIC SCENARIO

Here, our goal is to demonstrate that we can leverage the HN-GFN to sample molecules with
preference-conditioned property distributions. The HN-GFN is used as a stand-alone optimizer
outside of MOBO to directly optimize the scalarizations of oracle scores. As the oracle cannot
be called as many times as necessary practically, we refer to this scenario as a synthetic scenario.
To better visualize the trend of the property distribution of the sampled molecules as a function of
the preference vector, we only consider two objectives: inhibition scores against glycogen synthase
kinase-3 beta (GNK3β) and c-Jun N-terminal kinase-3 (JNK3) (Li et al., 2018; Jin et al., 2020b).

Compared methods. We compare HN-GFN against the following methods. Preference-specific
GFlowNet is a vanilla GFlowNet trained independently for a particular preference vector. Note
that the preference-specific GFlowNet is treated as ”gold standard” rather than the baseline, as it
is trained and evaluated using the same preference vector. Concat-GFN and FiLM-GFN are two
variations of the conditional GFlowNet based on FiLM (Perez et al., 2018) and concatenation, re-
spectively. MOEA/D (Zhang & Li, 2007) and NSGA-III (Deb & Jain, 2013) are two multi-objective
evolutionary algorithms that also incorporate preference information. We perform evolutionary al-
gorithms over the 32-dim latent space learned by HierVAE (Jin et al., 2020a), which gives better
optimization performance than JT-VAE (Jin et al., 2018).

Metrics. All the above methods are evaluated over the same set of 5 evenly spaced preference
vectors. For each GFlowNet-based method, we sample 1000 molecules per preference vector as
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Table 1: Evaluation of different methods on the synthetic scenario

Method HV Div Cor
MOEA/D 0.182 ± 0.045 n/a n/a
NSGA-III 0.364 ± 0.041 n/a n/a
preference-specific GFlowNet 0.545 ± 0.055 0.786 ± 0.013 0.653 ± 0.003

Concat-GFN 0.534 ± 0.069 0.786 ± 0.004 0.646 ± 0.008
FiLM-GFN 0.431 ± 0.045 0.795 ± 0.014 0.633 ± 0.009

HN-GFN 0.550 ± 0.074 0.797 ± 0.015 0.666 ± 0.010

Table 2: Evaluation of different methods on MOBO scenarios (mean ± std over 3 runs)

GSK3β + JNK3 GSK3β + JNK3 + QED + SA
HV Div HV Div

HierVAE+qParEGO 0.205 ± 0.015 n/a 0.186 ± 0.009 n/a
HierVAE+qEHVI 0.341 ± 0.072 n/a 0.211 ± 0.006 n/a
LaMOO 0.279 ± 0.090 n/a 0.190 ± 0.069 n/a
GP-BO 0.368 ± 0.020 0.347 ± 0.059 0.335 ± 0.021 0.562 ± 0.031
MARS 0.418 ± 0.095 0.653 ± 0.072 0.273 ± 0.020 0.754 ± 0.027
HN-GFN 0.572 ± 0.087 0.810 ± 0.003 0.389 ± 0.012 0.744 ± 0.008
HN-GFN w/ hindsight 0.669 ± 0.061 0.793 ± 0.007 0.416 ± 0.023 0.738 ± 0.009

the solutions. We compare the aforementioned methods on the following metrics: Hypervolume
indicator (HV) measures the volume of the space dominated by the Pareto front of the solutions
and bounded from below by the preference point (0, 0). Diversity (Div) is the average pairwise
Tanimoto distance over Morgan fingerprints. Correlation (Cor) is the Spearman’s rank correla-
tion coefficient between the probability of sampling molecules from an external test set under the
GFlowNet and their respective rewards in the logarithmic domain (Nica et al., 2022). See more
details in Appendix B.1.2. In a nutshell, HV and Div measure the quality of the solutions, while Cor
measures how well the trained model is aligned with the given preference vector.

Experimental results. As shown in Table 1, HN-GFN outperforms the baselines and achieves
competitive performance to the preference-specific GFlowNets (gold standard) on all the metrics.
Compared to the GFlowNet-based methods, the evolutionary algorithms (MOEA/D and NSGA-
III) fail to find high-scoring molecules, especially the MOEA/D. HN-GFN outperforms Concat-
GFN and FiLM-GFN in terms of HV and Cor, implying the superiority of the well-designed
hypernetwork-based conditioning mechanism. The comparable performance of HN-GFN and
preference-specific GFlowNets illustrates that HN-GFN can generalize over preference vectors.
Therefore, the unified HN-GFN provides a significantly efficient way to explore various trade-offs
between objectives. In Figure 2 (Left), we visualize the trend of the empirical distribution of JNK3
as the preference weight increases. Intuitively, HN-GFN and preference-specific GFlowNets show
consistent trends: the larger the preference weight, the higher the average score.

5.2 MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

Next, we evaluate the effectiveness of HN-GFN as an acquisition function optimizer within MOBO
in the practical scenarios, where there is a limited evaluation budget for oracle. We consider the
following objective combinations of varying size:

• GNK3β+JNK3: Jointly inhibiting Alzheimer-related targets GNK3β and JNK3.

• GNK3β+JNK3+QED+SA: Jointly inhibiting GNK3β and JNK3 while being drug-like and
easy-to-synthesize.

We rescale the SA score such that all the above properties have a range of [0,1] and higher is bet-
ter. For both combinations, we consider starting with |D0| = 200 random molecules and further
querying the oracle N = 8 rounds with batch size b = 100.
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Baselines. We compare HN-GFN with the following methods (from each category men-
tioned in section 2) as the acquisition function optimizer: HierVAE (Jin et al., 2020a) with
qParEGO/qEHVI (Daulton et al., 2020) and LaMOO (Zhao et al., 2022) are LSO methods. GP-
BO (Tripp et al., 2021) uses Graph GA (Jensen, 2019) to optimize the acquisition function defined
based on a GP with Tanimoto kernel. MARS (Xie et al., 2021) applies MCMC sampling to opti-
mize the acquisition function defined based on the same surrogate function as HN-GFN. Note that
the RL-based P-MOCO (Xi Lin, 2022) is also implemented but fails to optimize the properties.

Experimental results. Table 2 shows that HN-GFN achieves superior performance over the base-
lines in terms of HV and Div, especially trained with the hindsight-like off-policy strategy. Note
that the Div is computed among the batch of 100 candidates per round, we omit this metric for LSO
methods as they only support 160 rounds with batch size 5 due to memory constraint. Our HN-GFN
w/ hindsight outperforms the best baselines MARS and GP-BO of the two objective combinations
by a large margin (60.0% and 24.2% relative improvement) with respect to HV, respectively. The
promising performance can be attributed to the ability of HN-GFN to sample a diverse batch of can-
didates from the approximate Pareto front. Another interesting observation, in the more challenging
settings where four objectives are optimized, is that MARS generates diverse candidates via MCMC
sampling but fails to find high-quality Pareto front, indicating that HN-GFN can find high-reward
modes better than MARS. The computational costs are discussed in the Appendix B.4.

5.3 ABLATIONS

Effect of the hindsight-like strategy. In the first round of MOBO, for each λtarget ∈ Λ we sample
100 molecules every 500 training steps and compute the average Top-20 reward over Λ. In Figure 2
(Right), as we vary γ from 0 to 1, the hindsight-like strategy significantly boosts average rewards,
demonstrating that sharing high-performing molecules among policies is effective for speeding up
the training of HN-GFN. We choose γ = 0.2 for the desired trade-off between reward and general-
ization, see Appendix C.2 for a detailed explanation.

Effect of α. Next, we study the effect of the prior distribution of preference vectors Dir(α). We
consider the more challenging GNK3β+JNK3+QED+SA combination, where the difficulty of op-
timization varies widely for various properties. Table 3 shows that the distribution skewed toward
harder properties results in better optimization performance.

Effect of scalarization functions. In addition to the weighted sum (WS), we consider the Tcheby-
cheff (Miettinen, 2012) that is also commonly used in MOO. Table 3 shows that Tchebycheff leads
to a worse Pareto front compared to WS. We conjecture that the non-smooth reward landscapes
induced by Tchebycheff are harder to optimize.

Table 3: Ablation study of the α and scalarization functions on GNK3β+JNK3+QED+SA

α scalarization function
(1,1,1,1) (3,3,1,1) (3,4,2,1) WS Tchebycheff

HV 0.312 ± 0.039 0.385 ± 0.018 0.416 ± 0.023 0.416 ± 0.023 0.304 ± 0.075
Div 0.815 ± 0.015 0.758 ± 0.018 0.738 ± 0.009 0.738 ± 0.009 0.732 ± 0.014

6 CONCLUSION

We have introduced a MOBO algorithm for sample-efficient multi-objective molecular optimization.
This algorithm leverages a hypernetwork-based GFlowNet (HN-GFN) to sample a diverse batch of
candidates from the approximate Pareto front. In addition, we present a hindsight-like off-policy
strategy to improve optimization performance. Our algorithm outperforms existing approaches on
synthetic and practical scenarios. Future work includes extending this algorithm to other discrete
optimization problems such as biological sequence design and neural architecture search.
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G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Julian Blank and Kalyanmoy Deb. Pymoo: Multi-objective optimization in python. IEEE Access,
8:89497–89509, 2020.

Eric Bradford, Artur M Schweidtmann, and Alexei Lapkin. Efficient multiobjective optimization
employing gaussian processes, spectral sampling and a genetic algorithm. Journal of global
optimization, 71(2):407–438, 2018.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume
improvement for parallel multi-objective bayesian optimization. Advances in Neural Information
Processing Systems, 33:9851–9864, 2020.

Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems with box con-
straints. IEEE transactions on evolutionary computation, 18(4):577–601, 2013.
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A ALGORITHMS

Algorithm 1 describes the overall framework of the proposed MOBO algorithm, where HN-GFN
is leveraged as the acquisition function optimizer. Algorithm 2 describes the training procedure for
HN-GFN within MOBO.

Algorithm 1 MOBO based on HN-GFN
Input: oracle f = (f1, . . . , fM ), initial dataset D0 = {(x0

i , f(x
0
i ))}ni=1, acquisition function a,

parameter of Dirichlet distribution α, number of rounds N , batch size b
Initialization: surrogate model M, parameters of HN-GFN πθ

for i = 1 to N do
Fit surrogate model M on dataset Di−1

Sample the set of target preference weights Λ ∼ Dir(α)
Train πθ with reward function Rλ(x) = a(µ(sλ(x)), σ(sλ(x));M) ▷ Algorithm 2
Sample query batch Bi = {xi

j}bj=1 based on λtarget ∈ Λ

Evaluate batch Bi with f and augment the dataset Di+1 = Di ∪ {(xi
j , f(x

i
j))}bj=1

end for

Algorithm 2 Training procedure for HN-GFN with the hindsight-like off-policy strategy
Input: available dataset Di, reward function R, minibatch size m, set of target preference vectors
Λ, proportion of hindsight-like strategy γ, replay buffers {Rλ}λ∈Λ

while not converged do
Flag ∼ Bernoulli(γ)
if Flag = 1 then

λ ∼ Λ
Sample m

2 trajectories from replay buffer Rλ

else
λ ∼ Dir(α)
Sample m

2 trajectories from the available dataset Di

end if
θ = (θmpnn, h(λ;ϕ))
Sample m

2 trajectories from policy π̃ and store terminal states x in Rλ for all λ ∈ Λ
Compute reward Rλ(x) on terminal states x from each trajectory in the minibatch
Update parameters θmpnn and ϕ with a stochastic gradient descent step w.r.t Eq. 2

end while

B IMPLEMENTATION DETAILS

B.1 EXPERIMENTAL SETTINGS

B.1.1 MOLECULE DOMAIN

Following (Bengio et al., 2021b), the molecules are generated based on a set of 105 building blocks.
The same substructure containing multiple stems (atoms for linking another building block) is served
as separate building blocks. We allow the GFlowNet to sample molecules with 2-8 blocks. As for
the oracles, we adopt the property prediction models (random forest) released by (Xie et al., 2021)
to evaluate the inhibition ability of generated molecules against GSK3β and JNK3.

B.1.2 METRICS

Diversity. Diversity (Div) is the average pairwise Tanimoto distance over Morgan fingerprints. In
the synthetic scenario, for each preference vector, we sample 1000 molecules, calculate the Div
among the Top-100 molecules, and report the averages over preferences. In MOBO, the DiV is
computed among the batch of 100 candidates per round, as GP-BO and MARS are not preference-
conditioned. And we believe this metric possibly is more aligned with how these methods might be
used in a biology or chemistry experiment.
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Correlation. Correlation (Cor) is the Spearman’s rank correlation coefficient between the prob-
ability of sampling molecules from an external test set under the GFlowNet and their respective
rewards in the logarithmic domain: Cor = Spearman’s ρlog(π(x)),log(R(x)) The external test set is
obtained in two steps: First, we generate a random dataset containing 300K molecules uniformly
based on the number of building blocks; Next, we sample the test sets with uniform property distri-
bution corresponding to GSK3β and JNK3, respectively, from the 300K molecules. The final test
set contains 6062 molecules.

B.2 BASELINES

All the baselines are implemented using the publicly released source codes with adaptations for our
MOBO scenarios. Our evolutionary algorithms are implemented in PyMOO (Blank & Deb, 2020),
and the LSO methods are implemented in BoTorch (Balandat et al., 2020). LaMOO and GP-BO
utilize EHVI as the acquisition function. For all GP-based methods, each objective is modeled by
an independent GP.

B.3 HN-GFN

We implement the proposed HN-GFN in PyTorch (Paszke et al., 2019). The values of key hyper-
parameters are illustrated in Table 4.

Surrogate model: We use the 12-layer MPNN as the base architecture of the surrogate model in
our experiments. In MOBO, a single multi-task MPNN is trained with a batch size of 64 using the
Adam optimizer with a dropout rate of 0.1 and a weight decay rate of 1e-6. We apply early stopping
to improve generalization.

HN-GFN: HN-GFN contains a vanilla GFlowNet and a preference-conditioned hypernetwork. The
architecture of GFlowNet is a 10-layer MPNN, and the hypernetwork is a 3-layer MLP with multiple
heads, each generating weights for different layers of the target network. The HN-GFN is trained
with Adam optimizer to optimize the Flow Matching objective.

B.4 EMPIRICAL RUNNING TIME

The efficiency is compared on the same computing facilities using 1 Tesla V100 GPU. In the context
of MOBO, the running time of three LSO methods (i.e., HierVAE+qParEGO, HierVAE+qEHVI,
and LaMOO) is around 3 hours, while GP-BO optimizes much faster and costs only 13 minutes. In
contrast, the time complexity of deep-learning-based discrete optimization methods is much larger.
MARS costs 32 hours, while our proposed HN-GFN costs 10 hours. With the hindsight-like training
strategy, the running time of HN-GFN will increase roughly by 33%.

However, if we look at the problem in a bigger picture, the time costs for model training are most
likely negligible in comparison to those of evaluating the molecular candidates in real-world appli-
cations. Hence, we argue that the high quality of the candidates (the performance of the MOBO
algorithm) is more essential than having a lower training cost.

C ADDITIONAL RESULTS

C.1 SYNTHETIC SCENARIO

As illustrated in Figure 3, the distribution of Top-100 GSK3β scores shows a consistent trend in
preference-specific GFlowNet and our proposed HN-GFN, although the trend is not as significant as
the JNK3 property.

C.2 EFFECT OF THE HINDSIGHT-LIKE STRATEGY

There is a trade-off between reward and generalization. As we vary γ from 0 to 1, the training
distribution of preference vectors moves from Dir(α) to the set of target preference vectors Λ.
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Table 4: Hyper-parameters used in the real-world MOBO experiments.

Hyper-parameter GSK3β + JNK3 GSK3β + JNK3 + QED + SA
Surrogate model

Hidden size 64 64
Learning rate 2.5e-4 1e-3
λ for evidential regression 0.1 0.1
Number of iterations 10000 10000
Early stop patience 500 500
Dropout 0.1 0.1
Weight decay 1e-6 1e-6

Acquisition function (UCB)
β 0.1 0.1

HN-GFN
Learning rate 5e-4 5e-4
Reward exponent 8 8
Reward norm 1.0 1.0
Trajectories minibatch size 8 8
Offline minibatch size 8 8
hindsight γ 0.2 0.2
Uniform policy coefficient 0.05 0.05
Hidden size for GFlowNet 256 256
Hidden size for hypernetwork 100 100
Training steps 5000 5000
α (1,1) (3,4,2,1)

Figure 3: Comparison of the distribution of Top-100 GSK3β scores sampled by different pref-
erence vectors using preference-specific GFlowNets and HN-GFN.

Exclusively training the HN-GFN with the finite target preference vectors can lead to poor gen-
eralization. In practice, although we only sample candidates based on Λ, we argue that it is vital to
keep the generalization such that we can leverage the trained HN-GFN to explore various preference
vectors adaptively. In Figure 2 (Right), we found that increasing γ leads to slight (not significant)
improvement in average reward compared to γ = 0.2. Hence, we believe 0.2 is the desired trade-off.

C.3 EFFECT OF SURROGATE MODELS

We conduct ablation experiments to study the effectiveness of different surrogate models. We con-
sider the following three surrogate models: evidential regression (Amini et al., 2020), Deep En-
sembles (Lakshminarayanan et al., 2017), and GP based on Tanimoto kernel (Tripp et al., 2021). As
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shown in Table 5, we can observe that evidential regression leads to better optimization performance
than Deep Ensembles. While the HV of evidential regression and GP is comparable, evidential re-
gression can propose more diverse candidates. Furthermore, we argue that GP is less flexible over
discrete spaces than evidential regression and Deep Ensembles, as different kernels need to be de-
signed according to the data structures.

Table 5: Evaluation of different surrogate models on MOBO scenarios

GSK3β + JNK3 GSK3β + JNK3 + QED + SA
HV Div HV Div

HN-GFN (Evidential) 0.669 ± 0.061 0.793 ± 0.007 0.416 ± 0.023 0.738 ± 0.009
HN-GFN (Ensemble) 0.583 ± 0.103 0.797 ± 0.004 0.355 ± 0.048 0.761 ± 0.012
HN-GFN (GP) 0.662 ± 0.054 0.739 ± 0.008 0.421 ± 0.037 0.683 ± 0.018

C.4 SAMPLED MOLECULES IN MOBO EXPERIMENTS

We give some examples of sampled molecules from the Pareto front by HN-GFN in the GSK3β +
JNK3 + QED + SA optimization setting (Figure 4). The numbers below each molecule refer to
GSK3β, JNK3, QED, and SA scores respectively.

Figure 4: Sampled molecules from the approximate Pareto front by HN-GFN.
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