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ABSTRACT

The Automatic Model Evaluation (AutoEval) framework entertains the possibil-
ity of evaluating a trained machine learning model without resorting to a labeled
testing set, which commonly isn’t accessible nor provided in real-world scenarios.
Existing AutoEval methods always rely on computing distribution shift between
the unlabelled testing set and the training set. However, this lines of work can-
not fit well in some real-world ML applications like edge computing boxes where
the original training set is inaccessible. Contrastive Learning (CL) is an efficient
self-supervised learning task, which can learn helpful visual representations for
down-stream classification tasks. In our work, we surprisingly find that CL ac-
curacy and classification accuracy can build strong linear correlation (r > 0.88).
This finding motivates us to regress classification accuracy with CL accuracy. In
our experiments, we show that without touching training sets, our framework can
achieve results comparable to SOTA AutoEval baselines. Besides, our subsequent
experiments demonstrate that different CL approaches and model structures can
easily fit into our framework.

1 INTRODUCTION

When evaluating classification model performance in real-world scenarios, a common approach
is taking its score on labeled test sets as an estimation. However, such ground-truth labels are
always expensive to acquire and may lose feasibility in various testing environments. For example,
cameras deployed in an autonomous driving car need to recognize objects in the city, countryside or
mountains. We can’t collect and annotate testing samples from every possible testing environment.
But to guarantee the model’s performance and reliability, especially for some high-stake applications
such as autonomous-driving and medical-diagnosis, we must fully test the model’s performance in
different environments. To tackle such problem, we need a method to estimate the accuracy of a
given trained model under varying testing environments.

This important yet insufficiently researched problem is introduced as Automatic Model Evalua-
tion (AutoEval) by Deng & Zheng (2021). Researchers always rely on some widely-recognized
benchmarks, which has labeled testing sets, to evaluate and compare the model performance. How-
ever, real-world data follow various distributions, radically different from these well-preprocessed
benchmark datasets constructed from intentionally selected testing samples. To make the model
evaluation more feasible, it’s necessary to evaluate on real-world data. However, ground-truth labels
of real-world samples are always difficult and expensive to acquire. Overall, the aim of AutoEval
can be formulated as: estimating a given model’s accuracy on different unlabeled testing sets.

Without direct access to ground-truth labels on testing sets, some previous works such as Garg et al.
(2022); Guillory et al. (2021); Deng & Zheng (2021) have developed methods based on measuring
distribution shifts to predict the model’s accuracy or accuracy drop. The core idea of them is choos-
ing an appropriate metric of distribution shift between the training and testing sets (for example,
Deng & Zheng (2021) compute the Frechet Distance between the training set and given testing set).
Other works such as Jiang et al. (2021a); Corneanu et al. (2020) leverage model’s different status in
the training stage. Although these methods are well-performed, they may lose feasibility in some
real-world scenarios where the training set in inaccessible (for example, on edge computing devices,
there is no storage for a large training set). To avoid involving the training set into estimating the
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Figure 1: A simple overview of our proposed Test-Time AutoEval framework powered by con-
trastive learning. The core idea of it is using the contrastive learning accuracy (i.e. how often a CL
model is capable of identifying the augmented version of an image early on.) to regress the semantic
classification accuracy. The regression model is trained by (Acccont, Acccls) pairs on many labeled
testing sets (here generated synthetically).

model’s performance, in this work, we develop a Test-Time AutoEval framework, which only needs
the given trained model and testing sets.

In recent years, self-supervised learning has been deeply explored to deal with unlabeled datasets.
The fundamental idea is generating label information in a bootstrap manner by data augmentation or
other ways. Naturally, we begin to consider if AutoEval can be powered by self-supervised learning
tasks, and which kind of learning task should be chosen. Among these researches, Contrastive
Learning (CL) has achieved remarkable results Chen et al. (2020a); He et al. (2019); Chen et al.
(2020b); Caron et al. (2020); Grill et al. (2020); Chen & He (2020). Using CL as the pre-training
task, the downstream semantic classification task can be improved significantly, which means that
CL learns helpful positive semantic features for classification. In other words, a network achieving
good performance on contrastive learning is also likely perform well on semantic classification.

Based on this positive correlation mentioned above, we want to know if we can build quantitative
relationship between CL accuracy and classification accuracy. Surprisingly, in our empirical exper-
iments, we show that training in a multi-task way, we can build strong linear correlation (r > 0.88)
between them. This finding encourages us to predict semantic classification accuracy according to
contrastive learning accuracy using a linear regression model. Further experimental results show
that our method can precisely estimate a given classifier’s accuracy on unseen unlabeled testing sets.
We also discuss how contrasive learning takes effect in the framework and influences the prediction
result. In summary, our contributions are as follows:

• We propose a test-time AutoEval framework (see figure 1), in which we train SimCLR and
classification in a multi-task way, and experimental results demonstrate the strong linear
correlation between their accuracies.

• Based on the findings above, we use linear regression to predict image classifacation ac-
curacy with contrastive learning accuracy, which reduces the error to an acceptable range
(< 5.3%), making a crucial step forward in practical application of AutoEval.

• We explore the influence of some essential factors of contrastive learning in our framework.
Experimental results demonstrate that common contrastive learning methods can perfectly
fit into our framework.

2 RELATED WORKS

Data-centric AutoEval. Data-centric AutoEval Deng & Zheng (2021); Deng et al. (2021); Yu
et al. (2022); Chuang et al. (2020a); Chen et al. (2021a); Guillory et al. (2021); Hendrycks & Gimpel
(2016); Garg et al. (2022); Chen et al. (2021c); Jiang et al. (2021b) aims to predict a given model’s
accuracy on a series of invisible testing sets. In this branch of works, a common approach is finding
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a metric for the distribution shift between in-domain and out-ouf-domain data, which is then used
to regress the model’s testing accuracy. For example, Guillory et al. (2021) uses Difference of
Confidences (DoC) and Difference of Average Entropy (DoE) to measure the distribution shift.
Based on this, Garg et al. (2022) proposes Average Thresholded Confidence (ATC). Deng & Zheng
(2021) uses Frechet Distance (FD) to regress OOD accuracies. To compute the distribution shift
metric, these methods need to take the training set as an anchor. In contrast, our proposed framework
doesn’t need access to the original training set, which benefits application cases where the training
and testing processes need to be strictly separated.

Model-centric AutoEval. Model-centric AutoEval Corneanu et al. (2020); Jiang et al. (2018);
Zhang et al. (2021); Gain & Siegelmann (2020); Unterthiner et al. (2020) aims to evaluate a popula-
tion or an ensemble of models on an testing set. Compared to Data-centric AutoEval which focuses
on measuring the distribution shift between datasets, this branch emphasizes the model’s inherent
properties. For example, Corneanu et al. (2020) defines DNNs on a topological space, and then
calculate a set of compact descriptors of this space to measure important properties of the network’s
behavior. Jiang et al. (2018) extracts the margin distribution of each layer of the DNN, and compute
statistics to regress the testing accuracy.

Contrastive Learning Contrastive Learning (CL) Caron et al. (2020); Chen et al. (2020a); He
et al. (2019); Grill et al. (2020); Chen & He (2020) is a kind of self-supervised learning task to
learn efficient representation of input samples. Its basic idea is to generate different views of input
samples by a series of data augmentation, of which homologous ones are considered as positive
samples and the others are negative samples. By aligning positive samples and discriminating neg-
ative samples, an embedding for each input sample can be learned. Used as a pre-training task,
it can significantly enhance the downstream semantic classification task, which means CL learns
helpful features for classification. In this work, we choose Contrastive Learning as the supporting
self-supervised learning task, and take SimCLR as an instance to validate its feasibility.

3 IDENTIFYING THE CORRELATION BETWEEN ACCURACIES

3.1 ADOPTING SIMCLR IN MULTI-TASK TRAINING

The key idea of our method is using contrastive learning accuracy to regress semantic classification
accuracy. So we need to identify the underlying correlation between them first, and explore the pos-
sibility that the correlation can be modeled to train a regressor. Here, we adopt SimCLR Chen et al.
(2020a) as the contrastive learning model. Following this, its top-1 accuracy represents how often
a CL model is capable of identifying the augmented version of an image early on. The contrastive
learning accuracy and classification accuracy can be written as:

Acccont =

∑B−1
i=0 I(̂i = i)

B
,Acccls =

∑B−1
i=0 I(ŷ = y)

B
(1)

where B is the input batch size, i is the index of an image in original batch and î is the index of its
most probable augmented view predicted by model. y and ŷ are ground-truth labels and predicted
labels respectively.

In common approaches, contrastive learning is often used as a pre-training task for image semantic
classification. However, we notice some previous works like Wang et al. (2022); Arora et al. (2019);
Lee et al. (2021) have theoretically clarified that: contrastive learning cannot guarantee the learning
of class-discriminative features, because class-uniform features also minimizes the InfoNCE Loss.
When the InfoNCE Loss for contrastive learning achieves its minimum, there is an upper bound for
the downstream classification accuracy. In other words, there will be no obvious correlation between
them in a pre-training manner. So in this work, we attempt to adopt SimCLR in a multi-task manner
(see figure 2), which minimizes:

L = LCE + λ · LInfoNCE (2)

where LCE represents the cross-entropy loss for classification and LInfoNCE represents the In-
foNCE loss for contrastive learning.
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Figure 2: The model structure of training SimCLR and image classification in a multi-task way.
A CNN is used as a sharing backbone to encode image features, followed by two task heads for
contrastive learning (upper) and semantic classification (lower). Note that here we show the original
batch and corresponding augmented batch, but when calculating the classification accuracy, we only
consider the original batch.

3.2 DATASET SYNTHESIS

To identify the correlation between Acccont and Acccls, we need to apply the framework on many
labeled testing sets. According to Deng et al. (2021), these testing sets should have: 1) various
distributions. 2) the same classes with the training set. 3) sufficient samples. However, it’s quite
difficult to collect such testing sets from natural distributions. So following Deng & Zheng (2021);
Deng et al. (2021), we synthesize these testing sets by applying transformations on hand-written digit
images and natural object images (specifically, MNIST, CIFAR-10 and CIFAR-100) for empirical
analysis. Notably, the transformations have no influence for semantic information, so the labels of
original images are inherited. Some examples of the synthetic sets are shown in figure 3. For each
setup, we generate 200 synthetic testing sets to empirically study the correlation between Acccont
and Acccls.

(a) original (b) synthetic 1 (c) synthetic 2 (d) synthetic 3

Figure 3: Examples of the synthetic testing sets. Here we use sharpness and color changing. By
applying different transformations on the original dataset, we can obtain many testing sets with
various distributions.

MNIST setup. We synthesize test sets by applying various transformations on MNIST dataset.
As MNIST contains simple gray-scale images, we first consider change their black background to
color ones. Specifically, for each sample of MNIST, we randomly select an image from COCO
dataset and randomly crop a patch, which is then used as the background of the hand-written digit.
After that, we apply six image transformations on the background-replaced images: autoContrast,
rotation, color, brightness, sharpness, translation.

CIFAR-10 setup. We synthesize test sets based on CIFAR-10 by applying image transformations
on it. The transformations are randomly selected from {Sharpness, Equalize, ColorTemperature,
Solarize, Autocontrast, Brightness, Rotate}. Then other another random transformations are applied:
RandomCrop, RandomHorizontalFlip. Note that all possibilities of the operation sequences are not
calculated by permutation and combination, because there are many random states when applying
these transformations, thus we can generate image sets of various distributions.
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CIFAR-100 setup. In order to check if the correlation still exists when there are .Similar to
CIFAR-10 above, we use the training split of CIFAR-100 dataset to train our model and the testing
split to synthesize many test sets. But for lack of appropriate real-world unseen test sets containing
both various features and same classes (as AutoEval is a newly proposed and under-explored prob-
lem), we further split the CIFAR-100 testing split into two parts for synthesizing different test sets
and the final unseen test.

3.3 CORRELATION ANALYSIS

For each setup, we train CoLA on the original training set, then test it on each of the synthetic testing
sets introduced above and plot the results. Following Deng et al. (2021), the backbone for MNIST
setup is LeNet-5, and for CIFAR setup is DenseNet-40-12 (40 layers with growth rate 12). From fig-
ure 4, we can see that on various testing sets (or under various testing environments), the contrastive
learning accuracy and classification accuracy exhibit strong linear correlation (Pearson’s correla-
tion score r > 0.88). This finding encourages us to train a linear regressor to predict classification
accuracy on unlabelled testing sets.

3.4 PROBLEM DEFINITION

Consider a image classification task. Given a classifier trained on the training set Dtrain =
{(xi, yi)}ni=1, where xi denotes the i-th training image, yi ∈ {1, 2, · · · , C} denotes the class la-
bel of it, and n denotes the training set size. Our aim is to estimate its classification accuracy on
different test sets. Each test set is denoted as Dt

test = {xt
j}

nt
j=1, where xt

j denotes the j-th test image
of the t-th test set, t = 1, 2, · · · ,M . Notably, our test set holds no supervision as we aim to evaluate
model performance automatically. Based on the findings that the two tasks show a strong linear
correlation, we are motivated to predict a classifier’s accuracy with its contrastive accuracy using a
linear regressor:

Acccls = W ·Acccont + b (3)

where W, b are parameters learned by robust linear regression Huber (2004).
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Figure 4: The correlations between contrastive learning accuracy and image classification accuracy.
The x-axis represents the contrastive learning accuracy, while the y-axis represents the classification
accuracy, respectively. Each point represents a synthetic test set. Left: the results of the MNIST
setup with LeNet-5, Mid: the results of the CIFAR-10 setup with DenseNet-40-12, Right: the
results of the CIFAR-100 setup with DenseNet-40-12. The trend line is obtained using robust linear
regression Huber (2004).

4 EXPERIMENTS

Following previous works Deng & Zheng (2021); Deng et al. (2021); Guillory et al. (2021); Garg
et al. (2022), in our experiments we evaluate our framework CoLA on both hand-written digits and
natural images. Given a trained classifier, we test it on many labelled testing sets with various distri-
bution shifts, and then fit the (Acccont, Acccls) to obtain a regressor. Finally, we choose some unseen
labelled sets, and evaluate the error between the ground-truth accuracy (calculated by ground-truth
labels) and estimated accuracy (predicted by regression) using RMSE.
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4.1 EXPERIMENTAL SETUP

Datasets and Models. For hand written digits, we train LeNet-5 on MNIST and test it on SVHN
Netzer et al. (2011) and USPS Hull (1994) (both contain digit images with 10 classes). For natural
images classification, we build CIFAR-10 setup and COCO setup. Specifically, we train DenseNet-
40-12 on CIFAR-10 and test it on CIFAR-10.1 Recht et al. (2018). For the COCO setup, following
Deng et al. (2021), we choose 12 object classes (aeroplane, bicycle, bird, boat, bottle, bus, car, dog,
horse, tv-monitor, motorcycle, person). To build the training set, object annotation boxes among
these 12 classes are cropped from the COCO training images containing them. These images are
used to train a ResNet-50 backbone. Similarly, we build unseen testing sets for classification ac-
curacy from Caltech-256 Griffin et al. (2007), PASCAL VOC 2007 Everingham et al. (2010), Ima-
geNet Deng et al. (2009), also select from the 12 classes above.

Baselines. There are few baselines for direct comparison under the AutoEval problem. But in
previous works such as Deng & Zheng (2021); Deng et al. (2021); Hendrycks & Gimpel (2016),
we notice there are some model-generalization prediction methods based on distribution shifts or
softmax probabilities for reference.

CONFIDENCE SCORE. This metric is simple and intuitive. In the output of the last layer of a clas-
sifier (i.e. the softmax output), its maximum probability value is refererred to as Confidence Score.
If this score is greater than a given threshold value, the corresponding input image is considered
correctly classified.

ENTROPY SCORE. Similar to the Confidence Score above, this score is also given by the softmax
output. For a K-classes classification task, we compute the entropy of softmax outputs, and then
normalize it by logK. If this score is less than a given threshold value (or the negative entropy is
greater than this value), then it is considered as a correctly classified sample.

FRECHET DISTANCE. Deng & Zheng (2021) uses Frechet Distance (FD) Dowson & Landau
(1982) to measure the domain gap (or distribution shift) between the original training set and testing
sets synthesized based on it. They find that there is a strong negative linear correlation between
FD and classifier’s accuracy on both digit classification and natural image classification scenarios.
Motivated by this finding, they estimate the classification accuracy on unlabelled testing sets by a
linear regression model trained on many (FD,Acccls) pairs.

ROTATION PREDICTION. Deng et al. (2021) uses image rotation prediction Gidaris et al. (2018)
as a pretext task of semantic classification. Specifically, they learn a multi-task neural network for
semantic classification along with an auxiliary rotation prediction task. Their empricial results show
that testing a given multi-task model on different synthesized testing sets, the semantic classification
accuracy and rotation prediction accuracy have a linear correlationship, which motivates them to
regress the classification accuracy with rotation prediction accuracy.

4.2 RESULTS

The performance of our proposed framework is shown in table 1. It is compared with different
baselines on RMSE error. Here are some preliminary findings:

Using linear regression to predict classification accuracy is feasible. We can observe that the
accuracy on unlabelled testing sets estimated by linear regression is very close to the ground-truth
value. For digits classification testing sets (SVHN and USPS), our prediction RMSE is 5.34(%).
For natural image classification, our prediction RMSE are 0.48(%) and 2.30(%) under CIFAR-10
setup and COCO setup respectively. Because the previously generated synthetic sets have various
distribution shifts, well simulating many kinds of testing environments, we can estimate a classifier’s
accuracy with its performance on contrastive learning task without much lost of precision.

Contrastive Learning is a more powerful auxiliary task than Rotation Prediction. As shown
in the table, our framework outperforms the Rot+Cls baselines. Under every experimental setup, the
RMSE of ours is less than that of using Rotation Prediction as an auxiliary task. Contrastive Learning
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Table 1: Results of the classification accuracy estimation using linear regression with contrastive
learning accuracy on several groups of unseen testing sets: 1) SVHN and USPS; 2) CIFAR-10.1;
3) Caltech, Pascal and ImageNet. The training sets of the task settings are MNIST, CIFAR-10
and COCO, respectively. For the baselines and our method, we report the ground-truth accuracy
(calculated using ground-truth labels) and linear regression accuracy, with respect to the unseen
testing sets. For each group of task setting, we report the RMSE of the linear regression prediction
results. Note that different baselines may have different ground-truth accuracies, because multi-task
training may influence the classification performance, we just need to keep them as close values.

Train set MNIST CIFAR-10 COCO

Manner Unseen test set SVHN USPS RMSE CIFAR-10.1 RMSE Caltech Pascal ImageNet RMSE

Single-task Ground-truth 25.46 64.08 - 91.24 - 93.40 86.13 88.83 -

Confidence 22.07 30.39 23.94 86.85 4.39 84.30 78.00 79.83 8.75

Entropy 26.63 33.23 21.83 89.20 2.04 86.80 80.14 82.50 6.31

FD 26.28 50.14 9.87 - - 79.77 83.87 83.19 8.62

Multi-task Ground-truth
(Rot+Cls) 23.06 65.52 - 88.15 - 92.61 86.43 87.83 -

Linear-reg
(Rot+Cls) 24.84 53.10 8.87 91.89 3.74 90.70 89.29 90.98 2.68

Ground-truth
(Ours) 19.69 63.57 - 86.22 - 91.81 90.33 88.28 -

Linear-reg
(Ours) 26.40 67.04 5.34 86.70 0.48 94.64 88.90 85.87 2.30

can learn more representative features for semantic classification, and help obtain an estimation
closer to the ground-truth classification accuracy.

5 DISCUSSION AND ANALYSIS

Multi-task training will not degrade the performance of classification when trained along with
contrastive learning. In Lee et al. (2019), the authors point out that learning through methods
such as data augmentation or multi-task learning enforces a certain invariance of features, which
will make learning more difficult and may lead to performance degradation. In Deng et al. (2021),
they also emphasize that the auxiliary task should satisfy the following requirements: 1) introduces
no learning complexity for the main classification. 2) requires minimal network structural change.
3) does not degrade classification accuracy.

In this work, we need to ensure that SimCLR does not influence the model performance on classifi-
cation task. From Table 1, we can see that there are no significant differences between the classifi-
cation accuracy of our framework and baseline. Specifically, under MNIST setup, our ground-truth
accuracy is 63.57(%) on USPS, almost the same as baseline 65.52(%). Under CIFAR-10 setup and
COCO setup, our ground-truth accuracy is very close to that of baseline (with an absolulte error
< 4%). That means using contrastive learning as the auxiliary task of classification will not degrade
the main task performance.

Optimal settings of Contrastive Learning can be directly inherited in our framework for best
performance. The success of Contrastive Learning can be largely attributed to various data aug-
mentations for generating positive and negative examples. As we adopt SimCLR in our framework,
we want to know if our overall performance is consistent to its basic settings (i.e. the linear corre-
lation coefficient achieves its maximum under the best training parameters of SimCLR). According
to Wang et al. (2022), among the data augmentations adopted in SimCLR, RandomResizedCrop is
the most important augmentation, and ColorJitter is the second. So we study the influence of these
two kinds of augmentations in our work.

For RandomResizedCrop, to quantify its influence, we use the augmentation strength defined in
Wang et al. (2022). For a RandomResizedCrop operator with scale range [a, b], its aug-strength
can be defined as r = (1 − b) + (1 − a). In figure 5, we show that on the synthetic testing sets
generated from MNIST, KMNIST and FashionMNIST, under different augmentation strengths, the
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linear correlation coefficient achieves its maximum at the default strength value 0.92. For ColorJitter,
we study its parameters: brightness, contrast, saturation and hue, where the augmentation strength
is corresponding to the parameter value. Note that all other augmentations in SimCLR are kept
default. In figure 6, for each of these parameters, we plot the changes of the linear correlation
coefficient under the CIFAR-10 setup. Here we have similar observation that the default parameter
values in SimCLR yield best linear correlation.

Figure 5: Changes of the linear correlation coefficient under different augmentation strengths. When
using the default RandomResizedCrop strength 0.92, the linear correlation coefficient achieves its
maximum value.

Besides data augmentations, temperature scaling is also an import factor during the training process
of SimCLR. We study the temperature parameter τ on MNIST and CIFAR-10. As figure 7 shows,
when using default temperature value τ = 0.07, we can obtain best linear correlation. The empirical
results demonstrate that when adopting contrastive learning frameworks, keeping default optimal
settings is most likely to build strong linear correlation between the CL accuracy and classification
accuracy.

The linear correlation is robust against different training settings. Here we empirically study
the robustness of the linear correlation between the contrastive learning accuracy and semantic clas-
sification accuracy. Specifically, we consider different model structures, testing set amounts, and
different augmentation of contrastive learning frameworks.

DIFFERENT BACKBONES. To study if the linear correlation between contrastive learning accuracy
and classification accuracy relies on specific model structures, we change different CNN backbones
as the feature extractor. In figure 8a, we plot the changes of linear correlation coefficient using

(a) Brightness, Contrast, Saturation (b) Hue

Figure 6: Changes of linear correlation coefficient against different ColorJitter strengths under
CIFAR-10 setup. In SimCLR, the default parameter values of brightness, contrast, saturation and
hue are 0.8, 0.8, 0.8 and 0.2 respectively, which yield best linear correlation.
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(a) MNIST (b) CIFAR-10

Figure 7: Changes of linear correlation coefficient on MNIST and CIFAR-10 with different temper-
ature values.

different backbones (ResNet-18, ResNet-34, VGG-11 and VGG-19) under CIFAR-10 setup. We can
observe that the linear correlation is robust against changing backbones and the amount of testing
sets. Meanwhile, the robustness is not influenced by the number of testing sets. This means our
framework can be used to evaluate various kinds of models.

DIFFERENT CONTRASTIVE LEARNING AUGMENTATION GROUPS. In this paper, we adopt Sim-
CLR as the contrastive learning framework. To study if other frameworks can fit in well, we change
SimCLR to MoCo-v1, MoCo-v2, and BYOL. From figure 8b, we can observe that the linear corre-
lations are all strong across different CL frameworks (r > 0.87).

DIFFERENT AMOUNT OF SEMANTIC CLASSES. For the image classification task, more semantic
classes usually mean higher difficulty, which may weaken the linear correlation. To study this, we
compare the results on CIFAR-10 and CIFAR-100 (with similar input images but different amounts
of classes). As figure 8b shows, all the points distribute near the identity line, which means the linear
correlation is robust against the amount of semantic classes.

(a) Backbones (b) CL frameworks

Figure 8: Study of linear correlation robustness. 8a shows the changes of linear correlation coef-
ficient computed on different amounts of testing sets using different CNN backbones. 8b shows
the linear correlation trained by SimCLR, MoCo-v1, MoCo-v2 and BYOL (the x-axis and y-axis
represent the linear correlation coefficient on CIFAR-10 and CIFAR-100, respectively).

6 CONCLUSION

In this paper, we propose a novel framework for estimating classifier accuracy on invisible test sets
without ground-truth labels. We find that training in a multi-task manner, there is a strong linear
correlation between contrastive learning accuracy and classification accuracy, which indicates that
it is feasible to estimate classifier accuracy using linear regression. We train SimCLR and image
classification in a multi-task way, and use the contrast accuracy to estimate classification accuracy.
Experimental results show that our method outperforms previous works. We hope our work can
motivate future research on AutoEval techniques assisted by self-supervised learning.
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own latent: A new approach to self-supervised learning. CoRR, abs/2006.07733, 2020. URL
https://arxiv.org/abs/2006.07733.

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor Darrell, and Ludwig Schmidt. Predicting
with confidence on unseen distributions. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 1134–1144, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Peter J Huber. Robust statistics, volume 523. John Wiley & Sons, 2004.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on
pattern analysis and machine intelligence, 16(5):550–554, 1994.

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization gap
in deep networks with margin distributions. arXiv preprint arXiv:1810.00113, 2018.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J. Zico Kolter. Assessing generalization of
SGD via disagreement. CoRR, abs/2106.13799, 2021a. URL https://arxiv.org/abs/
2106.13799.

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J Zico Kolter. Assessing generalization of
sgd via disagreement. arXiv preprint arXiv:2106.13799, 2021b.

Hankook Lee, Sung Ju Hwang, and Jinwoo Shin. Rethinking data augmentation: Self-supervision
and self-distillation. 2019.

Jason D Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. Predicting what you already know helps:
Provable self-supervised learning. Advances in Neural Information Processing Systems, 34:309–
323, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation, 2022. URL https:
//arxiv.org/abs/2201.12086.

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu,
and Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-image pre-
training paradigm, 2021. URL https://arxiv.org/abs/2110.05208.

Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision meets
language-image pre-training, 2021. URL https://arxiv.org/abs/2112.12750.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

11

https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2106.13799
https://arxiv.org/abs/2106.13799
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2110.05208
https://arxiv.org/abs/2112.12750
https://arxiv.org/abs/2103.00020


Under review as a conference paper at ICLR 2023

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predict-
ing neural network accuracy from weights. arXiv preprint arXiv:2002.11448, 2020.

Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A new
theoretical understanding of contrastive learning via augmentation overlap, 2022. URL https:
//arxiv.org/abs/2203.13457.

Yaodong Yu, Zitong Yang, Alexander Wei, Yi Ma, and Jacob Steinhardt. Predicting out-of-
distribution error with the projection norm. arXiv preprint arXiv:2202.05834, 2022.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu, Yumao Lu,
Yu Shi, Lijuan Wang, Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei
Zhou, and Pengchuan Zhang. Florence: A new foundation model for computer vision, 2021. URL
https://arxiv.org/abs/2111.11432.

Yi Zhang, Arushi Gupta, Nikunj Saunshi, and Sanjeev Arora. On predicting generalization using
gans. arXiv preprint arXiv:2111.14212, 2021.

12

https://arxiv.org/abs/2203.13457
https://arxiv.org/abs/2203.13457
https://arxiv.org/abs/2111.11432

	Introduction
	Related Works
	Identifying the Correlation Between Accuracies
	Adopting SimCLR in Multi-task Training
	Dataset Synthesis
	Correlation Analysis
	Problem Definition

	Experiments
	Experimental Setup
	Results

	Discussion and Analysis
	Conclusion

