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Abstract

Representation learning has been evolving from traditional supervised training to1

Contrastive Learning (CL) and Masked Image Modeling (MIM). Previous works2

have demonstrated their pros and cons in specific scenarios, i.e., CL and supervised3

pre-training excel at capturing longer-range global patterns and enabling better4

feature discrimination, while MIM can introduce more local and diverse attention5

across all transformer layers. In this paper, we explore how to obtain a model6

that combines their strengths. We start by examining previous feature distillation7

and mask feature reconstruction methods and identify their limitations. We find8

that their increasing diversity mainly derives from the asymmetric designs, but9

these designs may in turn compromise the discrimination ability. In order to10

better obtain both discrimination and diversity, we propose a simple but effective11

Hybrid Distillation strategy, which utilizes both the supervised/CL teacher and the12

MIM teacher to jointly guide the student model. Hybrid Distill imitates the token13

relations of the MIM teacher to alleviate attention collapse, as well as distills the14

feature maps of the supervised/CL teacher to enable discrimination. Furthermore, a15

progressive redundant token masking strategy is also utilized to reduce the distilling16

costs and avoid falling into local optima. Experiment results prove that Hybrid17

Distill can achieve superior performance on different benchmarks.18

1 Introduction19

Pre-training followed by fine-tuning has been a common paradigm for computer vision tasks since20

the advent of deep learning. In the past decade, supervised image classification [16, 10, 24] over the21

widely used ImageNet [32] has dominated the pretraining mode. Recently, self-supervised learning22

has emerged as a promising alternative, particularly with two approaches: Contrastive Learning (CL)23

and Masked Image Modeling (MIM). The former one, typical representatives are MoCo [14] and24

SimCLR [4], learns invariant representation for positive views, which are usually defined as different25

augmentations of the same image. Furthermore, CLIP [30] extends CL to a multi-modal manner,26

which utilizes the corresponding text description of the given image as positive pairs. While the27

latter, including MAE [13] and SimMIM [44], aims to reconstruct the masked image patches and has28

become mainstream due to its efficiency brought by mask operations.29

The different pre-training paradigms of CL and MIM facilitate a series of studies [43, 27, 38] that30

aim at understanding their respective properties. These studies point out that CL pre-training behaves31

more similar to supervised pre-training, i.e., it provides models with longer-range global patterns32

targeting object shape, particularly in the last few layers [27], and enables feature representation with33

better discrimination. However, as shown in Fig. 1(a), CL pre-training causes self-attention in the34

last few layers to collapse into homogeneity, with attention distances located within a very small35

distance range. In contrast, MIM pre-training can bring more diverse attention and evenly distributed36

representations to all layers [43, 27], and this diversity contributes to its better generalization on37
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downstream fine-tuning. Nevertheless, MIM pre-training is slower to converge and underperforms in38

linear probing, mainly due to its lack of discrimination ability.39

Since discrimination and diversity are both crucial for downstream adaptation, previous methods40

[41, 11, 23, 40, 29] propose to utilize feature distillation to combine the benefits of CL and MIM.41

Among them, dBOT [23] replaces the reconstructing objective of MAE with the feature maps of42

different pre-trained teachers. It finds that feature distillation can bring diverse attention no matter43

what the teacher model is, and the performance is comparable across different teachers, even with44

the randomly initialized ones, after multi-stage distillation. Also observing that distillation can yield45

diversity benefits, FD [41] directly distills feature maps from supervised/CL teachers to relieve the46

attention collapse and achieves considerable downstream performance gains. Although interesting47

and important, we argue that their findings are incomplete.48

This paper re-examines these findings and reconsiders the importance of diversity and discrimination.49

Our study reveals the following observations: (i) The increase in diversity derives from the50

asymmetric architecture designs, rather than feature distillation itself. (Section 2.2) After51

removing the asymmetric attention in [41] and encoder-decoder designs in [23] and keeping the same52

teacher and student structures, we observe a negligible increase (or even a decrease) in attention53

diversity. (ii) The asymmetric decoder de facto harm the discrimination over the encoder54

side, for it migrates the semantic information of the teacher model. (Section 2.3) Due to the55

decomposition of the encoding and decoding functions, student encoders tend to summarize more56

general information, thus gradually losing the semantics obtained from teachers and yielding similar57

results after multi-stage distillation [23]. (iii) Mask reconstruction of high-level semantics does58

not help improve diversity. (Section 2.4) The phenomenon of reconstructing high-level information59

[29, 11, 40] is similar to direct feature distillation and lacks the diversity found in MIM, which60

implies that the attention diversity of MIM mainly comes from low-level reconstruction objectives.61

Based on the above observations, we argue that a better distillation strategy is needed to help student62

models inherit both diversity and discrimination. To this end, we propose a simple but effective63

feature distillation method, termed as Hybrid Distill, to fully exploit the pre-trained model. Unlike64

previous works, Hybrid Distill aims to distill knowledge from both the supervised/CL and MIM65

teacher, allowing the student model to benefit from their respective advantages. To realize this, Hybrid66

Distill makes careful designs for the distilling target and location. Specifically, we find that the67

relational modeling ability of MIM is crucial for preserving token diversity, while the feature68

maps of supervised/CL teachers are beneficial for discrimination. Accordingly, we set the token69

relations of the MIM teacher and the feature maps of the supervised/CL teacher as the distilling70

objectives of Hybrid Distill. The token relations are distilled in layers preceding the final layer where71

attention collapse tends to occur, while the feature maps are distilled in the final layer to preserve72

semantics. Additionally, Hybrid Distill proposes a progressive redundant token masking strategy73

to reduce distilling costs and prevent falling into local optima. Experiment results show that the74

above distilling strategy works surprisingly well even when using MAE and CLIP teachers, i.e., MAE75

pretrained with only 1.28M ImageNet images can also boost the large-scale (400M) pretrained CLIP76

teacher on different downstream tasks.77

In a nutshell, this paper makes the following distribution:78

• We re-examine the findings of previous feature distilling methods and point out that their increas-79

ing diversity mainly arises from the use of asymmetric designs, while these designs may in turn80

compromise the discrimination.81

• We further propose a Hybrid Distill framework that utilized both supervised/CL and MIM teacher82

to provide the student with higher-quality discrimination and diversity. Distilling targets and locations83

are carefully designed in Hybrid Distill to fully exploit the strengths of both teachers.84

• We conduct property analysis to demonstrate that the representations exhibit both discrimination85

and diversity in our Hybrid Distill. Experiments on various downstream tasks, including classification,86

detection, and segmentation, also showcase its superiority.87

2 Model Evaluation: Diversity and Discrimination88

This section re-examines the findings of previous feature distillation or mask feature reconstruction89

works illustrated in Sec. 1 and highlights their limitations in incorporating diversity and discrimination.90
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(a) Before distillation. From left to right are: MAE, DeiT and CLIP.

(b) DeiT distillation. From left to right are: no decoder, linear projection and asymmetric decoder.

(c) CLIP distillation. From left to right are: no decoder, linear projection and asymmetric decoder.

Figure 1: Average head distance after feature distillation with various decoders. (a) are the baselines.
(b) use the supervised DeiT model as the teacher. (c) use the CL-based CLIP model as the teacher.

2.1 Preliminary91

We first introduce the definitions of diversity and discrimination and the evaluation strategies we used.92

Discrimination means that the representations contain more global patterns tailored to object shapes,93

which is beneficial for recognizing objects and distinguishing images. Diversity is a relative concept,94

which means that the model pays more attention to local information and can achieve more evenly95

distributed representations, particularly in the last few layers.96

We measure these properties by average head distance [41, 10] and normalized mutual information97

(NMI) [33]. The former calculates the average distance between the query tokens and the key tokens98

based on their attention weights, providing insight into whether the attention is global or local. The99

latter measures whether the attention is attending to different tokens or similar ones and is calculated100

following [27]. Specifically, let a uniform distribution p(q) = 1
N represent the distribution of query101

tokens, where N is the total token number. The joint distribution of query and key is then computed102

as p(q, k) = π(k|q)p(q), where π(k|q) is the normalized self-attention matrix. Thus, NMI can be103

calculated by I(q,k)√
H(q)H(k)

where I(·, ·) is the mutual information and H(·) is the marginal entropy.104

2.2 The Increase in Diversity Derives from the Asymmetric Designs105

Fig. 1 measures the average head distance after feature distillation with a consistent encoder structure106

(vanilla Vision Transformer (ViT) [10]) for both the teacher and student models, along with various107

decoders only for the student. It can be seen that when the encoder is kept the same, using no decoder108

or linear projection decoder leads to a negligible increase (or even decrease) in attention diversity,109

reflecting that feature distilling itself cannot bring benefits to diversity. Adding some extra attention110

layers to the decoder can make the student encoder more diverse, but it hinders discrimination since111

the last layer no longer captures long-range patterns. Fig. 2(a) further compares NMI using the DeiT112

teacher and the results are in line with the attention visualization, i.e., without asymmetric designs,113
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(b) Encoder and decoder (a) Various decoders (c) Mask feature reconstruction

Figure 2: The normalized mutual information (NMI) of (a) various decoders, (b) encoder and decoder,
and (c) mask feature reconstruction.

(a) Encoder and decoder (b) Mask feature reconstruction

Figure 3: Average head distance of (a) encoder and decoder, and (b) mask feature reconstruction.

the student collapses into homogeneity and pays attention to similar tokens in the last few layers.114

Conversely, the use of asymmetric decoders greatly reduces discrimination.115

The above discussions focus on varying decoders, while FD [41] introduces asymmetric designs to116

the encoder by adding additional learnable parameters and relative position bias to the attention layers117

of the student. In the appendix, we demonstrate that the increase in diversity observed in FD also118

arises from these designs and the diversity brought by them is not always significant.119

2.3 The Asymmetric Decoder Harms the Encoder Discrimination120

Fig. 3(a) and Fig. 2(b) further measure the average head distance and NMI of the asymmetric121

decoder. Our findings suggest that the decoder has transferred the discrimination of the teacher, as its122

behavior is similar to that of the last few layers of the teacher model where attention collapse occurs.123

Reducing the number of decoder layers does not eliminate this transfer, as further demonstrated124

in the appendix. Since only the student encoder is retained and applied to downstream tasks after125

distillation, the semantic information that the model maintained is weakened, which explains why in126

dBOT, different teachers tend to yield similarly-behaving models after multi-stage distilling. Note127

that dBOT conducts feature distilling in a mask reconstruction way, while we demonstrate in both128

Sec. 2.4 and the visualization in the appendix that it behaves similarly to directly distilling features.129

2.4 Mask Reconstruction of High-Level Semantics Does not Help Improve Diversity130

Fig. 3(b) and Fig. 2(c) examine the influence of mask reconstructing high-level information. To131

eliminate the effect of the asymmetric decoder, we feed both the masks and tokens into the encoder132

simultaneously and use only linear projection as the decoder. The overall process is thus similar133

to SimMIM [44], except that we use the high-level information obtained from the supervised/CL134

teacher as the distilling objective. Fig. 3(b) proves that reconstructing high-level information brings135

no diversity gains towards directly distilling features, which is consistent with the finding of [45], i.e.,136

reconstruction is unnecessary for MIM with semantic-rich teachers. This phenomenon also implies137

that the diversity of MIM mainly arises from the low-level reconstructing objective rather than from138

the reconstruction itself, since diversity is absent in high-level reconstruction.139

3 Hybrid Distillation140

From the above discussion, we conclude that existing distillation pipelines have limitations in141

providing discrimination and diversity. Thus, we further propose a novel hybrid distillation framework142

to ensure these important properties, and this section elaborates on its details.143
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Figure 4: Hybrid Distill pipeline and its effectiveness in ensuring discrimination and diversity.

3.1 Overview144

Given a supervised/CL pre-trained model Tc, and a MIM pre-trained model Tm, Hybrid Distill145

simultaneously distills knowledge from these two different types of pre-trained teachers, aims at146

combining their respective advantages to enhance the new representations in a randomly initialized147

student model Sθ where θ is its learnable parameters. ViT [10] is adopted for all the models in Hybrid148

Distill, and Tm is provided by MAE [13] while Tc is provided by DeiT [36] or CLIP [30].149

Specifically, the Hybrid Distill framework is shown in Fig. 4 and its overall objective is:150

max
θ

E
x∼X

D {Tc(x)⊙M,Sθ(M ⊙ x)}

+ αD {T ′
m(x)⊙M,S′

θ(M ⊙ x)} ,
(1)

where ⊙ is an element-wise product operation. M is a mask provided by the teacher model using151

the strategy described in Sec. 3.2 and M ⊙ x denotes the unmasked patches. D(·, ·) is the distance152

measurement, and we use smooth L1 distance in our experiment. α is the hyperparameter that controls153

the contribution of the two teacher models. Note that we do not distill the final output features Tm(x)154

for the MIM pre-trained model but instead use the token relations in the previous ViT layers, denote155

as T ′
m(x), as the learning objective. Details are illustrated in Sec. 3.2.156

3.2 Distilling Strategies157

What to distill? Different from previous works [41, 11, 45] that directly distill the features of158

teacher models, we analyze that the diversity of MIM pre-trained models arises from their superior159

token-level relationship modeling, while supervised/CL pre-trained models excel at image-level160

discrimination. Hence, we apply different distilling targets to Tc and Tm to fully utilize their respective161

advantages. Specifically, taking Tm as an example, we decompose Tm into T 1
m ◦ T 2

m ◦ · · · ◦ TL
m,162

where T i
m is the ith layer of Tm and is composed of a multi-head self-attention (MSA) layer and an163

MLP layer. Given xi
m as the input of the ith layer, the calculation in T i

m can be represented as:164

Ri
m(xi

m) = Qi
m(xi

m)Ki
m(xi

m)
T
,

MSAi
m(xi

m) = Softmax
(
Ri

m(xi
m)/

√
d
)
V i
m(xi

m),

T i
m(xi

m) = xi
m +MLP(xi

m +MSAi
m(xi

m)),

(2)

where Qi
m, Ki

m, and V i
m denotes the linear mappings for xi

m and d equals to the dimension of xi
m.165

Then, for MIM pre-trained model Tm, we set the token relation Ri
m(xi

m) as the distilling target, while166

for supervised/CL pretrained model Tc, we set the output features T i
c(x

i
c) as the target.167

Where to distill? As shown in Fig. 1(a), supervised and CL models tend to collapse into ho-168

mogeneity in the last few layers, so Hybrid Distill chooses to distill token relations from Tm in169

these layers to address this collapse and improve diversity. While for the last layer of S which is170
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Figure 5: The (a) average head distance, (b) NMI, and (c) attention visualization of the student model
obtained from Hybrid Distill with MAE and CLIP teachers.

crucial for discrimination, Hybrid Distill directly distills knowledge from Tc using the output features.171

Specifically, we distill token relations from Tm at the L− 1 and L− 2 layers and distill features from172

Tc at the L layer of ViT. Accordingly, the learning objective Tc(x) and T ′
m(x) in Eq. 1 become:173

Tc(x) = TL
c (x),

T ′
m(x) = [RL−1

m (x), RL−2
m (x)].

(3)

Distillation acceleration via redundant token dropping. Suppose the input is divided into N174

tokens, i.e., x ∈ RN×d, Hybrid Distill can directly distill token relations and features using all the N175

tokens. However, since some tokens in the image may be redundant, it is promising to mask these176

tokens for the student model S to reduce memory and time costs. Furthermore, removing redundant177

tokens can play a regulatory role, helping the model avoid local optima during the distillation process.178

Specifically, we use the MIM pre-trained teacher Tm to guide the identification of redundant tokens179

and provide the token mask. Inspired by [20], we propose a progressive redundant token masking180

strategy, which generates token masks at different layers of Tm in a progressive manner. Given xi
m181

and the mask M i−1
m provided by the previous layer, we define the tokens in xi

m ⊙ M i−1
m and are182

top K% similar to their average token as redundant tokens in the ith layer and generate a redundant183

token mask for them. The above process is denoted as T (xi
m ⊙M i−1

m ,K). Next, we update M i
m184

using T (xi
m ⊙M i−1

m ,K) and M i−1
m as follows:185

M i
m =

{
M i−1

m − T (xi
m ⊙M i−1

m ,K), if i ∈ I,

M i−1
m if i /∈ I.

(4)

where I is the set of layers required to update the token mask. For M0
m, all elements are set to 1.186

Finally, we set the mask M for the student model as M = ML
m.187

3.3 Property Analysis188

Average head distance. Fig. 5(a) visualizes the average head distance of the student model with CLIP189

and MAE as teachers, while the visualization of CLIP and MAE teachers themselves are included in190

Fig. 1(a). These visualizations demonstrate that Hybrid Distill enhances the discrimination ability of191

the student model, compensating for the semantic lacking problem of the MAE teacher. Moreover,192

Hybrid Distill avoids succeeding attention collapse from the CLIP teacher and generates more diverse193

representations in the last few layers.194

Normalized mutual information. Fig. 5(b) further inspects the NMI. The results demonstrate195

that the mutual information between tokens is significantly enhanced in the layers where the MAE196

token relationships are distilled. Besides, this enhancement does not compromise the discrimination197

obtained from CLIP, as evidenced by attention in the final layers still attending to similar tokens.198

Attention visualization. Fig. 5(c) further visualizes the attention between a given query and other199

keys at different layers to examine behaviors. Compared to MAE, Hybrid Distill exhibits better200

discrimination ability, i.e., the query tokens of the last layer have global attention towards the main201

object of the images, regardless of their location. Besides, Hybrid Distill also improves the locality of202

the model in the 10th layer, where attention collapse is known to occur in the CLIP teacher.203

3.4 Discussion with Other Distillation Methods204

Compared to previous distillation methods [41, 11, 23, 40, 29], Hybrid Distill stands out by not being205

restricted to using a single teacher network. In addition to addressing the limitations of single-teacher206
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Table 1: Main results on ImageNet-1k classification, COCO detection and instance segmentation,
and ADE20K semantic segmentation. ⋆: using MAE+DeiT teachers. †: using MAE+CLIP teachers.

Method Backbone Distill. IN-1K COCO ADE20K
APbox APMask

DeiT [36]

ViT-B

81.8 46.9 41.5 47.0
MoCo v3 [7] 83.2 45.5 40.5 47.1
DINO [2] 83.3 46.8 41.5 47.2
MAE [13] 83.6 48.4 42.6 48.1
CAE [5] 83.3 48.0 42.3 47.7
SdAE [8] 84.1 48.9 43.0 48.6
CLIP [30] 83.6 47.6 42.3 49.6
MAE [13] ViT-L 85.9 54.0 47.1 53.6
CLIP [30] 86.1 52.7 46.2 54.2
Distill-DeiT

ViT-B ✓
82.0 47.7 42.1 47.3

Distill-MAE 83.7 49.1 43.1 47.8
Distill-CLIP 84.8 49.5 43.5 50.3
Hybrid Distill⋆ ViT-B ✓ 83.7 50.3 44.2 49.1
Hybrid Distill† 85.1 50.6 44.4 51.5
Hybrid Distill† ViT-L ✓ 88.0 54.6 47.6 56.3

Table 2: Classification results on CIFAR100, Cars and INautralist19. ⋆: using MAE+DeiT teachers.
†: using MAE+CLIP teachers.

Method Backbone CIFAR100 Cars INaturalist19 Mean
DeiT [36] ViT-B 91.4 92.0 77.3 86.9
MAE [13] ViT-B 89.6 89.5 75.2 84.8
Distill-DeiT ViT-B 91.2 92.5 78.3 87.3
Distill-MAE ViT-B 90.3 93.1 79.0 87.5
Distill-CLIP ViT-B 91.6 94.3 81.6 89.2
Hybrid Distill⋆ ViT-B 91.7 94.1 80.2 88.7
Hybrid Distill† ViT-B 92.0 94.5 81.9 89.5
Hybrid Distill† ViT-L 94.5 95.6 85.3 91.8

distillation in enriching diversity (as discussed in Sec. 2), a more direct factor is that single-teacher207

distillation cannot create new knowledge, e.g., creating additional discrimination for the student208

model when using the MIM teacher. Therefore, we believe that combining and utilizing existing209

knowledge from various teachers is more effective and convenient. Furthermore, with the growing210

availability of large-scale pre-trained models within the community, it becomes increasingly valuable211

to explore new ways to utilize these models and combine their strengths. This further enhances the212

practical value of our Hybrid Distill, and we hope our work would shed light on new directions.213

4 Experiments214

4.1 Implementation Details215

Hybrid Distill is conducted on 8 V100 GPUs and is built on the codebase of dBOT [23], so most of its216

settings are in line with dBOT. Specifically, the batch size, learning rate, and weight decay are set to217

1024 and 6e-4, and 0.05, respectively. AdamW [26] optimizer and cosine decay [25] schedule is used.218

The input size is 2242. For ViT-B, the distillation is based on ImageNet-1K and the epoch is 300219

for main results and 100 for ablation studies. For ViT-L, the distillation is based on ImageNet-21K220

and the epoch is 40. The hyperparameter α is set to 1.0 and the redundant token masking set I is set221

to [0, L/3, 2L/3] following [20]. The performances are tested on different downstream tasks. For222

classification, we report results on ImageNet-1K, CIFAR100 [19], Cars [18], and iNaturalist19 [37].223

For object detection and instance segmentation, we fine-tune the student model on COCO [22] using224

Mask-RCNN [15] following [5]. For semantic segmentation, the evaluation is conducted on ADE20K225

[47] using the ViT with UperNet [42] following [5, 8]. More details are included in the appendix.226

4.2 Main Results227

This section presents benchmark results of Hybrid Distill on different downstream. We also list results228

for supervised and self-supervised pre-trained models, as well as 300-epoch uni-distillation baselines229

7



Table 3: Different combinations of two teacher
models. Tc(x): DeiT, Tm(x): MAE.

Targets APbox APmask

Tc(x) 47.5 41.8
Tm(x) 48.9 43.1

Tc(x) + T ′
c(x) 46.8 41.5

Tm(x) + T ′
m(x) 48.9 43.2

Tc(x) + T ′
m(x) 50.0 43.9

Table 4: Different combinations of two teacher
models. Tc(x): CLIP, Tm(x): MAE. ⋆: using the
ImageNet-100 pretrained weights.

Targets APbox APmask

Tc(x) 49.1 43.1
Tm(x) 48.9 43.1

Tc(x) + T ′
c(x) 49.1 43.2

Tc(x) + T ′
m(x) 50.4 44.1

Tc(x) + T ′
m(x)⋆ 49.5 43.5

Table 5: The distilling targets of T ′
m(x). Tc(x):

DeiT, Tm(x): MAE. ⋆ means distilling MAE and
DeiT features at the last layer.

Targets APbox APmask

T i
m

⋆ 47.7 42.1
T i
m 49.6 43.5

MSAi
m 49.8 43.7

Ri
m 50.0 43.9

Table 6: The distilling targets of T ′
m(x). Tc(x):

CLIP, Tm(x): MAE.

Targets APbox APmask

T i
m 49.9 44.0

MSAi
m 50.1 44.0

Ri
m 50.4 44.1

which use the same symmetrical structures as Hybrid Distill, for comparison. As shown in Tab. 1,230

Hybrid Distill achieves performance gains on all downstream tasks, especially for the dense-level231

ones. Specifically, although the performance of DeiT is suboptimal, its strength can be complementary232

to MAE and brings considerable benefits, i.e., when using DeiT and MAE teachers, Hybrid Distill233

achieves 50.3 APbox and 44.2 APmask on COCO, as well as 49.1 mIoU on ADE20K, surpassing234

Distill-MAE by 1.2, 1.1, and 1.3, respectively. Similarly, Hybrid Distill achieves 50.6 APbox and235

44.4 APmask on COCO, as well as 51.5 mIoU on ADE20K when using CLIP and MAE teachers,236

outperforming Distill-CLIP by 1.1, 0.9, and 1.2, respectively. When using the VIT-L backbone, the237

performance can be further boosted to 54.6 APbox, 47.6 APmask and 56.3 mIoU on respective tasks.238

The improvement on ImageNet-1k is not significant, probably because the distillation is performed on239

the same dataset, thus increasing diversity fails to bring further gains. In Tab. 2, we further evaluate240

Hybrid Distill on several small-scale classification datasets and observe more significant gains.241

4.3 Ablation Study242

This section ablates different variants of Hybrid Distill. The results are reported on dense-level COCO243

detection and segmentation tasks, as diversity has a stronger influence on these dense-level tasks [27].244

Different combinations of two teachers. We first evaluate the benefits of combining two teachers245

for distillation. As shown in Tab. 3, adding additional MAE attention regularization can bring246

noticeable improvements (2.5 on APbox and 2.1 on APmask) compared to directly distilling from the247

DeiT teacher. Moreover, the additional attention regularization cannot bring benefits when only using248

a single DeiT teacher, which suggests that the benefits come from the introduction of MAE teacher.249

The above conclusions are consistent when using CLIP and MAE teachers, as illustrated in Tab. 4.250

We also try a much weaker version of MAE teacher which is only pre-trained on ImageNet-100 for251

100 epochs in Tab. 4. We lower the weight of this teacher to avoid its impact on discrimination. The252

results are still positive, which reflects the power of the MIM pre-training in modeling diversity.253

Distilling target of the MIM teacher. We then examine the distilling target of the MIM teacher.254

As shown in Tab. 5, distilling the relation Ri
m brings the best detection performance (50.0APbox).255

Distilling MSAi
m achieves a close performance (49.8APbox) since its essential is also distilling256

relationships, while directly distilling the feature maps T i
m brings the worst performance (49.6APbox).257

Nevertheless, all these schemes outperform the DeiT distillation baseline, and the trends are consistent258

when using CLIP and MAE teachers, as shown in Tab. 6. Besides, we also evaluate a basic setting259

that directly distills the features of both the MAE and DeiT teachers at the last layer. The result is far260

from satisfactory, which highlights the effectiveness of the designs in Hybrid Distill.261

Distilling position of the MIM teacher. Tab. 7 inspect the distilling position of the MIM teacher.262

We first experiment with distilling MAE relations at the front, middle, and back layers. Distilling at263

the back layers achieves better results, i.e., 1.5APbox and 2.4APbox gains towards distilling at the264
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Table 7: The distilling position of Tm.

Distilling layers APbox APmask

1-11 48.8 43.0
1,2,3 47.4 41.9
5,6,7 48.3 42.7

9,10,11 49.8 43.7
10,11 50.0 43.9

11 49.2 43.3

Table 8: The token masking strategy.

Strategy Ratio APbox APmask

No 100% 50.0 43.9
Random 35% 49.2 43.3
Direct 35% 49.6 43.7

Progressive 13%(50%3) 48.4 42.8
Progressive 34%(70%3) 49.9 43.8
Progressive 73%(90%3) 49.9 43.8

front and middle, respectively. The results are consistent with the fact that attention collapse tends to265

occur in these back layers. We then ablate the number of distilling layers and find that distilling at the266

two layers preceding the final layer (i.e., 10,11) contributes to the best results.267

Token masking strategy. Tab. 8 studies different masking strategies for the student model. Since268

we progressive drop the redundant tokens three times, the actual tokens used in the student model are269

(1−K)3%. We observe that when dropping 30% tokens at a time, Hybrid Distill achieves very close270

performance (49.9APbox and 43.8APmask) to the no masking results and outperforms the random271

masking strategy and the direct masking strategy which only generates token mask at the last layer. In272

addition, we notice that our token masking strategy also has a regularizing effect, which can prevent273

the model from falling into a locally optimal when training for longer epochs. Details about this274

effect are included in the appendix.275

5 Related Work276

Representation learning. Pre-training on large-scale datasets (e.g., ImageNet [32], JFT [34], Kinetics277

[3], etc.) is typically utilized for downstream initialization. Except for the common supervised pre-278

training [16, 10, 24], contrastive learning (CL) [4, 14, 6, 12] and masked image modeling (MIM)279

[1, 44, 13] dominate the recent research. The former is achieved by pulling close the features of two280

different augment views of the input image. While the latter, inspired by masked language modeling281

[17, 46] in NLP, is realized by reconstructing the mask part of the input image. Recently multi-model282

extensions [30, 9, 21] of the CL pre-training have also been proposed by utilizing the paired text283

description of the given image. These different types of pre-training frameworks are proven to have284

different properties [27, 43], and this paper aims to combine their respective excellent properties to285

boost a student model.286

Knowledge distillation. Knowledge distillation [28, 35, 31] utilizes a well-trained teacher to guide287

the feature learning of the student model, thus transferring its ability to the student. Beyond its288

success in supervised learning, some recent works [41, 11, 39, 40, 29] utilize it to extend existing289

pretrained models or paradigms. Feature distillation (FD) [41] finds that distilling the feature map290

of the supervised/CL pretrained teacher can bring diverse representation to the student and make it291

more friendly for downstream fine-tuning. dBOT [23], MVP [40], and BEiT v2 [29] change the mask292

reconstruction object of MIM to the knowledge of the teacher model to boost MIM pre-training with293

semantic information. In this paper, we analyze their properties and propose a new hybrid distillation294

framework to deal with their deficiencies.295

6 Conclusion296

This paper proposed a hybrid distillation framework that simultaneously distills knowledge from297

both the supervised/CL pre-trained teacher and MIM pre-trained teacher to enhance the diversity and298

discrimination of the student. The framework addresses the limitations of single-teacher distillation,299

where increasing diversity through the use of asymmetric designs may harm discrimination. Specifi-300

cally, Hybrid Distill carefully designs the distilling target and location, i.e., distilling relations from301

MIM in layers where attention collapse tends to occur and distilling features from supervised/CL302

in the last layer to preserve discrimination. A progressive redundant token masking strategy is also303

proposed for reducing the distilling costs. Experiments prove that Hybrid Distill can acquire better304

properties and achieve promising results on various downstream. We hope our research would shed305

light on a new direction for applying existing large-scale pre-trained models.306
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