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ABSTRACT

Differential temporal difference (TD) methods are value-based reinforcement
learning algorithms that have been proposed for infinite-horizon problems. They
rely on reward centering, where each reward is centered by the average reward.
This keeps the return bounded and removes a value function’s state-independent
offset. However, reward centering can alter the optimal policy in episodic prob-
lems, limiting its applicability. Motivated by recent works that emphasize the role
of normalization in streaming deep reinforcement learning, we study reward cen-
tering in episodic problems and propose a generalization of differential TD. We
prove that this generalization maintains the ordering of policies in the presence
of termination, and thus extends differential TD to episodic problems. We show
equivalence with a form of linear TD, thereby inheriting theoretical guarantees
that have been shown for those algorithms. We then extend several streaming re-
inforcement learning algorithms to their differential counterparts. Across a range
of base algorithms and environments, we empirically validate that reward center-
ing can improve sample efficiency in episodic problems.

1 INTRODUCTION

The average reward formulation of reinforcement learning (Mahadevan, 1996)—which can be de-
scribed as an undiscounted objective for continuing problems—has led to the development of algo-
rithms that shift rewards by the average reward (Schwartz, 1993; Sutton & Barto, 2018; Wan et al.,
2021). This mean-centering of rewards prevents the undiscounted, infinite sum of rewards from
diverging. Temporal difference (TD) methods which predict this sum of centered rewards form the
differential TD family of algorithms. Recent work separated centering from the average reward
formulation by demonstrating its utility in discounted problems (Naik et al., 2024; Naik, 2024)—a
setting where centering is not necessary for bounding an infinite sum of rewards. However, its use
remains limited to continuing problems because in episodic problems, the ordering of policies is not
preserved when rewards are shifted. To illustrate this, consider an episodic problem where some
positive constant c is subtracted from every reward. Subtracting a sufficiently large ¢ produces op-
timal behavior which terminates as quickly as possible. Conversely, adding a sufficiently large c to
every reward encourages behavior that prolongs the episode (i.e., avoids termination).

Normalization methods have recently garnered interest in deep reinforcement learning (e.g., Lyle
et al., 2023; Lyle et al., 2024; Palenicek et al., 2025). Notably, normalization has shown substantial
benefit in streaming deep reinforcement learning (Vassan et al., 2024; Elsayed et al., 2024)—the
buffer-free, online, incremental learning setup of the original reinforcement learning algorithms
(Sutton, 1988b; Sutton & Barto, 2018). Much of the recent work on normalization has focused on
techniques such as input centering and scaling (Sutton, 1988a), layer normalization (Ba et al., 2016),
and output scaling. However, less attention has been paid to output centering, with the lack of opti-
mal policy invariance in episodic problems cited as the concern with it (Lee et al., 2025). Episodic
environments are widely used for evaluation (e.g., Young & Tian, 2019; Towers et al., 2024), moti-
vating a revisit of differential TD and exploring whether its applicability can be expanded.

In this work, we introduce a strict generalization of differential TD that extends its applicability to
both discounted and undiscounted episodic problems. Through the lens of potential-based reward
shaping, we prove that the modification maintains invariance of the optimal policies. We further
show an equivalence between differential TD and a state-and-action-independent, output-level bias
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unit, establishing that the algorithm shares theoretical guarantees (e.g., convergence to the fixed
point) with those of TD with linear function approximation. In tabular episodic problems, we high-
light the utility of centering and identify scenarios where we might expect improvement. Finally,
in the streaming deep reinforcement learning setting, we show that our generalization of differential
TD integrates seamlessly into existing algorithms, scales effectively to non-linear function approxi-
mation, and preserves the sample complexity benefits previously observed in continuing problems.

2 BACKGROUND AND RELATED WORK

Reinforcement learning is typically formalized as a Markov decision process (MDP), characterized
by a set of states S, sets of each state’s available actions .A(s), and an environment transition model
p(s',r|s,a) = P(Sty1 = s, Rey1 = r|S: = s, Ay = a). For each discrete time step ¢, an agent
observes its current state S; € S, selects an action A; € A(S;), and jointly samples a next state
Siy1 € S andreward R:41 € R according to the environment transition model. Actions are selected
according to a policy 7(als) = P(A; = a|S¢ = s), and reinforcement learning agents in control
problems aim to find the optimal policy 7* which maximizes a reward-based objective. A common
objective is to maximize the expected discounted return. The return is given by:

T—t—1

def
Gy = Z ’Yth+k+1,
k=0
where v € [0,1] and T being an episode’s final time-step, or v € [0,1) and T' = co in infinite-
horizon, continuing problems. Value-based methods for reinforcement learning compute or approx-
imate value-functions, which are defined to be expected returns conditioned on a state (or state-action
pair) under a policy 7:
U (5) € Er[Gy|S, = 8], Vs

q=(s,a) def E.[Gt|S: = s, At = a], Vs, a,

with v, (s) denoted the state-value function and ¢, (s, a) denoted the action-value function. The
process of computing a policy’s value function is referred to as policy evaluation. Such values may
then inform decisions via policy improvement—a theorem stating that behaving greedily with respect
to ¢, will result in an improved policy 7" where ¢,/ (s,a) > ¢z (s,a), Vs, a. Policy evaluation and
improvement can then alternate in a process of policy iteration to approach an optimal policy.

A popular approach to policy evaluation makes use of a value-function’s Bellman equation, where a
decision point’s value is expressed in terms of successor decision point values. For example, for v, :

vr(s) = Z 7(als) Zp(s’, rls,a)(r 4+ yvx(s")), Vs.
Given a transition (S;, Ay, R¢+1, St+1), temporal difference (TD) methods (Sutton, 1988b) form a
sample-based estimate of v, (S;) based on its Bellman equation and take a step toward this target:
V(St) < V(St) + a(Rt+1 =+ 7V(St+1) — V(St)),
where V' = v, is a learned, approximate value function and « € [0, 1] is the step-size.

An alternative to the discounted objective is the average reward criterion (Mahadevan, 1996), where
an agent seeks to maximize its reward per step from some starting state Sy:

e 1o
r(m,s) & Jim = ZE[Rt|So =3, Ag.t—1 ~ 7], Vs, 7.
t=1

n—,oo M

A unichain assumption is typically made on the MDP, making r (7, s) independent of state and
simplifying our notation to (7). This objective is akin to maximizing an undiscounted return in
an infinite-horizon, continuing setting. Standard value-based methods are not applicable here as
undiscounted, infinite-horizon returns are generally infinite. Value-based, average reward algorithms
instead work with differential returns:

GtA o Z (Rt+k+1 - T(W)),

k=0
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where the average reward is subtracted from each reward to ensure the sum converges. Given cor-

. . . . def .
responding differential value functions (e.g., v2(s) = E.[G2|S; = s]), a TD method for this
setting maintains an estimate of its average reward (which we denote b) and uses this to estimate the

differential return:
b+ b+ T]Ot(Rt_H - b)
VA(S,) « VA(S,) + a(Rt-H — b+ VA(Siy) — VA(St)),

where 1 € [0, 1] produces an effective step size of na for the update to b, which usually has a slower
time-scale. This algorithm which directly averages sampled rewards is called R-learning (Schwartz,
1993). This was later improved upon by Wan et al. (2021) with the differential TD algorithm:

§=Ryp1 — b+ VA(Si41) — VA(S)) (1)
b+ b+ nad
VA(S,) « VA(Sy) + ad
In addition to better empirical performance, updating b using the value update’s error allows for

off-policy estimation of the average reward. That is, b converges to the average reward of the policy
being evaluated, allowing it to differ from that which chooses actions.

Recent work by Naik et al. (2024) reintroduced v into Equation 1, decoupling differential TD’s
reward centering mechanism from the average reward objective and demonstrating its utility on
discounted objectives. This extension was motivated by removing an often large, state-independent
offset in the value function that is evident in a value function’s Laurent series decomposition:

ve(s) = 1T(—7T)7 + vf(s) +ex(s,7),Vs,

where v, (s) is a discounted value function, v2(s) is an undiscounted differential value function, and
ex(s,7) is an error term that captures the difference between discounted and undiscounted values
(and vanishes as 7 — 1). Subtracting r(7) from each reward in a discounted, infinite-horizon

return results in a subtraction of :(_WV) from the return, thus canceling the constant in the above

decomposition. Reward centering was shown to improve sample efficiency but remained limited to
continuing problems. In episodic problems, the shift in return from shifts in reward depends on the
remaining episode length. Because the remaining episode length varies across states and actions,
invariance of the optimal policies is not guaranteed.

Interestingly, differential TD is a possible explanation for the interplay between phasic and tonic
dopamine in the brain (Gershman et al., 2024). This biological plausibility further motivates devel-
oping and understanding centered TD algorithms.

3 CENTERING REWARDS IN THE PRESENCE OF TERMINATION

In this section, we demonstrate how to maintain invariance of the optimal policies under reward
centering. In particular, we consider a view of reward centering as potential-based reward shaping
(Ng et al., 1999). Given some function F'(s, a, s) of the form:

F(s,a, sl) = ’YCI)(S/) = ®(s),

where ®(St) &, adding F'(s,a, s’) to each reward maintains invariance of the optimal poli-
cies while having an effect on learning dynamics. Without assumptions on the MDP, r(s, a, s") +
F(s,a,s’) was shown to be the only reward transformation with this property (Ng et al., 1999). For
some free variable b, if we define ®(s):

et b
(s) € .
L—ny
we get the following state-independent reward shaping term:
b b
F Neyero— — ——
(s08) =77 7>
-1
!
L=~
= —b.
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This produces a constant shift in reward. If b estimates the average reward, this shaping term in
continuing problems recovers differential TD and validates that the ordering of policies remains
unchanged. However, reward shaping makes no assumption about the problem setting—if we rec-
ognize that ®(s) must be zero at terminal states (Grzes, 2017), we get:

b

F(s,a,s') = {1_7’

if s’ is terminal
—b,  otherwise

This leads to the following TD updates:

VA(S) « VA(Se) + a(Rep1 — 125 = VA(Sy), if s is terminal
t VA(Sy) + a(Rep1 — b+ 9V A(Si41) — VA(Sy)), otherwise

which can be equivalently expressed through the following terminal differential value definition:

VA(Sy) « VA(Se) + a(Res1 — b+ V2 (Se41) — VE(Sy))
def —b
VA(Sr) E ——.
(5r) % 1=
The intuition behind this terminal value definition lies in the equivalence between a terminal state
and an infinitely self-looping state with zero reward. The update is akin to transforming an episodic
problem into an equivalent, hypothetical continuing problem—a setting where constant shifts in
reward lead to constant shifts in return. In this view, the infinite discounted shifts in the self-
looping state are summarized with a closed-form expression. We note, however, that this episodic-
to-continuing transformation is from the perspective of the value function, as an agent still resets to
a starting state and does not perform updates in the terminal state.

Reward shaping also has an equivalence with value-function initialization (Wiewiora, 2003), sug-
gesting that it can influence exploration via means like optimistic initialization (Sun et al., 2022).
The relationship between reward shaping and value-function initialization provides insight as to why
we might expect centering to improve sample efficiency. It is akin to initializing a value function to
its mean and reducing the distance that each state- or action-value has to travel. It is not an exact
equivalence here, as b changes over time (Devlin & Kudenko, 2012). However, because we are
estimating a single scalar, it is a relatively simple learning problem.

Because the modification is equivalent to defining a terminal differential value, formally this is a
generalization of differential TD as the algorithm previously did not intend to encounter termination.
However, because of the division by 1 — ~ in the terminal differential value, the above modification
does not apply to undiscounted, episodic problems.

4 LEARNING EPISODIC DIFFERENTIAL VALUES

The previous section detailed how optimal policy invariance can be maintained when centering re-
wards in episodic problems. However, the reward shaping perspective assumes the potential function
is fixed and does not suggest if the algorithm is sound if b is continually updated. To reconcile this,
we view differential TD as learning values where the value function has an output-level bias unit
that is independent of state and action. To establish this equivalence, we define a value function to
be the sum of differential values (parameterized by w) and a bias unit b:

V(s;w,b) &ef VA(s;w) + b.

With a mean-squared-value-error objective and (sample-based) gradient-descent updates (e.g., Sut-
ton & Barto, 2018; Mnih et al., 2015), we get:

J(w,b) def % Zd(s) (U,T(s) —Vis;w, b))2

Wil — Wy + Oé(Uﬂ— — V(St;Wt, bt))VWVA(St;wt)
biy1 + by + 7704(Uw — V(Sg; wy, bt))7
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where—to emphasize the relationship with differential TD—we again specify 1 € [0, 1] to produce
a slower time-scale, effective step-size of na for the bias unit update. Substituting a TD estimate of
v, then gives us the following error:

Vg — V(St;wt, bt) =Ri41 + ’}/V(St+1; Wi, bt) - V(Sﬁwta bt)
= Rip1 +YVA(Seq1;We) + b — VA(Si; wy) — by
= Rey1 — (1= Nbe + V2 (Se15wi) — V(S wy)

This resembles, but does not completely match differential TD (as defined by Equation 1) in that
it has an extra yb; term. However, because the additional term only involves a state- and action-
independent scalar, we can use reparameterization to show that this update is equivalent to differen-

tial TD if we allow the bias to use a separate step size (as is the case with differential TD). Define

def ~ def
b= (1—y)band ) = n(1 —7):

Wt+1 < Wi 4+ a(Rt+1 — i)t + ’YVA(St+1; Wt) St, Wi ) St, Wt)
. ob
bt+1 «— by + T]Oé(RH_l — by + ’}/VA(St_H; Wt) St,Wt )87;
¢
& byp1 b+ UOé(RH-l — b + WVA(St-H; W) — 5t7Wt )(1 )
& b1 < by + 7704(Rt+1 — b+ YV A(Sp1;we) — VE(Sy; we )

It is evident that if we set iy and initialize by appropriately, and we perform updates on the same
sequence of transitions, the updates to w exactly match those of differential TD. The bias-unit
step-size can also be treated as the bias unit’s activation value. This interpretation establishes an
equivalence with a specific choice of feature representation, and as a result, the analysis of linear
TD with discounting (or eventual termination) extends toward differential TD in episodic problems.
See Appendix E for a complete proof of convergence which validates this.

The presence of the additional b, term prior to reparameterization results in bootstrapping off of

uncentered values (i.e., V and not V2). This allows us to define the sum VA(ST7 w)+b &ef 0

(or VA(S;w) &f —b) to handle terminal states, which is what we get if we substitute b into the
terminal differential value definition from Section 3. This highlights that the additional vb, is what
follows from a potential function ®(s) = b. While the two forms are equivalent through the separate
step size, it is notably a form which is applicable in episodic problems with v = 1. As an example,
Algorithm 1 details how we can extend differential Q-learning to handle episodic problems. It
provides two forms of the update which, when v = 1, must be selected based on whether the
problem is known to be continuing or episodic. Either form is applicable when v < 1, and as shown
above, are formally equivalent under corresponding parameter settings.

The connection with a choice of feature representation highlights that b and V' (s; w) are jointly
optimized under a common objective. This may contrast intuition from the average reward setting
where it is often presented as two interacting processes: an average reward estimate which depends
on the policy derived from differential value estimates, and differential value estimates which depend
on the average reward estimate. This view also presents an interpretation of 7 as balancing credit
assignment, which—on a problem dependent basis—may not need to be on a slower time scale.

The bias unit perspective further suggests what b converges to in episodic problems. It is less infor-
mative to consider average reward because any policy which eventually terminates has zero average
reward due to the equivalence between terminal states and infinite self-loops with zero reward. Be-
cause updates are not performed to the values of terminal states, the differential values are centered
over non-terminal states, making b approach the expected state-value over the (non-terminal) vis-
itation distribution, subdivided over the expected remaining episode length: Egq_[V (s )Miﬂm]

where d, represents normalized expected state visitation counts under policy 7 and T'(s) is the
expected remaining episode length from state s (See Appendix C).
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Algorithm 1 (Generalized) Differential Q-learning

Initialize weights w € R? arbitrarily
Initialize b € R arbitrarily
for each episode do
s~ p(so)
for each step of episode do
ar~m(s)
S/a T~ p(slv T|Sv a)
if s’ is terminal then

O«1r— ll'n *(JA(S.([ZW) >y <1
else
§ 1 —b+ymaxy Q2(s",asw) — Q% (s, a; W) > v < 1lor+vy =1, continuing
end if
W — adV,Q2(s, a; W)
b+ nad
s« s
end for
end for

5 EMPIRICAL EVALUATION

To see whether the benefits of centering in continuing problems (Naik et al., 2024) can be achieved
in episodic problems, we consider differential Q-learning (Watkins, 1989) with our novel terminal
differential value definition (Algorithm 1) and compare it with vanilla, uncentered Q-learning in a
10x 10 episodic grid world where the top-left is the start state and the bottom-right is terminal. The
grid world uses 4-directional movement where attempting to leave the grid keeps the agent in place.
To gain insight into when centering is useful, we consider two reward distributions: —1 per step
(the painful grid world) and O per step with 1 upon termination (the sparse grid world). Based on
the intuition around centering reducing the total distance that outputs need to travel, our hypothesis
is that centering will provide substantially more benefit in the painful grid world, since the values
deviate more across states. We fixed v = 0.9, tuned « for Q-learning, and we tuned « and 7 for
differential Q-learning. An e-greedy policy was used for both algorithms with € = 0.1. Full details
of the parameter sweeps can be found in Appendix A.

Grid World (Painful) Grid World (Sparse)
0.05 0.05
S

g 9 Differential Q-learning
@ oo Differential Q-learning 2 oo
s 8
E 0.03 E 0.03
[-8 Q
£ £
(=] o
:JJ 0.02 ﬁ 0.02
o o
2 2
LIQJ_ 0.01 uo_l- 0.01

0.00 0.00

2.5 5.0 75 10.0 12.5 15.0 17.5 20.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Thousands of Time Steps Thousands of Time Steps
(a) Painful reward distribution (b) Sparse reward distribution

Figure 1: Performance of Q-learning when used with reward- and value-centering compared against
a standard uncentered baseline. The results are averaged over 100 independent runs where the
shaded areas (occasionally less than a line width) represent the standard error.

Figure 1 shows the average rate of completed episodes per environment step of each algorithm’s
best parameter setting in terms of total episodes completed, for each reward distribution. With the
painful reward distribution, differential Q-learning improves significantly over the uncentered base-
line. However, in the sparse reward variant, both algorithms performed similarly. Recognizing
that both algorithms performed worse with sparse rewards, it is possible that learning was bottle-
necked by having a comparatively difficult exploration problem. Nevertheless, this validates that
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there is benefit to centering in episodic problems. The results further suggest that the benefit can
be expected when there is greater value-deviation across states (typical of dense reward settings),
consistent with the intuition of centering reducing the distance that outputs need to travel. The value
deviation along the optimal path is visualized in Figure 2.

Painful Grid World (Uncentered) Painful Grid World (Centered) Sparse Grid World (Uncentered) Sparse Grid World (Centered)
——
o

vets)
v;(s)
V‘A(Sl
v:(s)

) Time [step] ' Time [step] ) ' Time [step] ) Time [step]

Figure 2: Uncentered and centered output distances (shaded area) along the optimal path in the
Painful and Sparse Grid World environments. Because the Sparse Grid World’s values are relatively
small and concentrated around zero, we might expect less benefit from centering.

To further validate that centering can be done in episodic problems without changing the underlying
problem and to demonstrate that there is benefit in doing so, we examine more challenging environ-
ments that require non-linear function approximation. Specifically, we extend two streaming deep
reinforcement learning algorithms: Stream Q(\) and Stream AC()) (Elsayed et al., 2024) to their
differential counterparts. We additionally compare against PopArt (van Hasselt et al., 2016)—an al-
gorithm which similarly employs output centering but with explicit attention on precisely preserving
the unnormalized outputs. When using PopArt normalization with Stream Q(\) or Stream AC()),
we omit reward scaling as PopArt performs its own output scaling. We provide further experimental
details and hyperparameters used in Appendix B.

Figure 3 shows the performance of Stream Q(\), differential Stream Q(\), and PopArt Stream Q()\)
on Asterix, Breakout, Freeway, Seaquest, and Spacelnvaders from the MinAtar suite (Young & Tian,
2019). We tune 7 and present results under the best-performing parameters from our search. We ob-
serve that differential Stream Q()\) improves over its uncentered base algorithm in all environments
except for Breakout, where they perform similarly. On the other hand, PopArt normalization with
Stream Q(\) was less consistent across the environments. It is unclear why this is the case because
PopArt had not previously been demonstrated in a streaming deep reinforcement learning setup, and
had not been used in these environments. It may be a nuance around explicitly normalizing the
outputs with specific statistics and trying to precisely preserve outputs as these statistics may shift,
in contrast with differential TD which jointly optimizes the shift under the same objective.

Next, we compare our centering approach in continuous-action control. In Figure 4, we show the
performance of Stream AC()\), differential Stream AC()), and PopArt Stream AC()) in the MuJoCo
suite (Todorov et al., 2012). It can be observed in Figure 4 that differential Stream AC(\) showed
considerable improvement in the Ant-v4 and HalfCheetah-v4 environments, while not performing
worse than its uncentered counterpart in the remaining ones. Notably, these two environments saw
the largest return magnitudes over the duration of a run, which may be related to large value devia-
tions across states. PopArt did not demonstrate statistically significant improvement in this suite.

Lastly, to explicitly validate the insight from the grid world experiments on when differential TD
helps, we modified the Deepmind Control Suite’s Reacher environment Tassa et al. (2018). Specifi-
cally, we created a Painful Reacher environment that receives a reward of —1 per step to mirror the
grid world set up that showed substantial benefit. To lengthen episode duration and consequently
increase value magnitudes and deviation, we additionally evaluate in a harder variant of the task
that shrinks the goal location. With results presented in Figure 5, we see significant improvement
in using differential Stream AC(\) over the uncentered base algorithm. Taking all of the evaluation
together, we have established that reward centering can be done in episodic problems and that it can
improve sample efficiency over uncentered algorithms. We further observed that the differential ex-
tension, when tuned, never performed worse than its base algorithm. This is to be expected because
the n = 0 extreme results in a standard, uncentered TD update.
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Figure 3: Performance of differential Stream Q(0.8) compared against a standard uncentered base-
line and a PopArt-normalized baseline in the MinAtar suite. The results are averaged over 30 inde-
pendent runs where the shaded areas represent the standard error.
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Figure 4: Performance of differential Stream AC(0.8) compared against a standard uncentered base-
line and a PopArt-normalized baseline in the MuJoCo suite. The results are averaged over 30 inde-
pendent runs where the shaded areas represent the standard error.

6 CONCLUSIONS, DISCUSSION, AND FUTURE WORK

In this work, we explored the reward centering mechanism of differential TD algorithms, which was
previously limited to infinite-horizon reinforcement learning problems. By viewing reward centering
from the lens of potential-based reward shaping, we propose a differential terminal value definition
which—when used—maintains the ordering of policies and strictly generalizes differential TD to be
applicable in episodic problems. We further show equivalence between the generalized differential
TD update and an output-level, state- and action-independent bias unit. This establishes that the
algorithm shares the theoretical guarantees previously shown for linear TD, and provides insight
into how the centering term can be interpreted in an episodic problem. In a tabular environment,
we demonstrated that centering can improve sample efficiency in episodic problems and provided
arguments for when such benefits might be expected. In a streaming deep reinforcement learning
setup, we further showed that these algorithms can scale to difficult problems with non-linear func-
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Figure 5: Performance of differential Stream AC(0.8) compared against a standard uncentered base-
line and a PopArt-normalized baseline in the Painful Reacher environment. The results are averaged
over 30 independent runs where the shaded areas represent the standard error.

tion approximation. Altogether, we have shown that reward centering can be applied in the presence
of termination without altering the underlying task, and that doing so is beneficial.

There are many avenues for future work. Our evaluation focused on the streaming reinforcement
learning setting, as that is where normalization was recently shown to have substantial benefit.
However—as emphasized by Naik et al. (2024)—reward centering is a relatively general idea that
can be easily dropped into any existing algorithm. Broadening its applicability toward episodic en-
vironments, the scope of possible comparisons between algorithms is larger now and there is merit
in investigating differential TD’s utility toward other types of episodic reinforcement learning al-
gorithms (e.g., ones which store and process explicit episode trajectories). While the additional
step-size parameter 7 was already present in the original differential TD algorithms, the additional
overhead in tuning this parameter remains a limitation. Given that centering involves learning a sin-
gle scalar—a seemingly simple learning problem—it would be promising to explore whether 1 can
be efficiently meta-learned (e.g., Sutton, 1992; Mahmood et al., 2012; Sharifnassab et al., 2024).
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A EXPERIMENTAL DETAILS OF GRID WORLD EXPERIMENTS

We swept over « € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} for both algorithms and n €
{107%,1073:5,1073,1072-5,1072,10~%2,1071,10795,10°} for differential Q-learning. In the
painful grid world, o = 1.0 was best for both algorithms, with = 10~ performing best for dif-
ferential Q-learning. In the sparse grid world, o = 0.9 was best for both algorithms, with n = 10~4
performing best for differential Q-learning.

B EXPERIMENTAL DETAILS OF STREAMING DEEP RLL EXPERIMENTS

We swept over bias step-sizes € {1072,1071,10°,10%, 102, 103}, and we show performance with
the best-performing value. For Stream AC, we used step-size a = 1, kx = 3, kK, = 2, A = 0.8,
discount factor v = 0.99, and entropy coefficient 7 = 0.01. For Stream Q, we used step-size o = 1,
Ky = 2, A = 0.8, discount factor v = 0.99. We used the same neural network architectures used
with Stream AC and Stream Q reported by Elsayed et al. (2024). Lastly, we used an e-greedy policy
where ¢ linearly decayed from 1 to 0.01 within 20% of the total time steps of a run.

C 0’S INTERPRETATION IN AN EPISODIC PROBLEM

Prior average reward definitions lead to zero average reward in episodic problems (due to the equiv-
alence between terminal states and an infinite loop of zero reward), that it is more informative to
consider the bias-unit perspective in understanding what b tends toward. Under a squared loss, the
minimizing bias is the expectation of the targets under the behavior distribution. However, the bias
is applied on a reward level, suggesting that b is related to the expected state-value, but subdivided
over the time remaining in an episode and discounted appropriately:
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where d, represents normalized expected state visitation counts over non-terminal states under pol-
icy m and T'(s) is the expected remaining episode length from state s.

D EPISODIC PROBLEMS AS STATE-DEPENDENT DISCOUNTING

It has been previously acknowledged that episodic problems can be implemented as infinite-horizon
problems with a state-dependent discount function (Sutton, 1995; Sutton et al., 2011; White, 2016).
For example, we can have (s') = 0 if s is terminal, and have it equal to the problem’s discount
otherwise. The terminal state would then transition back to a start state.
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Consider an infinite-horizon return with potential-based reward shaping and state-dependent dis-
. def . .
counting. We define v; = ~(S¢) for notational convenience:

0o k
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Due to the Markov property, the subtraction of ®(S;) will not impact the ordering of policies.
This also highlights that the learned values are relative to the potential function (i.e., it is akin to
initializing the value function to ®(s)). Let us now consider the following potential function:

def b
*) = TG

. L . def e .
If we implement an episodic problem by defining v(S7) = 0 and modifying the transition dynam-
ics such that terminal states transition to a starting state sampled from a starting state distribution
(independent of action), there are three scenarios:

=8 ify(s’) =0
F(s,a,s) = 'y(s’)#b(s,) —b, ify(s) =0

7(5/)#5(5,) - #@, otherwise

If we assume that all non-zero discounts are constant (i.e., v, = ), this simplifies to:

—%, if y(s') =0
F(s,a,s) = ’y%fb, ifv(s)=0
—b, otherwise
This resembles the result in Section 3, except we have an additional fy— term in the case where

~(s) = 0. This term is set up to cancel with a portion of the previous time step’s — ﬁ term, leaving
—b behind. However, this case corresponds with transitioning from a terminal state. Because we do
not typically learn values for terminal states, this target typically will not be used. The remaining
scenarios are consistent with what we get from the explicit episodic return.

E CONVERGENCE OF EPISODIC DIFFERENTIAL TD

In this section, we analyze the asymptotic convergence of the Differential TD algorithm with dis-
counting. We focus on linear function approximation, V'(s) = ¢(s) " w, which subsumes the tabular
case.

We adopt the Ordinary Differential Equation (ODE) method for stochastic approximation (Borkar,
2008). We first define the update rules and the expanded parameter space. Crucially, we utilize an
unrolled MDP formulation to unify the analysis of continuing and episodic tasks.
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E.1 UPDATE RULES AND EXPANDED FEATURES

The differential TD algorithm maintains a parameter vector w and a separate scalar bias estimate b

(related to the average reward or reward offset). The update for a transition (S, A¢, Rit1, St41) is
given by:

Wiy = Wy + a0 P(Sy), 2

bit1 = by + nody. 3)

Here, a; is the learning rate and n > 0 is a scalar multiplier for the bias learning rate. Based on
Section 4, The TD error §; is defined as:

« Continuing: §; = Ri1 — (1 — )bt + ¥P(Se1) Twi — ¢(Sp) Twy.
* Episodic (Non-terminal): Same as above.
+ Episodic (Terminal): §; = Ry 1 — b; — ¢(S;) T w;.

To analyze this coupled system, we augment the feature vector to include a bias unit, forming the

expanded feature vector ¢(s) = [I(s), p(s)T]T € R* 1. The corresponding parameter vector is
w = [b,w']". Here, I(s) acts as the bias feature: it is 1 for all states in the continuing setting, and
[e]s (indicator of non-terminal status) in the episodic setting.

The updates can be rewritten in a unified form:

Wyi1 = Wi + 0 KP(Sy), 4)
where K = diag(n, 1, ..., 1) handles the separate learning rate scaling, and the TD error simplifies
to:

6t = Ris1 +7P(Sei1) "y — (S,) "oy (5)

In the episodic case, we define c;B(Sterm) =0.

E.2 ASSUMPTIONS AND UNROLLED MDP

To provide a single convergence proof, we model the episodic setting as a continuing process and
formalize our assumptions.

Definition 1 (Unrolled MDP). For an episodic task, the Unrolled MDP is a continuing Markov chain
constructed by treating the sequence of episodes as a single stream. Upon reaching a terminal state

s, the process transitions at the next time step to a start state so sampled from the initial distribution
dp.

We define the unified transition matrix P, and stationary distribution matrix D, (diagonal matrix
of the stationary distribution d) based on this unrolled view.

Assumption 1 (Ergodicity). The Markov chain induced by the policy m (or the Unrolled MDP in
the episodic case) is ergodic (irreducible and aperiodic), admitting a unique stationary distribution
dr.

Assumption 2 (Linearly Independent Features). The expanded feature matrix & has full column
rank.

« Continuing: ® = [1, ®)].
« Episodic: ® = [e, ®], where e is zero for terminal states.

d(s)] < oo.

Assumption 3 (Step Sizes and Noise). The step sizes o, satisfy the standard Robbins-Monro con-
ditions: Y ;o oy = 0o and Y o af < oo. The reward function has bounded variance.

Furthermore, for all s,

E.3 CONVERGENCE ANALYSIS

The behavior of the stochastic update in Equation 4 is governed by the mean field ODE:
w = K(Aw +b), (6)
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where b = E[R;14(S;)] and A is the expected update direction matrix:
A=®"D, (P, - 1)®. (7)

Theorem 1. Let v < 1 and n > 0. Under Assumptions 1, 2, and 3, the parameter w; converges
with probability 1 to the unique fixed point w* = —A~1b.

Proof. The proof proceeds in two steps. First, we show that A s negative definite. Second, we
show that the preconditioning by K preserves stability.

Step 1: Negative Definiteness of A. Consider the quadratic form for an arbitrary vector x # 0.
Let y = ®x. By Assumption 2 (full rank), y # O.
x"Ax =y Dx(yPr — I)y =7(y. Pxy)p, — I¥|D,- 8)
The transition operator is a non-expansion in the D -weighted norm (Tsitsiklis & Van Roy, 1997).
Applying the Cauchy-Schwarz inequality:
(v, Pry)p., < lyllp, | Pryllp, < lylb. - ©)
Substituting this back yields: .
x"Ax < (y=lyl5,- (10)

Since v < 1, the quadratic form is strictly negative. Thus Ais negative definite (and consequently
Hurwitz).

Step 2: Stability with 7 > 0. The system matrix of the ODE is An = KA. We analyze its

spectrum via a similarity transformation. Consider § = K ~1/2A, K''/2. Substituting A, = K A,
we obtain: _ ~
S=K '?(KA)KY?=K'Y?AK'/?. (1)

We examine the definiteness of S. For any non-zero vector u:
u'Su=u'KY?AK"*u. (12)

Letv =K /24, Since n > 0, K is positive definite, implying v # 0. The expression simplifies to
v Av. From Step 1, we know v Av < 0. Therefore, u' Su < 0, meaning S is negative definite.

Since S is negative definite, all its eigenvalues have strictly negative real parts. Because fin is

similar to S, they share the same eigenvalues. Thus, A, is Hurwitz. By standard stochastic approx-
imation theory (Borkar, 2008), the iteration converges globally to the unique fixed point w*. O
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