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ABSTRACT

Combinatorial optimization problems (COPs) represent a promising application
domain for quantum computing, yet current quantum optimization approaches
treat each problem instance independently, requiring expensive re-optimization
for every configuration. In this paper we propose a different paradigm inspired
by quantum many-body physics, where parameterized Hamiltonians naturally en-
code system variations under changing global conditions. Our parametrized COPs
formulation, where a global parameter changes the problem configuration, allows
to model parameterized problems and opens access to problem classes that were
previously difficult and inefficient to formulate. Second, we provide a concrete
algorithmic framework, using implicit differentiation to solve these parameterized
COPs classes efficiently. Drawing from techniques used in quantum susceptibility
calculations, our method propagates optimal circuit parameters across different
Hamiltonian configurations without expensive re-optimization. We demonstrate
this approach by finding globally optimal configurations in Max-Cut problems,
where the Hamiltonian parameter controls edge weight distributions. Our imple-
mentation systematically generates parameterized problem families from Max-
Cut, Knapsack, and Portfolio Optimization domains and translates them into quan-
tum formulations suitable for variational algorithms. Experiments on simulated
quantum hardware demonstrate substantial computational speedups compared to
independent optimization approaches.

1 INTRODUCTION

Quantum computing holds the promise of accelerating selected computational tasks, from factoring
integers to simulating quantum systems, yet current devices are noisy and resource-limited (Preskill,
2018). To work within these constraints, researchers have developed Variational Quantum Algo-
rithms (VQAs), which hybridize quantum and classical computation: a parameterized quantum
circuit (PQC) is evaluated on quantum hardware and a classical optimizer updates its parameters
(Cerezo et al., 2021) on a classical computer. VQAs have proven versatile across domains ranging
from quantum chemistry to machine learning.

A prominent VQA is the Variational Quantum Eigensolver (VQE) (Peruzzo et al., 2014), which
aims to find the ground state of a target Hamiltonian and has been widely applied in chemistry and
optimization problems. Another widely studied VQA is the Quantum Approximate Optimization
Algorithm (QAOA) (Farhi et al., 2014), which alternates problem and mixer evolutions and shows
promise on NP-hard combinatorial tasks.

In physics applications, Hamiltonians often include global parameters (such as external fields or
interacting forces), allowing a single parameterized Hamiltonian to represent a family of related
systems, each described by a specific parametrization. Recent meta-learning variants of VQE explic-
itly exploit this formulation: Meta-VQE encodes Hamiltonian parameters directly into the ansatz to
learn energy profiles across a continuous domain (Cervera-Lierta et al., 2021), while NN-VQE uses
a small neural network to generate PQC parameters as a function of the Hamiltonian parameters
(Miao et al., 2024).
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By contrast, in standard treatments of combinatorial optimization problems (COPs) such as the
Portfolio Optimization or Knapsack problems, each instance is mapped to a fixed, instance-specific
Ising/QUBO Hamiltonian with no free global parameter (Lucas, 2014). This instance-wise mod-
eling overlooks practical situations where families of COP instances are driven by global factors
(e.g., overall demand, market volatility, external penalties) that could be abstracted as continuous
parameters. Incorporating such global parameters into the Hamiltonian would allow a single model
to span a family of related instances and opens the door to reusing quantum optimization results
across them.

In this paper we address this gap by introducing a formal framework for parameterized combinato-
rial optimization, defining COP HamiltoniansH(λ) with one or more continuous global parameters
λ that smoothly reshape the cost landscape.

- Markus

2 BACKGROUND

2.1 COMBINATORIAL OPTIMIZATION PROBLEMS - THE KNAPSACK PROBLEM

• Combinatorial optimization problems involve finding an optimal solution from a finite but
often exponentially large set of possibilities - therefore combinatorial. They typically ap-
pear in scheduling, resource allocation, logistics, and machine learning.

• Many combinatorial optimization problems are NP-hard, meaning that no known classical
algorithm can solve them efficiently in the general case.

• A classical example is the Knapsack problem, which models how to select items with given
values and weights under a capacity constraint so as to maximize the total value.

• Mathematically, given n items with values vi and weights wi, and a maximum weight ca-
pacity W , the problem is: max

∑n
i=1 vixi subject to

∑n
i=1 wixi ≤ W, xi ∈ {0, 1}.

Here, xi = 1 if item i is chosen, and xi = 0 otherwise.
• The binary variables xi make the Knapsack problem a discrete optimization problem that

grows exponentially with the number of items.
• In the context of quantum computing, the Knapsack problem (like other combinatorial

problems) can be mapped to a Hamiltonian, where solutions correspond to basis states, and
the energy of each state encodes the quality of the solution.

• This mapping allows the use of quantum algorithms (e.g., adiabatic quantum computing,
variational approaches) to search for low-energy states, which correspond to near-optimal
or optimal solutions of the original problem.

2.2 HAMILTONIANS AND THEIR PARAMETERIZED FORM

• A Hamiltonian in quantum mechanics is a Hermitian operator or function Ĥ that represents
the total energy of a system

• Hamiltonians can be built up from different terms and represented as a sum, e.g. the sum
of the kinetic energy T̂ and the potential energy V̂ -¿ e.g. Ĥ = T̂ + V̂ .

• At the same time the Hamiltonian determines the time evolution of the underlying system
via the Schrödinger equation: iℏ ∂

∂t |ψ(t)⟩ = Ĥ |ψ(t)⟩
• its eigenvalues correspond to measurable energy levels; its eigenstates are stationary states

of the system
• The Hamiltonian spectrum describes all possible energy outcomes of the system.
• The operators can thereby be dependent on external parameters that can present different

influences, like Coupling strength, external magnetic fields, or control variables used in
tunable gate parameters.

• While the Hamiltonains represent energy functions and time evolutions, they often inhere
time as parameter

• they can be used to translate/represent cost functions.
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• Here, the expectation value of the Hamiltonian is minimized, being similar to a cost func-
tion

• One special Hamiltonian is the Ising Hamiltonian derived from the Ising model

• todo: explanation Ising Hamiltonian (two to four sentences)

2.3 VARIATIONAL QUANTUM ALGORITHMS - SPECIFIC WHAT WE USE

• Variational Quantum Algorithms (VQAs) are a class of hybrid quantum–classical algo-
rithms designed to leverage near-term quantum hardware (NISQ devices).

• The key idea is to use a parameterized quantum circuit (Ansatz) that prepares a trial quan-
tum state |ψ(θ)⟩, where θ denotes a set of tunable parameters.

• A cost function is defined as the expectation value of a Hamiltonian: C(θ) =

⟨ψ(θ)|Ĥ|ψ(θ)⟩. Minimizing this cost function corresponds to finding low-energy states
of the Hamiltonian.

• The optimization is performed in a hybrid loop the quantum device evaluates C(θ) for
given parameters, while a classical optimizer updates θ to minimize the cost.

• VQAs are flexible: the Hamiltonian Ĥ can represent physical systems (ground-state energy
in quantum chemistry) or abstract cost functions from optimization problems.

• Well-known examples include:

• Variational Quantum Eigensolver (VQE) for estimating ground-state energies and Quantum
Approximate Optimization Algorithm (QAOA).

• The advantage of VQAs lies in their ability to approximate solutions using relatively shal-
low circuits, making them suitable for noisy intermediate-scale quantum (NISQ) devices.

• Challenges include designing efficient ansätze, mitigating noise, and avoiding barren
plateaus (regions of flat optimization landscapes).

3 RELATED WORK

• Meta-VQE? https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.020329

VQAs for families of Hamiltonians. A key inspiration for our work comes from efficiently solv-
ing parameterized Hamiltonians in chemistry and physics. Meta-VQE augments the VQE ansatz
with an encoding layer for Hamiltonian parameters and, after training on a small grid, generalizes
ground-state predictions across a continuous domain (Cervera-Lierta et al., 2021). More recently,
NN-VQE employs a small neural network that maps Hamiltonian parameters directly to PQC angles,
enabling near-instant parameter prediction for unseen instances once trained (Miao et al., 2024).
Both approaches amortize VQA optimization cost across related problems described by different
parametrizations of the same Hamiltonian.

- Markus

Alternative objective functions for COPs. Standard VQE minimizes the expectation value given
by ⟨ψ(θ)|H|ψ(θ)⟩, which can be ill-suited for discrete objectives where optima are computational
basis states. Barkoutsos et al. (2020) introduced the CVaR objective that averages the best α-fraction
of measured energies, increasing the probability of sampling optimal solutions on problems such as
MaxCut and Portfolio Optimization. Building on this, Kolotouros & Wallden (2022) proposed an
Ascending-CVaR schedule that increases α during training, initially enforcing a sharp focus on elite
samples, then broadening to refine solutions, yielding substantial success-rate gains on challenging
COP landscapes.

- Markus
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4 FORMULATING COP CONFIGURATIONS AS A PARAMETERIZED
HAMILTONIAN

Here we explain how one can formulate the COP as a PH. This should be done with respect to one
single Problem Category. In the Appendix we can add several other Problem categories. However,
the presented single Problem Category could be split up into three subchapter: one linear variable,
two linear variables, higher-order variables.

My proposal (Fede):

In this section, we describe how a single Parametrized Hamiltonian (PH) can model different con-
figurations of a COP, eliminating the need for multiple instance-specific Hamiltonians. For different
COPs, we show how a corresponding PH can be constructed, where the PH-parameter represents
a global factor with a meaningful impact on the configuration of the problem. We denote the PH-
parameter by λ ∈ Rn, as multiple global factors can influence a single COP.

In particular, we exemplarily construct a PH for the Knapsack problem. We describe three scenarios:
(1) a single global parameter (λ ∈ R) has a linear effect on the Knapsack configuration, (2) a single
global parameter has a non-linear effect on the Knapsack configuration, and (3) multiple global
parameters (λ ∈ R3) have a non-linear effect on the Knapsack configuration.

- Fede

4.1 ONE LINEAR VARIABLE

Parameterized Weighted MaxCut. Given an undirected weighted graph G = (V,E) with edge
weights wij on (i, j) ∈ E, a standard Ising form (up to an additive constant) is

HMaxCut(G) =
1

2

∑
(i,j)∈E

wij

(
1− ZiZj

)
, (1)

where Zi are Pauli-Z operators on qubit i; the ground state encodes the optimal cut. We now
introduce a global parameter λ ∈ R that modifies all edges in a controlled way, e.g. to model
network load:

wij(λ) = winit
ij + bij λ, (2)

with base weights winit
ij and fixed sensitivities bij . Plugging equation 2 into equation 1 yields the

parameterized family

HMaxCut(λ) =
1

2

∑
(i,j)∈E

(
winit

ij + bijλ
) (

1− ZiZj

)
. (3)

- Markus

Parametrized Knapsack with Integer Weights. Given a Knapsack with a maximum weight ca-
pacity W and N items to be considered, labeled by indices α, each with an integer weight wα and
a value cα, find the most valuable set of items which can be carried in the Knapsack (i.e. whose
combined weight is smaller than W ).

As shown in Lucas (2014), the problem can be modeled by an Ising Hamiltonian: Let yn for 1 ≤
n ≤W denote a binary variable which is 1 if the final weight of the Knapsack is n, and 0 otherwise.
The Knapsack Hamiltonian is given by HKS = HA +HB , with

HA = A

(
1−

W∑
n=1

yn

)2

+A

(
W∑
n=1

nyn −
∑
α

wαxα

)2

, (4)

where the first term enforces the total weight of the selected items to take only one value, and the
second term ensures that this value is indeed the sum of the weights of the selected items. Finally,
the value of the selected items is maximized

HB = −B
∑
α

cαxα (5)

4
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(a negative term is used as the Hamiltonian itself is minimized). To avoid solutions where HA is
weakly violated at the expense of HB becoming more negative, we require

0 < Bmax(cα) < A

(adding one item to the Knapsack, which makes it too heavy, is not allowed).

As in the Weighted MaxCut case, it is possible to parametrize HKS to model a family of problem
configurations. For instance, the Hamiltonian-parameter λ ∈ R could affect the item values, model-
ing the demand for a certain category of products in the market. Different items have an initial value
cinitα and a particular sensitivity to market demand sα. The impact of demand fluctuations on item
values can be modeled by

cα = cinitα + λsα. (6)

Following Eq. 4 and 5, the parametrized Hamiltonian HKS takes form

HKS(λ) = HA +HB(λ), (7)

where
HB(λ) = −B

∑
α

(
cinitα + λsα

)
xα. (8)

4.2 SEVERAL LINEAR VARIABLES

The formulation of parametrized Hamiltonians easily allows for more complex models. For instance,
extending the Knapsack problem described above, we can add a second global parameter, modeling
the taxation on a given item type. In this case, λ ∈ R2, with λ1 being the demand factor as in the
previous section and λ2 being the taxation percentage on a given item type. The real value of the
items becomes

cα = cinitα + λ1sα + λ2tα, (9)

where tα is a binary variable which is 1 if the item is to be taxed at the rate given by λ2.

The associated cost Hamiltonian becomes

HB(λ) = −B
∑
α

(
cinitα + λ1sα + λ2tα

)
xα. (10)

4.3 SEVERAL HIGH-ORDER VARIABLES

Of course, the effect of the Hamiltonian parameters must not necessarily be linear. For instance,
consider the following sigmoidal model for the value of the items:

cα = V max
α

1

1 + exp (−kα (cinit
α + λ1sα − λ2tα))

, (11)

where λ1, λ2, sα and tα play the same role as before, while V max
α represents the maximum possible

value item α can haxve, and kα > 0 is a slope parameter that controls the speed with which the sig-
moidal curve saturates for this item. With this equation, the value of the items follows a commonly
observed pattern: with small demand, it goes close to zero, rising almost linearly with the demand
and saturating at a maximum value.

5 META-QAOA WARM-START

Goal Learn an amortized warm-start map gϕ(λ) that outputs QAOA angles for an entire family of
weighted Max-Cut instances with λ-dependent edges, enabling strong zero-/few-shot performance
without instance-specific pre-optimization.

5
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SETUP

• Ansatz & Baseline: p-layer QAOA (ZZ cost evolutions + RX mixer) versus a factorized
classical mean-field model (independent spins).

• Task Family: Erdős–Rényi graphs with in-distribution (ID) and out-of-distribution (OOD)
splits in both graphs and λ.

• Meta-Map: Compact Poly+RBF regressor; polynomials capture global trends in λ, RBFs
add local flexibility.

• Objective: CVaR(α) of sampled energies.

METHOD

• Outer optimization: SPSA on meta-weights ϕ of gϕ (no ES).
• Inner (optional) few-shot: SPSA on QAOA angles θ = [β1..p, γ1..p] at test time for K

steps.
• Shot model: Sampling-based evaluation (fixed shots), CVaR aggregation.

EVALUATION PROTOCOL

• Zero-shot quality: Energy from gϕ(λ) without per-instance tuning.
• Few-shot improvement: Energy after K inner SPSA steps.
• Time-to-Target (TTT): Shots required to reach a target energy ratio E/E⋆.
• Splits: ID-graph/ID-λ, ID-graph/OOD-λ, OOD-graph/OOD-λ, OOD-graph/ID-λ.

KEY RESULTS

• Strong zero-shot: Meta-QAOA yields high-quality initial angles that already approach
target thresholds.

• Few-shot boosts: Additional SPSA steps reliably improve on zero-shot, often reaching
targets faster than the baseline.

• Outperforms classical: Across ID and OOD splits, Meta-QAOA surpasses the factorized
baseline in median quality and TTT.

ABLATIONS (ENTANGLEMENT)

• Remove ZZ ( γ=0 ) or replace by only single-qubit RZ: The warm-start advantage
largely collapses.

• Conclusion: Two-qubit/entangling structure is crucial for the observed gains.

INTERPRETATION

• The performance improvement appears to stem from the problem-aligned, entanglement-
capable quantum ansatz combined with an amortized meta-map, not merely from parameter
tuning.

• This is evidence of a practical quantum-native benefit, distinct from a formal proof of
quantum advantage.

LIMITATIONS & OUTLOOK

• Current experiments use smallN , simulated noise, and a non-entangling classical baseline.
• Future work: larger scales, hardware validation, stronger classical baselines, and alternative

meta-parameterizations.

Takeaway Meta-QAOA delivers robust zero-/few-shot warm-starts and consistently beats a strong
factorized classical baseline. The gain aligns with the entanglement-enabled structure of QAOA and
the flexibility of the Poly+RBF meta-map.

6
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6 GLOBAL OPTIMIZATION

Here looking for the global best solution. , finding the optimal Parameter of the PH and its optimal
solution.

Frage: Kann es sein, dass bei linearer Parametrisierung in λ—also mit einer oder mehreren linearen
Variablen—das Optimum in λ tatsächlich immer an den Rändern des Definitionsbereichs liegt (bzw.
bei mehreren Variablen an den Box-Rändern)? Das würde auch sinn machen weil es sich um eine
Affine Transformation handelt. Ich habe dies zur Intuition zusätzlich simuliert; auch dort treten die
Optima durchweg an den Rändern auf. Damit würde für den Linearen Fall das Optimierungsproblem
bedeutungslos werden - Markus

7 DISCUSSION

8 CONCLUSION
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A APPENDIX

You may include other additional sections here.
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