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ABSTRACT

Benchmarks only serve to measure what models are capable of now, not what they
will be capable of in the future. We find that the ordering of acquired capabilities is
remarkably consistent across large populations of AI models, which begs the ques-
tion of whether one can forecast which specific examples and capabilities future
models will solve next. We propose formalizing this problem into a new evaluation
task called progress prediction: Can we forecast which unsolved problems will be
solved next as future models improve? We find that progress is, in fact, predictable.
Through an empirical study of hundreds of millions of predictions made by 1,000+
vision models and 1,600+ language models, we find that this predictability is
possible due to the consistent order in which models acquire capabilities across
architectures, datasets, and modalities.

1 INTRODUCTION

Benchmarks offer an evaluation of where model capabilities currently stand, but offer little predictive
power of where model capabilities will be. Many benchmarks have become obsolete as a result of
models becoming more general and transferring to a wider array of tasks. Therefore, the problem of
model capability becomes not a problem of ‘if’, but ‘when’. For instance, rather than knowing if a
model will create a cure for a disease, knowing when this will happen can be more important as it
can be indicative of how to allocate research efforts in the future. Furthermore, ‘when’ is potentially
a more tractable question to answer than ‘how’.

To make progress towards this goal, we formalize the idea of AI progress prediction as a task: Given
today’s models, can we predict which unsolved problems will be solved next as future models improve
through increasing scale and algorithmic efficiency? Just as human experts have an intuition for when
they are close to solving a problem, model progress is similarly predictable.

The problem described above can be viewed as an ordering problem where prediction is only
possible if there exists a consistent ordering across a broad scope of models regardless of factors
like architecture, data, and modality. We first analyze the patterns of correct and incorrect inferences
from a large and diverse population of models on a given benchmark. We find that this ordering
is remarkably consistent: some examples are reliably solved by a greater number of models than
others, regardless of model architecture or training data. This stability reveals a capability frontier, a
boundary separating the set of examples solvable by a model of a given accuracy from those that are
not.

The task of progress prediction, therefore, is to predict where this frontier will advance. For any given
model M and dataset D, we consider the set of examples NM,D that the model currently fails to
solve. The goal is to identify the subset of examples from NM,D that appear earliest in the population
consensus ordering, as these represent the next capabilities the model is most likely to acquire (see
Figure 1).

Our main contributions are:

1. Formalizing progress prediction as a task and proposing a metric to evaluate prediction
quality over this task.

2. Providing an initial baseline for the community of several model metrics and their progress
prediction scores.
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Figure 1: We treat predicting AI model progress as a binary classification problem. For the purposes
of illustrating our method, let’s assume we know which problems will be solved by a next generation
AI model. The classification task is: when the next generation AI model is released, which data
points will it be able to solve and which will it not be able to solve. We can create a metric around
this, simply what next solvable predictions are inside the set of problems solved by current models
and which are not. Triangles are the problems that are solved by a hypothetical next generation AI
model. Squares are the problems that are not solved by a hypothetical next generation AI model.

3. Designing the Prediction Order Coherence (POC) metric, for measuring population example
correctness ordering and applying it to large populations of vision (1,000+) and language
models (1,600+) across many popular benchmark tasks.

4. Discovering correlations between population example difficulty ordering and learning order
during model training.

To support these contributions, we first establish there is roughly a frontier of problems that only a
model of sufficient accuracy can solve. Then we demonstrate that the next unsolved problems on
which the frontier advances can be predicted.

2 RELATED WORK

We study example difficulty through cross-model agreement. Hacohen et al. (2020) show that
different neural networks broadly agree on which images are easy or hard to classify. Prior work on
training–dynamics also proposes a stable instance-level structure to learning: Toneva et al. (2019)
identifies “unforgettable” and frequently forgotten examples, while Swayamdipta et al. (2020) maps
data into easy/ambiguous/hard regions using confidence and variability over epochs (stable across
random initializations). Model-based proxies such as the c-score (Jiang et al., 2021), prediction depth
(Baldock et al., 2021), and VoG (Agarwal et al., 2022) operationalize difficulty signals from training
behavior. Human-grounded difficulty via Minimum Viewing Time (MVT) (Mayo et al., 2023) also
provides an orthogonal, perception-based scale.

A related line of work uses example signal for optimization during training. Classical curriculum
learning (Bengio et al., 2009; Hacohen & Weinshall, 2019) and its modern variants (e.g., Data Diet
(Paul et al., 2021), Curriculum by Smoothing (Sinha et al., 2020)) rank or stage examples from
easier/near-correct to harder, while targeted data selection (Xia et al., 2024; Bi et al., 2025; Sorscher
et al., 2022) prioritizes influential data to reduce redundant training. Our focus differs in that we
aggregate many models and use such signals for predicting the future of the AI frontier, rather than
optimizing any currently viable task.

Other forecasting works have aggregated performance as a function of scale or time (Hestness et al.,
2017; Kwa et al., 2025; Sevilla et al., 2022), but such works provide macro-level trends. Our study
proposes the first cross-domain technique for predicting micro-level order in learning across models.
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3 MEASURING THE ORDER CONSISTENCY OF POPULATIONS OF MODELS

3.1 DATA COLLECTION

We collected model predictions across language, vision, and protein domains. For language models,
we leveraged the HuggingFace Open LLM Leaderboard evaluations, which provides evaluation
results for over 1,600 language models across 5 challenging datasets:

1. Big Bench Hard (BBH) (Suzgun et al., 2022a; bench authors, 2023): A subset of 23
challenging tasks from BigBench that cover algorithmic reasoning, language understanding,
and world knowledge. The tasks include: Sports Understanding, Tracking Shuffled Objects,
Navigate, Snarks, Date Understanding, Reasoning about Colored Objects, Object Counting,
Logical Deduction (with Three, Five, and Seven Objects), Geometric Shapes, Web of Lies,
Movie Recommendation, Salient Translation Error Detection, Disambiguation QA, Tempo-
ral Sequences, Hyperbaton, Causal Judgement, Formal Fallacies, Ruin Names, Penguins
in a Table, and Boolean Expressions. Each task has a specific number of choices (ranging
from 2 to 19).

2. MATH (Hendrycks et al., 2021b): We used the Level 5 (most difficult) subset of MATH
questions, which contain high-school competition-level mathematics problems. We evalu-
ated models by giving the model 4 examples and then checking for a latex boxed solution
that either exactly matched or reduced to the correct solution.

3. Graduate-Level Google-Proof Q&A Benchmark (GPQA) (Rein et al., 2024): A chal-
lenging knowledge dataset with questions crafted by PhD-level domain experts in fields like
biology, physics, and chemistry. We evaluated the models 0-shot and for each question there
were 4 multiple-choice options.

4. Multistep Soft Reasoning (MUSR) (Sprague et al., 2024): A dataset of algorithmically
generated complex problems requiring integration of reasoning with long-range context pars-
ing. We evaluated three subtasks: Murder Mysteries (0-shot, 2 choices), Object Placement
(0-shot, 5 choices), and Team Allocation (0-shot, 3 choices).

5. Massive Multitask Language Understanding Pro (MMLU-Pro) (Hendrycks et al., 2021a;
Wang et al., 2024): A refined version of MMLU with 10 choices per question (instead of 4)
and expert-reviewed content to reduce noise. Models were provided with 5 examples.

For all language model evaluations, we extracted binary correctness judgments (correct/incorrect) for
each model-example pair by evaluating model response against ground truth answers ourselves. This
resulted in a binary prediction matrix for each task, visualized in Figure 3.

For vision models, we evaluated 1,000+ models from the timm repository (Wightman, 2019) across
three diverse computer vision benchmarks: ImageNet (Krizhevsky et al., 2012), ObjectNet (Barbu
et al., 2019), and LAIONet (Shirali & Hardt, 2023). ImageNet represents a standard object recognition
task, ObjectNet tests out of distribution robustness controlling for viewpoint, rotation, and background,
and LAIONet tests generalization to an ImageNet like subset of LAION400m, offering a larger scale
of over 500k images that could in the future be used along with population difficulty information
for training. We conducted inference using each model’s standard configuration and classified a
prediction as correct if the ground truth class appeared in the model’s top-1 prediction.

To ensure consistency in our analysis, we filtered both language and vision model populations to
include only models with accuracy above 20% on their respective benchmarks, eliminating models
that perform near random chance. This resulted in a final dataset containing hundreds of millions of
individual model predictions, creating what we believe is the largest model population prediction
analysis to date.

Additionally, we trained 100 ResNet50 models on ImageNet, each with a different random seed, and
evaluated them on the ImageNet validation set to provide a baseline level of prediction agreement
when controlling for model architecture, training data, and all other training parameters.

For protein models, we included evaluations from ProteinGym benchmarks (Notin et al., 2023),
focusing on DMS (Deep Mutational Scanning) datasets for both substitution and indel (insertion-
deletion) mutations. Unlike the vision and language benchmarks, the success of a model’s predictions
are measured in a continuous metric. To fit our framework, we set a threshold to binarize these
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Matched Order
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(lower acc.) (45.0%)

Opposite Order

Q1
max(0,(L+H)-1)

Q2
H-Q1

Q3
L-Q1

Model H
(higher acc.) (75.0%)

Model L
(lower acc.) (45.0%)

Random Order

Q1
H*L

Q2
H*(1-L)

Q3
(1-H)*L

Q4
(1-H)*(1-L)

Model H
(higher acc.) (75.0%)

Model L
(lower acc.) (45.0%)

Figure 2: Possible prediction patterns between two models of different accuracy: Matched order:
Correct predictions maximally overlap between models. A better model gets all the examples correct
that a worse model gets correct plus some. Opposite order: Correct predictions minimally overlap
between models. Random order: Predictions made by each model are independent.

predictions. These benchmarks test models’ ability to predict the impact of mutations on protein
function, providing another domain to observe the degree to which population ordering holds true.

3.2 METRICS

To quantify the extent to which models follow a consistent ordering in their predictions, we developed
the Prediction Order Coherence (POC) metric.

3.2.1 PREDICTION ORDER COHERENCE (POC)

Prediction Order Coherence measures the degree to which the predictions of higher-accuracy models
subsume those of lower-accuracy models. Given a binary prediction matrix M ∈ {0, 1}n×m

where rows represent models (sorted by row sums from greatest to least) and columns represent
examples (sorted by column sums from greatest to least), with values indicating correct (1) predictions
or incorrect (0) predictions as seen in Figure 3, POC quantifies whether higher-accuracy models
consistently solve the problems that lower-accuracy models can solve, plus additional ones.
There are 4 possible combinations of binary correctness patterns between a pair of 2 models. We sort
model pairs such that the overall higher accuracy model comes first and define four quadrants of the
binary correctness patterns: Q1) correct-correct, Q2) correct-incorrect, Q3) incorrect-correct, and
Q4) incorrect-incorrect. These are labeled for each prediction pattern in Figure 2. POC measures the
counts of Q2 for all pairs of models in a population of models, normalizes such that 1 is a matched
order and 0 is an opposite ordering.

Q2model pop.(M) =
∑

1≤i<j≤n

m∑
k=1

1{Mi,k = 1, Mj,k = 0 } (1)

The POC score is computed by normalizing between the two extremes:

POC =
Q2model pop. − Q2opposite

Q2matched − Q2opposite
(2)

Where:

• Q2model pop. is the sum of the counts where the higher-accuracy model is correct and the
lower-accuracy model is incorrect across all model pairs and examples.
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• Q2matched represents the theoretical maximum (perfect ordering) where higher-accuracy
models perfectly subsume lower-accuracy models (derivation: Appendix A.5).

• Q2opposite represents the theoretical minimum (adversarial ordering) where higher-accuracy
models systematically get different examples correct than lower-accuracy models (derivation:
Appendix A.3).

A POC score of 1.0 indicates perfect ordering (the matched order case in Figure 2), while a score
of 0.0 indicates a complete reversal of the expected ordering (the opposite order case). Random
prediction patterns typically yield POC scores near zero, but this depends on the average accuracy of
the models in the population.

4 THE NEXT SOLVABLE EXAMPLE PREDICTION TASK

Here we precisely formulate our framework for measuring a method’s ability to predict what as-of-yet
unsolved examples will be solvable in the near future.

First, how can we “know” what examples a model will be able to solve next if it improves its overall
accuracy? We use the population difficulty order derived from a large population of models spanning
a range of accuracies and back-test: selecting a lower accuracy model and asking if it can somehow
predict the set of examples that a future slightly more accurate model would solve. We look into the
future for increasing horizons from 0% to 100% of yet unsolved examples. By taking the Area Under
the Curve (AUC) between how accurately we can predict the next percent of examples compared
to random chance, we get an AUC metric that captures how well we can predict the future, where
random predictions get an AUC of 0.5.

For every model M and dataset D, there are some examples in D which M can predict correctly and
some examples which it cannot predict correctly (we are not interested in solved datasets D where
M solves every example correctly).

For the set of examples that M gets incorrect, there is an underlying population order of how “difficult”
each example is. We ask the simple question, can model M predict the easiest K examples out of all
the examples that it couldn’t solve?

For every model M we define NM,D as the set of examples in dataset D that model M is unable to
solve. Then for every value of K where K ∈ {1, ..., |NM,D|} we can calculate the percentage set
intersection (or precision) between the model’s predicted set and the true set of easiest K examples
from NM,D. If we randomly pick K examples from the set NM,D then the precision in expectation
would trivially be K

NM,D .

In Figure 6, we plot the value of K
NM,D ∈ [0, 1] against the set intersection percent (or precision) at K.

We repeat this for 37 vision models (Figures 6a and 6b) and 26 LLMs (Figures 6c and 6d listed in
Appendix A.7 selected to cover a range of overall model accuracies.

The two figures in the left column (Figures 6a and 6c) rely on knowing the ground truth labels for
each example to extract a future prediction while the two figures in the right column (Figures 6b
and 6d) do not rely on knowing the ground truth labels and merely use other simple statistics of the
overall output logits.

There are significant implications between the two columns, while the left column achieves a higher
AUC, the right column can make future predictions about each sample even if neither humans nor
machines know the correct answer to it, the models are still able to consistently make progress
predictions better than random.

5 RESULTS

5.1 OBSERVED POPULATION PREDICTION PATTERNS

The aggregated prediction results from the model populations are shown in figure 3. The matrices
show a far more matched than random ordering in which higher accuracy models tend to subsume
the successes of lower accuracy models across all modalities and tasks, though it is most visible for
vision models.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Model population predictions on several vision Krizhevsky et al. (2012); Barbu et al. (2019);
Shirali & Hardt (2023), language Hendrycks et al. (2021b); Wang et al. (2024); Suzgun et al. (2022b);
Sprague et al. (2024); Rein et al. (2024) and protein Notin et al. (2023) benchmarks. The rows in each
of the bars are models, the columns are dataset examples, and each cell is a model prediction scored
as correct (yellow) or incorrect (purple). For LLMs we visualize a representative set of models, not
including models of all scales and variants of the same family.

We measure the degree of this ordering using the Prediction Order Coherence metric as seen in Figure
6. Vision models on object recognition tasks exhibit a higher POC while LLMs exhibit lower POC
values. We hypothesize that tasks that require less trivial knowledge and more compositional skill
will exhibit a higher POC. This degree of observed ordering is what enables progress prediction,
predicting where the frontier will move next.

For ImageNet, the most matched ordered task according to POC, we visualize several example images
across the range of population rankings in 7.

5.2 NEXT SOLVABLE EXAMPLE AUC

For every model M and dataset D we generate a plot of K
NM,D ∈ [0, 1] vs the set intersection percent

(or precision) at K (also ∈ [0, 1]) which represents the next K examples that it thinks will be solved.
We repeat this for all the models and average the lines to get a single mean line representing the
population average. We then calculate the AUC of this plot. A perfect predictor would obtain an
AUC of 1 while a completely random predictor would get 0.5.

In Figure 6 we report Vision Models and LLMs separately as they operate on different datasets.
We additionally separate predictions that rely on us knowing the examples ground truth label from
predictions that don’t rely on such information. For each individual model, we use simple metrics
(like the ground logit or the entropy of the logits) to output a prediction of difficulty. A comprehensive
list of metrics are listed in Appendix A.2
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Prediction Order Coherence (POC)

Figure 4: Agreement between model predictions and population patterns across different tasks.
Green dashed line indicates perfect agreement (matched order), blue dashed line represents maximal
disagreement (opposite order), and orange line shows agreement with a simulated random ordering
of predictions.

Table 1: Spearman correlation values (ρ) be-
tween population prediction order and diffi-
culty metrics.

Dataset Metric ρ

ImageNet ResNet50 cscores 0.794
ImageNet
(subset)

cscore 0.670
dscore (MVT) 0.318
adversarial epsilon 0.441
prediction depth 0.198

ObjectNet ResNet50 cscores 0.748
ObjectNet
(subset)

cscore 0.736
dscore (MVT) 0.494
adversarial epsilon 0.493
prediction depth 0.169

Figure 5: Predictions made by a ResNet50
at each training epoch sorted by population
difficulty for both the ImageNet validation
set (left) and the ObjectNet test set (right).

Our findings show that consistently across almost all models and multiple modalities, models are
able to predict progress on the subset of examples that they cannot solve yet (0.642 AUC and 0.597
AUC compared to random 0.5). To highlight the strength of our findings, model-based metrics can
predict progress even when knowledge of the ground truth label is not used. Figure 6b and Figure 6d
show that we can consistently, above random, predict progress without having access to ground truth
labels (0.545 for vision and 0.550 for language, random is 0.5).

5.3 CORRELATION WITH EXISTING DIFFICULTY METRICS

To understand how our population-based difficulty ordering relates to existing notions of example
difficulty, we compared our ordering with several established metrics, summarized in Table 1.

For ImageNet and ObjectNet, we examined correlations with:
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(a) Vision models progress prediction.
relying on ground labels (AUC: 0.642)
prediction made using ground truth logit

(b) Vision models progress prediction.
without ground labels (AUC: 0.545)
predictions made using raw predicted logit

(c) LLM progress prediction
relying on ground labels (AUC: 0.597)
predictions made using ground truth logit

(d) LLM progress prediction
without ground labels (AUC: 0.550)
predictions made using entropy of logits

Figure 6: Comparison of different progress prediction methods for next percent prediction. These
4 metrics used to make a progress prediction, ground truth logit confidence (6a), predicted logit
confidence (6b), ground truth logit confidence (6c), and entropy of logits (6d). 26 LLMs and 37
vision models were used for these experiments.

• ResNet50 c-scores(Jiang et al., 2021): We used a time learning proxy for cscore, a model-
based difficulty metric that measures how early during training a model learns to classify
an image correctly. Images with higher c-scores are learned earlier in training and are
considered easier.

• d-scores (MVT) (Mayo et al., 2023): Minimum Viewing Time required by humans to
recognize an object in an image. This is an objective, model-free metric where images that
humans can recognize with brief flashes are easy, while those requiring seconds of viewing
are hard.

• Adversarial epsilon (Mayo et al., 2022): The minimum perturbation magnitude required to
cause a model to misclassify an image, where larger values indicate greater robustness.

• Prediction depth (Baldock et al., 2021): The earliest layer in a neural network at which the
model’s prediction matches its final output, indicating where in the network the decision
stabilizes.

Our analysis revealed interesting correlations between population-based difficulty ordering and
these existing metrics (Table 1). The strongest correlation was with ResNet50 c-scores (Spearman
ρ = 0.794 for ImageNet and ρ = 0.748 for ObjectNet). This high degree of correlation suggests that
we have effectively been training the same big model over the past decade-long history of training
deep learning models for object recognition, each time advancing the frontier set of solvable problems
a bit. This pattern is visualized in 5.
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Figure 7: ImageNet images of different population order difficulties

We found moderate positive correlations with adversarial epsilon (ρ = 0.441 for ImageNet and
ρ = 0.493 for ObjectNet), suggesting that examples that are more difficult according to the population
ordering tend to also be more vulnerable to adversarial attacks.

We also observed a positive correlation with d-scores (MVT) (ρ = 0.318 for ImageNet and ρ = 0.494
for ObjectNet). The MVT metric measures how much viewing time humans need to recognize an
object in an image. This degree of correlation makes population difficulty order one of the best
predictors of human difficulty as measured by MVT compared to the other metrics evaluated in
(Mayo et al., 2023).

6 DISCUSSION

As AI systems approach solving high-value problems in science, medicine, and other domains,
predicting not just if, but when specific problems will be solved becomes an important problem for
prioritizing research and reasoning about the future.
We pose the problem of progress prediction: forecasting which currently unsolved examples will be
solved next as AI models improve. We offer baseline methods for predicting future solvable examples
using model confidence (Figure 6), with additional metrics explored in the appendix. These simple
metrics consistently perform above chance, achieving AUCs of 0.642 (vision) and 0.597 (language)
when using ground truth labels.

This above chance predictability is enabled by the high degree of order consistency across modalities
and tasks that we observe in model predictions across modalities and datasets, quantified by our POC
metric.

We invite the research community to develop more sophisticated progress prediction methods and
apply our evaluation framework to measure their success. The consistent ordering we observe
suggests that more accurate predictions are possible, potentially enabling researchers to anticipate
and prepare for emerging AI capabilities before they arrive.

7 LIMITATIONS AND COMPUTE RESOURCES

While our work relies on datasets where we observe consistent orderings across a model population,
there are datasets where this ordering is weaker. These datasets tend to be ones where examples do
not share common skill dependencies such as trivia problems. In contrast, we find a more matched
ordering present in compositional skills like reasoning and mathematics. 4 H100 GPUs were used for
evaluating the vision model populations. We are constrained by existing models and datasets in what
model evaluations we are able to study.
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A APPENDIX

A.1 FUTURE PREDICTIONS AS BINARY CLASSIFICATION

In this section, we treat the task of predicting the future similar to Figure 6 but as a binary classification
problem where we only attempt to predict the next X% of examples.

For each X ∈ {5, 10, 20, 50} we have 4 plots (thus 16 in total) in Figures 8,9, and 10,11. The two
plots in the top row are generated using the 37 vision models listed in Appendix A.7 while the two
plots in the bottom row are generated using the 26 LLMs also mentioned in Appendix A.7. There is a
significant difference between the left column and the right column; While the left column achieves a
higher AUC, it does depend on us knowing the ground truth labels of each example (as the ground
softmax is used for the prediction) while the right column does not depend on the ground truth label
at all, merely on statistics of the outputted set of logits. The significance of this is that the right
column tells us that even if neither humans nor the models knew the correct answer, the models are
still able to know that the examples are approaching being solved (consistently better than random).

When we refer to ”logits total variation” for LLMs we specifically take the logits of each of the
n possible multiple choices answers then computes ∥Li − 1

n∥1, this metric was chosen as it had
achieved the best progress prediction without knowing the ground label. For a comprehensive list
of every metric tried, we list all of them in Appendix A.2 along with the AUC for the 5% future
prediction task (similar to Figure 8).

A.2 COMPREHENSIVE LIST OF FEATURES AND ROCS

Here we list a comprehensive list of many metric we tried along with the AUC ROC for the 5% future
prediction task (similar to Figure 8). The metrics are for both vision models and LLMs, and every
metric either relies on or does not rely on the ground label. The four tables are Table 2, Table 3,
Table 4, and Table 5

Table 2: AUC ROC of metrics from vision models that rely on the ground label

Value AUC ROC

Targets Softmax 0.793
Targets Logits 0.725

A.3 DERIVATION OF Q2OPPOSITE

Here we derive how we obtain Q2opposite representing the theoretical minimum (opposite ordering),
where higher-accuracy models systematically get different examples correct than lower-accuracy
models. We define that the theoretical minimum ordering (or opposite ordering) is when the sum of
the quantity Q3 from Figure 2 is maximized across all pairs of models.

Let M ∈ {0, 1}n×m be a binary matrix with rows (i = 1, . . . , n) and columns (k = 1, . . . ,m)
where Mik = 1 implies that model i predicts sample k correctly. Then we fix the row sums of M to
match our empirical real model population accuracies such that the sum of the i-th row equals L(i)
where L(i) is the number of samples that model i gets correctly. Assume the rows of M are ordered
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Table 3: AUC ROC of metrics from vision models that do not rely on the ground label

Value AUC ROC

Logits Cr 2 0.560
Predicted Softmax 0.557

Logits Cr 3 0.537
Logits Mode Value 0.534

Logits Mean 0.531
Logits Std 0.529

Logits Variance 0.529
Logits Renyi Q3 0.528

Logits Renyi Q2 Entropy 0.526
Logits Participation Ratio 0.526

Logits Simpson Index 0.526
Logits Hill Number Q2 0.526

Logits Renyi Q2 0.526
Logits Gini Impurity 0.526

Logits Hhi 0.526
Logits Tsallis Q2 Entropy 0.526
Logits Shannon Entropy 0.525
Logits Kl To Uniform 0.524

Logits Cr 1 0.524
Logits Max Prob 0.524

Logits Min Entropy 0.524
Logits Mode Prob 0.524

Logits Hellinger Distance To Uniform 0.523
Logits Js Divergence To Uniform 0.523

Logits Skewness 0.523
Logits Kurtosis Excess 0.523

Logits Total Variation To Uniform 0.523
Predicted Logits 0.509

Logits Hill Number Q1 0.505
Logits Perplexity 0.505

Logits Cr 5 0.504
Logits Iqr 0.501

Logits Q25 0.501
Logits Median 0.500

Logits Q75 0.500
Logits Min Prob 0.500
Logits Min Value 0.500
Logits Max Value 0.500

Logits Hill Number Q0 0.500

Table 4: AUC ROC of metrics from LLMs that rely on the ground label

Value AUC ROC

Target Logit 0.708
Target Softmaxed 0.636
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Table 5: AUC ROC of metrics from LLMs that do not rely on the ground label

Value AUC ROC

Logits Cr 2 0.688
Logits Cr 3 0.686

Softmaxed Cr 5 0.678
Logits Renyi Q3 0.677

Logits Participation Ratio 0.677
Logits Hill Number Q2 0.677

Logits Hhi 0.677
Logits Simpson Index 0.677

Logits Renyi Q2 Entropy 0.677
Logits Renyi Q2 0.677

Logits Tsallis Q2 Entropy 0.677
Logits Gini Impurity 0.677

Logits Total Variation To Uniform 0.677
Logits Shannon Entropy 0.676

Logits Perplexity 0.676
Logits Hill Number Q1 0.676
Logits Kl To Uniform 0.676

Logits Js Divergence To Uniform 0.675
Logits Hellinger Distance To Uniform 0.675

Softmaxed Cr 3 0.673
Logits Cr 5 0.670

Logits Mode Prob 0.668
Logits Cr 1 0.668

Logits Max Prob 0.668
Logits Min Entropy 0.668
Softmaxed Min Prob 0.666

Softmaxed Cr 2 0.659
Softmaxed Hellinger Distance To Uniform 0.648

Softmaxed Js Divergence To Uniform 0.640
Softmaxed Total Variation To Uniform 0.636

Softmaxed Kl To Uniform 0.629
Softmaxed Perplexity 0.629

Softmaxed Shannon Entropy 0.629
Softmaxed Hill Number Q1 0.629

Pred Logit 0.627
Logits Min Prob 0.625

Softmaxed Hill Number Q2 0.613
Softmaxed Hhi 0.613

Softmaxed Gini Impurity 0.613
Softmaxed Participation Ratio 0.613

Softmaxed Simpson Index 0.613
Softmaxed Tsallis Q2 Entropy 0.613

Softmaxed Renyi Q2 0.613
Softmaxed Renyi Q2 Entropy 0.613

Softmaxed Renyi Q3 0.607
Pred Softmaxed 0.602
Softmaxed Cr 1 0.599

Softmaxed Mode Prob 0.599
Softmaxed Max Prob 0.599

Softmaxed Min Entropy 0.599
Softmaxed Variance 0.586

Softmaxed Std 0.586
Softmaxed Iqr 0.558

Logits Kurtosis Excess 0.557
Softmaxed Skewness 0.543
Logits Mode Value 0.540

Softmaxed Mode Value 0.540
Softmaxed Kurtosis Excess 0.540

Softmaxed Q25 0.539
Logits Q75 0.538
Logits Std 0.533

Logits Variance 0.533
Logits Mean 0.529

Softmaxed Median 0.526
Logits Iqr 0.525

Logits Skewness 0.523
Logits Q25 0.515

Softmaxed Mean 0.514
Softmaxed Q75 0.502
Logits Median 0.502

Logits Hill Number Q0 0.500
Logits Min Value 0.500
Logits Max Value 0.500

Softmaxed Min Value 0.500
Softmaxed Hill Number Q0 0.500

Softmaxed Max Value 0.500
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Figure 8: Here we only attempt to predict the next 5% ahead of each model’s capabilities. In all plots,
we again see the consistent trend that almost all models are capable of predicting the near future
beyond what they are capable of solving.

such that the associated accuracies satisfy L(1) ≥ L(2) ≥ · · · ≥ L(n). The exact sorting of rows
isn’t required, but for the purposes of this derivation, it makes the equations simpler and easier to
follow if the rows are sorted in non-increasing order. We then define the function Q3 (eq. 3):

Q3(i, j) := |{k ∈ {1, . . . ,m} : Mi,k = 0, Mj,k = 1}| (3)

Where (1 ≤ i < j ≤ n) (i.e., the number of samples that a lower accuracy model j gets right, while
the higher accuracy model i gets wrong). Then we note the simple relation:

L(j) =

m∑
k=1

1{Mj,k = 1} =
m∑

k=1

1{Mj,k = 1, Mi,k = 0}+
m∑

k=1

1{Mj,k = 1, Mi,k = 1} (4)

m∑
k=1

1{Mj,k = 1, Mi,k = 0} = L(j)−
m∑

k=1

1{Mj,k = 1, Mi,k = 1} (5)

Then we define DIS(M) (eq. 6)

DIS(M) =
∑

1≤i<j≤n

Q3(i, j). (6)

Where DIS(M) is what we want to maximize to obtain Q2opposite representing our opposite ordering.
Given a matrix M , it is trivial to algorithmically calculate DIS(M), therefore, for our main goal of
obtaining Q2opposite is to obtain the matrix M that maximizes DIS(M).
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Figure 9: Similar to Figure 8 but this time predicting the next 10% ahead of each model’s capabilities.

argmax
M∈{0,1}n×m

DIS(M) s.t.
m∑

k=1

Mik = L(i) ∀i. (7)

Thus, we derive the following (the row-sum constraint is omitted for brevity):
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Figure 10: Similar to Figure 8 but this time predicting the next 20% ahead of each model’s capabilities.
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Figure 11: Similar to Figure 8 but this time predicting the next 50% ahead of each model’s capabilities.
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argmax
M∈{0,1}n×m

DIS(M) = argmax
M

m∑
k=1

∑
1≤i<j≤n

1{Mj,k = 1, Mi,k = 0} (8)

= argmax
M

∑
1≤i<j≤n

(
L(j)−

m∑
k=1

1{Mj,k = 1, Mi,k = 1}

)
(9)

= argmax
M

 ∑
1≤i<j≤n

L(j)

−
 m∑

k=1

∑
1≤i<j≤n

1{Mj,k = 1, Mi,k = 1}


(10)

= argmax
M

(
n∑

i=1

(i− 1)L(i)

)
const

−

(
m∑

k=1

(
tk
2

))
(11)

= argmin
M

m∑
k=1

(
tk
2

)
(12)

= argmin
M

m∑
k=1

(
1

2
t2k

)
−

m∑
k=1

(
1

2
tk

)
const

(13)

= argmin
M

m∑
k=1

t2k (14)

Where tk is the column sum of the k-th column. Thus, the matrix M that maximizes DIS(M) and
obtains Q2opposite is simply obtained by minimizing the sum of squares of the column sums (note that
the total number of ones in the matrix is a constant decided by

∑n
i=1 L(i)). Since the column sums

are integers and sum to a constant, and by the convexity of the square function, it is trivial to prove
via contradiction (as done in A.4) that the minimizer is obtained only when all the elements are at
most 1 from each other. Thus, to obtain Q2opposite we simply create a matrix M that has row sums of
L(·) and column sums that are different by no more than 1 from each other and compute DIS(M).

We construct the optimal M using the following simple algorithm (Algorithm 1). Start the first row
at the first column and place L(1) ones contiguously to the right, wrapping around cyclically when
you pass the last column. For each subsequent row i = 2, . . . , n, begin one column to the right of
where the previous row finished then place L(i) ones contiguously with the same wraparound rule.
All remaining entries are zeros. This yields a binary matrix M with the required row sums which
maximizes DIS(M).

Algorithm 1 Construction of M to get Q2opposite

Require: Integers n,m; array L[1..n] with 0 ≤ L[i] ≤ m
Ensure: M ∈ {0, 1}n×m with row i containing exactly L[i] ones

1: M ← zero matrix of size n×m
2: k ← 1 ▷ indexing starts at 1
3: for i← 1 to n do
4: for r ← 1 to L[i] do
5: c← ((k − 1) mod m) + 1
6: M [i, c]← 1
7: k ← k + 1
8: end for
9: end for

10: return M
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A.4 MINIMIZER OF
∑

x2
i WITH FIXED

∑
xi

Here we quickly prove what vector x minimizes
∑

x2
i given a fixed

∑
xi and that all xi are positive

integers.

We claim that the vector x where all elements are at most one away from each other
((∀ i, j ∈ {1, . . . , n}) |xi − xj | ≤ 1)is the minimizer of

∑
x2
i given a constant ∥x∥1. We prove

this is true via contradiction, assume

∃ i, j ∈ {1, . . . , n} such that xi − xj ≥ 2.

Define y ∈ Nn by yi = xi − 1, yj = xj + 1, yk = xk (k ̸= i, j).

(i.e. we let y be x except we bump two elements that have a big gap to be closer to each other) Then
∥y∥1 = ∥x∥1.

n∑
k=1

y2k = (xi − 1)2 + (xj + 1)2 +
∑
k ̸=i,j

x2
k =

n∑
k=1

x2
k − 2(xi − xj) + 2 ≤

n∑
k=1

x2
k − 2 <

n∑
k=1

x2
k,

a contradiction to the minimality of x. Thus, the vector where all elements are at most one away from
each other is the minimizer of

∑
x2
i .

A.5 DERIVATION OF Q2MATCHED

Here we derive how we obtain Q2matched representing the theoretical maximum (perfect ordering)
where higher-accuracy models perfectly subsume lower-accuracy models.

The theoretical perfect ordering is easier to compute compared to the opposite ordering (calculated in
Appendix A.3), where the perfect ordering is simply when all the 1’s of a column are above all the 0’s
in the same column. Thus for the i-th row of M (where M , L, and Q3 are defined in Appendix A.3),
we simply place 1’s from the first column until the L(i)-th column and 0’s elsewhere. Since we
defined the rows as ordered by non-increasing order of row sums; This construction achieves a
Q3(i, j) = 0, ∀ i, j ∈ {1, . . . , n} where i < j. This procedure is shown in Algorithm 2

Algorithm 2 Construction of M to get Q2matched

Require: Integers n,m; array L[1..n] with 0 ≤ L[i] ≤ m
Ensure: M ∈ {0, 1}n×m with row i containing exactly L[i] ones

1: M ← zero matrix of size n×m
2: for i← 1 to n do
3: for r ← 1 to L[i] do
4: M [i, r]← 1
5: end for
6: end for
7: return M

A.6 DERIVATION OF Q2RANDOM

Here we provide the derivation of Q2random which is the value of Q2 across all model pairs if the
predictions made by each model are independent. To calculate Q2random we calculate the expected
value Q2 across all row pairs of a random matrix. We draw rows independently and uniformly from
{0, 1}m with exactly L(i) ones. For any column k, Pr[Mi,k = 1] = L(i)/m and for i ̸= j, rows are
independent at fixed k.

We have ∑
1≤i<j≤n

Q2(i, j) =
∑

1≤i<j≤n

m∑
k=1

1{Mi,k = 1, Mj,k = 0}. (15)
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Table 6: Accuracy on Imagenet for Vision Models

model Accuracy on ImageNet

0 convnext large 86.2%
1 convnext base 85.3%
2 convnext small 85.1%
3 swin base patch4 window7 224 84.8%
4 convnext tiny 84.1%
5 resnet152 82.6%
6 resnet101 82.0%
7 deit base patch16 224 81.9%
8 regnety 032 81.8%
9 wide resnet50 2 81.5%
10 efficientnetv2 rw m 81.5%
11 resnext50 32x4d 81.0%
12 vit base patch16 224 80.9%
13 swin tiny patch4 window7 224 80.9%
14 efficientnetv2 rw s 80.8%
15 regnety 016 80.6%
16 resnet50 80.1%
17 deit small patch16 224 79.4%
18 resnext101 32x8d 79.1%
19 wide resnet101 2 78.8%
20 regnetx 008 77.5%
21 densenet161 76.8%
22 densenet201 76.3%
23 resnet34 75.9%
24 regnety 008 75.8%
25 mobilenetv3 large 100 75.3%
26 densenet121 75.2%
27 densenet169 75.2%
28 vit small patch16 224 74.4%
29 mnasnet 100 74.0%
30 regnetx 006 73.0%
31 mobilenetv2 100 72.6%
32 regnetx 004 71.4%
33 resnet18 70.7%
34 inception v3 69.6%
35 regnetx 002 67.6%
36 mobilenetv3 small 100 66.6%

By linearity of expectation,

E

 ∑
1≤i<j≤n

Q2(i, j)

 =
∑
i<j

m∑
k=1

Pr(Mi,k = 1,Mj,k = 0) (16)

=
∑
i<j

m · L(i)
m

(
1− L(j)

m

)
(17)

=
∑
i<j

(
L(i)− L(i)L(j)

m

)
(18)

A.7 MODELS USED FOR FUTURE PREDICTIONS

In Table 6 we list the 37 vision models which were used for the progress prediction task (depicted in
Figure 6 and elsewhere) along with the validation accuracy on ImageNet:
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Table 7: Accuracy on MMLU-pro for LLMs

model Accuracy on MMLU-pro

0 Qwen2.5-14B-Instruct 52.1%
1 Phi-3-medium-4k-instruct 47.3%
2 Qwen3-4B 45.2%
3 Rombos-Qwen-7b 44.6%
4 Qwen2.5-7B 44.5%
5 Gemma-2-9B 43.0%
6 Phi-3.5-mini 41.2%
7 Yi-1.5-9B-Chat 39.7%
8 Qwen2.5-3B 37.5%
9 Mistral-Nemo-Instruct-2407 36.8%
10 Qwen2.5-Coder-7B-Instruct 34.1%
11 Yi-1.5-6B-Chat 33.1%
12 SOLAR-10.7B-Instruct-v1.0 31.7%
13 openchat-3.6-8b-20240522 31.1%
14 Mistral-7B 30.7%
15 OpenHermes-2.5-Mistral-7B 30.2%
16 Nous-Hermes-2-Mistral-7B-DPO 30.0%
17 Llama-3.2-3B-Instruct 29.1%
18 neural-chat-7b-v3-3 28.3%
19 zephyr-7b-beta 28.3%
20 DeepSeek-R1-Qwen-7B 28.1%
21 Qwen2.5-Math-7B-Instruct 27.9%
22 Gemma-2-2B 27.4%
23 aya-23-8B 23.6%
24 Llama-3.2-1B-Instruct 17.6%
25 deepseek-coder-6.7b-instruct 16.7%

In Table 7 we list the 26 LLMs that were used for the progress prediction task (depicted in Figure 6
and elsewhere) along with the validation accuracy on MMLU-pro (Note that the LLMs were only
tasked with outputting a single token which was the answer to the multiple choice question and not
given tokens to think, the prompt contained 3 shots of in context examples).

A.8 USE OF LLMS

LLMs were used to improve the style of some of our figures. The initial figures were completely
generated manually, and the LLMs improved the code for generating them while we ensured that the
underlying data remained consistent and unchanged.
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