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Abstract
Predicting low-energy molecular conformations
given a molecular graph is an important but chal-
lenging task in computational drug discovery. Ex-
isting state-of-the-art approaches either resort to
large scale transformer-based models that diffuse
over conformer fields, or use computationally ex-
pensive methods to generate initial structures and
diffuse over torsion angles. In this work, we intro-
duce Equivariant Transformer Flow (ET-Flow).
We showcase that a well-designed flow matching
approach with equivariance and harmonic prior
alleviates the need for complex internal geometry
calculations and large architectures, contrary to
the prevailing methods in the field. Our approach
results in a straightforward and scalable method
that directly operates on all-atom coordinates with
minimal assumptions. ET-Flow outperforms or
matches the previous state-of-the-art in molecu-
lar conformer generation benchmarks with sig-
nificantly fewer parameters, no dependence on
internal geometry, and fast inference.

1. Introduction
Generating low-energy 3D representations of molecules,
called conformers, from the molecular graph is a funda-
mental task in computational chemistry as the 3D structure
of a molecule is responsible for several biological, chemi-
cal and physical properties (Guimaraes et al., 2012; Schütt
et al., 2018; 2021; Gasteiger et al., 2020; Axelrod & Gomez-
Bombarelli, 2023). Conventional approaches to molecular
conformer generation consist of stochastic and systematic
methods. While stochastic methods such as Molecular Dy-
namics (MD) accurately generate conformations, they can
be slow, cost-intensive, and have low sample diversity (Shim
& MacKerell Jr, 2011; Ballard et al., 2015; De Vivo et al.,
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2016; Hawkins, 2017; Pracht et al., 2020). Systematic (rule-
based) methods (Hawkins et al., 2010; Bolton et al., 2011;
Li et al., 2007; Miteva et al., 2010; Cole et al., 2018; Lagorce
et al., 2009) that rely on torsional profiles and knowledge
base of fragments are much faster but become less accurate
with larger molecules. Therefore, there has been an increas-
ing interest in developing scalable and accurate generative
modeling methods in molecular conformer generation.

Existing machine learning based approaches use diffusion
models (Ho et al., 2020; Song & Ermon, 2019) to sample
diverse and high quality samples given access to low-energy
conformations. Prior methods typically fall into two cate-
gories: diffusing over atomic coordinates in the Cartesian
space (Xu et al., 2022; Wang et al., 2024) or diffusing over
internal geometry such as pairwise distances, bond angles,
and torsion angles (Ganea et al., 2021; Jing et al., 2022).

Early approaches based on diffusion (Shi et al., 2021; Luo
et al., 2021; Xu et al., 2022) faced challenges such as lengthy
inference and training times as well as having lower accu-
racy compared to cheminformatics methods. Torsional Dif-
fusion (Jing et al., 2022) was the first to outperform chemin-
formatics methods by diffusing only on torsion angles after
producing an initial conformer with the chemoinformatics
tool RDKiT. This reliance on RDKiT structures instead of
employing an end-to-end approach comes with several lim-
itations, such as restricting the tool to applications where
the local structures produced by RDKiT are of sufficient
accuracy. Unlike prior approaches, the current state-of-the-
art MCF (Wang et al., 2024) proposes a domain-agnostic
approach by learning to diffuse over functions by scaling
transformers and learning soft inductive bias from the data
(Zhuang et al., 2022). Consequently, it comes with draw-
backs such as high computational demands due to large
number of parameters, limited sample efficiency from a lack
of inductive biases like euclidean symmetries, and poten-
tial difficulties in scenarios with sparse data — a common
challenge in this field.

In this paper, we propose Equivariant Transformer Flow
(ET-Flow), a simple yet powerful flow-matching model
designed to generate low-energy 3D structures of small
molecules with minimal assumptions. We utilize flow
matching (Lipman et al., 2022; Albergo et al., 2023; Liu
et al., 2022), which enables the learning of arbitrary proba-
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Figure 1. Overview of ET-Flow. The model takes as input the features related to the molecular structure like atom and bond features as
well as a radius graph of 10Å from the atom positions. Samples are drawn from the harmonic prior and then rotationally aligned with the
samples from data. A probability path is constructed between pairs of x0 and x1, and xt is then sampled from this path at a random time t.
The network predicts the vector field ∂tρt given xt as input while minimizing the flow matching loss.

bility paths beyond diffusion paths, enhancing both training
and inference efficiency compared to conventional diffusion
generative models. Departing from traditional equivariant
architectures like EGNN (Satorras et al., 2021), we adopt an
Equivariant Transformer (Thölke & De Fabritiis, 2022) to
better capture geometric features. Additionally, our method
integrates a Harmonic Prior (Jing et al., 2023; Stark et al.,
2023), leveraging the inductive bias that atoms connected
by a bond should be in close proximity. We further optimize
our flow matching objective by initially conducting rota-
tional alignment on the harmonic prior, thereby constructing
shorter probability paths between source and target distribu-
tions at minimal computational cost.

Our contributions can be summarized as follows:

1. We obtain state-of-the-art precision results for
molecule conformer prediction and improve upon the
state-of-the-art by a large margin on ensemble property
prediction.

2. Counter to the prevailing status quo in the literature,
we provide strong evidence that previous innovations
that improved performance at the cost of modeling
complexity are not necessary. The significantly sim-
pler but well-engineered ET-Flow can provide better
performance.

3. ET-Flow uses orders of magnitude fewer sampling
steps than GeoDiff (Xu et al., 2022) and significantly
fewer parameters than MCF (Wang et al., 2024).

2. Method
We design a scalable equivariant model that generates
energy-minimized conformers given a molecular graph. In
this section, we layout the framework to achieve this objec-
tive by detailing the generative process in flow matching,
the rotation alignment between distributions, stochastic sam-
pling, and finally the architecture details.

Preliminaries We define notation that we use throughout
this paper. Inputs are continuous atom positions x ∈ RN×3

where N is the number of atoms. We use the notation vt(x)
interchangeably with v(t,x) for vector field.

2.1. Flow Matching

The aim is to learn a time-dependent vector field vt(x) :
RN×3 × [0, 1]→ RN×3 associated with the transport map
Xt : RN×3 × [0, 1]→ RN×3 that pushes forward samples
from a base distribution ρ0, often an easy-to-sample distri-
bution, to samples from a more complex target distribution
ρ1, the low-energy conformations of a molecule. This can
be defined as an ordinary differential equation (ODE),

Ẋt(x) = vt(Xt(x)), Xt=0 = x0, (1)

where x0 ∼ ρ0. We can construct the vt via a time-
differentiable interpolation between samples from ρ0 and
ρ1 that gives rise to a probability path ρt that we can eas-
ily sample (Lipman et al., 2022; Liu et al., 2022; Albergo
& Vanden-Eijnden, 2023; Tong et al., 2023). The general
interpolation between samples x0 ∼ ρ0 and x1 ∼ ρ1 can be
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Figure 2. Rotation alignment using the Kabsh algorithm (Kabsch,
1976) resulting in shorter and straighter paths between the base
and target structures.

defined as:

It(x0,x1) = αtx1 + βtx0. (2)

Given this interpolant, we can define the probability path
ρt(x) = N (x|It(x0,x1), σ

2
t I), and the vector field can be

computed as vt(x) = ∂tρt(x) which has the following form

vt(x) = α̇tx1 + β̇tx0 + σ̇tz z ∼ N (0, I). (3)

In our work, we use linear interpolation where αt = t,
βt = 1 − t, and σt = σ

√
t(1− t), resulting in the vector

field
vt(x) = x1 − x0 +

1− 2t

2
√
t(1− t)

z. (4)

Now, we can define the objective function for learning a vec-
tor field vθ(x) that generates a probability path ρt between
a base density ρ0 and the target density ρ1 as,

L = Et∼U(0,1),x∼ρt(x0,x1)∥v(t,x)− vθ(t,x)∥2. (5)

For training, we sample (i) x0 ∼ ρ0, x1 ∼ ρ1, and
t ∼ U(0, 1), (ii) interpolate according to Equation 2, (iii)
add noise from a standard Gaussian, and (iv) minimize
the loss defined in Equation 5. For sampling, we sample
x0 ∼ ρ0 and integrate from t = 0 to t = 1 using the
Euler’s method. At each time-step, the Euler solver itera-
tively predicts the vector field for xt and updates its position
xt+∆t = xt + vθ(t,x)∆t. More details on the training and
sampling algorithms are provided in Appendix D.

2.2. Alignment

Several previous works (Tong et al., 2023; Klein et al., 2024;
Jing et al., 2024; Song et al., 2024) demonstrate that con-
structing a straighter path between base distribution ρ0 and
target distribution ρ1 minimizes the transport costs and im-
proves performance. In our work, we reduce the transport
costs between samples from the harmonic prior ρ0 and sam-
ples from the data distribution ρ1 by rotationally aligning
them using the Kabsch algorithm (Kabsch, 1976) similar to
(Klein et al., 2024; Jing et al., 2024). This approach leads
to faster convergence and reduces the path length between

atoms by leveraging the similarity in ”shape” of the samples
as seen in Figure 1 and Figure 2 without incurring high
computational cost.

2.3. Stochastic Sampling

We employ a variant of the stochastic sampling technique in-
spired by (Karras et al., 2022). Specifically, we inject noise
at each time step, evaluate the vector field from the interme-
diate state after adding noise, and then perform the determin-
istic ODE step. The original method utilizes a second-order
integration, which averages the denoiser output at the noisy
intermediate state and the state at the next time step after in-
tegration. In our experiment, we use the stochastic sampler
without this second-order correction term, which empirically
provided a performance boost comparable to the second-
order method. We apply stochastic sampling only during
the final part of the integration steps, specifically within the
range t ∈ [0.8, 1.0]. This helps prevent drifting towards
overpopulated density regions and improves the quality of
the samples, as noted by (Karras et al., 2022). Stochastic
sampling has improved both diversity and accuracy of the
generated conformers, measured by Coverage and Average
Minimum RMSD (AMR) respectively as shown in Table 1.
Detailed information on the stochastic sampling algorithm
is provided in Appendix D.

2.4. Chirality Correction

While generating conformations, it is necessary to take ac-
count of the stereochemistry of atoms bonded to four dis-
tinct groups also referred to as tetrahedral chiral centers.
Molecules that only differ in the orientation of these chiral
centers are enantiomers and are mirror images of each other.
The orientated volume (OV) of a chirality center can be
computed based on the ordered coordinates of the distinct
groups (say p1,p2,p3,p4) as,

OV (p1,p2,p3,p4) = sign


∣∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣
 . (6)

We also have access to the required orientation for each
chiral center using the chirality tag provided by RDKit.
In our work, once we generate conformations, we do a
post hoc correction where we compute orientation volume
for each chiral center and compare it with the chiral tag
provided by RDKit. If there is a mismatch, we simply flip
the conformation against the z-axis. This is similar to the
orientation correction done for generated local structure in
GeoMol (Ganea et al., 2021).
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Table 1. Molecule conformer generation results on GEOM-DRUGS (δ = 0.75Å). SS is ET-Flow with stochastic sampling. For both
ET-Flow and ET-Flow-SS, we sample conformations over 50 time-steps.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

mean median mean median mean median mean median
GeoDiff 42.10 37.80 0.835 0.809 24.90 14.50 1.136 1.090
GeoMol 44.60 41.40 0.875 0.834 43.00 36.40 0.928 0.841
Torsional Diff. 72.70 80.00 0.582 0.565 55.20 56.90 0.778 0.729
MCF - S (13M) 79.4 87.5 0.512 0.492 57.4 57.6 0.761 0.715
MCF - B (62M) 84.0 91.5 0.427 0.402 64.0 66.2 0.667 0.605
MCF - L (242M) 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530
ET-Flow (8.3M) 79.53 84.57 0.452 0.419 74.38 81.04 0.541 0.470
ET-Flow - SS (8.3M) 79.62 84.63 0.439 0.406 75.19 81.66 0.517 0.442

Table 2. Ablation over number of inference steps on GEOM-DRUGS (δ = 0.75Å). Performance of ET-Flow at 5 steps is competent
across all metrics while also retaining state-of-the-art performance on precision metrics when compared with previous methods.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

mean median mean median mean median mean median
ET-Flow (5 Steps) 77.84 82.21 0.476 0.443 74.03 80.8 0.55 0.474
ET-Flow (10 Steps) 79.05 84.00 0.451 0.415 74.64 81.38 0.533 0.457
ET-Flow (20 Steps) 79.29 84.04 0.449 0.413 74.89 81.32 0.531 0.454
ET-Flow (50 Steps) 79.53 84.57 0.452 0.419 74.38 81.04 0.541 0.470

2.5. Architecture

We utilize the equivariant transformer architecture as pro-
posed in the TorchMD-NET (Thölke & De Fabritiis, 2022)
which is designed using similar principles as the original
Transformer (Vaswani et al., 2017) architecture. The archi-
tecture comprises of 3 blocks. First, an embedding layer
encodes the inputs (atomic positions, atomic numbers, atom
features, edge features, the edge connections and time-step)
into a set of invariant features. Initial equivariant features are
constructed using normalized edge vectors. Second, a series
of update layers update both the invariant and equivariant
features using a multi-head attention mechanism. Finally,
the Output Layer outputs the vector field by updating the
equivariant features using gated equivariant blocks (Schütt
et al., 2018). We provide additional details on the model
implementation in Appendix B.

3. Experiments
We empirically evaluate ET-Flow by comparing the gener-
ated and ground-truth conformers in terms of distance-based
RMSD (Section 3.2) and chemical property based metrics
(Section 3.3). We present the general experimental setups
in Section 3.1, and we discuss the importance of our design

choices by ablation studies in Section C.1. The implementa-
tion details are provided in Appendix B.

3.1. Experimental Setup

Dataset: We conduct our experiments on the GEOM dataset
(Axelrod & Gomez-Bombarelli, 2022), which offers curated
conformer ensembles produced through meta-dynamics in
CREST (Pracht et al., 2024). Our primary focus is on
GEOM-DRUGS, the most extensive and pharmacologically
relevant subset comprising 304k drug-like molecules, each
with an average of 44 atoms. We use a train/validation/test
(243473/30433/1000) split as provided in (Ganea et al.,
2021) Additionally, we train and test model on GEOM-
QM9, a subset of smaller molecules with an average of
11 atoms. Finally, in order to assess the model’s ability
to generalize to larger molecules, we evaluate the model
trained on DRUGS on a GEOM-XL dataset, a subset of
large molecules with more than 100 atoms. The results for
GEOM-QM9 and GEOM-XL can be found in Appendix C.

Evaluation: Our evaluation methodology is similar to that
of (Jing et al., 2022). First, we look at RMSD based met-
rics like Coverage and Average Minimum RMSD (AMR)
between generated and ground truth conformer ensembles.
For this, we generate 2K conformers for a molecule with K
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ground truth conformers. Second, we look at chemical simi-
larity using properties like Energy (E), dipole moment (µ),
HOMO-LUMO gap (∆ϵ) and the minimum energy (Emin)
calculated using xTB (Bannwarth et al., 2019).

Baselines: We benchmark ET-Flow against leading ap-
proaches outlined in Section A. Specifically, we assess the
performance of GeoMol (Ganea et al., 2021), GeoDiff (Xu
et al., 2022), Torsional Diff (Jing et al., 2022), and MCF
(Wang et al., 2024). Notably, the most recent among these,
MCF, has demonstrated superior performance across eval-
uation metrics compared to its predecessors. It is worth
mentioning that GeoDiff initially utilized a limited subset
of the DRUGS dataset; thus, for a fair comparison, we con-
sider its re-evaluated performance as presented in (Jing et al.,
2022).

3.2. Ensemble RMSD

As shown in Table 1 and Section C.2, ET-Flow outperforms
all preceding methods and demonstrates competitive perfor-
mance with the previous state-of-the-art, MCF (Wang et al.,
2024). Despite being significantly smaller with only 8.3M
parameters, ET-Flow shows a substantial improvement in
the quality of generated conformers, as evidenced by supe-
rior Precision metrics across all MCF models, including the
largest MCF-L. When compared to MCF-S, which is closer
in size, ET-Flow achieves better Precision while the impact
on Recall is less significant and limited to Recall Coverage.
Notably, our Recall AMR remains competitive with much
bigger MCF-B, underscoring the inherent advantage of our
method in accurately predicting overall structures.

3.3. Ensemble Properties

RMSD provides a geometric measure for assessing ensem-
ble quality, but it is also essential to consider the chemical
similarity between generated and ground truth ensembles.
For a random 100-molecule subset of DRUGS, if a molecule
has K ground truth conformers, we generate a minimum of
2K and a maximum of 32 conformers per molecule. These
conformers are then relaxed using GFN2-xTB (Bannwarth
et al., 2019), and the Boltzmann-weighted properties of
the generated and ground truth ensembles are compared.
Specifically, using xTB (Bannwarth et al., 2019), we com-
pute properties such as energy (E), dipole moment (µ),
HOMO-LUMO gap (∆ϵ), and the minimum energy (Emin).
Table 3 illustrates the median errors for ET-Flow and the
baselines, highlighting our method’s capability to produce
chemically accurate ensembles. Notably, we achieve signifi-
cant improvements over both TorsionDiff and MCF across
all evaluated properties.

Table 3. Median averaged errors of ensemble properties between
sampled and generated conformers (E, ∆ε, Emin in kcal/mol, and
µ in debye).

E µ ∆ϵ Emin

OMEGA 0.68 0.66 0.68 0.69
GeoDiff 0.31 0.35 0.89 0.39
GeoMol 0.42 0.34 0.59 0.40
Torsional Diff. 0.22 0.35 0.54 0.13
MCF 0.68±0.06 0.28± 0.05 0.63±0.05 0.04±0.00

ET-Flow 0.18±0.01 0.18±0.01 0.35±0.06 0.02±0.00

3.4. Inference Steps Ablation

In Table 1, our sampling process with ET-Flow utilizes
50 inference steps. To evaluate the method’s performance
under constrained computational resources, we conducted
an ablation study by progressively reducing the number of
inference steps. Specifically, we sample for 5, 10 and 20
time-steps. The results on GEOM-DRUGS are presented
in Table 2, showing minimal performance degradation with
fewer sampling steps. Notably, ET-Flow demonstrates high
efficiency, maintaining performance across all precision and
recall metrics even with as few as 5 inference steps. Interest-
ingly, ET-Flow with 5 steps still achieves superior precision
metrics compared to all existing methods. This underscores
ET-Flow’s ability to generate high-quality conformations
while operating within limited computational budgets.

4. Conclusion
In this paper, we present ET-Flow, a simple and scalable
method, which utilizes an equivariant transformer with flow
matching to achieve state-of-the-art performance on molec-
ular conformer generation benchmarks. We emphasize that
incorporating inductive biases, such as equivariance, and en-
hancing probability paths with a harmonic prior and RMSD
alignment, enables us to attain these results while maintain-
ing parameter and sample efficiency.

Future Works: While ET-Flow demonstrates competitive
performance in molecular conformer generation, there are
areas where it can be improved. We propose three future
directions. First, we observe that a well-designed sampling
process incorporating stochasticity can enhance the quality
and diversity of generated samples. An extension of our
method could involve using Stochastic Differential Equa-
tions (SDEs), which utilize both vector field and score in
inference, potentially improving the diversity of samples
(Ma et al., 2024). Second, we propose to scale the num-
ber of parameters of ET-Flow, which has been shown to be
useful in molecular conformer generation for MCF (Wang
et al., 2024), especially for out-of-distribution generation
in GEOM-XL. Lastly, we aim to alleviate the need for an
additional chirality correction step via architectural changes.
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A. Related Works
Diffusion Generative Models Diffusion models (Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020) enables a
high-quality and diverse sampling from an unknown data distribution by approximating the Stochastic Differential Equation
(SDE) that maps a simple density i.e. Gaussian to the unknown data density. Concretely, it involves training a neural
network to learn the score, represented as ∇x log pt(x) of the diffused data. During inference, the model generates sample
by iteratively solving the reverse SDE. However, diffusion models have inherent drawbacks, as they (i) require on longer
training times (ii) are restricted to specific probability paths and (iii) depend on the use of complicated tricks to speed up
sampling (Song et al., 2020; Zhang & Chen, 2022).

Flow Matching Continuous normalizing flows(CNFs) is a generative method that is capable of modeling arbitrary probability
path, including the probability paths modeled by diffusion processes. Flow Matching (Albergo et al., 2023; Lipman et al.,
2022; Liu et al., 2022) provides a general framework to learn CNFs, while improving upon the speed of diffusion training
and inference. Through simple regression against the vector field reminiscent of the score-matching objective in diffusion
models, Flow matching has enabled a fast, simulation-free training of CNFs. Several subsequent studies have then expanded
the scope of flow matching objective to manifolds (Chen & Lipman, 2024), arbitrary sources (Pooladian et al., 2023), and
conditional flow matching with arbitrary transport maps and optimal couplings between source and target samples (Tong
et al., 2023).

Molecular Conformer Generation Various machine learning (ML) based approaches (Kingma & Welling, 2013; Liberti
et al., 2014; Dinh et al., 2016; Simm & Hernández-Lobato, 2019; Shi et al., 2021; Luo et al., 2021; Xu et al., 2021; Ganea
et al., 2021; Xu et al., 2022; Jing et al., 2022; Wang et al., 2023) have been developed to improve upon the limitations
of conventional methods, among which the most advanced are TorsionDiff (Jing et al., 2022) and Molecular Conformer
Fields (MCF) (Wang et al., 2024). TorsionDiff designs a diffusion model on the torsion angles while incorporating the local
structure from RDKiT ETKDG (Riniker & Landrum, 2015). MCF trains a diffusion model over functions, specifically
functions that map elements from the molecular graph to points in 3D space.

Equivariant Architectures for Atomistic Systems Inductive biases play an important role in generalization and sample
efficiency. In the case of 3D atomistic modelling, one example of a useful inductive bias is the euclidean group SO(3)
which represents rotation equivariance in 3D space. Recently, various equivariant architectures (Duval et al., 2023) have
been developed that act on both Cartesian (Satorras et al., 2021; Thölke & De Fabritiis, 2022; Simeon & De Fabritiis, 2024;
Du et al., 2022; Frank et al., 2022) and spherical basis (Musaelian et al., 2023; Batatia et al., 2022; Fuchs et al., 2020; Liao
et al., 2023; Passaro & Zitnick, 2023; Anderson et al., 2019; Thomas et al., 2018). For molecular conformer generation,
initial methods like ConfGF, DGSM utilize invariant networks as they act upon inter-atomic distances, whereas the use
of equivariant GNNs have been used in GeoDiff (Xu et al., 2022) and Torsional Diffusion (Jing et al., 2022). GeoDiff
utilizes EGNN (Satorras et al., 2021), a Cartesian basis equivariant architecture while Torsional Diffusion uses Tensor Field
Networks (Thomas et al., 2018) to output pseudoscalars.

B. Implementation Details
B.1. Architecture

The ET-Flow architecture (Figure 3) consists of 3 major components, an embedding layer, update layers and an output
layer. We use a modified version of the embedding and update layers from the equivariant transformer architecture of
TorchMD-NET (Thölke & De Fabritiis, 2022) whereas the output layer utilizes the gated equivariant blocks from (Schütt
et al., 2018). We highlight our modifications over the original architectures with this color. These modifications enable
stabilized training since we use a larger network than the one proposed in the TorchMD-NET (Thölke & De Fabritiis,
2022) paper. Additionally, since our input structures are interpolations between structures sampled from a prior and actual
conformations, it is important to ensure our network is numerically stable when the interpolations contain two atoms very
close to each other.

Embedding Layer: This layer learns an embedding for the i-th atom using the atomic number (zi), atomic attributes (hi),
time-step t, edge features lij and neighborhood embedding ni. Atomic numbers are embedded into two vectors, one for
atomic number embedding and the other for neighboorhood embedding ni. The atomic attributes hi are projected into a
feature vector using a simple 2-layer Multi-Layer Perceptron (MLP). The neighboorhood embedding for an atom ni is
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Figure 3. (a) Overall Architecture of ET-Flow consisting of 3 components, (1) Embedding Layer (2) Update layers (with attention layers)
and (3) Output Layer. (b) Update Layer with all the operations involved, (c) Attention block modified with LayerNorm and (d) Output
Layer consisting of Gated Equivariant Blocks from Schütt et al. (2018)

computed as,

zi = embedint(zi) (7)
hi = MLP(hi) (8)

ni =

N∑
j=1

embednbh(zj) · g(dij , lij) (9)

where the second term g(dij , lij) is a edge based feature, which is a linear projection of a vector concatenating k exponential
radial basis functions multiplied with a cutoff function (ϕdij

) and edge features lij . It is computed as,

g(dij , lij) = WF
[
ϕ(dij)e

RBF
1 (dij)....ϕ(dij)e

RBF
K (dij), lij

]
(10)

ϕ(dij) =

{
1
2

(
cos(

πdij

dcutoff
+ 1)

)
, if dij ≤ dcutoff

0, otherwise
(11)

The hyperparameters for the radial basis functions are set as proposed in (Unke & Meuwly, 2019). Once the neighboorhood
embedding ni is computed, the final atom-level embedding is computed via a linear projection as,

xi = WC
[
embedint(zi), hi, t, ni

]
(12)

Attention Mechanism: The multi-head dot-product attention operation uses atom features xi, atom attributes hi, time-step
t and inter-atomic distances rij to compute attention weights. The input atom-level features xi are mixed with the atom
attributes hi and the time-step t using an MLP and then further normalized using a LayerNorm (Ba et al., 2016). To compute
the attention matrix, the inter-atomic distances rij are projected into two dimensional filters DK and DV as,

DK = σ
(
WDK

eRBF (rij) + bD
K
)

DV = σ
(
WDV

eRBF (rij) + bD
V
)

(13)

The atom level features are then linearly projected along with a LayerNorm operation to derive the query Q and key K
vectors. The value vector V is computed with only the linear projection of atom-level features. Applying LayerNorm on Q,
K vectors (also referred to as QK-Norm) has proven to stabilize un-normalized values in the attention matrix (Dehghani
et al., 2023; Esser et al., 2024) when scaling networks to large number of parameters. The Q and K vectors are then used
along with the distance filter DK for a dot-product operation over the feature dimension,

Q = LayerNorm(WQxi), K = LayerNorm(WKxi), V = WV xi (14)

dot(Q,K,DK) =

F∑
k

Qk ·Kk ·DK
k . (15)
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The attention matrix is derived by passing the above dot-product operation matrix through a non-linearity and weighting it
using a cosine cutoff ϕ(dij) (similar to Equation 11) which ensure the attention weights are non-zero only when two atoms
are within a specified cutoff,

A = SiLU(dot(Q,K,DK)) · ϕ(dij). (16)

Using the value vector V and the distance filter DV , we derive 3 equally sized filters by splitting along the feature dimension
(s1ij , s

2
ij , s

3
ij = split(Vj ·DV

ij)). A linear projection is then applied on to combine the attention matrix and the vectors s3ij to

derive a atom level level feature yi (= WO
(∑N

j Aij · s3ij
)

). The output of the attention operation are yi (an atom level

feature) and two scalar filters s1ij and s2ij (edge-level features).

Update Layer: The update layer computes interactions between atoms in the atttention block and uses the outputs to update
the scalar feature xi and the vector feature v⃗i. First, the scalar feature output yi from the attention mechanism is split into 3
features (q1i , q

2
i , q

3
i ), out of which q1i and q2i are used for the scalar feature update as,

∆xi = q1i + q2i · ⟨U1v⃗i · U2v⃗i⟩, (17)

where ⟨U1v⃗i · U2v⃗i⟩ is the inner product between linear projections of vector features v⃗i with matrices U1, U2.

The edge vector update consists of two components. First, we compute a vector w⃗i, which for each atom is computed as a
weighted sum of vector features and a clamped-norm of the edge vectors over all neighbors. Finally, a sum over w⃗i and a
linear projection of the vector feature gives us,

w⃗i =

N∑
j

s1ij · v⃗j + s2ij ·
r⃗i − r⃗j

max(∥r⃗i − r⃗j∥, ϵ)
, (18)

∆v⃗i = w⃗i + q3i · U3v⃗i (19)

where U1 and U3 are projection vectors over the feature dimension of the vector feature v⃗i. Our main modifications in this
layer, we clamp the minimum value of the norm (to ϵ = 0.01) to prevent numerically large values in cases where positions
of two atoms are sampled two close from the prior.

Output Layer: The output layer consists of Gated Equivariant Blocks from (Schütt et al., 2018). Given atom scalar xi and
vector features v⃗i, the updates in each block is defined as,

xi,updated, w⃗i = split(MLP([xi, U1v⃗i)])) (20)
v⃗i,updated = (U2v⃗i) · w⃗i (21)

(22)

Here, U1 and U2 are linear projection matrices that act along feature dimension. Our modification is to use LayerNorm in
the MLP to improve training stability.

B.2. Input Featurization

Atomic features (or Node Features) are computed using RDKit (Landrum et al., 2013) features as described in Table 4. For
computing edge features and edge index, we use a combination of global (radius based edges) and local (molecular graph
edges) similar to Jing et al. (2022).

B.3. Evaluation Metrics

Following the approaches of (Ganea et al., 2021; Xu et al., 2022; Jing et al., 2022), we utilize Average Minimum RMSD
(AMR) and Coverage (COV) to assess the performance of molecular conformer generation. Here, Cg denotes the set of
generated conformations, and Cr denotes the set of reference conformations. For both AMR and COV, we calculate and
report Recall (R) and Precision (P). Recall measures the extent to which the generated conformers capture the ground-truth
conformers, while Precision indicates the proportion of generated conformers that are accurate. The specific formulations
for these metrics are detailed in the following equations:

AMR-R(Cg, Cr) =
1

|Cr|
∑

R∈Cr

min
R̂∈Cg

RMSD(R, R̂)
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Table 4. Atomic features included in ET-Flow.

Name Description Range

chirality Chirality Tag {unspecified, tetrahedral CW, tetrahedral CCW, other}
degree Number of bonded neighbors {x : 0 ≤ x ≤ 10, x ∈ Z}
charge Formal charge of atom {x : −5 ≤ x ≤ 5, x ∈ Z}
num H Total Number of Hydrogens {x : 0 ≤ x ≤ 8, x ∈ Z}
number radical e Number of Radical Electrons {x : 0 ≤ x ≤ 4, x ∈ Z}
hybrization Hybrization type {sp, sp2, sp3, sp3d, sp3d2, other}
aromatic Whether on a aromatic ring {True, False}
in ring Whether in a ring {True, False}

COV-R(Cg, Cr) =
1

|Cr|
|{R ∈ Cr|RMSD(R, R̂) < δ, R̂ ∈ Cg}|

AMR-P(Cr, Cg) =
1

|Cg|
∑

R̂∈Cg

min
R∈Cr

RMSD(R̂,R)

COV-P(Cr, Cg) =
1

|Cg|
|{R̂ ∈ Cg|RMSD(R̂,R) < δ,R ∈ Cr}|

A lower AMR score signifies improved accuracy, while a higher COV score reflects greater diversity in the generative model.
Following (Jing et al., 2022), the threshold δ is set to 0.5Å for GEOM-QM9 and 0.75Å for GEOM-DRUGS.

B.4. Training Details and Hyperparameters

Table 5. Hyperparameters for ET-Flow

Hyper-parameter ET-Flow

num layers 20
hidden channels 160
num heads 8
neighbor embedding True
cutoff lower 0.0
cutoff higher 10.0
node attr dim 8
edge attr dim 1
reduce op True
activation SiLU
attn activation SiLU

# param 8.3M

For GEOM-DRUGS, we train ET-Flow for a fixed 250 epochs with a batch size of 64 and 5000 training batches per epoch
per GPU on 8 A100 GPUs. For the learning rate, we use the Adam Optimizer with a cosine annealing learning rate which
goes from a maximum of 1.e− 3 to a minimum 1.e− 7 over 250 epochs with a weight decay of 1.e− 10. For GEOM-QM9,
we train ET-Flow for 200 epochs with a batch size of 128, and use all of the training dataset per epoch on 4 A100 GPUs. We
use the cosine annealing learning rate schedule with maximum of 8.e− 4 to minimum of 1.e− 7 over 100 epochs, post
which the maximum is reduced by a factor of 0.05.

We select checkpoints based on the lowest validation error. For ablations, experiments are conducted using models trained
on 4 A100 GPUs for 50 epochs with a learning rate of 1e− 4 on GEOM-DRUGS. The hyperparameters for the experiments
are shared in Table 5.
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C. Additional Results
C.1. Design Choice Ablations

We conduct a series of ablation studies to assess the influence of each component in the ET-Flow. Particularly, we re-run the
experiments with (1) O(3) equivariance without chirality correction, (2) Absence of Alignment, (3) Gaussian Prior as a
base distribution. We demonstrate that improving probability paths and utilizing an expressive equivariant architecture with
correct symmetries are key components for ET-Flow to achieve state of the art performance. The ablations were ran with
reduced settings (50 epochs; lr = 1e− 4; 4 A100 gpus). Results are shown in Table C.1.

Table 6. Ablation results on GEOM-DRUGS.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

mean median mean median mean median mean median
ET-Flow 75.37 82.35 0.557 0.529 58.90 60.87 0.742 0.690
ET-Flow (O(3)) 72.74 79.21 0.576 0.556 54.84 54.11 0.794 0.739
ET-Flow (w/o Alignment) 68.67 74.71 0.622 0.611 47.09 44.25 0.870 0.832
ET-Flow (Gaussian Prior) 66.53 73.01 0.640 0.625 44.41 40.88 0.903 0.864

C.2. Coverage Threshold Plots

We show a breakdown of the performance on GEOM-DRUGS of ET-Flow against Torsional diffusion (Jing et al., 2022)
as a function of the threshold distance in Section C.2. Across a wide range of threshold values, ET-Flow consistently
outperforms Torsional Diffusion in terms of both recall and precision, except for slight underperformance at very high
threshold values. Particularly notable is ET-Flow’s superior performance at lower threshold regions, highlighting its ability
for accurate conformer prediction. We were unable to replicate the results of MCF (Wang et al., 2024) as their codebase is
currently not publicly available; therefore, we did not include them in our comparison plot.

Figure 4. Recall and Precision Coverage result on GEOM-DRUGS as a function of the threshold distance. ET-Flow outperforms
TorsionDiff by a large margin especially in a lower threshold region.

C.3. Results on GEOM-QM9

We also train and evaluate our model on the small molecules from GEOM-QM9, with the performance reported in Table 7.
ET-Flow consistently outperforms or matches the previous state-of-the-art, MCF, across all metrics, despite its significantly
more compact model size.
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Table 7. Molecule conformer generation results on GEOM-QM9 (δ = 0.5Å).

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

mean median mean median mean median mean median
CGCF 69.47 96.15 0.425 0.374 38.20 33.33 0.711 0.695
GeoDiff 76.50 100.00 0.297 0.229 50.00 33.50 1.524 0.510
GeoMol 91.50 100.00 0.225 0.193 87.60 100.00 0.270 0.241
Torsional Diff. 92.80 100.00 0.178 0.147 92.70 100.00 0.221 0.195
MCF 95.0 100.00 0.103 0.044 93.7 100.00 0.119 0.055
ET-Flow (ours) 94.99 100.00 0.083 0.035 91.00 100.00 0.116 0.047

C.4. Results on GEOM-XL

We now assess how well a model trained on GEOM-DRUGS generalises to unseen molecules with large numbers of atoms,
using the GEOM-XL dataset containing a total of 102 molecules. This provides insights into the model’s capacity to
tackle larger molecules and out-of-distribution tasks. Upon executing the checkpoint provided by Torsional Diffusion, we
encountered 27 failed cases for generation likely due to RDKit failures, similar to the observations in MCF albeit with
slightly different exact numbers. In both experiments involving all 102 molecules and a subset of 75 molecules, ET-Flow
achieves performance comparable to Torsional Diffusion and MCF-S, but falls short of matching the performance of MCF-B
and MCF-L. It’s worth noting that MCF-B and MCF-L are significantly larger models, potentially affording them an
advantage in generalization tasks. As part of our future work, we plan to scale up our model and conduct further tests to
explore its performance in this regard.

Table 8. Generalization results on GEOM-XL.

AMR-P ↓ AMR-R ↓ # mols

mean median mean median

GeoDiff 2.92 2.62 3.35 3.15 -
GeoMol 2.47 2.39 3.30 3.14 -
Tor. Diff. 2.05 1.86 2.94 2.78 -
MCF - S 2.22 1.97 3.17 2.81 102
MCF - B 2.01 1.70 3.03 2.64 102
MCF - L 1.97 1.60 2.94 2.43 102
ET-Flow (ours) 2.31 1.93 3.31 2.84 102

Tor. Diff. 1.93 1.86 2.84 2.71 77
MCF - S 2.02 1.87 2.9 2.69 77
MCF - B 1.71 1.61 2.69 2.44 77
MCF - L 1.64 1.51 2.57 2.26 77
ET-Flow (ours) 2.00 1.80 2.96 2.63 75
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D. Training and Sampling Algorithm
The following algorithms go over the pseudo-code for the training and sampling procedure. For each molecule, we use up to
30 conformations with the highest boltzmann weights as provided by CREST (Pracht et al., 2024) similar to that of (Jing
et al., 2022)

Algorithm 1 Training procedure
Input: molecules [G0, ..., GN ] each with true conformers [CG,1, ...CG,KG

], the harmonic prior ρ0, learning rate α,
number of epochs Ne, initialized vector field vθ
Output: trained flow matching model vθ
for i← 1 to Ne do

for each G [G0, ..., GN ] do
Sample t ∼ U [0, 1]
Sample C1 from [CG,1, ...CG,KG

]
Sample prior C0 ∼ ρ0(G)
Align C0 to C1 using RMSD alignment
C0 ← RMSDAlign(C0, C1)
Sample Ct ∼ N

(
tC1 + (1− t)C0, σ

2t(1− t)I
)

Calculate ut ← C1 − C0 +
1−2t

2
√

t(1−t)
z, z ∼ N (0, I)

Compute loss L ← ∥vθ(t, Ct)− ut∥2
Take gradient step θ ← θ − α∇θL

end for
end for

Algorithm 2 Inference procedure
Input: molecular graph G, number conformers K, number of sampling steps N
Output: predicted conformers [C1, ...CK ]
for C in [C1, ...CK ] do

Sample prior Ĉ ∼ ρ0(G)
for n← 0 to N − 1 do

Set t← n
N

Set ∆t← 1
N

Predict v̂ = vθ(t, Ĉ)
Update Ĉ = Ĉ + v̂∆t

end for
end for
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Algorithm 3 Stochastic Sampler
Input: molecular graph G, number conformers K, number of sampling steps N , stochasticity level churn, stochastic
sampling range [tmin, tmax]
Output: predicted conformers [C1, ...CK ]
for C in [C1, ...CK ] do

sample prior Ĉ ∼ ρ0(G)
for n← 0 to N − 1 do

Set t← n
N , ∆t← 1

N , γ ← churn
N

if t ∈ [tmin, tmax] then
Sample ϵ ∼ N(0, I)
∆t̂← γ(1− t), t̂← max(t−∆t̂, 0)

Ĉ ← Ĉ +∆t̂
√
t2 − t̂2ϵ

Predict v̂ = vθ(t̂, Ĉ)
Set ∆t← ∆t+∆t̂

else
Predict v̂ = vθ(t, Ĉ)

end if
Update Ĉ = Ĉ + v̂∆t

end for
end for

E. Visualizations
Figure 5 shows randomly selected examples of sampled conformers from ET-Flow for GEOM-DRUGS. The left column is
the reference molecule from the ground truth, and the remaining columns are samples generated with 50 sampling steps.
Figure 6 showcases the ability for ET-Flow to generate quality samples with fewer sampling steps.
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Figure 5. Examples of conformers of ground truth and ET-Flow for GEOM-DRUGS.
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Figure 6. Examples of conformers of ground truth and ET-Flow for different number of sampling steps.


