
Medical Imaging with Deep Learning – 35 2025 Short Paper – MIDL 2025

Hierarchical Transformer for Electrocardiogram Diagnosis

Xiaoya Tang1 xiaoya.tang@utah.edu

Jake Berquist1,2 jake.bergquist@utah.edu

Benjamin A. Steinberg3 benjamin.steinberg@cuanschutz.edu

Tolga Tasdizen1 tolga@sci.utah.edu
1 Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA
2 Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, SLC,

UT, USA
3 University of Colorado Anschutz Medical Campus, Denver, CO, USA

Editors: Accepted for publication at MIDL 2025

Abstract

We propose a hierarchical Transformer for ECG analysis that combines depth-wise convo-
lutions, multi-scale feature aggregation via a CLS token, and an attention-gated module
to learn inter-lead relationships and enhance interpretability. The model is lightweight,
flexible, and eliminates the need for complex attention or downsampling strategies.
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1. Introduction

Cardiovascular diseases remain a significant health threat worldwide (Natarajan et al.,
2020; Hu et al., 2022). Advances in computer-aided diagnosis have aimed to enhance the
accuracy of electrocardiogram (ECG) interpretation and reduce associated costs (Dong
et al., 2023). Existed deep learning methods applied to ECG tasks often involved elabo-
rate convolutional and recursive structures (Yan et al., 2019). Given the sequential nature
of ECG signals, the application of Transformers has shown promise due to their superior
capacity to model long-range dependencies (Natarajan et al., 2020). Recent applications
of Vision Transformers(ViT) in cardiac abnormality classification (Natarajan et al., 2020),
arrhythmia detection (Hu et al., 2022) and phonocardiography-based valvular heart dis-
eases detection (Jamil and Roy, 2023) have showcased their advantages in simplicity and
training efficiency over CNNs and recurrent neural networks. Several recent studies have
explored hierarchical transformers to address transformers’ inductive bias limitations, by
using shifted-window mechanisms (Li et al., 2021), employing transformer to bridge CNN
encoders and decoders (Deng et al., 2021), integrating ResNet and channel attention (Wahid
et al., 2024), and applying a deformable ViT (Dong et al., 2023) with depthwise separa-
ble convolutions. Although depth-wise convolutions and pyramid transformers have been
noted, prior works haven’t fully mined the inter-lead information nor optimized the use of
hierarchical features. To address these gaps, we propose a novel hierarchical Transformer
for ECG classification. Our main contributions are as follows:

• We use depth-wise convolutions to prevent the mixing of potentially important yet
implicit information across leads before the transformer. This crucial aspect has been
largely overlooked in previous works.
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Figure 1: Framework: A Four-layer feature extractor with 1D depth-wise convolutions,
three-stage transformer, and attention-gated module(from left to right). D is the
embedding dimension, and N is the spatial size.

• We employ a CLS token to aggregate task-relevant information from multi-scale rep-
resentations across stages. Instead of passing all output feature embeddings to the
next stage, we propagate only the CLS token. By maintaining the same CLS token
across the transformer, it aggregates multi-scale information.

• We integrate an attention-gated module to learn inter-leads associations. This module
complements our model design alongside the depth-wise encoder.

2. Methodology

The framework is illustrated in Figure 1. Since the input ECG data is a multi-channel(lead)
one-dimensional(1D) sequence, we employ a four-layer feature extractor consisting of 1D
depth-wise convolutions (Howard, 2017). Each layer uses varying kernel sizes and strides
to enable progressive downsampling, adapted from (Natarajan et al., 2020). To incorporate
multi-scale inductive biases, we design a three-stage transformer, with each stage contain-
ing a stack of MSA layers. Each stage begins by integrating a feature map(contextual
tokens in Figure 1) from the CNN with a learnable CLS token and ends by passing the
CLS token to the next stage, where it is integrated with another feature map of reduced
spatial size. By adjusting the input resolutions at each stage, we manipulate the recep-
tive field from local to global. Information for each lead remains distinct and uncombined
throughout the transformer. To model dependencies between leads, we apply an attention-
gated module comprising three linear layers (highlighted in the blue dotted rectangle in
Figure 1), inspired by (Chen et al., 2022). Please refer to Appendix A for further details.
Code:https://github.com/xiaoyatang/3stageFormer.git.

3. Results and Analysis

We evaluate our model on two datasets: the 2020 PhysioNet/CinC Challenge dataset (Al-
day et al., 2020) and the KCL potassium classification dataset from Utah. The public
dataset contains 43,101 recordings, and we follow a 10-fold validation for the multi-label
classification of 24 diagnoses. As in the original challenge, we report macro Fβ, Gβ(reflecting
precision and recall), and the challenge score which penalizes incorrect diagnoses. The KCL
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dataset includes 54,419 training and 6,245 test recordings, with performance measured by
macro-averaged AUC. Data processing and metric details are provided in Appendix B. Our
models outperform previous PhysioNet/CinC Challenge winners(Prna) (Natarajan et al.,
2020) across all metrics, rivals a two-phase method with contrastive pretraining, sCL-ST (Le
et al., 2023), and confirm the efficacy and robustness of all variations of our model. Com-
pared to ’Prna’ which combines CNNs and transformers with a CLS token, our model’s
performance validates the multi-scale design and insightful use of the CLS token. We also
incorporated a differential attention mechanism from language models (Ye et al., 2024),
further enhancing performance by denoising attentions. Please refer to Appendix C and D
for detailed analysis and interpretability insights with attention maps.

Model Fbeta Gbeta Challenge Size(M)

LSTM 0.4323 (±0.55%) 0.2742 (±1.90%) 0.4372 (±1.67%) -
CNN 0.4519 (±1.55%) 0.2862 (±2.90%) 0.4542 (±1.68%) -
ResNet 0.5088 (±0.41%) 0.3278 (±2.69%) 0.5158 (±0.80%) -
ViT 0.3263 (±1.65%) 0.1970 (±1.88%) 0.3197 (±2.44%) -
Swin Transformer 0.4812 (±0.87%) 0.3045 (±0.66%) 0.4811 (±1.41%) -
BaT (Li et al., 2021) 0.5011 (±0.68%) 0.3125 (±1.15%) 0.4958 (±0.83%) -
Res-SE (Zhao et al., 2020) 0.5607 (±1.30%) 0.3264 (±2.94%) 0.5939 (±0.30%) 8.84
SpatialTemporalNet 0.4296 (±2.82%) 0.2403 (±2.98%) 0.4322 (±9.81%) 4.52
Prna (Natarajan et al., 2020) 0.4975 (±5.17%) 0.2679 (±6.99%) 0.5463 (±3.23%) 13.64
Prna + CLS Token 0.5211 (±1.38%) 0.2926 (±2.46%) 0.5732 (±2.11%) 13.64
sCL-ST (Le et al., 2023) 0.5100 (±−%) 0.3622 (±−%) 0.6053 (±−%) -
Ours-No Attn gated 0.5672 (±0.60%) 0.3296 (±3.34%) 0.6174 (±1.06%) 16.62

Ours 0.5778 (±0.76%) 0.3407 (±2.18%) 0.5980 (±0.85%) 16.78

Ours-No Attn gated-Diff 0.5704 (±1.19%) 0.3397 (±0.50%) 0.6203 (±1.23%) 18.52
Ours-Diff 0.5850 (±1.15%) 0.3459 (±0.38%) 0.6063 (±0.18%) 18.63

Table 1: Performances on multi-label ECG diagnoses. Results for the first six models are
reported from (Li et al., 2021). Others were averaged over three folds in a 10-fold
cross-validation following (Natarajan et al., 2020), unless otherwise indicated by
their sources.

Model AUC Size (M)

Prna (ViT) 0.8126 (±1.08%) 13.63
Swin Transformer 1D-Tiny (Liu et al., 2021) 0.7954 (±0.11%) 47.47
SpatialTemporalNet 0.8218 (±0.35%) 4.41

Res-SENet 0.8203 (±0.09%) 8.82
Ours 0.8232 (±0.33%) 10.94

Table 2: Performance comparison of typical models for KCL.

4. Conclusion

Our proposed hierarchical transformer efficiently manages diverse ECG tasks, enhances
interpretability by leveraging multiscale features and innovative CLS token use, and flexibly
adapts to different feature extractors, attention mechanisms, and input sizes.
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Appendix A. Model Architecture

A.1. Depthwise Convolutional Feature Encoder

Depthwise convolutions (Howard, 2017) employ a distinct filter for each input channel,
capturing spatial relationships without cross-channel interactions. In the context of multi-
lead ECG signals, these convolutions are applied individually to each lead. Subsequently, the
resulting feature maps from each lead can be transformed separately onto a new space (Dong
et al., 2023).

A.2. Three-Stage Transformer

According to previous researches, the effective receptive field of ViT shifts from local to
global as it progresses through the layers. We structure a transformer encoder into three
stages, each containing a stack of MSA layers, with the division of layers tailored to specific
needs. Our approach involves feeding hierarchical feature embeddings(called contextual
tokens in 1) into three stages, derived from different layers of our convolutional encoder
using three distinct downsampling rates from the input ECG segment. After each stage,
the CLS token is extracted and concatenated with a new sequence of embeddings at a larger
downsampling rate, then passed into the next transformer stage. This progressive feeding
of downsampled features compels the model to transition its focus from detailed to more
abstract, global patterns. Utilizing the CLS token allows us to efficiently aggregate and
transfer multi-scale information to the final classification layer.

A.3. Attention-Gated Module

Given an output from three-stage transformer x with dimensions x ∈ RB×C×S , where B
represents the batch size, C the number of channels, and S the sequence length. The infor-
mation for each lead remains distinct and uncombined. Thus we utilize an attention-gated
module to model dependencies between leads, inspired by (Chen et al., 2022). This module
comprises three linear layers designed to uncover latent dependencies between channels,
which correspond to associations between ECG leads in this context. The attention score a
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is computed through an element-wise multiplication of the query and key vectors, resulting
in a ∈ RB×C×S , as shown in Eq. 1. Wq ∈ RS×S , bq ∈ RS ,Wk ∈ RS×S , and bk ∈ RS represent
the weights and biases of the linear layer for learning query and key, with σ denotes the
Sigmoid function.

q = tanh(Wqx+ bq)

k = σ(Wkx+ bk)

a = q ⊙ k

(1)

A linear project is applied to the attention scores resulting in a′ ∈ RB×C×N , where N is
the number of classes. The raw attentions are then normalized by a softmax and multiplied
with the output from the three-stage transformer,yielding v ∈ RB×N×S , shown in Eq.2.
These operations are analogous to the MSA mechanism. Finally, a separate classifier for
each class is applied across the sequences, where vi denotes the segment of v corresponding
to the i-th class.

a′ = Projection(a)

a′′ = softmax(transpose(a′, (0, 2, 1)))

v = a′′@x

logitsi = Wivi + bi for each i ∈ {1, . . . , N}

(2)

Appendix B. Data and Evaluation Metrics

We utilize the public training data from the 2020 PhysioNet/CinC Challenge (Alday et al.,
2020) and KCL data from our group. The public dataset comprises 43, 101 recordings, and
we adopt the 10-fold split used by the winner model ’Prna’ (Natarajan et al., 2020). This
setup involves a multi-label classification task related to 24 diagnoses. Following the prepro-
cessing steps of ’Prna’, we resample all recordings to 500Hz, apply an FIR bandpass filter,
and perform normalization. We also randomly crop multiple fixed-length ECG segments of
T = 15 seconds from the input, adding padding when necessary for segments shorter than
15s. We also leveraged the wide features that they used. For evaluation metrics, we report
macro Fβ, Gβ, geometric mean(GM) combining precision and recall and the challenge score
defined by the challenge organizers (Alday et al., 2020), detailed in Eq. 3. The score S
generalizes standard accuracy by fully crediting correct diagnoses and penalizing incorrect
ones based on the similarity between arrhythmia types. Here aij represents an entry in
the confusion matrix corresponding to the number of recordings classified as class ci but
actually belonging to class cj , with different weights wij assigned based on the similarity of
classes ci, cj :

Fβ = (1 + β2) · TP

(1 + β2) · TP + FP + β2FN

Gβ =
TP

TP + FP + βFN
, β = 2

S =
∑
ij

wijaij

(3)
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For the KCL potassium classification, all recordings maintain a uniform sampling rate of
500Hz. After applying normalization, we randomly crop these to fixed segments of T = 5s.
The dataset includes 54, 419 recordings for training and 6, 245 for testing. We report the
macro-averaged area under the receiver operating characteristic curve (AUC) on test data.

Appendix C. Result Analysis

Our model surpasses previous winners in the 2020 PhysioNet/CinC Challenge dataset,
Prna (Natarajan et al., 2020) and Res-SENet (Zhao et al., 2020), and other commonly
used architectures. Results are shown in 1. An important observation from these results
is the enhanced performance of the standard ViT model, Prna, upon integration of a CLS
token, which validates the CLS token’s significance in classification tasks. By adjusting
the input resolutions at each transformer stage, we manipulate the receptive field of atten-
tion—from local, with larger spatial-sized embeddings, to global, with smaller spatial-sized
embeddings. These variations in granularity are achieved by modifying the kernel sizes and
strides in the CNN feature extractor. We hypothesize that passing only the CLS token be-
tween stages, rather than all output embeddings, focuses the model on prediction-relevant
information. Through backpropagation, the CLS token can access crucial details from the
key and value representations in the attention mechanism. By maintaining the same CLS
token across the transformer, it aggregates multi-scale information, thus enhancing the
model’s inductive bias. By outperforming the integration of Prna with a CLS token, we
confirm our model’s effectiveness. Additionally, our model demonstrates that both with and
without the Attention gated module, it maintains competitive performance, demonstrating
the efficiency of our three-stage transformer.

To further validate the efficiency and generalizability of our approach, we conducted
additional tests on the KCL binary classification task, comparing our model against other
prominent architectures. Our model showcased the highest AUC, outperforming models
such as SpatialTemporalNet and ViT (Prna), shown in 2. These results confirm the ro-
bustness and adaptability of our model, effectively identifying complex patterns essential
for precise ECG classification.

C.1. Differential Attention Mechanism

Inspired by attention denoising techniques in large language models and the similar sequen-
tial nature of ECG signals and language data, we adapted the differential attention mecha-
nism from (Ye et al., 2024). This mechanism enhances focus on relevant contexts while sup-
pressing noise by subtracting two softmax-transformed attention maps, which reduces noise
and promotes the development of distinct attention patterns, as delineated in Eq.4. Given an
input X ∈ RN×d, we project it to query, key, and value tensors Q1,Q2,K1,K2,V ∈ RN×2D.
The differential attention operation DiffAttn(·) then computes the outputs. A significant
adaptation for ECG analysis involves omitting the upper diagonal mask, originally used in
language generative models to prevent attending to future tokens, thus allowing the model
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to consider the entire ECG sequence simultaneously.

[Q1;Q2] = XWQ, [K1;K2] = XWK , V = XW V

DiffAttn(X) =

(
softmax

(
Q1K

T
1√

D

)
− λsoftmax

(
Q2K

T
2√

D

))
V

(4)

Appendix D. Interpretability

The multi-head self-attention(MSA) allows each head to learn distinct attention patterns
across the time sequence. These patterns can be analogized to distinct attentions across
different ECG leads, facilitated by our depthwise encoder. During the evaluation phase
of the KCL classification, we randomly selected an abnormal sample, with the attention
map at the final stage shown in 2 and 3. We qualitatively assessed the attention map by
examining which areas of the ECG signals garnered the highest attention in this unhealthy
case. Notably, our model exhibited heightened attention to clinically significant features
such as the QRS complex, S-T segment, and T-wave, which are recognized as clinical
indicators of changes in serum potassium levels. The proposed approach also underscores
how the model’s attention shifts across different stages. While we do not leverage lead
attention here, the attn gated module after MSA allowed us to discern dependencies among
multiple leads. This capability further provides valuable insights into how the model relies
on different leads, enhancing our understanding of deep learning models for ECG diagnosis.

Figure 2: Attentions in an abnormal case (high potassium) for leads 1 to 4, illustrating final
stage attentions.
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Figure 3: Attentions in an abnormal case (high potassium) for leads 5 to 8, illustrating final
stage attentions.
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