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Abstract

Physics-informed neural networks (PINNs) have been recognized as a viable
alternative to conventional numerical solvers for Partial Differential Equations
(PDEs). The main appeal of PINNs is that since they directly enforce the PDE
equation, one does not require access to costly ground truth solutions for training
the model. However, a key challenge is their limited generalization across varied
initial conditions. Addressing this, our study presents a novel Physics-Informed
Transformer (PIT) model for learning the solution operator for PDEs. Using the
attention mechanism, PIT learns to leverage the relationships between its initial
condition and query points, resulting in a significant improvement in generalization.
Moreover, in contrast to existing physics-informed networks, our model is invariant
to the discretization of the input domain, providing great flexibility in problem
specification and training. We validated our proposed method on the 1D Burgers’
and the 2D Heat equations, demonstrating notable improvement over standard
PINN models for operator learning with negligible computational overhead.

1 Introduction
Partial Differential Equations serve as fundamental tools for describing a wide array of physical phe-
nomena. Finding accurate and efficient solutions of PDEs is crucial in numerous scientific and engi-
neering domains, enabling the simulation, prediction, and optimization of complex systems. Since tra-
ditional numerical solvers often face significant challenges when dealing with complex spatiotemporal
PDEs, innovative and efficient alternatives have become crucial in various areas of science [18, 7, 9].

In machine learning, data-driven PDE solvers have emerged as a promising avenue of research.
These solvers harness the capabilities of machine-learning techniques to approximate the solutions
of PDEs. One prominent approach is the use of Physics-Informed Neural Networks (PINNs) [15],
which combine the power of neural networks with the constraints imposed by the governing PDEs.
By enforcing the PDE at selected points, PINNs can effectively capture the underlying physics and
yield accurate solutions in regions with limited or no data. With the work of DeepONets [14], the
concept of operator learning has emerged as a novel paradigm for solving PDEs. This framework
aims to learn the solution operator of PDEs, which enables solving PDEs with different initial or
boundary conditions, or coefficients. Various architectures have been proposed in this context, such
as Fourier Neural Operators [11], Graph Neural Operators [10] and the transformer-based OFormer
[12]. There has also been work in combining operator learning with PINNs [20, 13].

Operator learning with PINNs is the only paradigm that does not need simulation data for training and
does not require test time optimization as in vanilla PINNs. While these qualities make this setting
quite attractive, the existing solutions do not perform well in practice and make limiting assumptions
about the format of the initial and boundary conditions – i.e., they should lie on a fixed grid.

We address these problems using a Transformer architecture [17] while maintaining the tractability of
derivatives through automatic differentiation. The proposed Physics-Informed Transformer, PIT, is
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invariant to the discretization of both input and query domains and allows for interactions between both
domains through cross-attention blocks. Our empirical evaluations show significant improvements
over the established physics-informed DeepONet, and suggest that the proposed model can perform
well in higher dimensional problems even with a limited training budget.

2 Background
Physics-informed neural networks. In PINNs, we generally consider PDEs of the form:

ut +N [u] = 0, t ∈ [0, T ],x ∈ Ω,

u(0,x) = g(x), x ∈ Ω,

B[u] = 0, t ∈ [0, T ],x ∈ ∂Ω,

(1)

where u(t,x) ∈ Rdu is the solution to the PDE, t denotes time, x is a vector of spatial coordinates
in the domain Ω, and N [·] is a linear or nonlinear differential operator. The function g describes
the initial condition (IC) of the PDE, and B[·] is a boundary operator corresponding to Dirichlet,
Neumann, Robin, or periodic boundary conditions.

In PINNs, the solution u(t,x) of the PDE is represented by a neural network uθ(t,x) with parameters
θ. This model can then be trained by minimizing a loss with three components:

L(θ) = λicLic(θ) + λbcLbc(θ) + λrLr(θ). (2)
The first two terms consist of a supervised loss which guarantees that the function learned by the
neural network satisfies the initial and boundary conditions of the problem. That is, given randomly
sampled points {xi

ic}
Nic
i=1 from Ω and {tibc,xi

bc}
Nbc
i=1 from [0, T ]× ∂Ω, we have:

Lic(θ) =
1

Nic

Nic∑
i=1

∥uθ(0,x
i
ic)− g(xi

ic)∥22, Lbc(θ) =
1

Nbc

Nbc∑
i=1

∥B[uθ](t
i
bc,x

i
bc)∥22. (3)

The third term is the physics-informed objective, ensuring that the learned function uθ(t,x) satisfies
the PDE in Eq. (1). This is done by minimizing:

Lr(θ) =
1

Nr

Nr∑
i=1

∥∥∥∥∂uθ

∂t
(t,x) +N [uθ](t,x)

∥∥∥∥2
2

, (4)

where the derivatives of uθ are calculated through automatic differentiation. This penalty is enforced
on a set {tir,xi

r}
Nr
i=1 of randomly sampled points from the domain. Furthermore, these losses are

weighted by hyper-parameters {λic, λbc, λr}, leading to more flexibility during training.

We provide some background on operator learning and transformers in §A.1 and §A.2.

3 Methods
Problem Setting. Given a PDE as described by Eq. (1), we want to use a transformer to learn an
operator Gθ, taking an input function f and query point (t,x), outputting the solution u(t,x) of the
PDE at the query point, Gθ[f ](t,x) = u(t,x). The transformer model takes a collection of query
points {qi}, for qi ∈ [0, T ] × Ω in the domain, and samples {pj , f(pj)} from an input function f ,
for pj in the domain of f , and outputs the solution of the PDE at the query locations. The input and
query domains can be the same, for example, when f is the initial condition (IC) of the PDE, or
they can be different. We also note that since transformers operate on sets, the number of query and
input samples and the discretization of the input function f can vary for each training instance. This
is not possible for other operator learning architectures such as DeepONets [14].

Positional encoding. To make use of the spatial nature of the problem, we use positional encod-
ing. While more recent and sophisticated types of positional encoding exist, like Rotary Position
Embedding [16], we use sinusoidal positional encoding [17] for our experiments. This is performed
on query points q and input points p and encodes each independent variable with sine and cosine
functions of different frequencies. That is, each entry v(i) of a given vector v is assigned a vector
h(i) with entries h(i)j calculated by:

αj = 10000−2⌊j/2⌋/dpe , h
(i)
j =

{
sin(αjv

(i)) if j is even
cos(αjv

(i)) if j is odd
(5)
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(a) (b)

Figure 1: 1D Burgers’ equation: (a) Models’ prediction and exact solution for a sample from the test dataset (b)
Relative L2 error over the test data as a function of time for PIT and DeepONet.

where dpe is the dimensionality of h(i). The final output h of the positional encoding of the vector v
is then a vectorization of the matrix with vectors h(i) as columns. We thus obtain vectors hq and hp,
the positional encoding of the query and input points, respectively. In addition, we concatenate the
value f(p) to the corresponding positional encoding hp to include it in the cross-attention operation.

Transformer architecture. The model architecture we use consists of an encoder and a decoder. The
encoder is composed of two parts: point-wise MLPs ϕ and ψ, which produce embedding vectors for
query points and input points, respectively, and L cross-attention blocks, which capture interactions
between these two embeddings. Unlike the model proposed by Vaswani et al. [17] and Li et al. [12],
we do not perform self-attention on the query and input points, as this would create interdependencies,
increasing the cost of automatic differentiation needed to calculate the PINN loss. Although this
computational cost would not be prohibitive for low dimensional PDEs, we didn’t observe any
benefits from including this self-attention.

Given positional encodings hq and hp of the query and input points, respectively, we first obtain
high-dimensional embeddings z(0) = ϕ(hq) and y = ψ(hp), used to update the query embeddings:

ẑ(l) = LayerNorm(z(l)), z(l+1) = z(l) + MLP(ẑ(l) + Cross-attention(ẑ(l),y)), (6)
for l = 1, ..., L − 1, where L is the number of cross-attention blocks, LayerNorm(·) is layer
normalization [1], and Cross-attention(·) is the cross-attention mechanism discussed in this section.

The final output, z(L), of the encoder then goes through a point-wise MLP γ whose output dimension
is the same as the codomain of the PDE’s solution, u(t,x). The predicted solution, uθ(t,x), is then
given by γ(z(L)), for z(L) obtained from the query point q = (t,x) in question.

Attention mechanism. The attention mechanism [2, 17] is a mapping of query vectors {qi}mi=1 and
of key-value pairs of vectors, {kj}nj=1 and {vj}nj=1. The attention map outputs a weighted sum of
the values, where each value’s weight is given by a function w and is a measure of the closeness of
the query with the corresponding key. In this paper, we choose w to be the scaled dot-product [17]
w(qi,kj) = (qi · kj)/

√
d with d being the dimension of queries and keys. A query vector qi is thus

mapped to an output zi as follows:

zi =

n∑
j=1

softmax
(
qi · kj√

d

)
vj . (7)

We can compute the attention function for all queries simultaneously: Z = softmax(QK⊤/
√
d)V ,

by writing each i-th vector as the i-th column of its corresponding matrix. Although we acknowledge
the recent improvements brought by alternative types of attention like Galerkin and Fourier [3], we
use the standard softmax-normalized attention in our experiments.

In self-attention, the matrices Q,K and V are computed as linear projections of the same input
feature embedding. To capture interactions between the input domain and query domains (i.e. capture
how solutions inside the domain are dependent on the IC), we use cross-attention, where the matrix
Q is obtained from a different input than K and V . In particular, we use a linear projection of an
embedding of the query points {qi} to obtain Q. Similarly, K and V are obtained through linear
projections of an embedding of the samples {pj , f(pj)} from the input function f . Furthermore, a
linear projection of the query embeddings, U , is added to the output of the attention operation to
accentuate the influence of the query points further. In our experiments, MLPs are used instead of
linear projections as they lead to better generalization.

Training. The model parameters, θ, are trained by minimizing the loss in Eq. (2). Each instance
used for training contains a set {pj , f(pj)}Mj=1 of samples from the input function, and query points
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{ri}Nr
i=1, {si}Nic

i=1 and {bi}Nbc
i=1 , taken from the PDE domain, used to evaluate Lr, Lic and Lbc

respectively. As f is the IC of the PDE, the need for the points {si} is removed. In contrast with
other works [14], in PIT the number of samples, M,Nr, Nic and Nbc, and their location, pj , ri, si
and bi, do not need to be the same throughout different instances. This means that the discretization
of the PDE input domains can change for each training sample.

4 Experiments

Figure 2: Predictions for an IC of 2D heat equa-
tion test dataset for (1) DeepONet, (2) Modified
DeepONet, (3) PIT ; and exact solution (4).

In this section, we compare the performance of PIT
with the conventional physics-informed DeepONet
[20], and the physics-informed DeepONet with im-
proved architecture introduced in Wang et al. [19],
which we refer as "modified DeepONet". We conduct
experiments on two PDEs: 1D Burgers’ and 2D heat
equations. PIT shows significant improvements com-
pared to the other models, without introducing signif-
icant computing costs.

Burgers’ equation The 1D Burgers’ equation de-
scribes the behaviour of fluid flow in one dimension:

ut(t, x) + u(t, x)ux(t, x)− νuxx(t, x) = 0, (8)

for ν > 0 the diffusion coefficient. We consider ν =
0.01, and the spatial and time domains are Ω = [0, 2π]
and [0, T ] = [0, 2.475]. Additional details on the experiment can be found in §A.3.

In Table 1, we compare the performance of PIT, DeepONet and modified DeepONet on the test data.
The PIT outperforms the other models with a relative L2 error of 0.044 over 400 test examples. A
sample of the models’ predictions can be found in Fig. 1. In addition, Fig. 1 shows that PIT is not
significantly more expensive than DeepONet.

Heat equation The 2D heat equation describes the heat conduction in a 2D spatial domain:

ut(t, x, y)− ν(uxx(t, x, y) + uyy(t, x, y)) = 0, (9)

for ν > 0 the thermal diffusivity constant. We use ν = 0.01, and Ω = [0, 1]2 and [0, T ] = [0, 1]. We
assume periodic spatial boundaries. We provide additional details on this experiment in §A.3.

Table 1: Mean and standard deviation of the
relative L2 errors, calculated over 400 examples
in the test dataset for Burgers’ and 200 examples
for the heat equation.

Relative L2 error

Model 1D Burgers 2D Heat

DeepONet 0.266± 0.096 4.506± 1.281
Modified DeepONet 0.158± 0.092 4.202± 1.167
PIT (ours) 0.044± 0.023 0.340± 0.066

We find that physics-informed DeepONet is not ex-
pressive enough for this problem and does not yield
meaningful results. Introducing the modified architec-
ture does not sufficiently improve results and is more
costly in this higher-dimensional case. On the other
hand, PIT performs well even though the number of
training samples is not large. We compare the mod-
els’ performance in Table 1 and show a sample of their
predictions in Fig. 2.

5 Conclusion
We introduce PIT for PDE operator learning. This model is fully trained with a PINN loss and
thus does not require access to the ground-truth solution, which can be difficult and costly to obtain.
In addition, our method allows for any discretization of both the input function domain and PDE
domain, providing flexibility in both specifying the initial conditions and sampling the input domain
during training and deployment. Due to cross-attention, PIT has linear complexity in the points
sampled from the input domain and the initial condition points. While for a large number of sampled
points and initial conditions, this may become prohibitive, for common use cases considered in our
experiments, the cost is comparable to other operator-learning PINNs. We show that PIT performs
well even with a limited number of sampled points used to enforce the loss, which is especially useful
when dealing with higher-dimensional PDEs.
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A Appendix

A.1 Background on Operator Learning

In DeepONets [14], the universal operator approximation theorem [4] is applied to PDE solving
with different initial or boundary conditions. The goal is to learn an operator G between two infinite
dimensional spaces from a finite collection of observed input-output pairs. This operator G takes an
input function f and outputs a function G[f ] : [0, T ]× Ω → Rdu which corresponds to the solution
u(t,x) of the PDE when evaluated at the point (t,x). This framework can be combined with the
PINN loss [20] to ensure physical consistency and reduce the need for large training datasets. Many
other works explore the use of neural operators to solve PDEs. One such work is Fourier Neural
Operators (FNO) [11], where an integral kernel parametrized in Fourier space is used. The authors
in Physics-Informed Neural Operators (PINO) [13] further combine FNO with physical constraints.
Most relevant to us is the use of attention in this setting [12, 3, 8] where the transformer architecture
is applied to operator learning for PDEs.

A.2 Background on Transformers

Transformer models have become increasingly popular in the machine-learning world. Originally
developed for natural language processing, the attention mechanism [2, 17] has produced promising
results in different tasks, such as computer vision [5] and protein folding [6]. In particular, multiple
works have investigated the use of attention in physical systems. In Kissas et al. [8], attention weights
are coupled with an integral transform to approximate nonlinear operators. In Cao [3], Galerkin-type
and Fourier-type attention are studied in the context of operator learning. In particular, in OFormers
[12], a transformer architecture is used for PDEs’ operator learning. In contrast to these works, we
consider the application of transformers for PINNs, where we do not assume any access to ground
truth data for training.

A.3 Experiment details

Burgers’ equation. We represent the IC functions by truncated Fourier series with coefficients
Ak, lk, ϕk sampled randomly, and K = 10:

u(0, x) =

K∑
k=1

Ak sin(2πlkx/L+ ϕk).

The data used for evaluation is obtained using the Fourier Spectral method with periodic spatial
boundaries, and ν = 0.01 for the diffusion coefficient. The spatial domain [0, 2π] and time domain
[0, 2.475] are discretized uniformly into 256 and 100 points, respectively. We use 600 ICs for training
and 400 for testing. In addition, we take Nr = 250, Nic = 200 and Nbc = 200 for enforcing the
residual, initial and boundary losses, respectively.

Heat equation. Initial conditions are sampled from a Gaussian Random Field prior. Data used for the
evaluation of the model is generated using the Fourier Spectral method. The spatial domain [0, 1]2 is
discretized by a uniform 64× 64 grid, and the time domain [0, 1] is discretized into 50 points. We
use 800 ICs for training and 200 for testing. For training, we use 400 random points from inside the
grid to enforce the residual loss and 400 points for the IC loss. The boundary loss is enforced directly
by computing |u(t, 0, y)− u(t, 1, y)| and |u(t, x, 0)− u(t, x, 1)| on 50 different points for each.
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