
On Short Textual Value Column Representation Using
Symbol Level Language Models

Ron Begleiter
Independent Researcher

ron@4t2.pw

Nathan Roll
Stanford University

nroll@stanford.edu

Abstract

String-type database columns containing short textual values are crucial for storing
and managing a wide range of information in various applications. For example,
they store categories, labels, enumerations, code, and abbreviations.
Here, we discuss a string column representation using symbol level language
models that grasps the symbol level “distribution” of the column textual values.
These language models are known for their good prediction quality, memory-
footprint and runtime efficiency, while being theoretically justified. We focus on a
column matching application, and provide empirical indication for their usefulness.

1 Introduction

String-type columns are essential for storing and managing textual data, providing a foundation for
various applications and analyses. They offer flexibility, support for unstructured data, and enable
efficient search, retrieval, and processing of human-readable information. In many cases, string
type columns store short texts such as categories, labels, status information, enumerations, code and
abbreviations. Modeling such columns is important for performing table representation learning
downstream tasks such as detecting table natural keys [Bornemann et al., 2020], inferring pathless
joins [Gong et al., 2023], near-duplicates detection [Pattara et al., 2023], data integration [Cappuzzo
et al., 2020], grounding values [Deng et al., 2021], and data imputation [Deng et al., 2020].

Representation learning of short text columns can be challenging due to several factors. Short texts
often suffer from data sparsity, ambiguity, noise, and contextual dependence. Their limited length
makes it difficult to extract meaningful representations, while their inherent ambiguity, idiosyncrasies,
and potential for errors can hinder the learning process. Moreover, the scale of real-world data sources
necessitates highly resource-efficient models to ensure practical implementation.

Here, we describe a symbol level language model representation of short textual columns. The
discussed language modeling belongs to a lossless compression information theory framework
termed Variable order Markov Models, see [Begleiter et al., 2004]. These models are known to have
competitive accuracy in practice, require limited memory overhead and has “fast” runtime footprints.
For example such an algorithm is ranked 10th on the latest Large Text Compression Benchmark, see,
algorithm “PPM” in Mahoney [2024]. 1 We cover that algorithm in Section 2.1.

In this work we consider a column matching downstream application. Database column matching
is the process of identifying and aligning columns from different datasets that represent the same
underlying entity or concept. It is a crucial task in data integration, data warehousing, and data analysis.
Yet, it is challenging due to data quality issues such as noise, missing values, and inconsistencies,
computational complexity due to the magnitude of the data, and semantic similarity that goes beyond
similar column names or data types. In Section 3 we outline a utilization of symbol level language

1Referring to the benchmark version from June 4, 2024.

Table Representation Learning Workshop at NeurIPS 2024



models for performing column matching. We conclude with a few numerical examples in Section 4
and concluding remarks in Sections 5.

2 Symbol Language Models

In this work we focus on a family of symbol level language models, SLMs, that emerged from
lossless compression models [Begleiter et al., 2004]. These language models operate on sequences,
sn1 = s1s2 . . . sn over a finite alphabet of symbols Σ = {σ1, σ2, . . . , σk}. The models hypothesis
space includes all up to D order Markov models. Given a training sequence xm

1 ∈ Σm these language
models learn a conditional distribution P̂ (σ|sd1) over symbols σ ∈ Σ condition on all d ≤ D sized
sequences sd1 ∈ Σ≤D. The quality measure of SLMs inference is the expected log-loss over some
fixed length sequences sn1 ∈ Σn, E [− log(P (σ|sn1 ))]. This turns to the empirical average log-loss
1
n

∑n
1 − log(P̂ (σi|si−1

1 ) over some test sequence sn1 .

Note 1 (Relation to auto-regressive LLMs) Observe that the symbol level language models de-
scription matches auto-regressive large language model (LLMs) description. The differences are
subtle, as LLMs alphabet cover sub-sequences (or “words”) and SLMs symbols, and the hypothesis
space of LLMs is much more expressive than the limited ≤ D Markov models.

Note 2 (Log-loss and Perplexity) Log-loss and perplexity are closely related metrics used in lan-
guage modeling. Both metrics measure the model’s ability to predict the correct outcome. Perplexity,
the exponentiated average log-loss, is often used in language modeling tasks where the goal is to
predict the next word in a sequence. Log-loss is more general and can be used for classification or
regression tasks.

2.1 Prediction by Partial Match (PPM)

Prediction by Partial Match, PPM, is a statistical character-level language modeling technique that
aims to utilize the longest context matched to predict the next symbol, but drops to lower context
sizes for symbol counts of zero [Bell et al., 1990]. There are a few PPM variants upon the definitions
of how to estimate the next symbol probability and penalizing zero count contexts. PPM starts
computing the next symbol probability, P̂ (σ|snn−D+1), using the maximal context size D symbol
counts whenever snn−D+1σ appears in the training set. Otherwise, σ does not appear in the context of
snn−D+1 and the next symbol probability is defined recursively as a penalized next symbol probability
of the shorter context snn−D+2, as follows P̂D(penalty|snn−D+1) · P̂D(σ|snn−D+2).

2

3 Column Matching

By carefully comparing database columns, organizations can gain valuable insights into their data
and make informed decisions about how to manage and use it effectively. Here are some specific
applications of column matching:

Data Optimization: Identifying and removing duplicates improves data quality and efficiency,
reducing storage, errors, and query time.

Data Understanding: Comparing columns can help organizations gain a deeper understanding of
the relationships between different data elements, identify potential data anomalies, and
uncover hidden patterns. This can lead to valuable insights and informed decision-making.

Data Integration: When integrating data from multiple sources, column matching is essential to
ensure that data is aligned correctly and that there are no conflicts. This helps maintain data
integrity and consistency across different systems.

Data Governance: Understanding the similarities and differences between columns can help orga-
nizations establish effective data governance policies and standards. This can improve data
quality, security, and compliance.

2For the empty context, the probability of the next symbol can be assumed to be independent and identically
distributed (i.i.d.).

2



By leveraging column matching techniques, organizations can normalized and fix their data, drive
data-driven decision-making, and improve overall business outcomes.

3.1 Column Matching via Distribution Similarity

SLMs capture the “type” of column values by counting the “frequency” of each unique symbol
that appears in it. This is known as the Method of Types (see, e.g., Chapter 11.1 in Cover and
Thomas [2006]). In turn, we can quantify relatedness between columns via the distance between
their corresponding (empirical) distributions. In other words, given two columns, C1, C2, and their
models, P̂1, P̂2, quantify the columns matching via distance(P̂1, P̂2) for some distance measure.

We take advantage of corresponding Information Theory framework. Notice that the average log-loss
accounts for the extra bits per symbol on top of the “true” probabilistic source’s Entropy. This in turn,
is equivalent to the Kullback–Leibler (KL) divergence [e.g., Section 2 in Begleiter et al., 2004]

DKL(P, P̂ ) =
∑

X∈Σn

P (X) log

(
P (X)

P̂ (X)

)

for the true unknown distribution, P (defining optimal Entropy) and its estimation P̂ (e.g., via
PPM). Note, however, that the KL-divergence is not symmetric and unbounded.3 Instead we use
the Jensen-Shannon Divergence (JSD) which is a smoothed variant of the Kullback–Leibler (KL)
divergence (see, Lin [1991]). The KL-divergence over distributions P and Q is defined as

JSD(P,Q) =
1

2
DKL(P,M) +

1

2
DKL(Q,M) (1)

where M = 1
2 (P +Q) is a mixture model of the two sources.

Direct computation of JSD and Entropy of a Variable Order Markov-model, like PPM, is challenging.
Mainly, because the computation of the stationary process is non-trivial due to the varying order.
Thus, we estimate the JSD by utilizing the elegant method of El-Yaniv et al. [1997] for measuring the
statistical similarity of two sequences. Their method defines a sampling procedure over two input
sequences that emits an empirical “most likely” sequence of their mixture distribution (i.e., M from
Equation 1). Then, estimating the JSD between sources of the input sequences using the log-loss of
the model learned from M and each of the original sequences [See, Figure 1 in El-Yaniv et al., 1997].

Recall we want to quantify the matching between two database textual columns. To this end, we turn
each column into a character sequence by concatenating its values.4 This results with the sequences
x1 and x2. Then, we apply the statistical similarity method of El-Yaniv et al. [1997] to compute the
JSD estimation ĴSD(x1,x2) , and compute the following matching score:

matching(x1,x2) = max
i∈{1,2}

∣∣∣ĴSD(x1,x2)−DKL(Pxi
, P̂xi

)
∣∣∣

DKL(Pxi
, P̂xi

)
(2)

wherein, DKL(Pxi
, P̂xi

) is estimated using the average log-loss of an SLM estimator learnt from xi.

4 Numerical Examples

In this section we provide a glimpse of the properties of utilizing SLMs for over the column matching
challenge. Our goal here is to provide motivating indications for the usefulness and challenges of the
method. We use the Prediction by Partial Match version C sequential prediction algorithm [Bell et al.,
1990] as our choice of SLM. See, Begleiter et al. [See, 2004, Section 3.2] for a full description.

4.1 Statistical Similarity Ingredients

The statistical similarity measure proposed in El-Yaniv et al. [1997], as detailed in Section 3.1, aims
to quantify the degree of similarity between two sequences. The core idea involves constructing a

3Except for absolutely continuous source distributions.
4Using some arbitrary order.

3



“typical” mixture sequence and subsequently applying an SLM to the given pair of input sequences.
The latter equals the excess redundancy of the mixture estimator, wherein “similar” sequences should
be small (and in dissimilar high).

Sequence x Sequence y Mixture Sequence Similarity Matching Score

abracadabra arbadacarba raaracara...caaracara 3.23 0.23
00000... 11111... 10001... 4.04 34.36
aabaab... abbabba... aaaaabbaab... 1.37 4.44

Table 1: Example of sequence pairs and their statistical similarity ingredients.

4.2 Common Real-World Data

To experiment with common real-world values, we utilize a fast-food restaurant dataset [Datafiniti,
2019]. The data contains columns with websites, postal addresses, restaurant names, and geo-
coordinates (lat/lon). Table 2 depicts the computed pairwise matching scores along with the cor-
responding generated mixture-source’s sequences. Irrelevant columns such as geo-coordinate v.s.
restaurant-name achieve high matching scores, while postal v.s. name columns induce a small score.

Column A Column B Matching-Score Mixture-Sequence (Prefix)

lon name 0.60 3.1r8-8n2.6s-11e4418
lat name 0.49 2.4S224r359n5.7-.36S
lon website 0.47 474r3.1X444s83.c147:
lon postal 0.43 90.0.82564590.7.2055
lat postal 0.33 9.86811.5935.0378823
lat website 0.29 681w931p842h469c1.5p
lat lon 0.29 35.580742.697.5640.8
name website 0.23 iver acomElexio B/ip
postal website 0.14 017d920R044i301M3323
name postal 0.027 7-E2le 0y’s3 Sh9ven1

Table 2: Matching common data sequences.

5 Concluding Remarks

We have introduced a novel statistical approach for quantifying the similarity between textual columns
in databases. Our method leverages autoregressive symbol-level language models (SLMs), which
demonstrate strong performance on the common short textual values typically found in database
columns [see, e.g., Section 7.2 in van Renen et al., 2024].

The numerical examples presented in Section 4 highlight the effectiveness of our approach in capturing
column-level content similarities and dissimilarities. While these empirical results provide promising
evidence, further in-depth research is needed to fully validate the method’s capabilities.

Beyond their application to database matching, symbol-level language models are a versatile tool for
addressing various database-related challenges. For instance, the generative nature of these models
can be exploited for tasks such as missing data completion, while their ability to compute statistical
likelihood can be useful for determining the relevance of free-text values to specific columns.

In addition to the SLMs discussed in this paper, exploring other symbol-level models, such as symbol-
level embedding models [e.g., Zhang et al., 2015], or combinations of symbol and word models
could further enhance the performance and applicability of our approach.

4



References
Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order markov models.

Journal of Artificial Intelligence Research, 22:385–421, 2004.

T.C. Bell, J.G. Cleary, and I.H. Witten. Text Compression. Prentice Hall advanced reference series:
Computer science. Prentice Hall, 1990. ISBN 9780139119910.

Leon Bornemann, Tobias Bleifuß, Dmitri V. Kalashnikov, Felix Naumann, and Divesh Srivastava.
Natural key discovery in wikipedia tables. In WWW, pages 2789–2795, 2020.

Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. Creating embeddings of
heterogeneous relational datasets for data integration tasks. In SIGMOD/PODS 2020, ACM
International Conference on Management of Data, 14-19 June 2020, Portland, Oregon, USA, 2020.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory 2nd Edition (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, July 2006. ISBN 0471241954.

Datafiniti. Fast food restaurants across america, 2019. URL https://data.world/datafiniti/
fast-food-restaurants-across-america.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. Turl: table understanding through
representation learning. Proc. VLDB Endow., 14(3):307–319, 2020.

Xiang Deng, Ahmed Awadallah, Chris Meek, Alex Polozov, Huan Sun, and Matthew Richardson.
Structure-grounded pretraining for text-to-sql. In NAACL 2021, 2021.

Ran El-Yaniv, Shai Fine, and Naftali Tishby. Agnostic classification of markovian sequences. In
Advances in Neural Information Processing Systems, volume 10. MIT Press, 1997.

Yue Gong, Zhiru Zhu, Sainyam Galhotra, and Raul Castro Fernandez. Ver: View discovery in the
wild. In ICDE, pages 503–516, 2023.

Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
Theory, 37(1):145–151, 1991.

Matt Mahoney. Large text compression benchmark, 2024. URL https://www.mattmahoney.net/
dc/text.html.

Sukprasert Pattara, Chan Gromit Yeuk-Yin, Rossi Ryan A., Du Fan, and Koh Eunyee. Discovery and
matching numerical attributes in data lakes. In IEEE Big Data, pages 423–432, 2023.

Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Eknath Vaidya, Wenjian Dong, Murali
Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim Kraska. Why TPC is
not enough: An analysis of the amazon redshift fleet. In VLDB 2024, 2024.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

5

https://data.world/datafiniti/fast-food-restaurants-across-america
https://data.world/datafiniti/fast-food-restaurants-across-america
https://www.mattmahoney.net/dc/text.html
https://www.mattmahoney.net/dc/text.html

	Introduction
	Symbol Language Models
	Prediction by Partial Match (PPM)

	Column Matching
	Column Matching via Distribution Similarity

	Numerical Examples
	Statistical Similarity Ingredients
	Common Real-World Data

	Concluding Remarks

