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ABSTRACT

Group relative policy optimization (GRPO) has demonstrated significant poten-
tial in improving the reasoning capabilities of large language models (LLMs) via
reinforcement learning. However, its practical deployment is impeded by an ex-
cessively slow training process, primarily attributed to the computationally in-
tensive autoregressive generation of multiple responses per query, which makes
the generation phase the primary performance bottleneck. Although speculative
decoding presents a promising direction for acceleration, its direct application
in GRPO achieves limited speedup under high-concurrency training conditions.
To overcome this limitation, we propose a concurrency-aware speculative decod-
ing framework that dynamically adjusts the drafting and verification strategy ac-
cording to real-time concurrency levels, thereby maximizing the acceleration of
the generation process. Furthermore, to address performance degradation aris-
ing from distributional drift between the evolving target model and the fixed draft
model during training, we introduce an online draft learning mechanism that en-
ables the draft model to continuously adapt using feedback signals from the target
model. Experimental results across multiple mathematical reasoning datasets and
models demonstrate that the proposed method achieves end-to-end speedups of
2.35x to 2.72x, significantly surpassing baseline approaches in efficiency. The
code is available at https://github.com/yedaotian9/FastGRPO.

1 INTRODUCTION

Group relative policy optimization (GRPO) has recently emerged as a promising framework for
enhancing the reasoning capabilities of large language models (LLMs) through reinforcement learn-
ing (Guo et al., 2025). In each training iteration, the LLM generates a group of responses to a given
query. These responses are subsequently evaluated using a predefined rule-based reward function,
and the resulting rewards are standardized prior to model updates via policy optimization (Shao
et al., 2024). This approach exploits group-level feedback signals to guide the model toward more
accurate and coherent reasoning behaviors.

However, compared to conventional supervised fine-tuning (SFT) (Ouyang et al., 2022), the GRPO
training paradigm suffers from significantly lower throughput, hindering its adoption and limiting
empirical exploration. This bottleneck arises primarily from the autoregressive inference required
for response generation, which dominates the training pipeline. As shown in Figure 1 (a), the gener-
ation phase (i.e., response sampling) accounts for 91% to 98% of total training time across multiple
mathematical reasoning datasets, making it the primary target for performance optimization.

To this end, we propose integrating speculative decoding, a compute-efficient and accuracy-
preserving technique originally introduced by (Leviathan et al., 2023) for accelerating autoregressive
inference, into the GRPO framework. Speculative decoding employs a smaller, faster ”draft model”
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Figure 1: (a) Proportion of generation time during GRPO training across multiple models and
datasets, showing that generation dominates the overall time cost. (b) Speedup ratios on various
models and datasets, demonstrating the significant and broad acceleration achieved by our approach.

to generate candidate token sequences in advance, which are then efficiently verified by the larger
target model. This method capitalizes on the observation that autoregressive decoding is typically
memory-bound rather than compute-bound, thereby enabling increased computational parallelism
and improved hardware utilization. By reducing the number of direct forward passes through the
target model, speculative decoding offers the potential for substantial acceleration of the generation
phase in GRPO.

However, direct integration of speculative decoding into the GRPO generation phase yields signifi-
cantly lower speedup compared to results reported in prior work (Weng et al., 2025; Li et al., 2025b),
and in certain cases even leads to performance degradation. This discrepancy arises because spec-
ulative decoding is predominantly evaluated in low-concurrency, low-latency settings (e.g., edge
device deployment), whereas the generation phase in GRPO operates under high-concurrency and
high-latency conditions. Although speculative decoding alleviates memory bandwidth pressure, it
introduces additional computational overhead. In high-concurrency scenarios, this trade-off may
shift the system from a memory-bound to a compute-bound regime, thereby negating the expected
performance gains.

To address this challenge, we analyze the responses generated during each step of the GRPO train-
ing process and observe significant variability in sequence lengths across batches. This variability
leads to a substantial reduction in effective concurrency during the generation phase, with effective
concurrency declining from a high initial batch size to nearly one as sequences terminate at different
times due to uneven completion. Motivated by this observation, we propose a concurrency-aware
speculative decoding strategy specifically designed for the generation phase in GRPO. Our method
dynamically adjusts its configuration (i.e., the draft tree size and the number of verification tokens)
based on real-time concurrency levels. Consequently, it achieves moderate speedup during the early,
high-concurrency stage and delivers progressively greater acceleration as concurrency decreases,
thereby minimizing the overall latency of the generation phase.

Furthermore, we identify a critical challenge inherent in the GRPO training framework: the target
model undergoes continuous parameter updates, resulting in an increasing divergence between the
target model and the fixed draft model. This distributional shift inevitably degrades model align-
ment, leading to declining token acceptance rates and diminishing acceleration gains over time.
To mitigate this issue, we propose an online draft learning strategy within the GRPO loop. Our
approach updates the draft model using online feedback signals derived from the evolving target
model. This continual adaptation significantly enhances the draft model’s representational fidelity,
thereby increasing the average length of accepted speculative tokens and sustaining higher acceler-
ation ratios throughout training, rather than allowing them to deteriorate.

We conduct experiments on Qwen2.5-7B-Instruct, Llama3.1-8B-Instruct, and other models across
three mathematical reasoning datasets of varying difficulty: GSM8K (Cobbe et al., 2021),
SimpleRL-Abel-Level3to5 (Zeng et al., 2025), and DAPO-Math-17K (Yu et al., 2025). As illus-
trated in Figure 1 (b), our proposed method substantially improves inference acceleration, achieving
end-to-end speedups of 2.35x to 2.72x across different models and datasets.

2



Published as a conference paper at ICLR 2026

400 800 1200 1600 2000
Sequence Length

5

10

15

20

25

G
en

er
at

io
n-

to
-T

ra
in

in
g 

Ti
m

e 
R

at
io

Raw Data Mean Ratio ±1 Std Dev

Figure 2: Ratio of generation time to parame-
ter update time for different generation length in
GRPO framework. The model is Qwen2.5-7B-
Instruct and other setups are in Section 5.1.
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Figure 3: Speedup Ratio vs. Batch Size under
Different Models and Two Speculative Decoding
Strategies. The model is Qwen2.5-7B-Instruct
and other setups are in Section 5.1.

2 PRELIMINARIES

Speculative Decoding. Speculative decoding (Leviathan et al., 2023) is an inference acceleration
technique for autoregressive language models that leverages a fast draft model to propose candidate
token sequences, which are then verified in parallel by a more capable but slower target model. The
method is motivated by two key observations: (1) not all generation steps require the full capacity
of the target model; some tokens can be predicted accurately by smaller models (Hinton et al.,
2015; Jaszczur et al., 2021; Hubara et al., 2018; So et al., 2021; Shazeer, 2019); and (2) in modern
hardware, inference is often limited by memory bandwidth rather than compute (Vaswani et al.,
2017; Park et al., 2025), leaving room for additional parallel computation. The process operates
in two phases. First, the draft model autoregressively generates several candidate tokens. Then, the
target model performs a single forward pass over the input prefix concatenated with these speculative
tokens, using an appropriate attention mask to compute logits for all positions in parallel. Drafted
tokens are only accepted if they match the target model’s output. By employing strict acceptance
criteria, the final generated sequences are guaranteed to be identical to those produced by the target
model standalone, ensuring that the acceleration of the rollout process does not compromise the
performance of GRPO.

Draft Model Architectures. We adopt the draft model architecture from EAGLE (Li et al., 2024b)
enhanced by Feature Sampling and Partial Alignment Distillation (Gui et al., 2024). This approach
trains a standalone draft model to autoregressively generate hidden states, which are then decoded
into tokens using the LM head of the target LLM. The draft model takes the previously sampled
tokens as input to stabilize generation, enabling effective feature-level modeling while leveraging
the target model’s output distribution.

Verification Strategies. We adopt the adaptive token tree verification strategy introduced in
EAGLE-2 (Li et al., 2024a). In this approach, the draft model first expands the candidate token
tree over a number of drafting steps. The candidate tokens are then reranked based on their pre-
dicted confidences. During verification, the target model evaluates all branches in parallel using
tree-structured attention, and accepts the longest path whose generated tokens match the draft to-
kens under strict token-level comparison.

3 OBSERVATIONS IN GRPO TRAINING

This section empirically investigates the computational dynamics of GRPO training, identifying the
generation bottleneck and intra-batch length variance. All experiments follow the setup in 5.2.

Inference Bottleneck. The primary time-consuming bottleneck in GRPO training is the genera-
tion phase (i.e., rollout sampling), which far exceeds the cost of parameter updates, as shown in
Figure 1 (a). This disparity stems from two main factors. First, the generation cost scales linearly
with the output sequence length. As shown in Figure 2, the ratio of generation to update time in-
creases from approximately 6x to over 20x as the model matures. This aligns with prior findings
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Algorithm 1 FastGRPO Framework.
Require: Policy model πθ (target model), draft model πd, prompts D, group size G, hyperparameter Cpeak

Ensure: Updated πθ and πd

1: for iteration = 1 to I do
2: Sample a batch Db = {qb}Bb=1 ⊂ D; πθ prefill Db; set Bcur = B ×G
3: while not all sequences in Sgenerated end with EOS do
4: // Concurrency-aware Speculative Decoding
5: Obtain hyperparameters Ldraft, Kdraft, Nverify from Eq. 3, Eq. 2, Eq. 1, based on Bcur and Cpeak

6: for ℓ = 1 to Ldraft do
7: Generate children for Kdraft paths and update candidate tokens Tcandi // draft expansion
8: Select Nverify tokens from Tcandi based on their confidences // draft reranking
9: Verify selected tokens in parallel // verification phase

10: Extract accepted tokens and corresponding hidden states; update Sgenerated

11: Update Bcur and Sgenerated if any sequence ends with EOS
12: // Online Draft Model Updating
13: Draft Training phase: Update πd using Sgenerated and corresponding hidden states
14: Policy Training phase: Compute rewards for Sgenerated and update πθ

that more capable policy models tend to generate longer, more complex outputs (Liu et al., 2025;
Wu et al., 2025; Shrivastava et al., 2025). Consequently, the growing sequence length throughout
training progressively inflates the inference cost. Second, the prevalence of low-reward-variance
rollouts reduces data efficiency and increases the inference cost. GRPO requires response groups
with non-zero reward variance to derive a learnable gradient. However, models often produce homo-
geneous outputs1 where all responses are uniformly correct or incorrect, resulting in zero-variance
groups that must be discarded.

High Intra-Batch Variance in Response Lengths. The group-based relative advantage inher-
ently encourages length variation during response sampling. Our analysis reveals significant length
variation in responses generated within a single GRPO batch. Across various models and datasets,
the maximum sequence length is typically 3 to 5 times the minimum, and the range often exceeds
the mean length. This heterogeneity is more pronounced on challenging datasets and correlates with
intrinsic model properties like output diversity. The high intra-batch variance characteristic leads to
a notable transition from high to low concurrency during the generation phase of GRPO, rather than
sustaining high concurrency throughout.

4 FASTGRPO

Overview. FastGRPO integrates two mechanisms: concurrency-aware speculative decoding
and online draft learning. During GRPO generation phase, we use speculative decoding to ac-
celerate batched rollouts, and the decoding hyperparameters are adaptively tuned to the current
concurrency (i.e., batch size). In the parameter update phase, we alternately freeze one model and
train the other: the draft model is trained on the target model’s previously generated hidden states
to match its output distribution, while the target model follows standard GRPO (reward scoring and
policy-gradient updates). The full procedure is summarized in Algorithm 1.

4.1 CONCURRENCY-AWARE SPECULATIVE DECODING FOR GRPO TRAINING

Motivation. Speculative decoding is primarily designed as an acceleration technique for low-
concurrency inference scenarios. In principle, its performance gain arises from the verification
phase: by enabling the target model to validate multiple candidate tokens in a single forward pass, it
reduces the frequency of parameter transfers from GPU memory to on-chip SRAM, thereby alleviat-
ing memory bandwidth pressure. However, this benefit comes at the cost of increased computational
load. Specifically, additional FLOPs are incurred during draft generation and the verification of in-
valid speculative tokens.

1For instance, on a moderately difficult dataset SimpleRL-Abel-Level3to5, about 20% of generated groups
are filtered out. This problem intensifies on datasets that are either too simple or too complex for the model.
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We study the impact of batch size on speculative decoding speedup. As shown in Figure 3, using
a configuration optimized for small batches (B = 1) leads to significant performance degradation
at larger batch sizes, with speedup dropping below 1.0x at higher concurrency, indicating growing
computational overhead. In contrast, dynamically adjusting key speculative decoding parameters
(e.g., draft tree size and number of verified tokens) as batch size increases effectively mitigates
this degradation. The speedup remains robust under high concurrency, demonstrating that adaptive
tuning is essential for maintaining efficiency. These results highlight the need to align speculative
decoding hyperparameters with system concurrency to balance compute and memory demands.

Our earlier analysis reveals that the generation phase in GRPO does not operate under static con-
currency; instead, it evolves dynamically from high to low concurrency as sequences complete at
different times due to variable lengths. Therefore, a method that adapts speculative decoding param-
eters in real time according to the current effective batch size is both practical and effective. Such
adaptivity enables sustained acceleration throughout the generation phase, minimizing the overall
latency of the GRPO training pipeline.

Analysis of Operational Intensity. We begin with a theoretical analysis of operational inten-
sity (Williams et al., 2009; Yang et al., 2020; 2021), defined as the ratio of computation (in FLOPs)
to memory traffic (in bytes). This metric is central to understanding the performance charac-
teristics of low- versus high-concurrency inference scenarios. For general matrix multiplication
(GEMM) (Kurzak et al., 2010; Xu et al., 2022) , the operational intensity scales as:

IGEMM =
2BDinDout

(BDin +DinDout +BDout) · s
=

2B(
B

Dout
+ 1 + B

Din

)
· s

≈ 2B

s
,

where the input matrices have dimensions B ×Din and Din ×Dout, respectively, and s is the bytes
per element (e.g., 2 for BF16 or FP16). The numerator represents the total number of arithmetic
operations, while the denominator accounts for the memory traffic, i.e., the total storage size of
the input and output matrices. The final approximation holds when B ≪ min{Din, Dout}. In the
Transformer architecture, the time cost is predominantly dominated by a series of GEMM opera-
tions. Therefore, IGEMM can serve as a reasonable approximation of the operational intensity of
Transformer models.

Theoretically, the peak operational intensity of modern accelerators is determined by their hardware
specifications, specifically by the ratio between peak FLOPS and memory bandwidth. In practice,
however, analytically determining this peak value is challenging due to implementation-specific
factors such as kernel optimizations, memory tiling strategies, and SRAM capacity limitations in
matrix computations. These factors introduce non-ideal hardware behaviors that are difficult to
model precisely. Instead, we approximate this theoretical limit through empirical profiling. We
define a hardware- and architecture-dependent constant, Cpeak, as the batch size B at which IGEMM

reaches its practical peak operational intensity for a given model and a specific GPU. In other words,
Cpeak represents the concurrency level at which the system transitions from being memory-bound
to compute-bound. (See Appendix B for the detailed measurement methodology.)

Concurrency-aware Strategy. We propose an adaptive speculative decoding strategy that dynam-
ically adjusts the number of verified tokens per sequence (denoted as Nverify ) and the draft tree size
based on the level of concurrency. Our implementation follows EAGLE-2 (Li et al., 2024a), where
the draft tree structure is governed by two key hyperparameters: Kdraft, the number of candidate
tokens proposed by the draft model per forward pass, and Ldraft, the number of sequential drafting
steps.

To make IGEMM approximately equal to Cpeak and thereby fully utilize both computational and
memory bandwidth resources, we propose setting:

Nverify =
Cpeak

B
. (1)

As previously discussed, IGEMM is proportional to the batch size B, and Cpeak represents the op-
timal batch size at which the GPU achieves peak hardware efficiency under a given configuration.
In the verification stage of speculative decoding, the effective batch size for the GEMM operations
is determined by the total number of tokens verified per batch, given by the product Nverify × B.
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By maintaining Nverify = Cpeak/B, this effective batch size remains approximately constant at
Cpeak, ensuring that the system operates at the compute-memory balance point. This maximizes
hardware utilization and achieves the optimal speedup for speculative decoding under varying levels
of concurrency.

The draft tree size should scale with Nverify, as longer verification sequences can only yield benefits
if the draft model produces sufficiently diverse candidates. Therefore, we propose both Kdraft and
Ldraft should be positively correlated with Nverify.

To ensure that the number of tokens generated by the draft model is both sufficient and effective, we
propose this configuration for Kdraft:

Kdraft = min (Nverify − 1, Kmax
draft) . (2)

Setting Kdraft = Nverify − 1 is typically sufficient for two reasons. First, the draft model faces
similar compute and memory constraints as the target model; keeping Kdraft ≤ Nverify ensures
the drafting phase remains compute-memory balanced. Second, one of the Nverify tokens is the
root of the draft tree, which is generated by the target model in the prior step and does not require
speculative expansion. Thus, only Nverify − 1 slots are available for draft-generated tokens. The
upper bound Kmax

draft prevents inefficiency from excessive branching. The total number of candidates,
1+Kdraft+(Ldraft−1) ·K2

draft, often far exceeds Nverify, so large Kdraft leads to many unverified
candidates and wasted computation. It also increases tree construction overhead with diminishing
gains in acceptance rate. Hence, Kmax

draft balances speculation coverage with efficiency.

For Ldraft, we propose a design that is positively correlated with log2(Nverify). This is motivated
by the exponential growth of the draft tree’s candidate space with depth: deeper trees enable combi-
natorial expansion of candidate sequences, allowing longer expected acceptance length under larger
verification budgets. Experimentally, we refine this principle into a practical instantiation:

Ldraft = min

(⌊
log2

(
Nverify

α

)⌋
, Lmax

draft

)
, (3)

where α is a hyperparameter that encodes the approximation quality of the draft model. A stronger
draft model (i.e., one with higher predictive accuracy) corresponds to a smaller α, enabling deeper
speculation as Nverify increases. Conversely, weaker models require a larger α to prevent over-
speculation and the generation of invalid branches.

This design accounts for the autoregressive nature of the draft model: prediction fidelity degrades
with depth due to error accumulation, causing the likelihood of valid continuations to decay expo-
nentially toward leaf nodes. As a result, excessive depth yields diminishing returns and may even
incur negative gains from increased overhead in the drafting phase. The upper bound Lmax

draft further
ensures robustness and computational efficiency across diverse workloads.

4.2 DRAFT MODEL LEARNING WITH ONLINE TARGET FEEDBACK
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Figure 4: Average accepted length versus train-
ing steps in GRPO, with and without online draft
learning. The model is Qwen2.5-7B-Instruct and
the dataset is SimpleRL-Abel-Level3to5.

In the GRPO training framework, the target
model undergoes continuous policy updates, re-
sulting in a time-varying output token distribu-
tion. When a fixed draft model is employed
throughout the training process, its alignment
with the target model progressively deterio-
rates, leading to a reduction in the average ac-
ceptance length during speculative decoding.
This degradation directly translates into a de-
clining speedup ratio, as illustrated in Figure 4.

To mitigate this misalignment, we introduce an
online draft learning strategy: at each GRPO
iteration, the draft model is updated online us-
ing responses generated by the current target
model. This enables the draft model to adapt dynamically to the evolving target policy, thereby
preserving and enhancing its predictive consistency over time. As demonstrated in Figure 4, this
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approach yields a steadily increasing acceptance rate, in contrast to the performance decay observed
with a static draft model.

A key benefit of online draft learning arises from the quality and policy relevance of the supervi-
sion signal. Unlike conventional pre-training on static, offline datasets, the draft model learns from
on-policy generations produced by the target model, which are inherently aligned with its current
reasoning dynamics. This facilitates more accurate modeling of the target’s output distribution.
Moreover, data that cannot be used to train the target model due to non-zero reward can still serve
as useful supervision signals for the draft model, thereby reducing data wastage present in the tradi-
tional GRPO framework.

Furthermore, the computational overhead of online draft learning is negligible, contributing only
approximately 2% to 3% of the total training cost across various models and datasets. This efficiency
is attributed to the fact that, in standard draft model training, the primary computational burden
lies in executing forward passes on the target model to obtain supervisory signals (i.e., logits and
hidden states). In our GRPO pipeline, these signals are naturally generated during the generation
phase and can be cached without additional computation. Consequently, the draft model is trained
using supervision that is effectively “free,” rendering the online draft learning approach both highly
effective and computationally practical.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Models and Datasets. We evaluate our method on Llama3.1-8B-Instruct (Dubey et al., 2024),
DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025), and multiple models from the Qwen (Yang et al.,
2024) series. Experiments are conducted on three mathematical reasoning datasets of increasing dif-
ficulty: GSM8K (Cobbe et al., 2021) (grade-school math), SimpleRL-Abel-Level3to5 (Zeng et al.,
2025) (mid-level reasoning), and DAPO-Math-17K (Yu et al., 2025) (advanced and diverse prob-
lems). This setup enables evaluation of our method’s effectiveness and generalization across model
families and complexity levels.

Pre-training of Draft Model. Following prior work (Li et al., 2024b; Gui et al., 2024), we use
ShareGPT-68K (Aeala, 2023) as the pre-training dataset for the draft model. The draft model is
trained for 10 epochs with a batch size of 16. The learning rate is set to 1e-4, with the AdamW
optimizer (Loshchilov & Hutter, 2017).

Metrics. We use speedup ratio (Li et al., 2024b), defined as the ratio of baseline wall-clock time
to our method’s time. We report: (1) Generation speedup ratio (Gen SR): speedup during the
generation phase, reflecting gains from speculative decoding; (2) End-to-end speedup ratio (E2E
SR): overall speedup across the full GRPO pipeline.

5.2 THE SPEEDUP OF GRPO PROCESS

Online Draft Learning. During the generation phase, the target model produces responses using
speculative decoding. The prompt batch size per GPU is set to 4, and we sample 8 responses for
each prompt. The target model is optimized with a learning rate of 1e-6, while the draft model is
trained with a learning rate of 5e-5. The entire training process runs for 10 epochs using the AdamW
optimizer. All experiments are conducted using GPU H800 SXM accelerators.

Comparison. As shown in Table 1, we use standard autoregressive decoding as the baseline, with
a speedup ratio of 1.00x. We also compare against three established speculative decoding methods:
EAGLE-2 (Li et al., 2024a), HASS (Zhang et al., 2024) and EAGLE-3 (Li et al., 2025b). The
results demonstrate that our method significantly outperforms the unmodified speculative decoding
baselines. Within the GRPO framework, our approach achieves a substantial end-to-end speedup of
2.35x to 2.72x. Notably, all experiments utilize speculative decoding with strict acceptance criteria,
ensuring that the post-training model performance remains consistent with the vanilla baseline.
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Table 1: Acceleration comparison in terms of Generation Speedup Ratio (Gen SR) and End-to-
End Speedup Ratio (E2E SR) across different models on three mathematical reasoning datasets
of increasing difficulty: GSM8K, SimpleRL-Abel-Level3to5 and DAPO-Math-17K. Q2.5-7B-
I, L3.1-8B-I, DS-R1-Qwen-7B, Q2.5-Math-7B, Q2.5-Math-7B-I represent Qwen2.5-7B-Instruct,
Llama3.1-8B-Instruct, DeepSeek-R1-Distill-Qwen-7B, Qwen2.5-Math-7B, and Qwen2.5-Math-
7B-Instruct, respectively.

GSM8K SimpleRL-Abel-Level3to5 DAPO-Math-17K Average

Model Method Gen SR E2E SR Gen SR E2E SR Gen SR E2E SR Gen SR E2E SR

Q2.5-7B-I
EAGLE-2 1.17 1.16 1.12 1.11 1.10 1.09 1.13 1.12

HASS 1.21 1.20 1.15 1.13 1.11 1.10 1.16 1.14
EAGLE-3 1.28 1.26 1.22 1.20 1.14 1.13 1.21 1.20
FastGRPO 2.66 2.43 2.91 2.52 2.78 2.53 2.78 2.49

L3.1-8B-I
EAGLE-2 1.25 1.22 1.18 1.17 1.14 1.13 1.19 1.17

HASS 1.29 1.26 1.23 1.22 1.17 1.16 1.23 1.21
EAGLE-3 1.35 1.31 1.29 1.28 1.24 1.23 1.29 1.27
FastGRPO 3.04 2.51 2.92 2.69 2.83 2.67 2.93 2.62

DS-R1-Qwen-7B FastGRPO 2.69 2.41 2.81 2.56 2.73 2.60 2.74 2.52
Q2.5-Math-7B FastGRPO 2.75 2.53 2.96 2.72 2.84 2.66 2.85 2.64

Q2.5-Math-7B-I FastGRPO 2.62 2.35 2.70 2.53 2.64 2.49 2.65 2.46

5.3 ABLATION STUDY

Online Draft Learning. We conduct experiments to evaluate the effectiveness of online draft
learning in accelerating the GRPO training process, employing the Qwen2.5-7B-Instruct model. We
compare Gen SR and E2E SR with and without online draft learning, under identical configurations
as detailed in Section 5.2. As shown in Table 3, the proposed online draft learning strategy signifi-
cantly enhances computational efficiency, increasing the generation speedup ratio by approximately
0.7x to 0.9x across various experimental settings. This improvement underscores the strong corre-
lation between the draft model’s predictive accuracy and the policy alignment of its training data.
Furthermore, we observe that the training process may induce a degree of overfitting in the draft
model to the current target policy. However, in the context of speculative decoding within GRPO,
such overfitting is not detrimental; rather, it enhances prediction accuracy and contributes positively
to the overall acceleration.

Table 2: SR and average acceptance length (τ ) on
three benchmarks. The target model is Qwen2.5-
7B-Instruct.

MT-bench HumanEval GSM8K Average

State SR τ SR τ SR τ SR τ

Before 1.71 3.34 2.01 3.87 2.11 3.82 1.94 3.68
After 1.72 3.37 2.05 3.93 2.45 4.55 2.07 3.95

Moreover, we evaluate the performance of the
draft model before and after online draft learn-
ing using SimpleRL-Abel-Level3to5 as the
training dataset. The online draft learning pro-
cedure follows the setup detailed in Section 5.2.
Experiments are conducted with a batch size of
1 and a sampling temperature of 0. Following
established evaluation protocols (Weng et al.,
2025), we assess the draft model across three
distinct task categories: multi-turn dialogue, code generation, and mathematical reasoning. The cor-
responding benchmark datasets are MT-bench (Zheng et al., 2023), HumanEval (Chen, 2021), and
GSM8K (Cobbe et al., 2021), respectively. The following metrics are used to evaluate acceleration
performance: (1) Speedup Ratio (SR): The measured end-to-end speedup relative to vanilla autore-
gressive decoding. (2) Average Acceptance Length (τ ): The average number of tokens accepted
by the target model per verification step.

As shown in Table 2, the draft model after online draft learning maintains performance compa-
rable to its pre-online-training counterpart on general-purpose tasks, indicating no degradation in
generalization capability. Notably, it achieves substantial gains in-domain, where the speedup ra-
tio increases by 0.34. These results indicate that online draft learning enhances the draft model’s
alignment with the target domain without compromising its versatility.

Concurrency-aware Speculative Decoding. We conduct experiments to evaluate the effective-
ness of our proposed concurrency-aware speculative decoding. The model is Qwen2.5-7B-Instruct,
and other experimental setups are identical to those described in Section 5.2. We compare our
method against the following strategies: (1) Vanilla autoregressive generation with early termina-
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Table 3: Ablation study on Gen SR and E2E SR across three datasets under various configurations.

GSM8K SimpleRL-Abel-Level3to5 DAPO-Math-17K Average

Method Gen SR E2E SR Gen SR E2E SR Gen SR E2E SR Gen SR E2E SR

vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FastGRPO 2.66 2.43 2.91 2.52 2.78 2.53 2.78 2.49

FastGRPO w/o online draft learning 1.78 1.73 2.16 2.01 1.89 1.83 1.94 1.74
vanilla w/ early termination 1.22 1.21 1.68 1.61 1.62 1.58 1.51 1.47

FastGRPO w/o concurrency-aware 2.27 2.14 2.59 2.30 2.44 2.19 2.43 2.21

tion for completed sequences (denoted as vanilla w/ early termination); (2) Speculative decoding
without concurrency-aware strategy and early termination (denoted as FastGRPO w/o concurrency-
aware).

As shown in Table 3, the vanilla w/ early termination strategy provides moderate speedups, achiev-
ing generation speedup ratio values in the range of 1.2x-1.7x. However, vanilla autoregressive gen-
eration cannot effectively exploit the computational headroom that emerges as high-batch inputs re-
duce in concurrency due to early sequence termination. In contrast, speculative decoding inherently
benefits from such underutilized capacity by enabling parallel generation. Our concurrency-aware
speculative decoding approach further enhances this advantage through dynamic adjustment of de-
coding parameters, allowing more efficient resource utilization. The results demonstrate that our
method consistently outperforms other strategies across all evaluated tasks, yielding significantly
higher speedup ratios and validating the efficacy of the proposed concurrency-aware mechanism.

The Need for Draft Model Pretraining. We conduct an experimental analysis to evaluate the
effectiveness of pretraining the draft model in accelerating the GRPO training pipeline. We design
a controlled ablation scenario: the draft model is not pretrained and is trained solely through online
draft learning with the target model. Speculative decoding is enabled after 128 training steps. As
shown in Figure 5, although the initial token acceptance length is relatively low, it increases rapidly
and converges to a level comparable to that of the pretrained draft model within just 1–2 epochs.
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Figure 5: Average accepted length versus train-
ing steps in GRPO, with and without pretrained
draft model. The model is Qwen2.5-7B-Instruct
and the dataset is SimpleRL-Abel-Level3to5.

These results suggest that, when the sole ob-
jective is to accelerate GRPO training, pretrain-
ing the draft model may be unnecessary in most
cases. The online draft learning process alone is
sufficient to quickly develop a competent draft
policy that enables effective speculation, reduc-
ing the need for additional pretraining over-
head.

Transfer Experiments on GRPO Variants.
To evaluate the generality of our method, we
applied our acceleration framework to two
GRPO variants: DAPO (Yu et al., 2025) and
GPG (Chu et al., 2025). The experiments
are conducted using the Qwen2.5-7B-Instruct
model, with the same datasets and evaluation
metrics as those used in Section 5.1. As shown in Table 3, our approach achieves significant
speedups. These results indicate that our method is effective not only under standard GRPO but also
in its variant frameworks, achieving over 2x end-to-end speedup ratio consistently. This demon-
strates the broad applicability and robustness of our acceleration framework.

Table 4: Gen SR and E2E SR achieved by our acceleration framework on GRPO variants across
multiple mathematical reasoning datasets.

GSM8K SimpleRL-Abel-Level3to5 DAPO-Math-17K Average

Method Gen SR E2E SR Gen SR E2E SR Gen SR E2E SR Gen SR E2E SR

DAPO 2.60 2.32 2.87 2.31 2.74 2.39 2.74 2.34
GPG 2.62 2.48 2.93 2.66 2.71 2.57 2.75 2.57
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6 RELATED WORK

Speculative Decoding. Speculative decoding accelerates LLM inference by using a draft model
to propose token sequences, which are then efficiently verified by the target model (Leviathan
et al., 2023). To improve draft-target alignment, recent methods such as Eagle (Li et al., 2024b),
GliDe (Du et al., 2024), and Clover-2 (Xiao et al., 2024) have explored reusing target model fea-
tures or KV caches. Other efforts, including HASS (Zhang et al., 2024) and Eagle-3 (Li et al.,
2025b), attempt to resolve the discrepancy between training and inference dynamics. Furthermore,
SpecExec (Svirschevski et al., 2024) demonstrates the significant potential of speculative decoding
for deploying models exceeding 50B parameters on consumer-grade GPUs, while APD (Israel et al.,
2025) explores the decoding of diffusion large language models by adopting a parallel verification
mechanism similar to speculative decoding. However, the most effective training data for a draft
model is the output generated by the target model itself, yet the collection of such data is typically
resource-intensive. Our framework addresses this by effectively reusing the target model’s real-time
generation during the RL process for joint optimization, which has not been fully explored in prior
work.

Reinforcement Learning Acceleration. Reinforcement learning has become a key paradigm for
enhancing reasoning and task-solving capabilities in large language models (LLMs) (Comanici
et al., 2025; Yang et al., 2025). Methods such as GRPO (Shao et al., 2024), DAPO (Yu et al.,
2025), GSPO (Zheng et al., 2025a) and others (Tan et al., 2025; Fan et al., 2025; Chen et al.,
2025b;a; Zhang et al., 2025b; Chu et al., 2025; Mroueh et al., 2025; Zhao et al., 2025; Robeyns
& Aitchison, 2025; Zhang et al., 2025a; Yue et al., 2025), enable stable policy optimization through
clipping mechanisms. However, RL training remains highly inefficient due to long, autoregressive
rollout phases that dominate end-to-end latency (Sheng et al., 2025; Zhong et al., 2025). GPU un-
derutilization stems from both slow token generation and load imbalance caused by variable-length
rollouts (Fu et al., 2025; Team et al., 2025). To mitigate these issues, recent systems such as Pipelin-
eRL (Piché et al., 2025) , StreamRL (Zhong et al., 2025) and AReal (Fu et al., 2025) decouple rollout
and training via asynchronous strategies. Kimi K2 (Team et al., 2025) introduces a comprehensive
RL infrastructure, optimizing across computing clusters, colocated architectures, and efficient en-
gine switching. Furthermore, CPPO (Lin et al., 2025) and GRESO (Zheng et al., 2025b) facilitate
end-to-end speedups through different clipping strategies, while TreePO (Li et al., 2025a) utilizes
tree-structured sampling to improve efficiency. Despite these system-level advancements, the core
bottleneck which is inefficient autoregressive rollout generation remains largely unaddressed.

7 CONCLUSION

In this paper, we propose a concurrency-aware speculative decoding framework with online draft
learning to accelerate GRPO. Our method dynamically adjusts decoding parameters based on con-
currency levels, maximizing efficiency during high-variance generation, while online joint learning
maintains strong alignment between draft and target models amid parameter updates. This dual
strategy sustains high token acceptance and computational efficiency throughout training. Experi-
ments across multiple models and mathematical reasoning benchmarks show consistent end-to-end
speedups of 2.35x to 2.72x, outperforming baseline approaches.
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A THE OPERATIONAL INTENSITY OF ACCELERATORS

As mentioned in the main text, Ipeak = Peak FLOPS
Memory Bandwidth . Below we calculate the Ipeak for several

modern GPUs.

Table 5: The Ipeak of several modern GPUs.

GPU Peak BF16 Tensor Core (TFLOPS) Memory Bandwidth (TB/s) Ipeak

A100 40GB PCIe x 16 312 1.555 200.6
A100 40GB SXM 312 1.555 200.6

A100 80GB PCIe x 16 312 1.935 161.2
A100 80GB SXM 312 1.555 153.0

H100 SXM 1979 3.35 590.7
H100 PCIe 1513 3.026 500
H100 NVL 3958 7.8 507.4
H800 SXM 1979 3.35 590.7
H800 PCIe 1513 2 756.5
H200 SXM 1979 4.8 412.3

B100 3500 8 437.5
B200 2250 8 562.5

It is obvious that Ipeak ≫ IGEMM. This growing disparity reflects a fundamental imbalance in mod-
ern GPU architecture design: while computational throughput has scaled rapidly through specialized
tensor units and algorithm-hardware co-design, memory bandwidth—constrained by physical lim-
its—has not kept pace. As a result, the peak operational intensity (Ipeak) increasingly diverges from
the arithmetic intensity required by canonical operations such as GEMM (General Matrix Multipli-
cation), indicating that most workloads will be memory-bound under naive execution.

This imbalance is not accidental, but rather a consequence of deepening hardware constraints at
the physical layer. The bandwidth of off-chip memory interfaces, even with advanced HBM3e
stacks, is approaching the limits imposed by signal integrity, power delivery, and thermal density
in 2.5D/3D packaging. As NVIDIA’s architecture team has noted: “We are nearing the electrical
and thermodynamic boundaries of how fast we can move data across a package. Future gains must
come from smarter data reuse, on-chip caching, and sparsity-aware execution, not just wider buses.”
(NVIDIA, GTC 2024). This explains the architectural trajectory toward higher Ipeak: to sustain
performance under bandwidth saturation, GPUs must extract more computation per byte transferred,
effectively shifting the burden from raw bandwidth scaling to maximizing data locality and reuse.

Moreover, the introduction of structured sparsity (e.g., 2:4 sparsity in Ampere and beyond) and
narrow-precision formats (FP8, INT4) enables GPUs like the H100, H200, and B100/B200 to oper-
ate efficiently in regimes where Ipeak > 500, despite memory bandwidth improvements being sub-
linear relative to FLOPs growth. For instance, while the H200 doubles HBM bandwidth compared to
the H100 (from 3.35 TB/s to 4.8 TB/s), its BF16 FLOPS remain unchanged at 1979 TFLOPS, result-
ing in a lower Ipeak—a deliberate design choice to alleviate the memory bottleneck for large-model
inference.

In this context, the sustained high arithmetic intensity of modern accelerators is not a sign of bound-
less scalability, but rather an adaptive response to the hard limits of interconnect physics. Fu-
ture GPU generations will continue to exhibit high Ipeak not because memory bandwidth can scale
indefinitely, but because they must—within the constraints of energy, area, and signal propaga-
tion—maximize computational return on every joule and every byte moved. This paradigm shift un-
derscores the necessity of algorithm-architecture co-design in the post-Dennard scaling era, where
efficiency, not just peak performance, defines the frontier of acceleration.

B THE MEASUREMENT METHODOLOGY OF VERIFICATION CAPACITY

The theoretical compute-to-bandwidth ratio Ipeak is difficult to derive analytically due to hardware-
and implementation-specific factors such as kernel operation, memory tiling, and SRAM constraints.
Instead, we empirically estimate the effective Cpeak.
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Algorithm 2 Empirical Measurement of Cpeak

Require: Target model model, max batch size Bmax, warm-up iterations W , repetition count N
Ensure: Estimated Cpeak

1: for B = 1 to Bmax do
2: Create input: input ids ∈ ZB×1

3: for w = 1 to W do
4: Perform warm-up forward pass: outputs = model(input ids)
5: Synchronize CUDA
6: for n = 1 to N do
7: Perform timing operation: outputs = model(input ids)
8: Synchronize CUDA
9: Append cur time to times

10: Plot times vs. B
11: Detect knee/elbow point in the curve
12: return Bknee as Cpeak

To measure this quantity, we perform the following experiment on a given target model and accel-
erator (e.g., GPU): We evaluate the forward pass latency of the target model across varying batch
sizes B, while keeping the input sequence length fixed at 1. Specifically, for each B ∈ [1, Bmax],
we feed the model a batch of B identical single-token inputs (typically the EOS token), and measure
the average inference time per forward pass after warm-up and multiple repetitions.

As B increases, the operational intensity of the attention and feed-forward layers rises, leading to
improved hardware utilization. However, beyond a certain point—when the compute demand satu-
rates the available resources—the latency begins to grow obviously. This manifests as a clear knee
point in the latency vs. B curve (as shown in Figure 6). Algorithm 2 summarizes the measurement
procedure.

It is worth noting that, since our draft model also adopts a Transformer architecture with hidden and
intermediate layer dimensions identical to those of the target model, the Cpeak of the draft model is
the same as that of the target model. Therefore, no separate measurement is required. However, if
the draft model differs in architecture or scale, its own Cdraft must be measured empirically. In such
cases, the optimal Kdraft should satisfy Kdraft ≤ Cdraft/B, where B is the current batch size, to
ensure efficient parallel verification.

C RELATED DATASETS

This section briefly introduces the six datasets used in our study, serving as supplementary informa-
tion for the main text.

ShareGPT-68K. ShareGPT-68K (Aeala, 2023) is a dialogue dataset collected from user-shared
conversations on the ShareGPT platform. This cleaned split retains multi-turn human-AI interac-
tions while removing low-quality or malformed entries, such as incomplete messages or non-text
content. It provides diverse and realistic conversational samples, making it suitable for training or
evaluating open-domain dialogue systems.

GSM8K. GSM8K (Cobbe et al., 2021) (Grade School Math 8K) is a benchmark dataset consisting
of 8,500 grade-school-level math word problems, each accompanied by a human-written, step-by-
step solution. The problems require multi-step arithmetic reasoning and are designed to evaluate a
model’s ability to perform reliable and interpretable mathematical reasoning in natural language.

SimpleRL-Abel-Level3to5. SimpleRL-Abel-Level3to5 (Zeng et al., 2025) is a curated subset of
the MATH dataset, containing problems at difficulty levels 3 to 5. It is specifically designed for
studying the impact of data difficulty on zero-shot reinforcement learning and model generalization.
This dataset has been used in training and evaluating high-performance models such as Mistral-
Small-24B and various Qwen series models.
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Figure 6: Forward pass latency vs. batch size B for Qwen2.5-7B-Instruct on a GPU H800 SXM.

DAPO-Math-17K. DAPO-Math-17K (Yu et al., 2025) is a large-scale mathematical reasoning
dataset comprising approximately 17,000 challenging problems across diverse domains, including
algebra, calculus, and discrete mathematics. The dataset emphasizes complex reasoning and is used
to assess the robustness and generalization of models in advanced mathematical problem solving,
particularly under reinforcement learning settings.

MT-Bench. MT-Bench (Zheng et al., 2023) is a multi-turn dialogue evaluation benchmark that
assesses the quality of language models in conversational settings. It features a diverse set of multi-
turn scenarios covering creative writing, reasoning, and role-playing. Responses are evaluated based
on coherence, consistency, and instruction following, often using LLM-as-a-judge protocols, making
it a widely adopted metric for conversational capability analysis.

HumanEval. HumanEval (Chen, 2021) is a code generation benchmark consisting of 164 hand-
written programming problems in Python. Each problem includes a function signature, docstring,
and test cases. Model performance is evaluated by executing the generated code and measuring
pass@1 accuracy—i.e., whether the solution passes all test cases. It is a standard benchmark for
assessing functional correctness in code synthesis tasks.

D OTHERS

Average Acceptance Length (τ ). The average number of tokens accepted by the target model
per verification step. In dynamic batch settings, τ is computed as the total number of accepted
tokens divided by the total number of sequence-level verification steps. The latter is defined as the
cumulative sum of the number of active (i.e., unfinished) sequences across all verification iterations.
Specifically, if the batch size at iteration t is Bt, and one verification pass is executed per active
sequence, the total verification count increases by Bt.
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