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Abstract

We propose a testable universality hypothesis, asserting that seemingly disparate
neural network solutions observed in the simple task of modular addition are unified
under a common abstract algorithm. While prior work interpreted variations in
neuron-level representations as evidence for distinct algorithms, we demonstrate,
through multi-level analyses spanning neurons, neuron clusters, and entire net-
works, that multilayer perceptrons and transformers universally implement the
abstract algorithm we call the approximate Chinese Remainder Theorem. Crucially,
we introduce approximate cosets and show that neurons activate exclusively on
them. Furthermore, our theory works for deep neural networks (DNNs). It predicts
that universally learned solutions in DNNs with trainable embeddings or more
than one hidden layer require only O(log(n)) features, a result we empirically con-
firm. This work thus provides the first theory-backed interpretation of multilayer
networks solving modular addition. It advances generalizable interpretability and
opens a testable universality hypothesis for group multiplication beyond modular
addition.

1 Introduction

The universality hypothesis posits that neural networks learning related tasks converge to similar
internal solutions and that shared principles will underlie their representations regardless of archi-
tecture or initialization [1–3]. If true, it could provide a theoretical foundation for generalizing
interpretability across diverse neural systems. Yet recent studies on related tasks (modular addition
[4–8] and permutations [8, 9]) have cast doubt on this hypothesis by presenting disjoint interpretations
of what networks learn between the two tasks, and even within the sole task of modular addition.

We unify prior interpretations on modular addition. By presenting a generalization of cosets—sets
of elements with strict modular equivalence—to approximate cosets containing elements that are
“behaviorally similar,” instead of equivalent, our results abstract away the low-level details of how
weights compute activations. This lets us show all previous interpretations [4–7, 10] are consistent
under one common abstract algorithm we call the approximate Chinese Remainder Theorem (aCRT)
(section 4.2). This abstraction reconciles the diversity in previously discovered mechanisms by
interpreting them as different realizations of one algorithmic template. The main empirical results
validate the breadth of our abstraction’s accuracy across hyperparameters, architectures, and depth.

We open the universality hypothesis as a testable conjecture across all group-theoretic datasets.
On modular addition (cyclic groups) we prove that all ReLU neurons learning sinusoidal functions
activate only on approximate cosets or linear combinations of them (Theorem 4.4), giving a direct
construction that instantiations of the abstract aCRT are learned. As our approximate cosets generalize
cosets, work finding coset circuits in networks trained on permuting lists (permutation groups) [9]
aligns with our results. This gives universality between datasets involving incredibly different groups.
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We further the community’s understanding of interpretations on modular addition. Assuming
neurons each learn a single frequency, we prove that networks exponentially reduce incorrect logit
mass as more distinct frequencies are learned, concentrating the output near a Dirac on the correct
answer. This recovers the theoretical result of [7], that 1-layer networks with neurons corresponding
to each of the ⌊n

2 ⌋ total frequencies that exist modulo n have learned the maximum margin solution.
Furthermore, a corollary predicts that deep neural networks (DNNs) have small margins between
correct and incorrect logits unless O(log(n)) features are learned. These predictions are empirically
validated across architectures, training regimes and both prime and composite moduli, whereas past
works focused on prime moduli and representative networks from few seeds.

2 Related work

The first interpretability work in this domain aimed to understand the phenomenon of grokking
[11]. Nanda et al. [4] analyzed 1-hidden layer transformers trained on modular addition, finding
sinusoidal patterns of three to eight different frequencies in the weights, activations and attention.
They showed that for each frequency, the embeddings placed inputs on a circle, and the network
performed angle addition on this circle. Since adding angles corresponds to multiplying complex
numbers, this nonlinear operation was attributed to the attention mechanism. This was termed the
Fourier Multiplication Algorithm (later Clock [5]), and validated through ablation experiments.

Follow-up work proposed a generalization of the Fourier Multiplication Algorithm called Group
Composition via Representations (GCR) algorithm [10], which extended the idea of angle addition by
treating group elements as linear operators and composing them to simulate group multiplication,
aiming to unify mechanisms across group tasks. They applied GCR to both modular addition and
permutations (Sn), as representative group settings. However, later work by Stander et al. [9] reverse-
engineered models trained on Sn under identical conditions and found that networks instead learn
coset-based circuits, refuting the GCR universality claim. Furthermore, Zhong et al. [5] showed
that in modular addition, training hyperparameters could induce learning qualitatively different
mechanisms. They introduced the Pizza circuit, which contrasted with [4]’s Clock. They even showed
that both clock and pizza circuits could coexist within the same network simultaneously, suggesting
that even with fixed data, networks could converge to non-unique mechanisms.

Meanwhile, theoreticians explored idealized settings for modular addition: Gromov [6], constructed
a solution for 1-layer multilayer perceptrons (MLPs) with quadratic activations, showing a local
minimum exists where each neuron specializes to a sinusoid of a single frequency, and consequently
each of the ⌊n

2 ⌋ frequencies is represented by some neuron in the network. Later, it was proven that
this solution maximizes the margin [7], while independently and simultaneously, work connected
margin maximization to grokking in similar networks [12].

By this point, the universality hypothesis appeared untenable. No similarities were found between
groups and even on just modular addition, 1-layer MLPs found ⌊n

2 ⌋ frequencies, 1-layer transformers
learned substantially fewer, and changing hyperparameters resulted in learning different circuits [5].

3 Background

Modular addition, written as c = (a + b) mod n, gives the remainder c when the sum a + b is
divided by n. For example, 5 + 7 = 12, and 12 mod 12 = 0. We can think of this as wrapping
numbers around a circle of size n, once we pass n, we start over at 0. This arithmetic defines a
structure known as the cyclic group Cn = {0, 1, . . . , n− 1}. In Cn, every number is equivalent to
its remainder class modulo n, denoted (mod n), e.g. 8 ≡ 2 (mod 6), since 8 = 6 · 1+ 2. Modular
arithmetic also supports multiplication: for instance, x · y ≡ 1 mod n when y is the modular
inverse of x, which we denote x−1. These inverses exist when x and n are coprime.

Next, consider remainders mod m, where m divides n. This coarser division groups elements of Cn

into cosets—sets of values that differ by multiples of m. For example, in C6, the elements can be
grouped into three cosets mod 3: {0, 3}, {1, 4}, and {2, 5}. Each coset marks out equally spaced
points on the circle—it is a cycle. They will play a key role in our work, as neurons (and neuron
clusters) will perform coset-like computations. See Appendix A for more discussion on group theory.
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The Chinese Remainder Theorem (CRT) provides a way to simplify computations modulo n by
breaking them into smaller, independent computations. If n factors into coprime integers (meaning
they share no factors) n = q1q2 · · · qk, then computing (a + b) mod n is equivalent to computing
(a + b) mod qi for each qi, then reconstructing the original result. The CRT guarantees that the
system of congruences (a+ b) ≡ mi (mod qi) (for i = 1, . . . , k) has a unique solution modulo n.
Each equation defines a coset, and the intersection of these cosets gives the final result. For example,
suppose we want to find c = (a+ b) mod 91 that satisfies: c ≡ 3 (mod 7), c ≡ 10 (mod 13). Each
congruence defines a coset {3, 10, 17, . . . } and {10, 23, 36, . . . } respectively. Their intersection is
10 and thus the unique solution is c = 10. We hypothesize that networks learn structure similar to the
CRT decomposition to solve a+ b (mod n).

Cayley graphs are critical for understanding section 4.1. Recall Cn = {0, 1, . . . , n − 1}; take
s ∈ Cn, s ̸= 0. We generate the following Cayley graph, call it Γ, by starting at g ∈ Cn and making
an edge to (g + s) mod n, then an edge to (g + 2s) mod n, . . . , until a cycle is made. For example,
arrange 6 vertices in a circle. Using s = 1, step around the circle, connecting neighbors with an
edge, generating a 6-cycle. Using s = 2 connects every second vertex, generating two disconnected
3-cycles based on where you start. These 3-cycles are the cosets: {0, 2, 4}, {1, 3, 5}. Using s = 3
gives three 2-cycles. See s = 11, n = 66 in panel 1 of Fig. 2. For an exposition including helpful
visualizations involving how sine functions fit through cosets and approximate cosets, refer to A.2.1;
these visualizations may help readers understand cosets geometrically.

Clock and Pizza Interpretations. Both circuits embed inputs a and b on a circle as Ea =
[cos(2πa/p), sin(2πa/p)],Eb = [cos(2πb/p), sin(2πb/p)]. Post-attention, clocks compute the angle
sum: h(a, b) = [cos(2π(a+b)/p), sin(2π(a+b)/p)], and pizzas compute a vector mean of the embed-
dings on the circle: h(a, b) = 1

2 (Ea+Eb) =
1
2 [cos(2πa/p)+cos(2πb/p), sin(2πa/p)+sin(2πb/p)].

Problem setting and setup. The task is modular addition: given inputs (a, b), predict c = a + b
mod n. The dataset includes all n2 input pairs. Inputs are either one-hot encoded or embedded via
a learned matrix with n rows and 128-dimensional vectors, resulting in concatenated input pairs
(Ea,Eb). We train 1–4 layer MLPs and 1–4 layer transformers. We use the exact transformer
architectures from [5], where attention is modulated by a coefficient α. Pizza (α = 0.0) uses constant,
uniform attention (all-ones matrix), while clock (α = 1.0) has learnable sigmoidal attention. Both
models share the same structure: an embedding layer, one transformer block, and a 1-hidden layer
MLP. We follow prior work in applying L2 regularization, shown to encourage generalization [11].
Also, we apply discrete Fourier transforms (DFT) to analyze the frequencies learned by each neuron.

4 Theoretical and empirical results

An intuitive overview of the mathematical details in section 4.1 is: neurons learn sinusoidal functions
and we explain how to identify which Cayley graph a neuron understands; the Cayley graphs for the
cyclic group are circle graphs; these Cayley graphs are generated by connecting every step size dth

vertex on the circle; approximate cosets are sets of vertices that are close on the graph generated by d.

4.1 Simple neurons as (approximate) coset detectors

The simple neuron model. The mathematics in this paper assumes the simple neuron model: neurons
approximate or specialize to sinusoidal functions of frequency f . The primary empirical results
(section 5) validate this assumption across architectures, hyperparameters, random seeds, moduli and
depth (Figs. [4-9]). This model is derived by generalizing the sinusoidal model for neurons from
[6, 7, 13] as they assume one-hot encoded inputs to the network, to a model fitting both one-hot
encoded architectures and those used in practice (having trainable embeddings [4, 5]). For a + b
mod n, the inputs a and b are encoded as embeddingsA = [A0, . . . , An−1] andB = [B0, . . . , Bn−1],
where Ai, Bi ∈ Rd. The output logits are D = [D0, . . . Dn−1] ∈ Rn. Let w(U, V ) be the dot
product of all values from U with edge weights going to V . Then a simple neuron N has frequency
and phase shifts for A and B: f, sA, sB ∈ Cn, and positive real number α such that for each k ∈ Cn

we have

w(Ai, N) = cos 2πf(i−sA)
n , w(Bj , N) = cos 2πf(j−sB)

n , w(N,Dk) = α cos 2πf(k−sA−sB)
n .
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If training makes neurons converge to simple neurons, then their frequencies can be normalized to be
1 by applying an isomorphism (Def. 4.2). Consequently, qualitative comparisons between neurons of
different frequencies are now possible (Fig. 1).

Definition 4.1 (Step size). Let the step size be d := ( f
gcd(f,n) )

−1(mod n
gcd(f,n) ), where the modular

inverse is used.

Definition 4.2 (Remapping: frequency normalization). Consider the function h(x) = cos(2πfx/n)
with frequency f . We define a new function g, allowing us to perform something analogous to a
change of variables using the step size d: g(d · x) = h(x) ⇐⇒ g(x) = h(d−1 · x).

Figure 1: Preactivation values over a fixing b = 5 on c = (a+ b) mod 59 of a neuron from an MLP,
pizza and clock show qualitative equivalence after remapping (Def. 4.2): they all have frequency 1.
To see a neuron that is not qualitatively equivalent (corresponding to poor local minima), please see
Appendix F.4, particularly Fig. 28.

Approximate cosets. The CRT relies on cosets. A neuron with frequency f will only take values on
a coset when gcd(f, n) > 1. Since our experiments suggest neural networks approximate the CRT’s
decomposition even when the learned frequencies don’t factor the modulus, we instead generalize
cosets from requiring a strict equivalence among elements to approximate cosets. These require
elements to be similar, which means the shortest path distance on their Cayley graph is small. Later,
theorem 4.4 gives that all neuron activations (ReLU > 0) in all layers occur on approximate cosets.

Let f ∈ Cn. Recall Def. 4.1: d determines how we step around the circleCn. There are n′ = n
gcd(f,n)

distinct positions reachable in this way. These positions form cycle Cn′ , which is a smaller (or equal)
copy of Cn. d ∈ Cn is the step size in Cn′ . Generate Γ, the Cayley graph of Cn′ using d. We now
introduce approximate cosets (approximate equivalence classes) using the minimum path distance
between vertices in Γ. For distances 1 ≤ k1 ≤ n and 1 ≤ k2 ≤ n, the approximate coset is the set
of vertices on the path from c − (dk1) to c + (dk2), stepping by d. If gcd(f, n) > 1: elements in
the same coset as c are distance 0 from each other as they are the same vertex on the Cayley graph,
adjacent vertices are distance 1, etc (see panel 1 Fig 2). If gcd(f, n) = 1: Γ has one element with
distance 0: c (see panel 4 Fig 2). Thus, approximate cosets are more general than cosets.

Definition 4.3 (Approximate cosets). Let 1 ≤ k1 ≤ n and 1 ≤ k2 ≤ n. We call the set {c −
k1d, . . . , c− 2d, c− d, c, c+ d, c+ 2d, . . . , c+ k2d} an approximate coset.
Theorem 4.4. Simple neurons in layer 1 activate (ReLU > 0) on an approximate coset containing
the correct answer c, by concentrating their preactivations on approximate cosets that contain a and
b; all neurons in later hidden layers activate on linear combinations of approximate cosets.

See Appendix A.2.1 for examples further illustrating the definitions introduced in this section.

4.2 The abstract approximate Chinese Remainder Theorem

By defining approximate cosets, and proving Theorem 4.4, a straightforward construction for the
abstract algorithm being instantiated by neural networks can now be given. An abstract algorithm is a
general template or high-level strategy for a problem. It outlines the steps to be followed but leaves
room for different low-level implementations. For example, the classic breadth-first search algorithm
traverses a graph by visiting all neighbors of a node, then all neighbors of those nodes, and so on.
While the abstract idea is the same, the implementation details can vary: one version may use a linked
list, while another may use a queue. Thus, the compiled machine code can differ significantly, like
how the networks features can be computed by very different pizza or clock circuits.
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Figure 2: Visualizing how neurons learn approximate coset structure. Panel 1 shows the circle graph
on 66 elements generated by starting at a = 0 and taking 6 steps of ±11, creating the 66

11 = 6 cosets
of points {a (mod 6) ≡ 0}, {a (mod 6) ≡ 1}, . . . , {a (mod 6) ≡ 5}. The graph distance to each
coset from coset {a (mod 6) ≡ 0} (in yellow) is given. 2: the neuron learned cos( 11(2π)a66 ); the
distances annotated on points follow from 1. This neuron only activates (ReLU > 0) on distances
0 and 1. 3: remapping shows all members of each coset collapse into an equivalence class. Panels
4-6 show the circle graph on 67 elements generated by ±11; since gcd(11, 67) = 1, the neuron
can’t activate at the same strength on equivalent points (cosets) and instead activates with strengths
proportional to distances on the Cayley graph. All elements the neuron takes positive values on are
an approximate coset, shown in bright viridis colors decaying with distance. Note: each neuron
“divides” the Cayley graph it activates on approximately in half.

Remark 4.5. The sinusoidal neuron based CRT. The CRT decomposes the modular system (a+ b)
mod n into O(log(n)) modular subsystems, which follows from a number having at most O(log(n))
prime factors. The CRT solves the original modular system by intersecting the cosets that the
solution of each subsystem belongs to. Suppose the CRT can be used to decompose (a+ b) mod n.
Then, a sinusoidal neuron based CRT is constructed with O(log(n)) unique frequencies f with
gcd(f, n) = f . Make n

f sinusoids, one for each coset (O(n) neurons), that are only positive on one
of the cosets {a+ b (mod n

f )} using the y-intercept (neuron bias) so the neuron only activates if the
answer is in the coset. The argmax of the linear combination of these neurons to the output logits
selects the correct answer deterministically.

Armed with Theorem 4.4, deriving an abstract algorithm that Remark 4.5, instantiates is simple.
Remark 4.5 assumes “the CRT can decompose (a+ b) mod n” into coset structure, but cosets are a
subset of approximate cosets, making cosets a specific implementation under an abstract template.
Furthermore, Theorem 4.7 addresses the approximate cosets case (f does not divide n) in section 4.3.
It gives that O(log(n)) randomly selected frequencies are enough to get reasonable margins between
correct and incorrect logits, matching the number of frequencies required by the CRT.

Abstract algorithm 4.6. The minimal template: the abstract aCRT. Take O(log(n)) random fre-
quencies and for each frequency generate sinusoidal neurons with that frequency and set their phases
such that they pick out different approximate cosets that the answer (a+ b) mod n is in.

Note, Alg. 4.6 is more general than the CRT and Remark 4.5, by handling cases where neurons learn
frequencies with greatest common divisor (GCD) 1 with the modulus (approximate cosets). Two
things are left to show: the O(log(n)) frequency bound in section 4.3 and that DNNs learn solutions
that are realizations of Algorithm 4.6. The latter is exhaustively validated in section 5: finding all
architectures are well abstracted by approximate cosets.

4.3 How many frequencies are needed to instantiate the aCRT with simple neurons?

We now present Theorem 4.7, which assumes that sinusoids are learned by the neurons, matching the
simple neuron model. It predicts that DNNs push incorrect logit values down exponentially as the
number of frequencies learned in the network increases. Analogously to Morwani et al. [7], it gives
that the maximum margin solution requires all frequencies to be learned, but also yields additional
information about the size of margins a network can acquire with fewer frequencies. A corollary
gives that O(log(n)) frequencies are sufficient to get margins larger than Ω(log(n)).

Let n be the number of output logits (matching the modulus), let m be the number of distinct
frequencies learned by the network and m′ be the maximum output logit value across the dataset.
Fix two parameters: 0 < δ < 1, controlling the required margin between the correct and incorrect
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outputs; 0 < ρ < 1, the target probability of success. We model the neural network’s output at logit
k by h(k) =

∑m
ℓ=1 cos

(
2πfℓ
n (k − i− j)

)
, where each frequency fℓ is drawn uniformly at random

from {1, 2, . . . , n2 }. We seek conditions on m so that, with probability at least ρ, the value h(k) is
well-separated from the maximum m′ for all incorrect outputs k ̸= i+ j mod n.

Under the simple neuron model, the following result holds.
Theorem 4.7. Suppose the integer number of distinct frequencies m and reals 0 < ρ, δ < 1 satisfy
the inequality

m >
2 loge n− 2 loge(2− 2ρ)

loge(π/δ)− 1
.

Then, with probability at least ρ, for all k ̸= i+ j mod n, we have m′ −h(k) > δm′. See Appendix
C for a proof. Note, we want a large δ, i.e. large margins.

Corollary 4.8. Learning O(log(n)) distinct frequencies gives a logit margin Ω(log(n)); after
softmax, incorrect classes receive at most n−Ω(1) probability mass.

Note: it is still possible for networks to learn solutions utilizing a single frequency! Indeed, these
solutions have poor margins, making them poor local minima. Unsurprisingly, they are rarely learned
and only show up at the edge of the grid search returned by hyperparameter tuning. We empirically
validate corollary 4.8 in Fig. 3 by varying the moduli over multiple orders of magnitude including
moduli that are prime, composite numbers, highly composite numbers and powers of only 2 (e.g.
64, 256, etc.). The samples are such that the R2 of fitting them with logarithmic functions is very
high, empirically verifying the prediction of Corollary 4.8 that indeed O(log(n)) frequencies are
reasonable. As the data contains both prime and composite moduli, it suggests moduli have little
effect on what the network ultimately learns, though if a frequency divides the modulus it can be the
case that fewer neurons of that frequency exist (see Appendix. F.7).

Figure 3: The number of frequencies found in clocks, pizzas, and MLPs as the modulus n increases.
We plot the data on logarithmic and linear axes, showing logarithmic fits have very high R2 scores.

5 Empirical results supporting the simple neuron model and approximate
coset abstraction

The details for the experimental results of this section can be found in Appendix E.
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One-hot encoded MLPs. Previous work shows ⌊n
2 ⌋

types of neurons are found, each specializing to a sinu-
soid with one frequency with 1 hidden layer [6, 7]. We
show that adding either depth, or a trainable embedding
matrix for inputs, causes the network to transition from
learning ⌊n

2 ⌋ types of neurons to much fewer types
in Fig. 4. The presence of the trainable embeddings
is why the models trained in [4, 8, 5] were observed
to learn handfuls of frequencies (3-7) instead of ⌊n

2 ⌋
frequencies, despite being one-hidden-layer models.

The neural pre-activations in 1-layer networks. In
the vast majority of cases, neuron pre-activations in
all 1-layer architectures can be approximated well by
degree 1 sine functions with frequency f . This is because the preactivations of most neurons are
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“simple”, meaning that they have frequency equal to 1 once remapped (Definition 4.2) (Fig 1). This is
despite the presence of secondary frequencies in smaller width architectures. These occur less often
as the width of the layers is increased (Fig 5), which shows neurons with secondary frequencies on the
left, and the R2 of fitting a single sine, or a sum of two sines with different frequencies, through the
preactivations on the right. Thus, as the width is scaled, approximating neurons as simple neurons (1
sine is fit through their preactivations) becomes better. Note: at widths excessive for this task (≤2048
neurons) it rarely occurs, but it’s the case that a few neurons can learn sinusoids with frequency f

2
(App. F.4 Fig. 28). While these still satisfy our definition of approximate cosets and Theorem 4.4
covers their existence, they break previous theoretical models assuming integer frequency [6, 7].

Figure 5: Left: cluster preactivations from a clock with small but present secondary spikes in the
DFT. Right: as the width of the models is increased, the presence of the secondary spikes fades, 2
sines is fitting a sum of 2 different f sines, allowing the inclusion of a secondary peak in the fit.

Depth’s effect on neural preactivations. The first layer is fit with a very high R2 in models of
all depths, but adding layers introduces a caveat in the transformer architectures. In MLPs, it is
possible to fit every neuron in every layer and maintain 100% test accuracy by assuming the neural
preactivations are of the form f(a, b) = sin(fa+ ϕ) + sin(fb+ ϕ), where ϕ is the phase shift (Fig.
6). In transformers however, this only works with a high R2 for the first layer. The reason is that
the form of the logits f(a, b) = cos(f(a + b − c)), described by [4] is a second-order (quadratic)
sinusoid and starts to appear in layers after the 1st layer, but before the logits. Indeed, we find that
in deeper networks, neurons after the first layer can be either simple, cos(f(a+ b− c)), or a linear
combination in superposition of these two forms. Thus, fitting just cos(a+ b) or just cos(a) + cos(b)
is not sufficient to maintain 100% accuracy. To see this, see Fig. 8, which shows the percentage of
activations that have their best R2 achieved by fitting just order one sinusoids in a and b in a 2-hidden
layer transformer. Thus, we fit linear combinations of (cos(f(a+b)))+(cos(fa)+cos(fb)) through
neurons in layers after 1 in Fig. 7. Note, MLPs can be fit well using only first-order sinusoids.

Furthermore, we could see a preference for learning precise cosets (should they exist) over approxi-
mate cosets as this could reduce approximation error in DNNs. We explore this in Fig. 9, showing
that for n = 66, all architectures present a preference for learning precise cosets. This is strong
evidence supporting the abstract aCRT algorithm as it implies DNNs try to learn CRT-like behaviour.

Our results show that in all architectures, layer 1 uses only simple neurons, with other layers still
utilizing them, implying Algorithm 4.6 is instantiated. Furthermore, it follows from this that we’ve
shown that all neurons downstream of layer 1 activate on linear combinations of approximate cosets.
Combined with the results of [9], that the GCR algorithm [8] is not universal and instead coset
circuits are learned in networks learning group multiplication in the permutation group, we open the
universality hypothesis on group multiplication datasets as Conjecture 5.1.

Conjecture 5.1. The universality in structures learned by DNNs trained to fit group multiplication
will be found as coset circuits, and more generally as approximate coset circuits computing features.
DNNs will make use of these circuits in a divide-and-conquer-like manner to achieve logarithmic
efficiency.

At this point, we have shown that our definition of approximate cosets functions as a sufficient
abstraction for simplifying the representations learned by networks of various architectures.
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Figure 6: R2 of fitting each neuron in layer 1 as a simple neuron and fitting a sum of sines of each
frequency in layer 1 through layers 2-4 for 1,2,3 and 4 layer MLPs. The large volume of green
checkmarks implies replacing neurons with simple neurons does not decrease the network’s accuracy
implying that our abstraction is robust to changes in training conditions and architectures.

6 Discussion and Conclusion

We argue that approximate cosets are critical in all architectures because they instantiate the aCRT.
We support this both with empirical evidence across a large range of hyperparameters, seeds and
different moduli, and theorems. Approximate cosets provide DNNs with structures analogous to
the cosets the CRT operates on. The CRT uses O(log(n)) modular subsystems, and Corollary 4.8
gives that DNNs need O(log(n)) unique frequencies to analogously induce modular subsystems.
Furthermore, approximate cosets shed light on how the network learns second order sine functions
with ReLU activations (activating on the coset of c requires understanding coset membership of
a+ b), a previously unexplained result in Nanda et al. [4] and Chughtai et al. [10]. As the proof for
theorem 4.4 shows, a neuron learns to fire strongly on the coset that c is in, by understanding which
cosets a and b are in. The conclusion is that in abstracting away the small details in how weights in
different architectures explicitly compute modular addition, we unify previous interpretations under
the abstract aCRT (algorithm 4.6).

Our initial hypothesis was that neural networks trained on modular addition with composite moduli
would learn the Chinese Remainder Theorem (CRT), leveraging coset structure where it naturally
applies. Early empirical results supported this view, revealing a preference for frequencies that
cleanly divide the modulus—suggesting alignment with exact coset structure. However, we observed
that networks often learned only a single such frequency, alongside others that did not correspond to
precise cosets. This prompted further investigation. Upon examining both qualitative and quantita-
tive behavior, we found no meaningful distinction between neurons associated with coset-aligned
frequencies and those that were not. This observation led to a critical insight: networks may be
implementing an algorithmic template resembling the CRT even when its mathematical prerequisites
are not strictly satisfied. This realization motivated the formulation of the abstract approximate CRT
(aCRT), generalizing the role of cosets to approximate cosets as a unifying structure.

Due to modular addition being multiplication in the cyclic group and our approximate cosets general-
izing cosets, our interpretation establishes universality between cyclic and permutation groups. This
follows from the result that coset circuits are learned in networks trained on the permutation group
[9]. Thus, we establish universality between very different tasks, related only by the fact they are both
groups. This allows us to open the testable universality hypothesis on group multiplication datasets.
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Figure 7: R2 of fitting order 1 sines through neurons in layer 1, then fitting a sum of length equal to
the number of unique frequencies in layer 1, of order one or order two sines for layers 2, 3, 4. The
large volume of green checkmarks tells us that our abstraction doesn’t affect the model’s accuracy
and is robust to varying training conditions and architectures.

Figure 8: The percent of neurons with their best fit involving only first-order sines. The result can be
interpreted as neurons existing that are operating on first-order sinusoids in deep layers. With ideal
hyperparameters, almost 100% of neurons in layer 2 can have their best fits coming from order one
sinusoids, though this occupies very little volume in the hyperparameter grid. This plot shows that
the second-order sinusoidal fits of [4] are more experessiveness than necessary in the first layer, and
not optimal.

6.1 Toward uncovering the nature of universality

It’s important to note that our work doesn’t fully illuminate how deep neural networks are universally
learning modular addition. We propose the following definition, being abstract universality, which
attempts to capture what is meant by the universality hypothesis which asserts that “models learn
similar features and circuits across different models when trained on similar tasks.” [8]. Our issue
with the quoted statement, is “what does similar” mean? The work of Zhong et al. [5] claimed to find
two disjoint and disparate circuits, being a clock, or a pizza, but our work shows these two circuits
can be unified under one abstraction. It is therefore the case that these two circuits could be different
implementations of one abstract divide-and-conquer algorithm. By abstract, we mean an object that
can’t be directly instantiated (e.g. abstract class in computer programming).

With that said, we propose the idea of abstract universality. DNNs trained on similar data learn
different implementations of one abstract algorithmic class i.e. one algorithmic strategy.
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Figure 9: Histograms of the number of times each frequency was learned while training on (a+ b)
mod 66. Note: attention in the clock models results in learning frequency 6 cosets in layer 1/4.

6.2 Limitations and future work

Finding cosets key to learning modular addition aligns with Stander et al. [9]’s results on permutation
groups. A group with the least structure is a cyclic group of prime order, but Cayley’s theorem
gives all groups are subgroups of the permutation group—the king of group structure. Despite
these groups occupying upper and lower extremes of structure, our findings yield universality in the
structure DNNs learn on these two disjoint tasks. This is why we believe it’s likely that networks
learning every group multiplication will utilize structures that can be viewed under a more general
definition—approximate cosets, involving distances on Cayley graphs. A core limitation of our work
is that we do not explore the groups between these two extremes. We believe that this is a promising
avenue for future work to explore, with successful testing offering the potential to demonstrate that
the universality hypothesis is true in the very diverse space of all possible group multiplications.

While we are the first to point out how to cause a phase transition from O(n) to O(log(n)) learned
frequencies via depth or a trainable embedding (Fig. 4), we don’t know why it occurs. Theorem
4.7 only says this solution should have great margins, and it does [7]. This gives two directions for
future work. Why this happens: are the training dynamics wildly different? What causes it: does
the network learn something significantly different that both we, and prior work, fail to see? The
fact these are open questions—on a math task that’s become very well understood over 1500 years
since inception—suggests an urgent need for new interpretability tools. Finally, Theorem 4.7 doesn’t
answer how many neurons are needed per learned frequency; giving a trivial lower bound of Ω(1)
neurons. Empirical results are in Appendix F.7, but don’t give an obvious direction for proving
bounds. We believe answering this is necessary for the interpretability community to gain a full
understanding of a task. This may be an entire paper in itself. It looks non-trivial and requires careful
arguments with non-linear ReLU activations.

6.2.1 Roadmap to stress testing the universality hypothesis

There’s opportunity to learn a great deal more about the nature of the solutions DNNs learn via reverse
engineering models trained on group multiplications (Conjecture 5.1). In particular, we believe the
logarithmic efficiency to be a potentially remarkable result and hope for its generality. Due to our
study being scoped to modular addition (cyclic group multiplication), and the other sample point
finding cosets being permutation groups [9], we propose studies on the following tasks to fill in the
blanks to compose a more general theory and understanding.

1. Approximate cosets were not observed in Stander et al. [9]’s study on the non-commutative
permutation group multiplication. Are approximate cosets unique to commutative tasks or just cyclic
groups? This can be resolved by studying the non-commutative dihedral group. 2. Elementary p-
group multiplication is commutative, and full of coset structure. Will networks still learn approximate
cosets? 3. As both dihedral and elementary p groups are constructed from cyclic groups as the base
structure, can approximate cosets be found on other groups with their underlying simple group being
not the cyclic group? We suspect that once these three questions are answered, it will look as though
on all tasks DNNs learn a divide-and-conquer strategy with logarithmic efficiency. If this is true
(Conjecture 5.1), we believe the result will serve to help explain the efficiency of DNNs from a new
perspective.
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A Additional Background

A.1 Conceptual Background and Additional Related Work

This appendix expands on the conceptual foundations and related work that motivated our approach.
We first review key debates in mechanistic interpretability, particularly around universality and
abstraction, before turning to mathematical tasks as ideal testbeds for studying learned structure.

Mechanistic Interpretability, Universality and Levels of Abstraction.

Mechanistic interpretability seeks to reverse-engineer trained neural networks by identifying the
roles of individual components, such as neurons, attention heads, or MLP weights, in the model’s
learned function [14]. It aims to explain how models arrive at their outputs by analyzing the specific
components and pathways involved in their internal computations. A central focus of this paradigm is
on circuits [1, 15, 16]: small groups of components (essentially a subnetwork) that together perform
a recognizable subtask such as copying, induction or composition [17]. Over time, researchers
have identified recurring patterns in these circuits, known as motifs, such as superposition [18]
(where multiple features share the same subspace), equivariance (where computations respect certain
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transformations) or unioning over cases (where a unit activates for multiple distinct patterns without
distinguishing between them). These recurring motifs offer generalizable insight into how networks
compute [1].

A central idea in mechanistic interpretability is universality, which is the informal hypothesis that
independently trained neural networks tend to develop similar internal structures [2, 1]. The appeal
is clear: if models trained in different conditions all learn the same solution, then interpreting one
model could offer insight into many. However, what “similar” means in this context has often gone
unstated. Universality might refer to alignment in learned features, to similarity in neuron roles or
circuits, or to shared algorithmic structure, but these possibilities are rarely distinguished. At the
same time, empirical findings are mixed: while some studies report that representations in vision and
language models become increasingly aligned as model scale increases [3], others show divergences
in learned mechanisms even on simple algorithmic/mathematical tasks [5, 9]. Together, these findings
highlight a deeper issue: the field lacks a clear definition of what kind of structure should be expected
to be universal–and at what level of abstraction such universality should be evaluated.

A major challenge in this area is the ambiguity of the term circuit, which can refer to anything
from small neuron clusters to nearly full-network subnetworks. This flexibility enables compelling
case studies, but hinders comparisons across scales. In early interpretability work, [4] introduced
the Fourier Multiplication Algorithm (later called the Clock), showing that transformers trained on
modular addition learned to represent inputs on circles and perform angle addition via attention.
Chughtai et al. [8] proposed a broader generalization, the Group Composition via Representations
(GCR) algorithm, suggesting a universal algorithm for group tasks based on multiplying group
representations. In both cases, the term “algorithm” referred to the local computation implemented
by a circuit defined over a specific Fourier frequency or irreducible representation (irrep). However,
later work challenged the universality of these circuit-level “algorithms”. Zhong et al. [5] found
that different training settings could induce qualitatively different frequency-specific circuits (e.g.,
the Pizza circuit), and showed that multiple distinct frequency-based circuits could coexist within
the same model. Stander et al. [9] analyzed models trained on Sn and found coset-based circuits,
rather than irrep-based implementations of GCR, further undermining its algorithmic universality
claim. These results suggest that even when models solve the same task, they may not implement the
same algorithm at the circuit level. Our work shifts perspective. We define a model’s algorithm as a
global computational strategy realized across the full network. To uncover this, we take a multiscale
approach: analyzing the behavior of individual neurons, how frequency-aligned clusters of neurons
work together, and how these clusters interact to form a coherent global solution. Our simple neuron
model helps reconcile prior findings by showing that seemingly different circuit behaviors can be
well-approximated within a unified functional form. At the cluster level, we have coset computations.
At the full-network level, we identify a consistent solution that emerges across architectures and
training runs: a universal abstract algorithm, formalized as an approximate version of the Chinese
Remainder Theorem (aCRT). This perspective explains how models can converge to the same high-
level structure even when their lower-level mechanisms diverge. Unlike prior analyses focused on
isolated subcircuits, we sought to understand how computation emerges across scales, from individual
neurons to full-model solutions, and show that models can share the same network-level algorithmic
structure despite mechanistic variability.

Much of the confusion around universality stems from comparing models without distinguishing
between different levels of abstraction. Recent work has proposed frameworks from cognitive
science, especially Marr’s levels of analysis [19–22], as useful tools in interpretability, helping clarify
what kind of explanations are being offered. Marr distinguishes between (1) the computational level
(what problem is solved), (2) the algorithmic level (how it is solved), and (3) the implementational
level (how it is physically realized). Although not developed for studying universality and not
formally used in our main analysis, we find these ideas helpful as a retrospective lens, both for
understanding why prior analyses disagreed, and for identifying common structure where others saw
divergence. For example, Vilas et al. [22] propose looking for invariances across levels and enforcing
mutual constraints between levels as guiding principles. Our approach reflects both: we uncover a
consistent computational-level (in the sense of Marr’s levels) solution, the aCRT, that unifies divergent
circuit-level behaviors and reveals a form of universality that holds at a more abstract level than
previously recognized—what we refer to as the universal abstract algorithm.

Mathematical and Algorithmic Tasks as Interpretable Testbeds for Machine Learning.
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Mathematical and algorithmic tasks—such as modular addition, group operations, sorting, and
Markov chains—have become valuable testbeds for studying machine learning systems. Their
appeal lies in their formal structure: these problems have been studied for centuries, with well-
understood properties. Because the task structure is fully known, optimal solutions are analyzable and
generalization behavior can be sharply characterized—unlike in typical natural data settings. This
makes them ideal environments for probing what neural networks learn and how. While primarily
used to study model internals, these tasks also have practical relevance; for example, transformers
trained on modular arithmetic have been applied to attack lattice-based cryptographic schemes [23].

These tasks have been central to studying grokking, the phenomenon where models generalize
abruptly after a period of overfitting [11]. Using modular addition as a testbed, researchers have
linked grokking to structured internal representations [24, 6], margin maximization [12, 7], label
corruption [13], and non-neural architectures [25], or how distinct circuits emerge during grokking
for different modular arithmetic tasks [26]. Other work has connected grokking to training phase
transitions, such as shifts between lazy and rich regimes in modular addition [27] and polynomial
regression [28]. Several papers also provide exact analytical constructions of specific network
weights: one-layer, one-hot encoded networks with quadratic activations solving modular addition
[6, 7], and ReLU networks solving modular multiplication for modeling grokked solutions in modular
polynomials [29].

Beyond grokking, mathematical tasks have helped probe generalization, learning dynamics, and
in-context learning. Modular addition and Markov chains have served as controlled environments for
studying how transformers acquire in-context learning capabilities [30, 31]. Other work has shown
that repeating training examples affects generalization in tasks like greatest common divisor (GCD),
modular multiplication, and matrix eigenvalue prediction [32], and that arithmetic tasks shed light
on how transformers handle length generalization [33, 34]. In the GCD setting specifically, models
appear to select from a small, learned set of candidate divisors [35]. Transformers trained in the
context of enumerative geometry have also been studied [36].

While most research in this area focuses on supervised learning, some work investigates how
reinforcement learning (RL) agents operate in mathematical environments. Agents trained on tasks
like matrix multiplication or sorting have been observed to discover novel, interpretable algorithms
[37, 38]. Other work leverages group-theoretic structure to enable exact analysis: environments built
using the temporal symmetries of affine Weyl groups allow analytical characterization of the policy
gradient landscape, yielding closed-form gradient dynamics and local optima and providing insight
into how exploration difficulty affects learning [39]. Similarly, interpretable RL environments based
on Erdos-Selfridge-Spencer games have been developed, with exact optimal strategies and tunable
difficulty controlled by human-interpretable environment parameters [40].

Together, this body of work establishes mathematical tasks as invaluable tools for interpretability.
Their known structure enables precise analysis of learned behavior, supports abstraction-driven
explanations, and provides testbeds where claims about generalization and universality can be
rigorously evaluated.

A.2 Additional Mathematical Background

This section provides formal definitions and examples of the group-theoretic structures that underlie
our analysis of modular addition networks: groups, cosets, Cayley graphs, group representations, and
the Chinese Remainder Theorem (CRT). These definitions support the structures described in the
main text: simple neurons, approximate cosets and the approximate CRT algorithm we identify in
trained networks.

Groups, Subgroups and Cosets.

Definition A.1 (Group). A group (G, ◦) consists of a set G equipped with a binary operation
◦ : G×G→ G satisfying:

1. Associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h) for all f, g, h ∈ G.

2. Identity: There exists an element e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

3. Inverses: For each g ∈ G, there exists g−1 ∈ G such that g ◦ g−1 = e.
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Definition A.2 (Subgroup). A subset H ⊆ G is a subgroup if it is itself a group under the same
operation ◦. That is, H must contain the identity, be closed under the operation, and contain inverses
of its elements.

Subgroups induce a natural partitioning of the group via cosets, which are key to understanding
modular structure and factorization.
Definition A.3 (Cosets). Let H be a subgroup of G, and let g ∈ G. The left coset of H with
representative g is:

gH = {g ◦ h : h ∈ H}.
Right cosets are defined similarly: Hg = {h ◦ g : h ∈ H}. Cosets partition G into disjoint, equally
sized subsets.
Example A.4 (Integers and Even/Odd Cosets). The set (Z,+) is a group. The identity is 0; the
inverse of n is −n. The even integers 2Z form a subgroup. This gives two cosets:

2Z = {. . . ,−2, 0, 2, . . .}, 1 + 2Z = {. . . ,−1, 1, 3, . . .}.

These correspond to the even and odd integers — a familiar example of partitioning via cosets.
Definition A.5 (Homomorphism). A map ψ : G → H between groups is a homomorphism if it
preserves the group operation:

ψ(g1 ◦G g2) = ψ(g1) ◦H ψ(g2), for all g1, g2 ∈ G.

If ψ is also bijective, it is called a group isomorphism.

Homomorphisms are the natural notion of "structure-preserving" maps between groups.

Cyclic Groups and Modular Arithmetic.

In this paper, we focus on modular addition, which forms the cyclic group.
Definition A.6 (Cyclic Group Cn). The cyclic group of order n, denoted Cn or Zn, is the set
{0, 1, . . . , n− 1} equipped with addition modulo n. The group operation is defined by

a ◦ b = (a+ b) mod n,

with identity element 0 and inverses given by a−1 = (n− a) mod n.

Subgroups of Cn correspond to evenly spaced subsets, and their cosets partition Cn into congruence
classes modulo a divisor of n.
Example A.7 (Cosets mod 4 in Z8). Let n = 8, and consider the subgroup H = {0, 4}. The left
cosets are:

0 +H = {0, 4}, 1 +H = {1, 5}, 2 +H = {2, 6}, 3 +H = {3, 7}.

This partitions Z8 into four disjoint cosets of size 2.
Definition A.8 (Modular Inverse). Let a ∈ Zn. The modular inverse of a is an element b ∈ Zn

such that
a · b ≡ 1 mod n.

A modular inverse exists if and only if gcd(a, n) = 1, i.e., a and n are coprime.

The Chinese Remainder Theorem.

The Chinese Remainder Theorem (CRT) gives a powerful way to decompose modular arithmetic
over a large modulus into multiple, independent modular systems over smaller, coprime moduli. This
decomposition mirrors the modular structure learned by networks trained on addition tasks, and it is
central to our concept of the approximate CRT.
Theorem A.9 (Chinese Remainder Theorem). Let n = q1q2 · · · qk be a product of pairwise coprime
integers. Then the map

ϕ : Zn → Zq1 × · · · × Zqk , x 7→ (x mod q1, . . . , x mod qk)

is a group isomorphism. That is, each element in Zn corresponds uniquely to a tuple of residues
modulo the qi, and vice versa.
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Example A.10 (Coset Intersection View). Let n = 91 = 7 · 13. Suppose we want to solve:

x ≡ 3 mod 7, x ≡ 10 mod 13.

Each congruence defines a coset:

x ≡ 3 mod 7 ⇒ {3, 10, 17, 24, 31, . . . },
x ≡ 10 mod 13 ⇒ {10, 23, 36, 49, . . . }.

The unique solution mod 91 is the number common to both cosets: 10 .

Cayley Graphs.
Definition A.11 (Generating Set). Let G be a group. A subset S ⊆ G is called a generating set of
G if every element g ∈ G can be written as a finite product of elements from S and their inverses.
That is, for all g ∈ G, there exist s1, . . . , sk ∈ S and signs ϵi ∈ {−1, 1} such that:

g = sϵ11 s
ϵ2
2 · · · sϵkk .

Example A.12 (Generating Sets in Z6). The group Z6 = {0, 1, 2, 3, 4, 5} under addition mod 6 can
be:

• Generated by {1}, since repeated addition gives all elements: 1, 2, . . . , 5, 0.

• Generated by {5}, since 5 + 5 = 10 ≡ 4 mod 6, and so on.

• Not generated by {2}, since 2 + 2 = 4, 4 + 2 = 0, and the subgroup {0, 2, 4} is too small.

Definition A.13 (Cayley Graph). Let G be a group and let S ⊆ G be any subset (not necessarily a
generating set). The Cayley graph Γ(G,S) is a directed graph with one vertex for each element of
G, and a directed edge from g to g · s for every s ∈ S.

If S is symmetric (i.e., s ∈ S ⇒ s−1 ∈ S), then the graph is often treated as undirected. The graph
is:

• Connected if and only if S generates G.

• Disconnected if S generates a proper subgroup of G.

Example A.14 (Cayley Graphs in Z6). Let G = Z6 = {0, 1, 2, 3, 4, 5} under addition mod 6.

• Using S = {1}, the graph connects:

0 → 1 → 2 → 3 → 4 → 5 → 0

forming a connected 6-cycle. Here, S = {1} is a generating set.

• Using S = {2}, we only get:

0 → 2 → 4 → 0, 1 → 3 → 5 → 1

which are two disconnected 3-cycles. This reflects the subgroup {0, 2, 4} and its coset
{1, 3, 5}. The set S = {2} does not generate Z6, and the graph is disconnected.

Group representations and the Discrete Fourier Transform (DFT)
Definition A.15 (Group representation). A representation of a group G on a vector space V is a
homomorphism ρ : G→ GL(V ), where GL(V ) is the group of invertible linear maps on V .

Example A.16 (Discrete Fourier Transform). The discrete Fourier transform (DFT) comes from
the complex representations of the cyclic group Cn. Each element j ∈ Cn is mapped to the complex
number exp

(
2πikjn

)
for integer k ∈ {0, 1, ..., n− 1}, encoding modular structure as rotations in the

complex plane. These complex representations correspond to the DFT. They also induce real-valued
representations as 2D rotation matrices acting on (cos, sin) components.
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A.2.1 Examples: cosets, Cayley graphs, step size d

In the background (Section 3) we gave examples of cosets on C6. In this section we will show
these examples visually to help the reader better understand approximate cosets, generating Cayley
graphs, and labeling the vertices on them with the step size (Definition 4.1). Recall, the step size:
d := ( f

gcd(f,n) )
−1(mod n

gcd(f,n) ), where the modular inverse is used. There are n′ = n
gcd(f,n)

distinct positions reachable in this way, thus we could write: d := ( f
gcd(f,n) )

−1(modn′). Note: d is
the step size in the graph Cn′ .

We consider the cyclic group on 6 elements, C6. In this example, we will show how cosines of
different frequencies encode coset information and how we can construct the corresponding Cayley
graphs from this. Since n = 6, then ⌊ 6

2⌋ = 3, and we have 3 possible frequencies f = 1, 2, 3

for cos
(

2π·f ·a
6

)
across a ∈ C6. These three cosines will each step around C6 in different ways,

depending on f .

If f = 1, our cosine is cos
(
2π·1·a

6

)
. We compute n′ = 6, thus there are 6 elements we can reach in

C6. This gives 6 cosets of size 1:

{0}, {1}, {2}, {3}, {4}, {5}.

If f = 2, our cosine is cos
(
2π·2·a

6

)
. We compute n′ = 3, thus we’re in C3, which has 3 elements.

This gives 3 cosets, each of size 2, corresponding to three different 2-cycles in the original C6 graph,
but where each coset is now a point in our new graph for Cn′ = C3:

{0, 3}, {1, 4}, {2, 5}.

If f = 3, our cosine is cos
(
2π·3·a

6

)
. We compute n′ = 2, thus we’re in C2, which has 2 elements.

This gives 2 cosets, each of size 3, corresponding to two different 3-cycles in the original C6 graph,
but where each coset is now a point in our new graph for Cn′ = C2:

{0, 2, 4}, {1, 3, 5}.

See these cosines in Figure 10.
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Figure 10: Cosine functions centered at 0, with f = 1, f = 2, f = 3. The points are colored based
on their coset membership, i.e. equivalence class.

We can calculate the step size, Definition 4.1, and in all three cases we get d = 1. We will visualize
these sets in a figure coming shortly.

Row 1 shows the original Cayley graph and row 2 shows the new graph after collapsing cosets. Row
1 will be the cyclic group on 6 elements, C6: in other words, we will not collapse the cosets yet
into their equivalence classes. This means we aren’t making the graphs Cn′ and resultantly, we plot
C6 with distances from the vertices to the first vertex a = 0. We also show the cosets, the 3-cycles
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Figure 11: In row 1 we show the Cayley graphs and the distances, which is a bit confusing in panel
3 because we don’t collapse the cosets into their equivalence classes. To make it easier to see the
distances and where they come from, in row 2 we collapse equivalent points (all points in a coset)
into a subcircle. Doing this gives us less points on the graph, giving us Cn′ , which is the graph d is
the step size on. It is now easier to see why the distances to approximate cosets are what they are.
In row 2 panel 3, we chose to put the two darkly colored cosets on the other side of the circle to
emphasize that ReLU is 0 on them.

and 2-cycles. In row 2, we present an equivalent picture that makes things clearer: we plot Cn′ .
Furthermore, the step size d is actually the step size in this cyclic group, Cn′ , making the distances
easier to see compared to looking at C6. By collapsing vertices into their cosets (equivalence classes),
it becomes clear that everything is distance 1 from the yellow coset. We will do this in row 2, giving
C6 corresponding to f = 1, C3 corresponding to f = 2 and C2 corresponding to f = 3. See this in
Figure 11.

In the case of approximate cosets, nothing changes. Calculate n′, calculate d, and step around the
cyclic group Cn′ using d, labeling the distances of elements. To build an approximate coset, for
some multiples k1, k2, take k1 steps backward and k2 steps forward. The path is the approximate
coset—all elements that are “close” on the Cayley graph.

A.2.2 An example for how the network gets the correct answer

Simplified Divide and Conquer. Consider (a+ b) mod 6 = c.

There are two coset types:

mod 2:

x ≡ 0 mod 2 : {0, 2, 4}
x ≡ 1 mod 2 : {1, 3, 5}

mod 3:

20



x ≡ 0 mod 3 : {0, 3}
x ≡ 1 mod 3 : {1, 4}
x ≡ 2 mod 3 : {2, 5}

Let neuron-1 have frequency 3 and activate when the answer c ∈ {0, 2, 4}, i.e. it activates on this
coset of c. It learns:

f1(a, b) = cos(6πan ) + cos( 6πbn )

This neuron activates maximally when both a, b ∈ {0, 2, 4}, guaranteeing c ∈ {0, 2, 4}.

Let neuron-2 have frequency 2 and activate when c ∈ {0, 3} . It learns:

f2(a, b) = cos(4πan ) + cos( 4πbn )

This function activates maximally when a, b ∈ {0, 3}, ensuring c ∈ {0, 3}.

Summing the outputs of these two neurons gives the following logits:

c = 0 → 4
c = 1 → 0
c = 1 → 0
c = 2 → 2
c = 3 → 2
c = 4 → 2
c = 5 → 0

The argmax operation now correctly selects c = 0.

Suppose alternatively, that neuron-3 activates for c ∈ {1, 4} (e.g., by firing when a ∈ {0, 3} and
b ∈ {1, 4}). Then if neuron-1 (firing on c ∈ {0, 2, 4}) and neuron-3 activate simultaneously, the
argmax would select c = 4 due to the higher logit value. This logic continues as you add neurons
corresponding to every coset.

This demonstrates a divide-and-conquer strategy: each neuron rules out a large fraction of incorrect
outputs, analogously to how binary search eliminates half the search space at each step. This example
is with mod 6 and exact cosets. Approximate cosets generalize exact cosets by capturing cases where
neurons learn frequencies that are not divisors of the modulus. Theorem 4.7 shows approximate cosets
are sufficient for networks to attain strong margins, matching the cosets required by the classical
Chinese Remainder Theorem.

As n grows, the number of coset types is logarithmic, e.g.

mod6 → 2 coset types
mod3628800 → 10 coset types

B Proof of Theorem 4.4

For empirical evidence supporting this theorem, see Figure 2 in the main paper. Every point > 0 is in
the approximate coset colored by viridis colors, with strength of viridis decaying as the point gets
farther from the center element of the approximate coset (an element getting closer to where ReLU
won’t activate, means it less bright).

In reality, all sinusoidal functions, i.e. our simple neuron assumption, will satisfy this theorem. The
simplicity of this proof therefore results from the fact that we came up with a very powerful definition
for approximate cosets that actually reflects what neurons in the network are learning. This proof
requires the assumption that neurons learn periodic functions, and this is why the majority of the
paper was dedicated to empirically proving that simple neurons are indeed learned by networks.

Proof. Simple neurons learn approximate cosets. A neuron satisfying the simple neuron model
computes a trigonometric function that has its maxima on the elements of a coset or “approximate
coset”. If g := gcd(f, n) > 1, the neuron has learned the coset of order g containing sA + sB . More
precisely: writing n = n′g and f = f ′g for g = gcd(f, n), we can rewrite 2πf

n = 2πf ′

n′ . So if the
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input neurons are at positions a and b where a ≡ sA (mod n′) and b ≡ sB (mod n′), then the
activation of the neuron has a maximum: cos 2πf(a−sA)

n = cos 2πf(b−sB)
n = 1. The neuron points

most strongly to every logit satisfying c ≡ sA + sB (mod n′), because for all such output logits
cos 2πf(c−sA−sB)

n = 1. We see that the neuron strongly associates elements of Cn that are congruent
modulo n′.

Whether f is a divisor of the order n or not, the neuron will activate on what we defined as an
approximate coset. More precisely, we can ask the following: for a ̸≡ sA (mod n′), which values
of a have the largest activation? We have cos 2πf ′(a−sA)

n′ very close to 1 if and only if f ′(a − sA)
is very close to an integer multiple of n′; that is, say, f ′(a− sA) ≡ m (mod n′) for some integer
m with small absolute value. Letting d denote a modular inverse of f ′ mod n, this is equivalent to
a− sA ≡ dm (mod n′). In other words, by taking a = sA + dm for small integers m, the neuron
will be activated very strongly. Likewise if b = sB + dm′ for some other small integer m′. Now this
neuron will point most strongly to c ≡ sA + sB (mod n′) as discussed above, but if c is a small
number of steps of size d away from sA + sB , it will still have large activation. To summarize: if you
can reach each of a, b, c via a small number of steps of size d from sA, sB , sA + sB , respectively,
then N fires strongly on inputs a, b, and points strongly at c.

After ReLU, it follows that since all neurons output (activate) only on approximate cosets, all neurons
in the following layers activate on linear combinations of approximate cosets (follows from networks
being fully connected, and ReLU only having the potential to make the cosets smaller, i.e. elements
below 0 are cut off).

C Proofs and details for Theorem 4.7 and Corollary 4.8
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Figure 12: Empirically, 1 hidden layer, 1 trainable embedding matrix, networks have margins grow
like O(log(n)) as more frequencies are learned. In Corollary 4.8 we prove it. Note: 1 std dev error
bars are on (x=1, y=2.82); they are just small, ranging from 2.8-2.84. This plot is made by computing
the average margin of each network across the full dataset, given the network had learned x =#
unique frequencies. The plot shows, for networks that learned the same number of frequencies, the
average average margin and the 1 std dev error bars of this data.

Assume that training results in neurons learning the simple neuron model.
Theorem C.1. Suppose the integer number of distinct frequencies m and reals 0 < ρ, δ < 1 satisfy
the inequality

m >
2 loge n− 2 loge(2− 2ρ)

loge(π/δ)− 1
.

Then, with probability at least ρ, for all k ̸= i+ j mod n, we have m′ − hm(k) > δm′.

Proof. Each simple neuron maximally activates a single output, namely sA + sB , (or possibly
maximally activates on a coset of outputs containing sA + sB). However, if we combine the
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contributions from all simple neurons in a single cluster (i.e. all with the same frequency f ), we
observe that the activation level can be maximized at any desired output; more precisely, the activation
level at output k given inputs i, j will be of the form A cos (2π (f(k − i− j)/n)). Note this has
been observed experimentally e.g. see Fig 26(a) and Fig. 44, and has also been previously noticed in
the literature: see e.g. the last equation of Section 3 in [10]. In fact, the analysis below still works
even if i+ j is only somewhat close to the maximal activation of the cluster (see Figure 44), though
we assume the maximum is at i + j for simplicity. However, even in this case there will be many
output logits that all activate nearly as strongly on the correct answer. To isolate a single answer, we
use a superposition of sine waves of multiple frequencies; we observe experimentally in Figure 44
that this process makes the correct answer stand out from the rest.

In light of the above and Section 4.1, if we fix inputs i, j ∈ Cn then combining the contributions
from all clusters (and assuming for the heuristic that the contributions from all clusters have the same
amplitude), the sum

hm(k) :=

m∑
ℓ=1

cos

(
2πfℓ
n

(k − i− j)

)
gives a model for the activation energy at output logit k. If k = i + j, then hm(k) takes on the
maximum value m. If we want to guarantee the neural net will consistently select k, we need to show
that hm(k) is significantly less than m for all other values of k. We’ll assume a random model where
m frequencies f1, . . . , fm are chosen uniformly at random from 1, 2, . . . , n − 1. Fix a parameter
0 < δ < 1; we will compute an approximation for the probability that m − hm(k) > δm for all
k ̸= i+ j (mod m).

Let {x} := x− ⌊x+ 1
2⌋ be the signed distance to the nearest integer and set d := k − i− j. Then

using a Taylor expansion,

m− hm(k) = m−
m∑
ℓ=1

cos

(
2π

{
fℓd

n

})
≈ m−

m∑
ℓ=1

(
1− 1

2

(
2π

{
fℓd

n

})2
)

= 2π2
m∑
ℓ=1

{
fℓd

n

}2

.

(Note that the Taylor approximation is quite bad when fℓd/n is far from an integer, and if k is close
to an integer then {k} is close to 0. It is reasonable to expect that m − hm(k) will be minimized
when the values fℓd/n are all close to integers, in which case the approximation is more accurate.

Thus the condition m − hm(k) > δm is related to the following condition: defining the vector
v := 1

n (f1, . . . , fm) ∈ [0, 1]m, we need that for all 1 ≤ d ≤ n− 1, the point dv has distance at least√
δm/2π2 away from any point in Zm. Note that nv is an integer point, so (n− d)v is always the

same distance from an integer point as dv is. Thus it suffices to require v to be at least 1
d

√
δm/2π2

away from a point in 1
dZ

m for d = 1, . . . , ⌊n/2⌋.

We compute an upper bound on the volume of the region to be avoided: that is, the set of all points in
[0, 1]m within 1

d

√
δm/2π2 of a point of 1

dZ
m for some d = 1, . . . , n/2. For each d, there are dm

points in this region, and each has a ball of radius 1
d

√
δm/2π2 around it; the total volume of the

region to be avoided is therefore bounded above by n
2Γ(m/2+1)

(
δm
2π

)m/2
. Thus the probability that

m− hm(k) > δm is approximately equal to 1 minus this value.

For a given n, let’s compute the value of m that makes this probability greater than, say, ρ.

1− n

2Γ(m/2 + 1)

(
δm

2π

)m/2

> ρ ⇐⇒ Γ(m/2 + 1)

(
2π

δm

)m/2

>
n

2− 2ρ
.

Taking a natural logarithm, applying Stirling’s approximation loge Γ(x+ 1) ≈ x loge(x)− x, and
solving for m,

loge Γ(m/2 + 1) +
m

2
loge

(
2π

δm

)
> loge n− loge(2− 2ρ)

m >
2 loge n− 2 loge(2− 2ρ)

loge(π/δ)− 1
.

Thus if the number of neuron clusters m is greater than this expression, then with probability at least
ρ, the separation m− hm(k) will be at least δm. We see that the number grows linearly in loge n.
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Choosing the parameters ρ and δ can significantly change the precise value of m needed, and it’s not
clear which values most accurately model the true behavior of the neural net.

As an example, note that if we take δ = π/e3 ≈ 0.1564, and ρ = 1
2 , then this whole expression

simplifies to just m > loge n. Thus, if the neural net uses m = loge n neuron clusters, then this
heuristic predicts that it will guarantee a separation m− hm(k) > 0.15m for all k ̸= i+ j with 50%
certainty. For n = 89, 91 we have loge n ≈ 4.5, which agrees with the number of clusters found in
Figures 40 and 3. This process can be interpreted as the approximate CRT; see Remark 4.5 for the
analogy.

C.1 Proof of Corollary 4.8

Recall h is the model network evaluated at input i, j, hm(k) is the value of the output distribution at
k with maximum value hm(i+ j) = m and m is the number of distinct frequencies simple neurons
of the network.

Corollary C.2 (Logarithmic number of frequencies suffices for a non-trivial margin). Let 0 < δ < 1
and 0 < ρ < 1 and define

C(δ, ρ) =
2

log
(
π/δ

)
− 1

(
1− 1

2 loge(2− 2ρ)
)

(> 0).

If the number m of simple neurons of the network satisfies

m ≥ C(δ, ρ) log n

then with probability at least ρ

hm(i+ j)− hm(k) > δm,

i.e. the logit margin is Ω(log n).

Proof. Theorem 4.7 states that the inequality

hm(i+ j)− hm(k) > δm (†)

holds for all k ̸= i+ j with probability at least ρ provided

m >
2 loge n− 2 loge(2− 2ρ)

loge(π/δ)− 1
. (‡)

Choose the constant m so m ≥ C(δ, ρ) log n and inequality (‡) both hold.

Finally, the guaranteed margin δm ≥ δC(δ, ρ) log n is Ω(log n), which is strictly larger than the
O(1) margin attained with only a constant number of frequencies (“minimal margin”).

D Embeddings contain projections of representations, not representations

Chughtai et al. [8] discover representation values in the embedding matrix. The first step in their GCR
algorithm is not true in general. They state, “Translates one-hot a, b to representation matrices”. We
provide evidence against this by training with a mini-batch size equal to the modulus n and training
with a full batch size. See the difference in the distribution of the resulting embedding matrices in Fig.
13. Furthermore, neurons in a cluster of frequency f have different phase shifts, and 2× 2 rotation
matrices in the embeddings doesn’t suffice to explain this behaviour.

Instead, the values found in the embedding matrix may encode scaled projections of a 2× 2 rotation
matrix onto a one dimensional subspace. Note that such structure is implied by the hypothesis that
neural networks trained on group tasks learn representations, but is more general because of the
existence of both amplitude and phase shifts. To get an exact equivalence, we note that this neuron
structure can be obtained by an arbitrary scaled projection of representations. Suppose

ρ(k) =

(
cos(2πfk/n) − sin(2πfk/n)
sin(2πfk/n) cos(2πfk/n)

)
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is a 2 × 2 matrix representation of Cn. If we apply ρ(k) to the vector (1, 0) and then take the
dot product with (α cos(2πfsa/n),−α sin(2πfsa/n)) (which is the same as projecting onto the
subspace spanned by this vector and scaling by α) we obtain exactly

α cos 2πfk
n cos 2πfsA

n + α sin 2πfk
n sin 2πfsA

n = α cos 2πf(k−sA)
n = αw(Ak, N).

Thus we have explained the phase shifts of different neurons in a cluster, and shown that it’s not
just the components of ρ(k) that appear in the embeddings, but rather scaled projections of the
representations onto arbitrary 1-d subspaces. In our model of simple neurons we ignore the amplitude
to make the analysis simpler, but in general it does need to be included. See Fig 28 for example
where the amplitudes are greater than 2.

Inspecting the distribution of embedding matrix weights. Contrary to findings by [4, 8], we
did not observe the 2×2 representation matrix values (used to encode rotations) in our embedding
matrices outside their reported training conditions. As shown in Fig. 13, the distribution of embedding
weights varies significantly between small and full batch size and the tails of the distributions are
quite different. In the case of small batch size, numbers can be found in the range (-2, 2), whereas
large batch size contains numbers between (-1.5, 1.5). Note that we choose to remove weights that
are between (-0.025, 0.025) to make it easier to see the tails of the distribution; this was done due to
2.4million weights occurring within this range when training with the small batch size. Specifically,
in the small batch size regime, around 5% of the weights fell outside the interval [−1, 1], including
some weights larger than 2. These values are not consistent with rotation matrix entries. Other than
this, we could not identify any significant differences in the core structures of what the neural net
learns between the batch sizes.

Combining these experimental findings (Fig. 13) with this model (see D) explains that the embedding
matrices may contain scaled projections of representations. This explains the different shifts in the
periodic functions that can be seen in Figs 26(a), 26(b) and 24, which GCR [8] fails to explain.
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Figure 13: The histograms of embedding weight magnitudes found across 10k random seeds for mod
91 provide evidence against rotation matrices. With batch-size 91 about 5% of the weights are > 1 or
< -1, whereas when the batch size is the training set size fewer than 0.5% of the weights are > 1 or <
-1. The bin with 0 was removed for batch size 91 due to so many dead weights obfuscating the plot.
The value was 2.4 mil, implying that small batches find sparse embeddings with larger magnitude
weights.

E Experimental Details for Main Results

Unless stated otherwise, we use a 90%/10% train-test split. All models we train are optimized with
Adam [41].
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The only plot with error bars in the main text is Figure 3, which uses 1 standard deviation (std dev)
error bars. If a plot has error bars, they are 1 std dev.

E.1 Figure 1

The point of this figure is to show the reader that qualitatively, neurons are learning sinusoidal
functions that are identical after normalization, even when secondary frequencies exist in the Discrete
Fourier Transforms. Furthermore, it serves to immediately show the reader that the “remapping:
normalizing to frequency 1” definition makes a sinusoidal function have frequency 1. The figure
is very easy to generate, just grab arbitrary neurons, plot them, and plot their remapped version.
The neuron from the MLP model comes from an MLP with frequency 14. The MLP is one of the
MLPs trained on mod 59 for Figure 4. The pizza transformer is model A (model_p99zdpze5l.pt
checkpoint) and the clock transformer is model B (model_l8k1hzciux.pt checkpoint) from Zhong
et al. [5]’s Github repository.

E.2 Figure 2

This plot shows the simple neuron model, approximate cosets, and Cayley graphs that neurons
understand distances on. The point of this figure is to familiarize the reader with our definitions as
they are essential to understanding how we derive the abstract aCRT. The code to generate this plot is
included in the supplementary materials "make_figure_1_toy_approx_cosets.py".

E.3 Scaling experiment in Figure 3

We report 1 std dev error bars here, as we do on all our plots, though since our arguments are
probabilistic in nature, our growth rate is supposed to be in expectation. We just added the 1 std
dev to show the std dev if a normal distribution was fit with the same average. Indeed, the standard
deviations are low. For the transformer models (clock and pizza), we take the exact model classes
from [5]’s Github repository., and translate them into Jax. For clocks, the attention coefficient is
set to 1.0 and for pizzas, the attention coefficient is set to 0.0. The d_model is always taken to be
the smallest power of 2 that is larger than n, because the architecture requires it. The number of
heads is always 4, and the d_head is such that 4 times that number is equal to the d_model. For the
hyperparameters used when training the transformers, see Tables 1, 2 3.

Number Learning Rate Batch Size Weight Decay Training Set Size
7 0.001 7 0.0001 49

17 0.001 34 0.0001 289
27 0.001 100 0.0001 729
59 0.001 200 0.0001 1770
97 0.001 200 0.0001 4850

113 0.001 500 0.0001 6780
303 0.0002 909 0.00002 45450
499 0.0002 1497 0.00002 124750
977 0.0001 4885 0.00001 488500
1977 0.000035 39540 0.0000075 2965500
4013 0.00004 16052 0.000006 3691960

Table 1: Experimental results with Adam optimizer across varying parameters for both pizza and
clock.

Number Learning Rate Batch Size Weight Decay Training Set Size
64 0.001 64 0.0001 49

128 0.001 128 0.0001 289
256 0.001 256 0.0001 729
310 0.001 310 0.0001 1770
720 0.0001 720 0.00001 309600

Table 2: Experimental results with Adam optimizer across varying parameters in pizzas.
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Number Learning Rate Batch Size Weight Decay Training Set Size
64 0.001 64 0.0001 49

128 0.001 128 0.0001 289
256 0.001 256 0.0001 729
310 0.001 310 0.0001 1770
720 0.0001 720 0.00001 309600

Table 3: Experimental results with Adam optimizer across varying parameters in clocks.

For the hyperparameters used when training the MLP, see Table 4. The number of neurons is 8 times
the moduli n.

Number Learning Rate Batch Size Weight Decay Training Set Size
3 0.01 3 0.005 9
5 0.01 5 0.005 25
7 0.01 7 0.005 49

13 0.009 13 0.004 169
17 0.009 1 0.004 169
59 0.008 59 0.001 1770
64 0.005 64 0.0005 2048

113 0.004 113 0.0003 6780
128 0.002 128 0.0002 13568
193 0.003 193 0.0001 18914
256 0.001 256 0.0001 34560
310 0.0009 310 0.00007 51150
433 0.0006 433 0.00005 86600
499 0.0005 499 0.00003 124750
720 0.0004 720 0.000015 259200
757 0.0003 757 0.0000085 280090
997 0.0003 997 0.0000015 498500
1409 0.00028 1409 0.0000009 986300
1999 0.00024 1999 0.0000008 2398800
2999 0.00018 2999 0.0000007 4798400
4999 0.0001 4999 0.0000005 14997000

Table 4: Experimental results with Adam optimizer across varying parameters for the MLP in Figure
3.

E.4 Figure 4

We trained one hot encoded 1,2,3,4 hidden layer MLPs and also trained a trainable embed-
ding matrix 1 hidden layer MLP over moduli 59-66. The classes for these models are in the
“mlp_models_multilayer.py” file.

Table 5: Hyperparameter configurations for one-hot models with varying hidden layers and embed-
ding.

Architecture Hidden Layers # Neurons L2 Regularization Learning Rate Train Size

One-hot 1 1024 1× 10−5 0.00075 90%
One-hot 2 1024 1× 10−5 0.00075 90%
One-hot 3 1024 1× 10−5 0.00075 90%
One-hot 4 1024 1× 10−5 0.00075 90%
Embedding 1 1024 1× 10−5 0.00075 90%
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E.5 Figure 5

We trained 500 models of each architecture with 1-hidden layer, and each combination of number
of neurons in [512, 2048, 8196, 16392] on mod 59. The models are only saved if final accuracy
is ≥ 99.9999. The neurons with a maximum preactivation below 0.01 across all of the data were
deleted and considered “dead” neurons. We find that as the model width is increased, a single sine
wave better and better approximates the preactivations of the neurons.

The classes for the architectures are in the “mlp_models_multilayer.py”,
“transformer_train_get_data_r2_heatmap_attn=0_top-k_layer_all.py” and
“transformer_train_get_data_r2_heatmap_attn=1_top-k_layer_all.py”. files. See Table E.5
for precise experimental details.

Table 6: Hyperparameter configurations for Figure 5 1-embed, 1-hidden-layer models with varying
hidden unit sizes and architectures.

Architecture Hidden Layers # Neurons L2 Regularization Learning Rate Train Size

MLP (baseline)
Embed=128, MLP 1 512 1× 10−5 0.00075 90%
Embed=128, MLP 1 2048 1× 10−5 0.00075 90%
Embed=128, MLP 1 8192 1× 10−5 0.00075 90%
Embed=128, MLP 1 16384 1× 10−5 0.00075 90%

“Pizza”
Embed=128, Pizza 1 512 1× 10−4 0.00050 90%
Embed=128, Pizza 1 2048 1× 10−4 0.00050 90%
Embed=128, Pizza 1 8192 1× 10−4 0.00050 90%
Embed=128, Pizza 1 16384 1× 10−4 0.00050 90%

“Clock”
Embed=128, Clock 1 512 1× 10−4 0.00050 90%
Embed=128, Clock 1 2048 1× 10−4 0.00050 90%
Embed=128, Clock 1 8192 1× 10−4 0.00050 90%
Embed=128, Clock 1 16384 1× 10−4 0.00050 90%

E.6 Figure 6

There are 10 models trained with 10 different random seeds (different random init and different
random train / test splits) for every (learning rate, weight decay) combination. This is the most pes-
simistic case for our green checkmark vs purple dot scenario because if a single model doesn’t have
100% accuracy after ablating the neurons for our fits, then it would receive a purple dot (assuming
accuracy of the trained model with no ablations was 100%). The learning rates and weight decays
are:
learning_rates = [0.0025, 0.001, 0.00075, 0.0005, 0.00025, 0.0001, 0.000075, 0.00005, 0.000025,
0.00001]
weight_decays = [ 0.001, 0.00075, 0.0005, 0.00025, 0.0001, 0.000075, 0.00005, 0.000025, 0.00001,
0.0000075, 0.000005, 0.0000025, 0.000001, 0.00000075, 0.0000005, 0.00000025, 0.0000001,
0.000000075, 0.00000005, 0.00000001 ]
There are 1024 neurons in every layer of the models. The embedding matrix has 128 features.

E.7 Figure 7

There are 10 models trained with 10 different random seeds (different random init and different
random train / test splits) for every (learning rate, weight decay) combination. This is the most pes-
simistic case for our green checkmark vs purple dot scenario because if a single model doesn’t have
100% accuracy after ablating the neurons for our fits, then it would receive a purple dot (assuming
accuracy of the trained model with no ablations was 100%). The learning rates and weight decays
are:
learning_rates = [0.0025, 0.001, 0.00075, 0.0005, 0.00025, 0.0001, 0.000075, 0.00005, 0.000025,
0.00001]
weight_decays = [ 0.001, 0.00075, 0.0005, 0.00025, 0.0001, 0.000075, 0.00005, 0.000025, 0.00001,
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0.0000075, 0.000005, 0.0000025, 0.000001, 0.00000075, 0.0000005, 0.00000025, 0.0000001,
0.000000075, 0.00000005, 0.00000001 ].
The embedding matrix has 128 features. There are 1024 neurons in every layer.

E.8 Figure 8

There are 10 models trained with 10 different random seeds (different random init and different
random train / test splits) for every (learning rate, weight decay) combination. This is the most pes-
simistic case for our green checkmark vs purple dot scenario because if a single model doesn’t have
100% accuracy after ablating the neurons for our fits, then it would receive a purple dot (assuming
accuracy of the trained model with no ablations was 100%). The learning rates and weight decays
are:
learning_rates = [0.0025, 0.001, 0.00075, 0.0005, 0.00025, 0.0001, 0.000075, 0.00005, 0.000025,
0.00001]
weight_decays = [ 0.001, 0.00075, 0.0005, 0.00025, 0.0001, 0.000075, 0.00005, 0.000025, 0.00001,
0.0000075, 0.000005, 0.0000025, 0.000001, 0.00000075, 0.0000005, 0.00000025, 0.0000001,
0.000000075, 0.00000005, 0.00000001 ]
2048 neurons in each layer, 2 layers.

E.9 Figure 9

We train 5000 models on the modulo-66 task, varying the network depth between one and four hidden
layers. We use a learning rate of 7.5× 10−4 and L2 weight decay of 1× 10−4.

F Additional Experimental Results

This appendix section reports further experiments that, while non-essential to the main text, provide
additional context.

Note: we call the neurons learning non-integer frequencies over 2, e.g. f = 1
2 after remapping

“fine-tuning” neurons.

F.1 Principal component analyses (PCA) of embeddings

Below, we answer all the open problems of Zhong et al. [5] involving non-circular embeddings. The
idea of doing the Discrete Fourier Transform (DFT) on the embedding PCA’s, gives that they are
caused by two different frequency sines: one coming from each principle component (PC).

We replicate the results of [5] and add an additional Fourier transform plot next to their PCA plots,
which makes it obvious that the principal components come from clusters with the same frequency.
It can be seen that all non-circular embeddings and Lissajous embeddings are caused by the two
principal components coming from different cosets. This means that we answer all of the open
problems of [5], involving non-circular embeddings.

To make this easy to understand, please see Fig. 14, showing this random seed has four clusters, with
key frequencies 35, 25, 8, 42. We now know what frequencies to look for in the DFT plots and thus,
can figure out which PCs come from which frequency clusters. Doing so reveals that all PCs where
both PCs come from the same frequency cluster are circular. Conversely, all PCs where the PCs come
from different clusters are non-circular Lissajous curves.
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Figure 14: DFT of neurons in each of the four clusters in this random seed. Cluster 0 has frequency
35, cluster 1 has frequency 25, cluster 2 has frequency 8, and cluster 3 is a fine-tuning cluster with
frequencies at multiples of 7, 14, 21, 28, 35, and 42.
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(a) (a) PC1 vs PC2 Scatter Plot (b) (b) PC1 vs PC2 DFT

Figure 15: PCA and DFT for PC1 vs PC2 showing a circular embedding clustered into cosets. The x
and y axis of the left plot are the PC1 and PC2 values for the concatenated embedding matrix for
each point (a, b) mod 91 ∈ (0, 0), (1, 1), ..., (90, 90). Note that this covers all output classes of the
neural network exactly once. Also note that the embedding here is showing 13 cosets with 7 points
in them each, i.e. all 13 cosets (a+ b) mod 13 = i, i ∈ {0, . . . , 12} are in the plot. Both PC1 and
PC2 have f = 35 and since gcd(35, 91) = 7, a prime factor, it’s possible to learn the exact cosets.

(a) PC1 vs PC3 Scatter Plot (b) PC1 vs PC3 DFT

Figure 16: PCA and DFT for PC1 (f = 35) vs PC3 (f = 8), a non-circular embedding.

(a) PC1 vs PC4 Scatter Plot (b) PC1 vs PC4 DFT

Figure 17: PCA and DFT for PC1 (f = 35) vs PC4 (f = 8), a non-circular embedding.

31



(a) PC2 vs PC3 Scatter Plot (b) PC2 vs PC3 DFT

Figure 18: PCA and DFT for PC2 (f = 35) vs PC3 (f = 8), a non-circular embedding.

(a) PC3 vs PC4 Scatter Plot (b) PC3 vs PC4 DFT

Figure 19: PCA and DFT for PC3 (f = 8) vs PC4 (f = 8), which is a circular embedding because
both PC’s come from the same frequency cluster.

(a) PC3 vs PC5 Scatter Plot (b) PC3 vs PC5 DFT

Figure 20: PCA and DFT for PC3 (f = 8) vs PC5 (f = 25), a non-circular embedding.
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(a) PC3 vs PC6 Scatter Plot (b) PC3 vs PC6 DFT

Figure 21: PCA and DFT for PC3 (f = 8) vs PC6 (f = 25), a non-circular embedding.

(a) PC4 vs PC5 Scatter Plot (b) PC4 vs PC5 DFT

Figure 22: PCA and DFT for PC4 (f = 8) vs PC5 (f = 25), a non-circular embedding.

(a) PC5 vs PC6 Scatter Plot (b) PC5 vs PC6 DFT

Figure 23: PCA and DFT for PC4 (f = 25) vs PC5 (f = 25), a circular embedding as both PCs
come from the same frequency cluster.
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F.2 More examples of simple neurons

See Fig. 24 for a cluster of simple neurons. The neuron remapping (via group isomorphism) can be
seen in Fig. 25.

Figure 24: an example cluster of 14 simple neurons of frequency 21.

Figure 25: A cluster of simple neurons (from Fig. 24) transformed by group isomorphism so that all
neurons have period 1.

F.3 Studying phase shifts in simple neurons

Here we show how the phases of different neurons in a cluster overlap to give some more information
about how clusters of neurons function. See Fig 26(a) for the histograms of the phases of the
preactivations of the neurons in a cluster.
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(a) Histogram of preactivations for two neurons in a fine-tuning cluster. The x-axis is the input value into the
network for a (left) and b (right).

(b) 2D scatter plot created by grouping the phases for each neurons a and b preactivations into a pair (phase-a,
phase-b) and plotting the points for all neurons in the cluster in the 2D plane as a black point. In this case, the
cluster has 14 neurons of frequency 21.

Figure 26: Histogram of phases (top) and 2D scatter plot of phases (bottom) for a simple neuron
cluster with frequency 21.

For a higher resolution view of what’s going on, see a 2d scatter plot created by grouping the phases
for each neuron’s a and b preactivations into a pair (phase-a, phase-b) and plotting the points for all
neurons in the cluster in the 2d plane as a black point, see Fig 26(b). It’s worth noting that the phases
are nice and spread out uniformly like in Fig 26(b) only about half the time. In the other cases

We aren’t sure what causes the phases to sometimes align in a nice grid, vs a much more “random”
looking configuration as seen in Figure 27. Understanding this is likely essential for proving a
realistic bound for the number of neurons needed with the same frequency. We leave this for future
work.
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Figure 27: Here’s an example where the phases aren’t in a nice grid like they were in Figure 26.

F.4 Studying fine-tuning neurons

Fine-tuning neurons are composed of linear combinations of group representations, in contrast
with simple neurons which are composed by one group representation. Additionally, fine-tuning
neurons are composed of group representations for what are called harmonic frequencies of the main
frequency, for f = 7 these would be the multiples of 7, e.g. {14, 21, 28, 35, 42, ...}.
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Figure 28: Comparing a simple neuron and fine-tuning neuron before and after transformation by a
group isomorphism. The fine-tuning neuron has its DFT concentrating strongest on (27, 35, 19).

We train a neural network with random seed 133 and discover a cluster of fine-tuning neurons. The
preactivations for two of these neurons are shown in Fig. 29 and the DFT’s for these two neurons are
shown in Fig. 30.

We show that these neurons can be generated by linear combinations of representations in Fig. 31.
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Figure 29: This shows a cluster of fine-tuning neurons and shows the preactivations of the first two
neurons in the cluster. The x-axis is the input value into the network for a on the left, and the input
value for b on the right.

Figure 30: This shows the DFT’s of the preactivations of the fine-tuning neurons seen in Fig. 29.
The x-axis is the frequency (from 0-90 because this is (a+ b) mod 91. The y-axis shows that the
representations contributing are 42, 35, 28, 21, 14, 7 in descending order. Note the DFT is symmetric
about its midpoint so values after 45 contain the same information as the values up to 45.
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Figure 31: Constructing a fine-tuning neuron. This diagram illustrates the step-by-step process of
constructing a fine-tuning neuron, highlighting that it is a linear combination of representations.

F.5 Histograms of frequency learned counts for simple and fine-tuning neurons

Note that the next two histograms are created by recording frequencies with weights in the DFT in the
range of (7.5, 30). This is not a sufficient way to always detect fine tuning neurons, and sometimes it
will include simple neurons in its counts, however this is much more rare. If you consider the ability
for neurons with preactivations of specific frequencies to contaminate other neurons frequencies
slightly (because they may modify values in the embedding matrix by a small amount), you will
see where this counting method can go awry. It is however the case that usually, the contamination
coming from a different cluster of simple neurons is below 7.5. Thus, these plots should not be
considered “accurate” and just approximations.

These plots are still useful to show the relative frequency of simple neurons vs. fine tuning neurons.
The histogram of Frequencies found Fig. 32(a) found a uniform distribution with each frequency
showing up about 10k times. Removing the vast majority of contamination by filtering with 7.5
(usually the DFT magnitudes on other frequencies are 0 and if they aren’t near 0 then they are
less than 4 and there is a simple neuron making use of that frequency in a different cluster (i.e. a
simple neuron has one big spike with magnitude over 60 on that frequency). This gives us about
2200 fine-tuning neurons found with each frequency, including overcounting because fine-tuning
neurons make use of linear combinations of representations and thus their DFT usually has three or
more values in the range (7.5, 30). Thus the histograms of frequencies associated with fine-tuning
neurons are upper bounds on the number of clusters that are identified across 100k random seeds to
be fine-tuning neurons. Around 25 percent of runs have fine-tuning neurons in them, but we aren’t
sure how hyperparameter settings affect this.
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(a)

(b)

Figure 32: (a) Histograms of frequencies found across 100k random seeds in MLPs mod 91 (factors
7 and 13) and mod 89 (prime) are both uniform. The fact both prime and composite numbers give
uniform distributions is strong evidence that networks are learning the same thing in both problem
settings. In fact, this observation – that networks do not prefer prime factor frequencies (exact cosets)
– is what led us to define approximate cosets and identify the abstract approximate CRT algorithm,
which is learned with both prime and composite moduli. (b) Conditional histograms of frequencies
over 100k seeds, both mod 91. Left: if frequency 7 is found then neurons with f = 14 or f = 43 are
less likely (note that 2 · 43 ≡ −7 (mod 91)). Right: if frequency 2 is present then frequencies 1 and
4 are less likely. The conditional histograms show that networks try to avoid learning frequencies
with additive and subtractive relations. This is for a similar reason to why the CRT does not work
unless all factors of n are coprime – they would intersect and boost the value of incorrect logits,
substantially increasing the loss.
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Figure 33: Histogram of frequencies (0–45) associated with fine-tuning neurons over 100k random
seeds for modulus91. Note that frequencies 22 and 44 are least common, and 13, 26, 39 also appear
less frequently, giving a case where the neural net is less likely to find some prime factors. It makes
sense that neural networks won’t always discover the prime factors or they’d be solving prime
factorization.
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Figure 34: Histogram of frequencies (0–44) associated with fine-tuning neurons over 100k random
seeds for modulus 89. Note that frequencies 23 and 43 are the least common.
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F.6 Fine-tuning neurons like additive and subtractive relations

(a) Fine-tuning Neuron Additive Relations given 15 is a frequency; (a+ b) mod 91.

(b) Fine-tuning Neuron Additive Relations given 7 is a frequency; (a+ b) mod 91.

Figure 35: Fine-tuning neuron additive relations for two different cases. If a neuron with frequency
15 is learned, frequencies that are multiples of 5 are more likely to be found. The same applies to 7,
which is a prime factor of 91, the moduli.

F.7 Histograms of counts of frequencies being learned in mod 59 and mod 66 across varying
depths in the pizza and clock transformers as well as MLPs (with 1 embedding layer)

Here we show histograms counting the frequencies learned and the lengths of the average number
of neurons involved in a frequency cluster given frequency f was learned over 500 seeds for each
architecture.
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Figure 36: (a+ b mod 59): The first three rows show the histograms of learned frequencies and the
bottom three rows show histograms of the average length of a cluster, i.e. number of neurons in the
cluster.

We check the goodness of fit as a function of frequency, and find that on mod 66 with prime factors 2,
3 and 11, the R2 value is much closer to 1.0 for MLPs when frequencies 22 or 33 are learned (2× 11)
and (3× 11). Indeed, if the network learns 22 or 33, we see that the length (the number of neurons
with that frequency) is substantially lower than if it learns other frequencies. The R2 is also higher for
MLPs if it learns (2× 6), however it’s not as high in the previous cases, and doesn’t have the change
in the number of neurons that the other two cases have. Overall, this makes sense as in this situation,
it can learn the exact cosets instead of needing to learn approximate cosets. Investigation into which
frequencies require less neurons is an interesting subject for future study; why is it not all cosets?

Some cosets are more likely to be learned than others.
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Figure 37: (a+ b mod 66): The first three rows show the histograms of learned frequencies and the
bottom three rows show histograms of the average length of a cluster, i.e. number of neurons in the
cluster; note that learning precise cosets results in less neurons being required.

F.8 Noise and ablation studies

In this section, we take the clusters from random seed 133 and we randomly inject multiplicative
scaling noise into every weight attached to neurons in the cluster. We do this by multiplying the
weight by es, s ∼ N (0, σ), for various σ on the x-axis in Fig. 38(b)
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(a) Multiplicative Noise injected into every weight of every neuron in a cluster from a normal distribution with std
dev σ.

(b) Effect of Multiplicative Noise on the loss function.

Figure 38: Neural network robustness to injected multiplicative noise. The loss remains stable even
with a std dev of 0.225. Note cluster 3 and 4 are composed of four fine tuning neurons each. Every
other cluster is composed of simple neurons.
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(a) Ablation study showing the impact on the loss function when removing neurons from specific clusters.

(b) Impact of neuron removal on accuracy.

Figure 39: Ablation study results. Loss and accuracy metrics highlight the impact of randomly
removing neurons “number of ablations” number of neurons from a cluster. Note cluster 3 and 4 are
composed of four fine tuning neurons each and deletion of every neuron in the cluster doesn’t affect
the accuracy by much. Every other cluster is composed of simple neurons.
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F.9 Number of frequencies

F.9.1 More overparameterized means less frequencies

Scaling the number of neurons in the layer achieves experimental results within O(log(n)).

Experiments in scaling the number of neurons show that the average number of frequencies found
can be shifted based on hyperparameters, but this is something we don’t fully understand at this point
in time, but as our results in the main body show–it is still logarithmic. See Fig. 40.

Figure 40: This figure shows that the scaling is always O(log(n)), even as the number of neurons is
increased from 128, to 512, to 2048, to 8196. The first column is batch_size = 91, and the second
column is batch_size = 5096, i.e., the entire training set size. All results are upper bounded by
O(log(n)).

F.9.2 Adding depth also means less frequencies are learned

In Figure 41 we see that adding layers results in fewer frequencies being learned.
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Figure 41: Adding depth causes the network to learn slightly less frequencies.

Indeed, instead of just looking at this for one hyperparameter combination, we can check it out for
many like we did in figures in the main paper (see Figure 42).

F.9.3 Deep networks learn error correcting codes: empirical results

Deep networks learn error correcting codes. This discussion was omitted from the main paper’s
Discussion due to space constraints, but we believe it’s interesting.

Our result finding that in deep networks, layers after 1 keep around a % of first-order sinusoids (Figure
8) can be interpreted as the network constructing an error correcting code. We see in Figure 42 that
deeper networks learn less frequencies. While this is true, they simultaneously achieve lower cross
entropy loss (and better margins) with less frequencies than shallower networks 43. This is because
the first order (simple) neurons in layer 2, compute the exact same coset computation as simple
neurons performed in layer 1. Resultantly, the second order cosine neurons that store the correct
answer as cos( 2π·f(a+b−c)

n ), which is maximized at the correct answer (a+b) mod n = c, receive an
additional linear combination of Theorem 4.7. This boosts the height of the correct answer (linearly
in the number of layers) as a function of number of distinct frequencies. Furthermore, it boosts the
height of incorrect logits at most O(log(n)). After softmax, the exponential difference between the
correct logit and incorrect logits is thus amplified, and thus the softmax (cross entropy loss) is much
lower. With 1 hidden layer it was O(n−Ω(1)). In general, with L the number of layers, we conjecture
that after softmax, using O(log(n)) distinct frequencies will give closer to O(n−Ω(L)) as the height
of incorrect logits. This results from the network redundantly doing the same computation to “error
correct” and thus reduce errors.
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Layer-wise average frequency heat-maps (1 → 4 layers)
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Figure 42: The number of frequencies found in the network decays as we add layers across almost all
hyperparameter combinations.
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Figure 43: The loss and margins improve as layers are added, yet figure 42 shows that less frequencies
are learned. This can be explained by the presence of first order sinusoidal neurons in layers after
layer 1.

F.10 Qualitative: equivariance of the cluster contributions to logits

Here you can see that the clusters of neurons are approximately equivariant to shifts in the inputs, i.e.
the cosets shift with the inputs. We show that if you shift (a,b) both by 2, the clusters shift by 4.
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Figure 44: Clusters of neurons are approximately equivariant to shifts in the inputs, meaning coset
clusters shift with the inputs. This suggests the network has learned cosets that it uses to intersect, via
linear combinations, to perform the approximate CRT. This example demonstrates that the network
did not learn a global minimum—e.g., Cluster 3 has only four neurons, limiting its expressivity and
equivariance. Cluster frequencies: Cluster 0 (35, coset), Cluster 1 (25, approximate coset), Cluster 2
(8, approximate coset), and Cluster 3 (42, coset). This example uses the same random seed as the
ablation study (Fig. 39(a)), where Cluster 0 is the most active. This data is from an MLP.
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F.10.1 Pizza model

We take model A, specifically model_p99zdpze5l.pt, from [5] and make Figure 45, which shows
that pizzas also output on approximate cosets and perform an approximate CRT. Note for example,
that the output logits for the cluster with max freq = 15: has maximum activation along an approximate
coset 59

15 = 3.93, and if the neuron activates strongly at a then it also activates strongly at a± 4.

Figure 45: This figure shows three neurons and their DFT’s, each from one of three clusters in model
A (a pizza-transformer) from [5] for these experiments. Note that the pizza neurons (and clusters) are
also implementing the abstract approximate Chinese Remainder Theorem algorithm, despite their
low level differences with clocks.

Furthermore, consider that remapping the pizza neurons makes their behavior look almost identical
to simple neurons when they are remapped, see Figure 46.
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Figure 46: Remapping the pizza neurons shown in Figure 45 shows that they look identical to simple
neurons.

F.10.2 Clock model

Here we show that the approximate CRT in a clock model (Fig. 47) looks just like it does in a pizza
model (Fig. 45).
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Figure 47: A view of the approximate CRT within a clock-transformer. We cluster all neurons
together with the same frequencies, then inspect the cluster’s contribution to each logit by summing
the contributions of each neuron in the cluster to each logit. Note that the three clusters each contribute
to the logits.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are backed by proofs in
Appendix B and Appendix C, and/or backed by figures over many random seeds located in
sections 4.3 and 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in section 6.2; the limitations of this work are
closer to large open questions rather than limitations. We list them primarily because we
want attention drawn to them as we believe them valuable for future discussions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The entire paper is built around justifying the assumption that neural networks
learn sinusoidal functions, required by all theoretical work in the paper. All prior works use
this same assumption, but we are the first work to display this quantitatively over a gigantic
range of hyperparameters, architectures, depths, widths, seeds and moduli.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. The paper outlines the architectures tested, gives the precise experimental
details for making all plots and provides open source code that is obsessively GPU optimized:
giving anyone with just one GPU the ability to reproduce every plot in the paper over a few
days worth of compute. We give all versions, even the cuda version in the codebase, in case
the order of operations of Jax varies across versions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See section E, the code requires all version information in requirements.txt,
including information about cuda versions in the readme.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All of this is in the main paper, but is thoroughly detailed in Appendix 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper goes to extreme lengths to quantitatively analyze the correctness of
our claims, providing R2 of our claims over large ranges of hyperparameters, architectures,
depths, widths and varied training data (moduli). The data we present is actually the worst
case for our arguments, being that if a model, after replacing neurons by our simple neuron
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model, classifies a single point wrong, while the model had 100% accuracy on the test and
train data, we mark it with a purple dot. These purple dots are rare and only show up on
the edges of where networks can learn i.e. on regions with suboptimal hyperparameters;
networks are likely fitting more noise in such regions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments in the paper can be reproduced with our code with a single
RTX8000 GPU in less than two weeks, we went to great lengths to GPU optimize the
code as much as possible. The training we did used RTX8000 GPU’s, ancient by today’s
standards. Each GPU added would divide the training time linearly. The dataset is tiny until
large n and is easy to train, with networks learning within 100 epochs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We highlight the positive impacts of our work: better understanding what
deep networks learn in the discussion and limitations section 6.2. We can not conceive any
negative aspects; this is not capabilities research.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We wrote all the code ourselves. Part of the code is a translation, the clock and
pizza code from [5] was read, and translated into GPU optimized Jax, this is stated in the
main paper as “We use the exact transformer architectures from [5],...”.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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