
Uncertainty Quantification in Neural Differential
Equations

Olga Graf∗
Technical University of Munich

graf@ma.tum.de

Pablo Flores∗
Pontificia Universidad Católica de Chile

ptflores1@uc.cl

Pavlos Protopapas
Harvard University

pavlos@seas.harvard.edu

Karim Pichara
Pontificia Universidad Católica de Chile

kpb@ing.puc.cl

Abstract

Uncertainty quantification (UQ) helps to make trustworthy predictions based on
collected observations and uncertain domain knowledge. With increased usage
of deep learning in various applications, the need for efficient UQ methods that
can make deep models more reliable has increased as well. Among applications
that can benefit from effective handling of uncertainty are the deep learning based
differential equation (DE) solvers. We adapt several state-of-the-art UQ methods
to get the predictive uncertainty for DE solutions and show the results on four
different DE types.

1 Introduction

Driven by the growing popularity of deep learning, several areas of research have obtained state-of-
the-art performances with deep neural networks (NNs). Among other applications, deep NNs have
been applied for solving differential equations (DEs) [10] — a fundamental tool for mathematical
modeling in engineering, finance, and the natural sciences. Deep learning based solutions of DEs
have recently appeared in, e.g., [20], [18], [19], [22], [9], [11], [17], [5], [21], [8]. Typically, the NN
itself approximates the solution of a DE. Thanks to that, parallelization is natural and, in contrast to
classical numerical methods, the solution at any time can be computed without the burden of having
to compute all previous time steps. Furthermore, NNs are continuous and differentiable.

Until recently, the focus of deep learning was on achieving better accuracy in the NN predictions, but
now it is increasingly being shifted to measuring the prediction’s uncertainty, especially if the task
at hand is safety critical. Uncertainty quantification (UQ) has been considered for deep models in
computer vision, medical image analysis, bionformatics, etc [1]. Likewise, UQ is important for deep
models that solve DEs. The uncertainty here stems from the fact that we cannot train a NN on an
infinite time and/or space domain. Therefore, we seek to estimate the solution’s uncertainty in the
regions where the model was not trained. Moreover, another source of uncertainty comes from the
model’s limitations such as its architecture.

To the best of our knowledge, this is the first work to discuss UQ for deep models that solve DEs.
Contrary to common deep learning setup, we solve DEs without any observed data, relying only on
the samples of time and/or space and on the mathematical statement that relates functions and their
derivatives. This makes the application of existing UQ methods not so straightforward. In this paper,
we make the following contributions:

∗These authors have contributed equally to this work.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

1. We propose an adaptation of the four state-of-the-art UQ methods in deep learning —
Bayes By Backprop [3], Flipout [24], Neural Linear Model [23, 15], and Deep Evidential
Regression [2, 13] — to the case of solving DEs.

2. We test the above-mentioned methods on four different DE types: linear ordinary DE (ODE),
non-linear ODE, system of non-linear ODEs, and partial DE (PDE).

2 Preliminaries

2.1 Solving differential equations with neural networks

A DE can be expressed as Lu− f = 0, where L is the differential operator, u(x) is the solution that
we wish to find on some (possibly multidimensional) domain x, and f is a known forcing function.
We denote the NN approximation of the true solution by uN . To solve the DE, we minimize the
square loss of the residual functionR(uN) := LuN − f , i.e., the optimization objective is

min
w

(R2(uN)), (1)

where w are the NN parameters. It is also necessary to inform the NN about any initial and/or
boundary conditions, uc = u(xc). One can achieve that in a straightforward way by adding a
penalizing term to the loss function. However, the exact satisfaction of initial/boundary conditions
is not possible in this case, causing problems in case of high sensitivity to initial conditions, and
also yielding unnecessary local uncertainty at xc. Therefore, we employ an alternative approach
and consider a transformation of uN which enforces the initial/boundary conditions and satisfies
them by construction. E.g., in one-dimensional case, given an initial condition u0 = u(t0), we
consider a transformation ũN (t) = u0 + (1− e−(t−t0))uN (t). In general, the transformation has the
form ũN (x) = A(x,xc, uc) + B(x,xc)uN (x). Hereinafter, ũN will denote the enforced solution.
Accordingly, we replace uN by ũN in the optimization objective (1). Besides the advantage of
satisfying the initial/boundary conditions exactly, the latter approach can also reduce the effort
required during training [12].

2.2 Uncertainty quantification under Bayesian framework

While classical learning considers deterministic model parameters θ, the Bayesian framework in-
troduces uncertainty by considering a posterior distribution over the model parameters, p(θ|D),
obtained after observing some data D. The posterior distribution is given by Bayes’ theorem,
p(θ|D) = p(D|θ) · p(θ) / p(D), where p(D|θ) is the likelihood, p(θ) is the prior distribution over
the parameters, and p(D) is the evidence. The predictions y at a new test point x are given by the
posterior predictive distribution,

p(y|x,D) =
∫
p(y|x, θ) · p(θ|D)dθ. (2)

For probabilistic deep models, there are two main strategies of estimating (2).

Inference through the posterior distribution of model parameters. As stated in (2), the posterior
predictive is obtained by averaging over the posterior uncertainty in the model parameters. Thus, we
can start with estimating the posterior distribution of the NN weights.

In this case, well-suited is Bayesian NN [14] which places a prior distribution on all the weights (and
biases) w. Since an analytical solution for the posterior is intractable for Bayesian NNs, we have to
use numerical approximation methods such as MCMC or variational methods. Despite the need for
sampling in both cases, variational methods are computationally less expensive for high-dimensional
parameter spaces and also provide an analytical approximation.

Bayes By Backprop (BBB) is a variational, backpropagation-compatible method for training a Bayesian
NN. Its optimization objective seeks to minimize the Kullback-Leibler divergence between the true
posterior and the variational posterior which is re-parametrized as N (µ, σ = log(1 + exp(ρ))) to
allow for backpropagation. At each optimization step, weights w = µ+ σ ◦ ε, where ε ∼ N (0, I)
and ◦ is pointwise multiplication, are obtained by sampling from the variational posterior.

BBB is followed by Flipout which adds a pseudo-independent perturbation to the weights at each
training point xn in the mini-batch, namely, wn = µ + (σ ◦ ε)Rn, where Rn is the random sign
matrix. Intuitively, the weights get flipped symmetrically around the mean with probability 0.5.

2

Neural Linear Model (NLM) is an alternative to Bayesian NN. It places a prior distribution only on
the last layer’s weights, and learns point estimates for the remaining layers. One can interpret the
output of these layers as a basis defined by the feature embedding of the data. The last layer of NLM
performs Bayesian linear regression on this feature basis. NLM provides tractable inference under the
Gaussian assumption on likelihood; we get analytical solution for the posterior distribution.

Inference through the higher-order evidential distribution. It is also possible to infer parameters
of the posterior predictive directly, using Bayesian hierarchical modeling [6, 7]. In Deep Evidential
Regression (DER), the higher-order, evidential prior is placed over the Gaussian likelihood function.
Choosing Normal Inverse-Gamma (NIG) prior yields an analytical solution for the model evidence
which is maximized by the optimization objective with respect to the NIG hyperparameters. DER also
proposes an evidence regularizer which minimizes evidence on incorrect predictions. The posterior
predictive mean and variance are computed analytically using the learned hyperparameters.

3 Uncertainty quantification in neural differential equations

Instead of learning a deterministic solution ũN , we now aim to learn a probabilistic solution uθ,
characterized by a posterior predictive distribution. We estimate it using some probabilistic model gθ
parametrized by θ.

3.1 Proposed approach

UQ methods described in Section 2.2 rely upon the assumption that the likelihood function is
Gaussian, centered at the model’s prediction and evaluated at the observed data points. Namely,
DER and NLM use it to derive the analytical form of a loss function and a posterior distribution,
respectively. BBB and Flipout can in principle use any likelihood in the loss function, but it has to be
of known analytical form. In case of DEs, a natural way of computing likelihood is to evaluate it at
the residualR on the training domain xt, which can be seen as a counterpart to the observed data
points in the classical setting. However, we are left with an open problem of choosing the underlying
distribution for the likelihood function. It makes sense to assume that the probability density is high
enough for values close to zero, but no further assumptions immediately follow. E.g., it may happen
that the limitations of NN architecture do not allow for the perfect fit, i.e., the distribution of residuals
is not centered around zero. To circumvent this problem, we propose an alternative way of computing
likelihood.

In this first work on UQ for neural DE solvers, we will focus on comparing predictions outside of the
training domain given by different UQ methods, leaving the detailed treatment of the model fit and its
associated uncertainty for future work. Although in Bayesian framework this uncertainty also affects
the uncertainty outside of the training domain, we hypothesize that even a simplified treatment, i.e.,
without using residuals’ distribution, gives reasonable uncertainty estimates. We propose a two-stage
training procedure:

1) We first train a classical NN on the training domain xt to find a deterministic solution ũN ,

2) We use ũN as observed data for our probabilistic model gθ and define the likelihood using a
Gaussian assumption, p(ũN |θ) =

∏
xt
N (ũN ;uθ, ε).

Now the optimization objective will be trying to align the probabilistic model with the given reference
ũN rather than trying to minimize the residuals at all costs. We note that despite interpreting ũN in
stage two as observed data rather than a function that solves DE, its associated variance ε is not of
aleatoric nature (i.e. irreducible variance that comes from the noise inherent to the data), as it would
be in the classical regression problem. It can be still interpreted as a source of epistemic (reducible)
uncertainty coming from the NN model limitations. Here, we consider a simplified treatment of ε. In
case of BBB, Flipout, and NLM, we pre-define ε with some small number. In case of DER, we learn ε
along with posterior predictive distribution, but the result is not particularly useful since DER does
not have direct access to residuals during learning.

Eventually, the probabilistic model allows us to find the posterior predictive distribution of uθ. In
case of BBB, Flipout, and NLM, we have g̃θ(xt, ũN) = uθ, i.e., the model outputs a single instance
uθ. For BBB and Flipout, the posterior predictive distribution p(uθ|xt, ũN) is computed as an
approximation of integral (2) using sampling; for NLM, an analytical form is available. In case of

3

DER, we have gθ(xt, ũN) = (γ, ν, α, β), where (γ, ν, α, β) are the NIG hyperparameters. The mean
of the posterior predictive distribution is equal to γ̃ and the variance is computed using the remaining
hyperparameters. We note that the predictive uncertainty also requires the initial and/or boundary
condition enforcement; this way we are able to eliminate unnecessary uncertainties at xc.

Main drawbacks of the current approach are the double computational burden and the not so useful
uncertainty for NN approximation of the true solution in the traning region; both of them are subject
to further improvement.

4 Experiments and discussion

We corroborate our theory with experimental results on four equations: 1. Linear ODE for squared
exponential, dudt = −2tu; 2. Non-linear ODE for Duffing-type oscillator, ü + ω2u + εu3 = 0; 3.
Lotka-Volterra equations (system of non-linear ODEs), u̇ = αu − βuv ∧ v̇ = −δu + γuv; 4.
Burgers’ equation (non-linear PDE), ∂u∂t + u∂u∂x = ν ∂

2u
∂x2 .

Our implementation is based on a DE solver provided by neurodiffeq [4], a Python package built with
PyTorch [16]. Since we are considering relatively simple DEs, we use networks with one to three
fully-connected hidden layers. For the prior distribution of the weights in BBB, Flipout, and NLM, we
use flat Gaussian priors with mean zero. In BBB and Flipout, we estimate the posterior predictive from
1000 samples. In DER, there is no need for choosing a weight prior, but an appropriate regularization
parameter has to be chosen instead. Here, we tune the regularization parameter manually.

Figure 1: Uncertainty estimation for neural ODEs. Probabilistic models give low epistemic
uncertainty in the training domain and inflate it outside of the training domain.

We demonstrate the UQ results for ODEs and for PDE in Figure 1 and Figure 2, accordingly. For all
ODEs, the deterministic solution is able to approximate the true solution well; we incorporate this
fact in our Bayesian inference by choosing small ε which yields that there is almost no uncertainty
in the training domain. We observe that the epistemic uncertainty away from the training domain is
high enough for all methods, which is our main desired result in this paper. For Burgers’ equation,
however, we see that the NN is not able to learn the true solution, and our probabilistic model is
underestimating the epistemic uncertainty in the training domain and outside of it. In this case,

4

Figure 2: Uncertainty estimation for NN based solution of Burgers’ equation. We test Bayes By
Backprop on an example of a non-linear PDE. Uncertainty coming from underfitting is not captured
well due to our simplified inference in terms of this type of uncertainty, nevertheless we see that the
uncertainty inflates outside of the training domain.

either a better deterministic model or a better UQ methodology is needed. Nevertheless, even for a
non-perfect fit, the uncertainty starts inflating outside of the training domain which proves our initial
hypothesis.

We have witnessed comparable performance in sampling-dependent (BBB, Flipout) and sampling-free
(NLM, DER) methods. Given the computational expense of sampling during Bayesian NN training,
the latter two methods could be preferable in the case of complex DEs on a multidimentional domain.

We believe that further enhancement in terms of diversifying experiments (e.g., considering more
complex high-dimensional DEs) and developing theory (e.g., calibrating ε with residuals at each
optimization step) will help the deep learning based DE solutions to outperform classical ones and
lead to their increased presence in applications.

References
[1] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao,

A. Khosravi, U. R. Acharya, and et al. A review of uncertainty quantification in deep learning: Techniques,
applications and challenges. Information Fusion, 76:243–297, Dec 2021. ISSN 1566-2535. doi: 10.1016/j.
inffus.2021.05.008. URL http://dx.doi.org/10.1016/j.inffus.2021.05.008.

[2] A. Amini, W. Schwarting, A. Soleimany, and D. Rus. Deep evidential regression. arXiv, Oct 2019. URL
http://arxiv.org/abs/1910.02600.

[3] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural network. In
International Conference on Machine Learning, pages 1613–1622. PMLR, 2015.

[4] F. Chen, D. Sondak, P. Protopapas, M. Mattheakis, S. Liu, D. Agarwal, and M. Di Giovanni. Neurodiffeq:
A python package for solving differential equations with neural networks. Journal of Open Source Software,
5:1931, 02 2020. doi: 10.21105/joss.01931.

[5] C. Flamant, P. Protopapas, and D. Sondak. Solving differential equations using neural network solution
bundles. arXiv preprint arXiv:2006.14372, 2020.

[6] A. Gelman and et al. Prior distributions for variance parameters in hierarchical models. Bayesian analysis,
1(3):515–534, 2006.

[7] A. Gelman, A. Jakulin, M. G. Pittau, and Y.-S. Su. A weakly informative default prior distribution for
logistic and other regression models. The Annals of Applied Statistics, 2(4):1360–1383, 2008.

[8] M. D. Giovanni, D. Sondak, P. Protopapas, and M. Brambilla. Finding multiple solutions of ODEs with
neural networks. In AAAI Spring Symposium: MLPS, 2020.

[9] T. Hagge, P. Stinis, E. Yeung, and A. M. Tartakovsky. Solving differential equations with unknown
constitutive relations as recurrent neural networks, 2017.

[10] I. Lagaris, A. Likas, and D. Fotiadis. Artificial neural networks for solving ordinary and partial differential
equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998. ISSN 1045-9227. doi: 10.1109/
72.712178. URL http://dx.doi.org/10.1109/72.712178.

[11] M. Mattheakis, H. Joy, and P. Protopapas. Unsupervised reservoir computing for solving ordinary
differential equations, 2021.

5

http://dx.doi.org/10.1016/j.inffus.2021.05.008
http://arxiv.org/abs/1910.02600
http://dx.doi.org/10.1109/72.712178

[12] K. McFall and J. Mahan. Artificial neural network method for solution of boundary value problems
with exact satisfaction of arbitrary boundary conditions. IEEE Transactions on Neural Networks, 20(8):
1221–1233, 2009. doi: 10.1109/TNN.2009.2020735.

[13] N. Meinert and A. Lavin. Multivariate deep evidential regression. arXiv preprint arXiv:2104.06135, 2021.

[14] R. M. Neal. Bayesian learning for neural networks. Springer Science & Business Media, 118, 2012.

[15] S. W. Ober and C. E. Rasmussen. Benchmarking the neural linear model for regression. In Advances in
Approximate Bayesian Inference (AABI), pages 2171–2180, 2019.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library,
2019.

[17] A. Paticchio, T. Scarlatti, M. Mattheakis, P. Protopapas, and M. Brambilla. Semi-supervised neural
networks solve an inverse problem for modeling Covid-19 spread. arXiv preprint arXiv:2010.05074, 2020.

[18] M. L. Piscopo, M. Spannowsky, and P. Waite. Solving differential equations with neural networks:
Applications to the calculation of cosmological phase transitions. Physical Review D, 100(1), Jul 2019.
ISSN 2470-0029. doi: 10.1103/physrevd.100.016002. URL http://dx.doi.org/10.1103/PhysRevD.
100.016002.

[19] M. Raissi. Forward-backward stochastic neural networks: Deep learning of high-dimensional partial
differential equations. arXiv preprint arXiv:1804.07010, 2018.

[20] M. Raissi, P. Perdikaris, and G. Karniadakis. Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.
045. URL https://www.sciencedirect.com/science/article/pii/S0021999118307125.

[21] D. Randle, P. Protopapas, and D. Sondak. Unsupervised learning of solutions to differential equations with
generative adversarial networks, 2020.

[22] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations.
Journal of Computational Physics, 375:1339–1364, Dec 2018. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.
08.029. URL http://dx.doi.org/10.1016/j.jcp.2018.08.029.

[23] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A. Patwary, Prabhat, and R. P.
Adams. Scalable Bayesian optimization using deep neural networks. In 32nd International Conference on
Machine Learning (ICML), pages 2171–2180, 2015.

[24] Y. Wen, P. Vicol, J. Ba, D. Tran, and R. Grosse. Flipout: Efficient pseudo-independent weight perturbations
on mini-batches. arXiv preprint arXiv:1803.04386, 2018.

6

http://dx.doi.org/10.1103/PhysRevD.100.016002
http://dx.doi.org/10.1103/PhysRevD.100.016002
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://dx.doi.org/10.1016/j.jcp.2018.08.029

	Introduction
	Preliminaries
	Solving differential equations with neural networks
	Uncertainty quantification under Bayesian framework

	Uncertainty quantification in neural differential equations
	Proposed approach

	Experiments and discussion

