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Abstract

The Lottery Ticket Hypothesis states that there exist sparse subnetworks (called ’winning’
Lottery Tickets) within dense networks that, when trained under the same regime, achieve
similar or better validation accuracy as the dense network. It has been shown that for larger
networks and more complex datasets, an additional pretraining step is required for winning
lottery tickets to be successfully found. Previous work linked the amount of pretraining
required to a measurement of instability to SGD noise. In this paper, we take a closer look
at the training hyperparameters that influence SGD instability during normal training and
link this to the ability to find ’winning’ tickets. We show that several techniques that have
a positive influence on dense network generalization increase SGD instability, and as such
hinder the extraction of ’winning’ tickets. By dampening this instability via smart hyper-
parameter selection, we show that we can extract ’winning’ tickets without pretraining and
even outperform tickets found with pretraining at more extreme sparsities. We furthermore
discover that tickets found with less instability to SGD noise have as unexpected side effect
that they encode powerful features for classification in the untrained weights. We show that
these features do not emerge when extracted under more unstable hyperparameter settings,
and that they are transferable to different datasets, as well as enable faster training of the
resulting tickets.

1 Introduction

In a recent study by Sevilla et al. (2022) it was calculated that the computational resources to train a state-
of-the-art neural network model have doubled roughly every 4 to 9 months. Since then, Large Language
Models have become more ubiquitous, leading to the reality that these models can only be trained by the
largest research centra and corporations, as they require enormous amounts of computation to train.

There exist however techniques to reduce the cost of training a model. These focus either on intelligently
selecting the training data for the model with techniques such as coreset selection (Guo et al., 2022) or
dataset distillation (Wang et al., 2018; Zhao et al., 2021), or reducing the number of trainable parameters.
This reduction can be achieved in a number of ways, such as using a larger model to guide a smaller model
via Knowledge Distillation (Hinton et al., 2015), training multiple small models in parallel (Zhang et al.,
2018), weight quantization (Vanhoucke et al., 2011), or generating sparse networks (Han et al., 2015; Li
et al., 2017; Frankle & Carbin, 2019; Lee et al., 2019; Ramanujan et al., 2020).

A promising approach to generate sparse networks is Lottery Ticket Hypothesis (LTH) (Frankle & Carbin,
2019). This hypothesis states that within a randomly initialized dense network, there exist a sparse network
that can be trained to similar accuracy as the dense network under the same training regime. While the
commonly-used approach to find these networks (called ’Winning Tickets’) is an intensive iterative procedure
called Iterative Magnitude Pruning (IMP), the sparsity of the resulting networks cannot be matched by other
approaches without compromising the final accuracy. As such, techniques that allow for speeding up IMP,
or increasing our understanding of the functionality behind it are highly valuable.

It was noted in (Frankle et al., 2020) that Lottery Tickets for more complex dataset-network settings could
not be found directly in random initializations. Rather, they discovered that in such cases, the IMP needed
to be applied on a lightly pretrained model, which they term late rewinding, or Lottery Ticket Rewinding
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(LTR). The authors link this phenomenon to instability to SGD noise, and quantify this instability by
measuring the maximum error on the interpolation path between two solutions found via SGD starting from
the same initialization. The application of this pretraining step has been treated as a given, with limited
research on other approaches to limit SGD noise and how it impacts the existence of winning lottery ticket.

1.1 Contributions

• By calculating the instability to SGD noise of a dense network for different hyperparameters settings,
we show that certain hyperparameters limit SGD instability, but that this is linked to a reduced
generalization error.

• By considering these hyperparameters in IMP, we show that less instability leads to less accuracy
degradation when pruning, and as such to tickets that perform better at high sparsities, or even
’winning’ tickets without pretraining.

• With careful hyperparameter selections, we can find Lottery Tickets that outperform tickets found
with late rewinding under other hyperparameter configurations, albeit at extreme sparsities.

• We discover that tickets found with increased SGD stability can function as feature extractors
when frozen, showing that IMP is a form of feature selection. These features additionally show a
remarkable capacity for generalization to other datasets.

• Building upon the previous observation, we notice that these tickets can be trained to a surprisingly
competitive accuracy with only a small subset of the dataset.

2 Related Work

2.1 The Lottery Ticket Hypothesis

Analysis and extensions. Since the introduction of the Lottery Ticket Hypothesis (LTH), and the Iterative
Magnitude Pruning (IMP) algorithm by Frankle & Carbin (2019), the phases that make up IMP have been
analyzed and extended. Starting with Zhou et al. (2019) which listed three distinct components in the Mask
Search phase, namely the Mask Criterion, the Mask-1 action, and the Mask-0 action, and performed an
ablation study across these components. Frankle et al. (2020) discovered that Lottery Tickets were unable
to be found in more complex settings. This was remedied by introducing late rewinding, applying IMP on
a lightly pretrained network. Both (Zullich et al., 2021; You et al., 2020) introduce methodologies to speed
the Mask Search phase. In the case of (Zullich et al., 2021), this is with the introduction of Accelerated
Iterative Magnitude Pruning (AIMP), while (You et al., 2020) introduces Early-bird tickets. Paul et al.
(2022) introduces a loss landscape geometry interpretation of IMP and used this to answer several questions
related to the working of IMP.

Our analysis is also centered on the Mask Search phase, and more specifically the parameters which influence
the instability of this phase. This can be seen as a continuation of an experiment from Maene et al. (2021),
which shows that for a sufficiently large batch size, winning tickets can be still be found where previously
late rewinding was required.

Lottery Tickets Features. A number of studies has been conducted on which inductive features are
contained in Lottery Tickets. Studies such as (Morcos et al., 2019; Mehta, 2019; Desai et al., 2021; Chen
et al., 2021) train a ticket extracted for one dataset or data domain from scratch and tested it on another
target dataset or data domain. They all show that these trained lottery tickets can generalize as well as a
trained dense model on the target dataset.

In this paper, we go a step further and measure the expressivity of the untrained ticket by finetuning a linear
layer directly on the target dataset.
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2.2 (Linear) Mode Connectivity.

Garipov et al. (2018); Draxler et al. (2018) simultaneously discovered that neural network solutions can be
connected in the loss landscape via a continuous path such that the error across the path does not exceed
a certain threshold. In (Garipov et al., 2018), this has been shown to be valid for polynomial paths with a
single bend and quadratic Bezier curves. Linear Mode Connectivity goes a step further and requires the path
to be linear. Generally, this property has been observed in two distinct cases. The first involves two ’child’
models that continue training with different SGD noise from a slightly trained initialization. This paradigm
has been introduced in (Frankle et al., 2020). Fort et al. (2020) uses the Neural Tangent Kernel to show that
early in training the chaotic behavior of SGD determines a loss basin, in which later iterations optimize, thus
providing empirical evidence for the emergence of linear mode connectivity. The second approach introduced
in (Entezari et al., 2022) posits that with intelligent weight permutation, all solutions found by SGD lie in the
same loss basin, i.e., are linear connected without error barrier. Ferbach et al. (2024) uses optimal transport
to prove this with some added restrictions on the weight distribution.

In this research, we study the impact of different hyperparameters on Linear Mode Connectivity, by quan-
tifying instability as defined in Frankle et al. (2020).

3 Methodology

We start from commonly used training configurations (see appendix) for the Lottery Ticket Hypothesis, taken
from Frankle et al. (2021), and study the impact of different hyperparameters on train-time metrics, such as
validation accuracy, Linear Mode Connectivity (Frankle et al., 2020), forgetting scores (Toneva et al., 2019),
and convergence speed. In the following paragraphs we will first highlight the specific hyperparameters we
study, and next we list the train-time metrics we measure.

3.1 The Lottery Ticket Hypothesis

Algorithm 1 Iterative Magnitude Pruning with late rewinding.
1: Initialize a neural network with weights θ0 ∈ Rd.
2: Initialize pruning mask M = 1d.
3: Train θ0 for p steps to θp. ▷ Pretraining
4: for n ∈ {1, . . . , N} do ▷ Mask Search
5: Train M ⊙ θp to convergence.
6: Prune the k% unpruned weights with lowest magnitude.

Let M [i]=0 if the corresponding weight i is pruned.
7: end for
8: Train the final network M ⊙ θp. ▷ Sparse Training

Defined by an iterative approach (see Algorithm 1), the procedure to generate Lottery Tickets consists of
two (or three) phases. In the optional Pretraining phase, the network with weights θ0 is lightly trained to
provide a more stable rewind point (Frankle et al., 2020) for the next phase, resulting in weights θp. The
second phase is a Mask Search phase, in which the sparse network is trained to convergence with the same
training configuration as the dense network. The goal of this training is to identify parameters for pruning
by determining the lowest magnitude parameters at the end of this phase. Next, a fixed percentage (k) of
the lowest magnitude parameters are pruned by setting the pruning mask M for those weights to 0, and the
remaining weights are reset to the rewind point (either the initialization θ0 or the pretrained weights θp).
These steps are repeated N times. Finally, in the Sparse Training phase the ticket is trained until completion,
after which the network is usable in prediction. A winning lottery ticket is then defined as a pruned network
that can attain similar (or better) validation accuracy as the dense network in commensurate training.

It has been shown in Frankle et al. (2021); Vischer et al. (2022) that the trainability of a ticket is dependent
on both the initialization and the specific pruning mask. This directly translates to a dependency on the
Pretraining phase for the initial weights and a dependency on the Mask Search phase for the pruning
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mask. In this research we specifically focus on the hyperparameters used in the Mask Search phase. As a
comprehensive grid search on all possible parameters is prohibitively expensive due to the costly, iterative
nature of this procedure, we instead focus our attention on a few parameters and their impact. This will
allow us to better understand the impact on the trainability and predictive quality of the resulting lottery
tickets.

Batch Size. In the case of large datasets, it is often infeasible to use the whole dataset during each update
step of the network. As such, it is common to use minibatches of the dataset to update a network iteratively
via Stochastic Gradient Descent. Intuitively, if the batch size is smaller, then the resulting gradient is more
influenced by the subsampling of the dataset, as the batch composition can be dramatically different from
the composition of the full dataset. However, it has been shown in (Keskar et al., 2017) that smaller batch
sizes positively impact the generalization of a neural network on unseen data.

Momentum. Introduced as a technique to speed up gradient descent, momentum allows gradient infor-
mation to be carried over from previous batches in the weight update by employing a factor µ ∈ [0, 1] to
weight the gradient information of the previous batch. As such, the updates function similar to a expo-
nential moving average (see Equations (1) and (2)). The application of momentum has been demonstrated
to lead to better generalizing networks, and it has been posited by (Jelassi & Li, 2022) that this is due to
the resulting classifiers generalizing on small-margin samples, rather than memorizing those samples. The
authors additionally argue that the impact of momentum is more significant with higher batch sizes.

vt+1 = µvt − ϵ∇f(θt) (1)

θt+1 = θt + vt+1 (2)

Training duration. Training a network is a process with many sources of noise such as mini batch gradients,
data augmentation and more. It is evident that this noise accumulates during repeated training epochs. As
such, one method to limit SGD noise during training of a network is to simply limit the computational
budget of the training phase, rather than tackling the sources of noise.

3.2 Train-time Metrics

Instability to SGD noise. Introduced by Frankle et al. (2020), this metric measures the relative increase
in classification error on a linear interpolating path between two sets of network weights trained from the
same initialization with different sets of SGD noise. An initialization is said to be unstable if there is a
significant error barrier along the interpolation path. Given two networks W1, W2, with the validation error
of a network measured as E(W ), then the error barrier across an interpolating path between W1 and W2 for
α ∈ [0, 1] is defined in Equation (3).

supα E(αW1 + (1 − α)W2) − E(W1) + E(W2)
2 (3)

In practice, as defined by (Frankle et al., 2020), a significant error barrier is seen as being higher than 2%.
In this case, the network is seen as unstable to SGD noise, otherwise it is seen as stable to SGD noise.

Forgetting events. During training, a network learns to predict labels for its input samples. However,
the learning process is not monotonic, meaning that if a sample is predicted correctly at some iteration i, it
is possible that at iteration i + k it is no longer correctly predicted. To measure these ’forgetting events’,
Toneva et al. (2019) introduced forgetting scores, which record whether a sample is learned correctly each
time the network is fed the sample. Samples that are never forgotten once learned are called ’unforgettable
samples’.

Convergence speed. By calculating the area under the error curve during a training run of T epochs, we
can measure the convergence speed of a training configuration. Specifically, we calculate the error E(W 0)
before training and after every epoch (E(W ep)). We then average E(W ep) − E(W 0) over the duration of the
training. To account for different optimal accuracies, we rescale this value by dividing with E(W T )−E(W 0).
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1
T

T∑
ep=1

E(W 0) − E(W ep)
E(W 0) − E(W T ) (4)

3.3 Experimental setup

For the experiments, we focus on ResNet models (He et al., 2016), both ResNet-18 and ResNet-34, which
are trained on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and TinyIma-
geNet (Le & Yang, 2015). We resort to these datasets and networks, as they are commonly used within
the literature. For the transferability experiments in Section 5.1, we additionally use MNIST LeCun et al.
(2010) and EuroSAT Helber et al. (2019). Most experiments in the main paper list the results for ResNet-34
+ TinyImageNet unless otherwise indicated, as this is the most complex setting, but we list results for the
other settings in the appendix. Unless otherwise mentioned, each experiment is repeated for three runs.

We use configurations from T et al. (2022) as a starting point. More specifically, this means that we use a
total training budget of 200 epochs in each iteration, after which we prune 20% of the weights. In the case
of late Rewinding, this budget includes a Pretraining phase of 2 epochs. Training is done by minimizing the
Cross-Entropy Loss with SGD, starting with a learning rate of 0.1 (or 0.2 for TinyImageNet) which is cosine
annealed, and a weight decay of 5E-4. A full breakdown of the training configuration can be found in the
appendix.

4 Experiments

4.1 Instability in Dense Networks

We explore the influence of the momentum and batch size parameters on train-time performance of ResNet-34
models on TinyImageNet. For this, we start with a randomly initialized network and use different sets of SGD
noise to achieve three versions of a trained network. In Figure 1 we show the average pairwise interpolation
curves and error barriers for the three possible combinations. The results show that when starting from
the random initialization (without late rewinding), no configuration can be deemed stable to SGD noise.
When starting from a set of pretrained weights, the error barrier decreases significantly for the approaches
without momentum (µ = 0.9, solid lines), but only marginally decreases for those with momentum (µ = 0.9,
dotted lines). Additionally, the approaches that experience less instability, also have a (slightly) reduced
generalization (see 0.00% sparsity column in Table 2). This hints at a relation between instability during the
training of dense neural networks and the final performance. In the appendix we further explore the amount
of pretraining required for each set of hyperparameters to achieve stability, where we show that settings with
lower batch size, or momentum require more pretraining to be stable.

Example Forgetting. When observing the results of the example forgetting metric (Table 1), we can see
a link between an increase in forgetting events on one side and a decrease in unforgettable samples, and
an increase in SGD instability on the other side. In general, the application of momentum seems to have a
much higher impact on the number of forgetting events than a different batch size has. We hypothesize that
the frequent forgetting and re-learning of certain samples might steer the model to better generalization.
As observed in (Jelassi & Li, 2022), momentum can lead models to generalize rather than memorize certain
difficult samples, which causes better validation accuracy.

In the appendix, we dig deeper in the relationship between example forgetting and SGD instability by
showing that removing frequently-forgotten samples decreases instability at the cost of validation accuracy.

Convergence speed. We can see that the approaches without momentum have a faster convergence than
the approaches with momentum. This further highlights that while training with momentum results in a
higher final accuracy, this is due to a more exploratory learning approach, as it takes significantly more
training epochs for the momentum-based approaches to attain close to their final accuracy.

5



Under review as submission to TMLR

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

No Late Rewinding Late Rewinding
Batch Size
100
256

0.0
0.9

(a)

Error Barrier
µ Batch w/o late rewinding w/ late rewinding

0.0 100 60.26 ± 0.10 7.50 ± 0.65
0.0 256 58.98 ± 0.05 5.42 ± 0.05
0.9 100 63.56 ± 0.05 61.85 ± 0.22
0.9 256 60.92 ± 0.30 58.84 ± 0.86
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Figure 1: Instability for a dense ResNet-34 model trained on TinyImageNet with different training configu-
rations. We show the full interpolation curve in (a) and the error barrier in (b).

Table 1: Average forgetting events per sample, proportion of unforgettable samples and convergence statistics
for different hyperparameter configurations used in training ResNet-34 models on TinyImageNet.

µ Batch Size Forgetting events Unforgettable % Convergence
0.0 100 34.73 ± 12.54 0.23 ± 0.02% 0.907 ± 0.003
0.0 256 32.83 ± 11.90 0.27 ± 0.02% 0.771 ± 0.109
0.9 100 42.78 ± 14.37 0.05 ± 0.00% 0.773 ± 0.042
0.9 256 39.38 ± 13.19 0.11 ± 0.02% 0.800 ± 0.111

4.2 Impact on Lottery Tickets

In Table 2, we have listed the validation accuracies of Lottery Tickets found under different hyperparameter
configurations at different sparsities (after every 5 pruning steps). In the next paragraphs, we use these
results to highlight how parameter selection and the associated SGD instability of the training procedure
impacts the resulting Lottery Tickets.

Instability in relation to ticket performance. Even though all approaches without late rewinding
roughly have the same instability as determined by the error barrier, we can see significant differences in how
the ticket performances evolve at different sparsity levels. At lower sparsities, we see that approaches with
lower batch size or µ = 0.9 have higher validation accuracy which deteriorates faster at higher sparsities.
Approaches with µ = 0.0 or with higher batch sizes initially have lower validation accuracy, but those
approaches suffer less accuracy drop, or even increase in accuracy when pruning. Interestingly, some settings
feature ’winning’ tickets, which is unexpected as stability to SGD noise has been introduced specifically to
find those, but none of these settings are deemed stable to SGD noise.

These observations, lead us to believe that stability in the form of a low error barrier is not necessary for
ticket performance. In fact, as there are configurations that result in the same error barrier, while having
different performances, we believe that a lot of information is hidden behind this metric. We can see this in
Figure 1b when we use late rewinding with two epochs of pretraining. Even though each hyperparameter
configuration has roughly the same instability at initialization, the approaches with µ = 0.0 have significantly
less instability for the pretrained weights, while those with µ = 0.9 experience only a minor decrease. This
shows that instability as defined by the error barrier decreases slower for some configurations than others.

In the appendix, we show results for other dataset and network combinations, where we can make similar
observations w.r.t. stability and ticket performance.

4.3 Limiting Mask Search budget

In each iteration of Mask Search, the network is trained for a number of epochs, during which SGD noise
accumulates, before the network is pruned and rewound. As such, we could expect that limiting the number
of epochs trained in this phase, can limit the instability incurred by these tickets. In fact, it has been observed
by (Zullich et al., 2021) that it is possible to limit the number of epochs in the Mask Search phase without
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Table 2: Lottery Ticket extracted from ResNet-34 on TinyImageNet performances for different training
parameters at different sparsity levels. Starred(∗) entries encompass one or multiple runs in which the ticket
did not converge and remained at random chance.

Ticket Parameters Sparsity
µ Batch Size Pretrained 0.00% 67.23% 89.26% 96.48% 98.85%

0.0 100

✗

61.14% 59.76% 57.79% 54.47% 50.98%
0.0 256 59.33% 59.95% 60.20% 58.89% 57.09%
0.9 100 63.74% 62.46% 35.95%∗ 35.69%∗ 15.09%∗

0.9 256 61.57% 60.37% 56.93% 52.76% 47.34%
0.0 100

✓

60.91% 62.90% 62.67% 60.37% 56.11%
0.0 256 59.27% 60.01% 60.08% 58.59% 56.40%
0.9 100 63.45% 63.02% 60.10% 57.73% 35.10%∗

0.9 256 61.66% 61.22% 58.95% 55.91% 52.49%

Table 3: AIMP results for different hyperparameter settings of ResNet-34 on TinyImageNet.

Ticket Parameters Sparsity
Budget µ Pretrained Batch Size 67.23% 89.26% 96.48% 98.85%

20eps 0.0 ✗ 256 58.90% 56.95% 54.13% 49.73%
0.9 ✗ 100 62.82% 61.41% 58.49% 53.65%

50eps 0.0 ✗ 256 58.74% 56.75% 53.22% 49.58%
0.9 ✗ 100 63.02% 59.51% 54.04% 39.04%

significant impact on the resulting ticket performance, which they term Accelerated Iterative Magnitude
Pruning (AIMP). We study this finding on more complex settings, with computational budgets of 20 and
50 epochs in Table 3, which represents 10% and 25%, respectively, of the original budget. We additionally
modify the LR schedule to reflect upon this limited budget.

Given a small training budget, we can find tickets via AIMP that perform similar, or outperform those found
with IMP at higher sparsity levels. This observation only holds for the hyperparameter settings which we
deemed more unstable, as we can see a noticeable decrease in accuracy compared to those found with IMP
for the more stable settings. At higher compute budgets, the advantage of AIMP over IMP in unstable
regimes decreases substantially, showing that indeed the SGD noise accumulation over the larger durations
of the Mask Search phase is significant and has a negative effect at higher sparsities. In the more stable
regimes, little performance difference is observed between the two budgets.

5 Consequences of stability in Lottery Tickets

5.1 Untrained tickets can encode useful features

Earlier work by Zhou et al. (2019) likened the Mask Search procedure to training a model. They determined
that it is possible to generate a mask for a of set of network weights, such that the network achieves better
than random chance predictions, effectively outperforming a randomly initialized network. Such masks are
called supermasks, and have been extracted for simple convolutional models on CIFAR-10, MNIST. Further
accuracy gains for these supermasks could be achieved by directly optimizing the masks via gradient descent,
which can be likened to the Strong Lottery Ticket Hypothesis (Ramanujan et al., 2020) where a mask is
optimized for a set of weights to approximate the performance a fully trained network.

The phenomenon of supermasks is quite restrictive, as it assumes that by pruning; (i) useful features emerge
within the feature extractor, and (ii) the classification layer can exploit those features. All of this should
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happen without modifying a single weight. In practice, during the earlier experiments we have not observed
any ticket at meaningful sparsity that exhibited better than random chance without training.

Instead, we focus only on case (i), meaning we still allow the training of a classification layer, but keep the
pruned feature extractor frozen. Furthermore, we consider feature depth as well. Intuitively, if useful features
are encoded within the ticket, then it should follow that the features in the deeper layers of the network are
more expressive than those in the earlier layers, as is the case with a dense network. To determine this, we
devise a linear evaluation experiment inspired by linear probing (Alain & Bengio, 2017).

Linear feature evaluation. After each ResNet block in the ticket we insert a linear probe, which is a
channel-wise pooling operation followed by a linear classification layer. While the linear probe is training, we
freeze all other parameters in the network, such that the resulting accuracy correctly reflects the predictive
quality of the features. For consistency between different parameter configurations, we use a single set of
hyperparameters to train the linear layer, as tests with different sets of hyperparameters only showed a
minimal impact on the validation accuracy of the probe. We compare the results with a baseline, which
consists of a ticket for which the mask is randomly layerwise permuted, and thus preserves the initialization
and the layerwise sparsity.

In Table 4 we highlight the results at two sparsity levels, for two positions in the model (Blocks 4 & 8).
The sparsity levels were chosen because of two reasons. First, they both correspond to the sparsity levels
described in Table 2, and secondly at the 67.23% sparsity level, most tickets exhibit similar accuracy when
fully trained. Block 4 is roughly equivalent to the middle of the model, while Block 8 considers the features
at the last convolutional layer. We list the full results at all sparsities and blocks in the appendix.

First we highlight that the randomly permuted tickets do not significantly outperform the features encoded
in a random dense network. We see a slight increase in accuracy at higher sparsity, but no major impact.
This shows that sparsity by itself does not promote the emergence of useful features, and in fact too much
’random’ sparsity can inhibit good features. Secondly, we can divide the features in tickets in three main
categories. The majority of the results show no significant increase or decrease w.r.t. the dense network.
That being said, tickets found without pretraining but with µ = 0.9 typically have lower quality features
encoded, while those found with µ = 0.0 and pretraining have much higher quality features. We notice
that the stable configurations result in potent feature extractors at initialization. This shows that the mask
search procedure can find useful features from initialization or weights in early training. Interestingly, in the
unstable cases the features at the end of the network provide no accuracy gain compared to the intermediate
features, which is opposite to that of the more stable tickets (late rewinding with µ = 0.0) where we can
notice a clear increase, and what we would expect in a trained network. A simple comparison shows that
the remarkable performance of stable tickets can not be explained by those factors alone.

Transferability of emergent features. Previous research Morcos et al. (2019); Mehta (2019) has demon-
strated that Lottery Tickets generalize well to other datasets. We further explore our earlier observations
that usable features emerge in lottery tickets, and analyze their transferability to different datasets. In this
experiment, we choose to transfer tickets extracted for CIFAR-10 as this dataset is the least complex of the
considered datasets. This implicates that the features encoded by the mask should be less suited for more
complex datasets. To enable transferability to datasets with different number of classes, we replace the linear
layer with a new linear layer with a target-specific number of outputs, and freeze all other layers. While
this procedure leads to a loss of sparsity in the classification layer, this is the only possible approach short
of resparsifying the linear layer, which might induce side effects.

Transferring is done to MNIST (LeCun et al., 2010), CIFAR-100 (Krizhevsky et al., 2009), TinyImageNet (Le
& Yang, 2015) and EuroSAT (Helber et al., 2019). The reasoning for these datasets is as follows. MNIST
is an easy dataset, albeit monochrome, which features different instances from CIFAR-10 (numbers, rather
than objects). CIFAR-100 has been generated using the same process as CIFAR-10, but is more complex
and features mutually exclusive images and classes. TinyImageNet is an even more challenging dataset, with
more classes, less instances per class, and a higher resolution than CIFAR-10. Finally, EuroSAT features
higher resolution landscape images, rather than object images. Each of these datasets has characteristics not
present in CIFAR-10, which serves to demonstrate the versatility of the features present within the lottery
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Table 4: Linear probing results at different locations in a ResNet-34 ticket extracted for TinyImageNet under
different training configurations. Starred(∗) entries correspond to dense features, and as such they have a
sparsity of 0.00%.

Ticket parameters 67.23% sparsity 89.26% sparsity
µ Batch Size Pretrained Block 4 Block 8 Block 4 Block 8

0.0 100

✗

4.26 ± 0.39% 3.83 ± 0.19% 3.97 ± 0.25% 3.84 ± 0.27%
0.0 256 4.38 ± 0.35% 4.53 ± 0.47% 4.86 ± 0.26% 5.53 ± 0.70%
0.9 100 1.96 ± 0.46% 1.89 ± 0.27% 1.29 ± 0.40% 1.59 ± 0.40%
0.9 256 2.92 ± 0.48% 2.63 ± 0.53% 2.61 ± 1.20% 2.04 ± 0.90%
0.0 100

✓

6.66 ± 0.42% 7.90 ± 1.38% 6.39 ± 0.41% 7.24 ± 1.52%
0.0 256 6.67 ± 0.30% 9.55 ± 0.18% 6.32 ± 0.29% 9.58 ± 0.42%
0.9 100 4.55 ± 0.15% 4.86 ± 0.46% 4.23 ± 0.08% 4.45 ± 0.30%
0.9 256 4.47 ± 0.21% 4.53 ± 0.33% 4.53 ± 0.12% 4.73 ± 0.12%
Permuted (µ = 0.0, BS=256) 3.74 ± 0.12% 3.39 ± 0.09% 4.07 ± 0.09% 4.09 ± 0.16%

Random dense network∗ 3.66 ± 0.82% 3.13 ± 0.45% 3.66 ± 0.82% 3.13 ± 0.45%

ticket. During the network transfer, we normalize the images with the mean and standard deviation, and
rescale to 32×32.

We show the results for 89.26% sparsity tickets in Table 5, where we additionally compare with several
baselines. We finetune dense networks under several hyperparameter regimes to show the transferability of
features specialized for a different dataset in unstable and less unstable regimes. We also provide an upper
limit on the model performance by training a dense network from scratch on the target dataset.

We observe that the features learned in high instability regimes are significantly less transferable to other
datasets, than those learned in more stable regimes. This is the case for both the dense network and also the
derived Lottery Tickets, showing that this property is likely inherited by the ticket from the dense network.
That being said, in no circumstances does transferring beat the retraining performance. Whether the ticket
outperforms the dense network or not seems to be dependent on the dataset and instability. Stable tickets
always outperform the dense network, but the most unstable tickets only do for certain datasets. In the
appendix, we transfer CIFAR-100 and TinyImageNet tickets, and notice that while the validation accuracy
of the transferred ticket is still remarkable, we fail to consistently outperform the features in the trained
dense network. This is of course not that unexpected, seeing that 1) the tickets we transfer are still frozen
at initialization and encode worse features than those of a dense network, as measured by our linear probes
earlier, and 2) the features in the dense network are learned for a more complex setting and as such are
already better transferable to less complex datasets.

5.2 Training tickets with limited data

Having observed this emergence of useful features to certain lottery tickets, we next want to determine how
we can further exploit this. For this we consider accelerating the Sparse Training phase. Rather than using
the full dataset, which can be costly and cannot be run on small devices, instead we consider few-shot
learning setting, where a limited number of samples is used.

In our experiments, we use the following subset sizes: [1% , 2%, 5%, 10%]. As we focus on small dataset
sizes, we will use the random selection method to select class-balanced subsets, since this has been shown
to work best in those cases (Guo et al., 2022). To allow for comparability between TinyImageNet and
CIFAR-10, we have chosen 1% as a bottom limit, as TinyImageNet features 500 images per class, while
CIFAR-10 features 5000 images per class. Going lower than 1% could be feasible for CIFAR-10, but will be
difficult for TinyImageNet, as then the randomness of the subset selection process will significantly impact
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Table 5: Transferability of frozen ResNet-18 tickets extracted on CIFAR-10 with different configurations.
Starred(∗) entries correspond to dense trained networks, meaning the feature extractors have a sparsity of
0.00% and have been trained either on the source or the target dataset.

Ticket parameters Target dataset
µ Batch Size Pretrained MNIST CIFAR-100 TinyImageNet EuroSAT

0.0 100

✗

82.11 ± 0.48% 16.66 ± 0.20% 7.42 ± 0.14% 70.46 ± 0.94%
0.0 256 97.25 ± 0.15% 40.57 ± 1.07% 18.13 ± 0.33% 85.21 ± 0.56%
0.9 100 77.03 ± 0.31% 12.73 ± 0.82% 5.49 ± 0.21% 61.00 ± 1.81%
0.9 256 77.30 ± 1.60% 13.35 ± 0.74% 6.28 ± 0.92% 60.74 ± 5.21%
0.0 100

✓

96.90 ± 0.03% 36.18 ± 1.02% 18.48 ± 0.79% 82.40 ± 0.98%
0.0 256 97.45 ± 0.21% 41.63 ± 0.91% 21.56 ± 1.21% 85.47 ± 0.98%
0.9 100 90.85 ± 1.60% 17.34 ± 1.80% 8.46 ± 0.29% 69.37 ± 1.06%
0.9 256 92.79 ± 2.67% 18.96 ± 4.22% 10.47 ± 1.91% 70.86 ± 1.43%
Frozen dense∗ (µ = 0.0, BS=256) 95.55 ± 0.15% 39.82 ± 0.12% 12.46 ± 0.20% 78.59 ± 0.81%
Frozen dense∗ (µ = 0.9, BS=100) 71.17 ± 0.81% 19.15 ± 0.22% 4.41 ± 0.25% 56.42 ± 3.54%

Retrained dense network∗ 99.58 ± 0.04% 77.40 ± 0.37% 60.15 ± 0.00% 98.51 ± 0.53%

Table 6: Validation accuracies of a 89.26% sparse ResNet-34 ticket when trained on a TinyImageNet subset.

Ticket parameters Subset sizes
µ Batch Size Pretrained 1% 2% 5% 10%

0.0 100

✗

4.72 ± 0.46% 7.69 ± 0.39% 16.46 ± 0.24% 27.34 ± 0.18%
0.0 256 10.49 ± 1.14% 17.90 ± 1.72% 29.51 ± 1.71% 37.87 ± 0.43%
0.9 100 3.41 ± 0.28% 5.18 ± 0.59% 14.33 ± 0.55% 8.36 ± 13.61%
0.9 256 3.40 ± 0.62% 6.17 ± 0.85% 11.42 ± 0.31% 21.25 ± 1.63%
0.0 100

✓

10.31 ± 1.19% 15.29 ± 0.74% 26.01 ± 1.19% 36.35 ± 1.14%
0.0 256 15.94 ± 0.69% 22.90 ± 1.21% 34.18 ± 0.64% 43.40 ± 0.26%
0.9 100 6.00 ± 0.58% 8.76 ± 0.86% 17.59 ± 1.09% 26.50 ± 0.83%
0.9 256 4.95 ± 0.24% 7.65 ± 0.78% 15.31 ± 0.75% 25.55 ± 0.61%

Dense Network 4.32 ± 0.13% 6.33 ± 0.19% 13.19 ± 0.33% 25.13 ± 0.57%

the performance of the trained network. Results for tickets at 89.26% sparsity on TinyImageNet are listed
in Table 6. Additional results and visualizations can be found in the appendix.

We notice that a significant portion of the validation accuracy attained with the full training dataset can be
recovered in scenarios with higher SGD stability. In the most extreme case, we can recover ∼ 75% validation
accuracy of the full dataset by training with 50 randomly chosen images per class of TinyImageNet. This is
a relative gain of ∼ 72% over training the dense network with that subset. In the appendix, we show results
for a more robust dataset subset selection criterion, for which the results follow a similar trend.

6 Discussion

6.1 Loss Basin interpretation

Paul et al. (2022) interprets stability to SGD noise as having two solutions that lie in the same loss basin.
They observe that when the dense network is stable to SGD noise, then the derived tickets also lie in the
same loss basin, with limited interpolation error between subsequent tickets. Fort et al. (2020) show that
early in training the loss basin is determined, and that in the rest of training the optimizer will converge to
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that loss basin. When using late rewinding in the LTH procedure to a stable set of weights, this means that
in essence the loss basin is determined for all subsequent tickets.

The impact of momentum. The application of momentum allows for higher validation accuracy for the
dense network, by compounding gradients over different minibatches. However, this clearly has an impact
on the SGD stability of the network. We can see from the forgetting scores Table 1 that momentum causes a
significant increase in forgetting events, meaning a more exploratory optimization path, and going through
different loss basins. This finally results in a better loss basin that is found, as we have a higher validation
accuracy for the model, but we hypothesize that this basin is much narrower than the basins found without
momentum. As such, when pruning this loss basin becomes more difficult to find, leading to more significant
accuracy degradation when coupled with the exploratory behaviour. In the appendix we show empirically
that solutions with µ = 0.9 take significantly longer training to select a loss basin.

Small Batch Size. When using a small batch size, the gradient of a single (or multiple) such samples,
influences the total batch gradient in a much greater fashion. As such, the optimization process is influenced
much more by the difficult samples and this can lead the model to better loss basins. When a lot of parameters
are removed, it is more difficult for the model to fit the difficult samples, and this can cause accuracy loss.

Limited training. By limiting the training we also limit the exploration time. In the cases with momentum
this means that rather than continuing to explore for the best possible loss basin, instead the model converges
to a ’good enough’ basin. This avoids issues where the loss basin is not attainable anymore after pruning.
Conversely, in cases without momentum, the loss basin is attained early during training.

6.2 Usefulness of SGD instability

We argue that instability to SGD noise as it is currently defined based on the error barrier, is a corollary
rather than a cause for the occurrence of winning tickets. We make this argument because we can see
cases where one hyperparameter configuration outperforms significantly another at sparsity, even though the
instability is still at the upper bound, meaning a maximum interpolation error at random chance. As such,
instability is not enough to justify the (lack of) accuracy drop when pruning. A more useful metric would
be to measure the number of training epochs needed to achieve this low error barrier as we calculate in the
appendix, but this is significantly more expensive.

6.3 The emergence of useful features

We notice in several experiments that, when instability is low enough, the tickets found via IMP contain
useful features without additional training. This suggests that by pruning repeatedly some information of
the dataset is encoded within the mask, dependent on how low SGD instability is. This information can
be used to recover a nontrivial percentage (more than 15% in the case of TinyImageNet) of the validation
accuracy of a fully trained dense network, by finetuning a linear classifier on the features.

This effect has been shown to be independent of the application of late-rewinding – which encodes some
information in the weights by virtue of pretraining. Additionally, the features are not overfitting the dataset,
but can rather be transferred to other datasets, and can even outperform those encoded in dense networks
trained on the source dataset in several cases.

This behavior is reminiscent of the Strong Lottery Ticket Hypothesis (Ramanujan et al., 2020), which poses
that any trained network can be approximated by pruning connections from a sufficiently large untrained
network. There is however a nuanced difference, in that the stable tickets found by our approach require a
finetuned classification layer to achieve good validation accuracy.

7 Conclusion

In this research we study a number of training configurations and their influence on Lottery Tickets. We
notice that commonly used hyperparameters, such a momentum and lower batch sizes have positive effect on
the generalization of dense networks as already reported in the literature, but can negatively impact lottery

11



Under review as submission to TMLR

ticket performance. We have observed that while some links can be made to instability to SGD noise, this
metric is insufficient to fully explain the differences created by these hyperparameters during the training
process.

When applying these insights in training instability on the Lottery Ticket Hypothesis, we notice that in the
cases with the least training instability, winning lottery tickets can be found at higher sparsities without any
pretraining necessary. Even when considering additional stability in the form of pretraining, the more stable
approaches show less accuracy degradation at higher sparsities.

On top of the higher validation accuracy at deeper sparsities, we show that tickets found with a higher
stability exhibit several desirable properties encoded by the pruned initialization. We notice that these
tickets achieve better few-shot generalizability, and can in fact be used as frozen feature extractors to a
remarkable accuracy.
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Appendices

• Appendix A contains additional results for experiments conducted in Section 4.1 of the main paper.
More specifically interpolation curves for the different different dataset and network combinations,
and visualizations of the Train Convergence at different sparsities for tickets are provided. To
complement these results, we highlight the relationship between forgetting events and Linear Mode
Connectivity in Appendix A.1.

• Appendix B contains the full results for the experiments conducted in Section 4.2. This includes
visualizations of the evolution of ticket validation accuracy for each setting, as well as tabular
representations for the ResNet-18 + {CIFAR-10, CIFAR-100} setting. Additionally, more extreme
batch sizes for CIFAR-10 are explored in Appendix B.1, and the optimal rewind points for different
configurations are calculated in Appendix B.2.

• Appendix C contains additional results for the experiments conducted in Section 5.1. More specif-
ically, we show transferability for other datasets, and visualize the evolution of probe accuracy in
function of sparsity and network depth for the different settings.

• Appendix D contains additional results for the experiments conducted in Section 4.3. We show
additional results on ResNet-18 + CIFAR-10 for the same reduced computational budgets.

• Appendix E contains additional results for the experiments conducted in Section 5.2. These include
results for other settings, more extreme dataset subsets for CIFAR-10, and another subset selection
criterion by using sample difficulty from Toneva et al. (2019).

• Appendix F contains the hyperparameter configurations used in the experiments.

A Additional Training Stability Results
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Figure 2: Instability for a dense ResNet-18 model trained on CIFAR10 with different training configura-
tions. We show the full interpolation curve in (a) and the error barrier in (b). Notice that the interpolation
error with µ = 0.0, 256 BS is higher than random chance, which we do not observe for other dataset &
network combinations.

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

No Late Rewinding Late Rewinding
Batch Size
100
256

0.0
0.9

(a)

Error Barrier
µ Batch w/o late rewinding w/ late rewinding

0.0 100 75.19 ± 0.26 2.98 ± 0.10
0.0 256 72.79 ± 0.53 1.95 ± 0.30
0.9 100 77.97 ± 0.07 75.93 ± 0.45
0.9 256 76.43 ± 0.05 46.15 ± 1.66

(b)

Figure 3: Instability for a dense ResNet-18 model trained on CIFAR100 with different training configu-
rations. We show the full interpolation curve in (a) and the error barrier in (b).
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Table 7: Average forgetting events per sample, proportion of unforgettable samples and convergence statistics
for different hyperparameter configurations used in training ResNet-18 models on CIFAR-10.

µ Batch Size Forgetting events Unforgettable % Convergence
0.0 100 5.73 ± 8.26 42.90 ± 0.16% 0.960 ± 0.001
0.0 256 3.35 ± 4.44 42.18 ± 1.18% 0.939 ± 0.003
0.9 100 13.43 ± 15.79 22.92 ± 0.50% 0.903 ± 0.003
0.9 256 8.61 ± 11.23 27.68 ± 3.05% 0.927 ± 0.005

Table 8: Average forgetting events per sample, proportion of unforgettable samples and convergence statistics
for different hyperparameter configurations used in training ResNet-18 models on CIFAR-100.

µ Batch Size Forgetting events Unforgettable % Convergence
0.0 100 6.78 ± 5.44 16.21 ± 0.19% 0.927 ± 0.002
0.0 256 5.10 ± 4.06 17.15 ± 0.23% 0.905 ± 0.003
0.9 100 25.46 ± 15.62 4.59 ± 0.15% 0.814 ± 0.001
0.9 256 15.77 ± 11.57 8.78 ± 0.20% 0.862 ± 0.004
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Figure 4: The evolution of forgetting events during training for (a) ResNet-18 + CIFAR-10, (b) ResNet-18
+ CIFAR-100, and (c) ResNet-34 + TinyImageNet given different hyperparameter configurations. Notice
that approaches with µ = 0.9 consistently have significantly more forgetting events late in training.

A.1 SGD instability and forgetting events

As shown in Toneva et al. (2019), a subset of the CIFAR-10 dataset, selected by removing samples with a
low forgetting score, can be used to train a ResNet-18 model without loss of generalization, as compared to
the full dataset. The authors show that this is true for removing up to the 30% of the samples with the
lowest forgetting events. This indicates that the samples with more forgetting events are more critical for
the model training. We hypothesize that these samples, while more critical to the performance, also serve
as a factor of SGD noise. To verify this, we generate dataset subsets where we remove the samples with the
least forgetting events (termed ’easiest’), and datasets where we remove the samples with the most forgetting
events (termed ’hardest’). For each subset, we train a ResNet-18 model on CIFAR-10 with µ = 0.0, BS =
256 for three random seeds. We then show the interpolation curves, error barriers and validation accuracies
for each dataset subset in Figure 5.

From these results, we can confirm that removing the least-forgotten samples has no significant impact on the
validation accuracy, but that removing the most-forgotten samples significantly impacts the generalization
error. When analyzing the instability to SGD noise, we notice a decrease in instability when removing harder
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samples. Removing an equivalent amount of easy samples has no such significant impact. If anything, we can
notice a slight worsening in the interpolation curve, as the error barrier is reached earlier during interpolation.
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Figure 5: (a) Linear interpolation interpolation curves, (b) error barriers, and (c) validation accuracies of
ResNet18 networks trained on different subsets of CIFAR10. The networks are trained with µ = 0.0, 256
batch size.

B Full Lottery Ticket results

Table 9: Lottery Ticket extracted from ResNet-18 on CIFAR-10 / CIFAR-100 performances for different
training parameters at different sparsity levels.

Ticket Parameters Sparsity
Dataset µ Batch Size Pretrained 0.00% 67.23% 89.26% 96.48% 98.85%

CIFAR-10

0.0 100

✗

94.58% 94.39% 93.93% 92.95% 91.10%
0.0 256 93.63% 94.02% 93.93% 93.39% 92.67%
0.9 100 95.24% 94.99% 94.39% 93.25% 91.41%
0.9 256 95.18% 94.98% 94.29% 93.36% 91.39%
0.0 100

✓

94.62% 95.06% 94.95% 94.71% 93.95%
0.0 256 93.54% 93.97% 93.94% 93.50% 92.77%
0.9 100 95.30% 95.13% 94.85% 93.90% 92.31%
0.9 256 95.24% 95.16% 94.55% 93.57% 91.86%

CIFAR-100

0.0 100

✗

76.66% 75.57% 73.53% 70.24% 66.43%
0.0 256 74.39% 75.03% 74.46% 72.43% 68.65%
0.9 100 78.54% 76.60% 73.91% 70.33% 65.05%
0.9 256 77.74% 76.47% 74.07% 70.23% 65.89%
0.0 100

✓

76.57% 76.76% 76.23% 74.23% 69.99%
0.0 256 74.41% 74.62% 73.54% 71.76% 67.93%
0.9 100 78.18% 77.20% 74.66% 70.58% 65.80%
0.9 256 77.71% 77.57% 77.24% 74.35% 69.21%
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In Figures 6 to 8 we plot the evolution of Lottery Ticket validation accuracy at all studied sparsities. These
graphs serve to complement the results from Table 2 in the main paper and Table 9 above. In those tables
we highlight accuracies at specific sparsities, which are indicated on the x-axis in the figures. We can
see more clearly in these graphs that the more unstable approaches suffer from more significant accuracy
degradation throughout the pruning process, even though the dense networks attained with those procedures
have superior performances.
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Figure 6: Validation accuracies at different sparsities for Lottery Tickets extracted from a ResNet-18 model
on the CIFAR-10 dataset.
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Figure 7: Validation accuracies at different sparsities for Lottery Tickets extracted from a ResNet-18 model
on the CIFAR-100 dataset.
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Figure 8: Validation accuracies at different sparsities for Lottery Tickets extracted from a ResNet-34 model
on the TinyImageNet dataset. Notice that some iterations record a significant accuracy drop, together
with a high standard deviation. This indicates that at that iteration one (or more) random runs did not
train and instead remained at random chance (0.5%).

B.1 More extreme batch sizes

In the main paper, we have demonstrated that lower batch sizes result in more SGD instability, but better
generalization of the dense network. Conversely, for higher batch sizes, we see a reduction in SGD instability,
which allows for winning Lottery Tickets to be found without pretraining.

In Table 10, we cover a wider variety of batch sizes for ResNet-18 + CIFAR-10 than in Appendix B, including
batch sizes which are typically not used in practice. More specifically, this means using very low batch sizes,
such as [8, 32] or very high batch sizes such as [1024, 2048]. We show that smaller batch sizes suffer from
significant degradation at higher sparsities, but have higher accuracy at the earlier sparsities. Interestingly,
we observe cases where the accuracy might suffer from too much stability. For example, comparing µ = 0.9,
BS=2048 in the settings with and without late rewinding, we see that there is a non-trivial accuracy drop
at higher sparsities in the setting with late rewinding compared to that without late rewinding.

In Figure 9 we clearly see the effect of batch size on instability. We notice that at very large batch sizes, the
application of momentum in combination with late rewinding still results in almost stable configurations.
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(a)

Error Barrier
µ Batch w/o late rewinding w/ late rewinding

0.0

32 85.40 ± 0.00 11.85 ± 1.32
100 84.58 ± 0.00 1.45 ± 0.17
256 77.53 ± 0.73 0.86 ± 0.05
1024 62.42 ± 0.00 0.55 ± 0.06
2048 36.24 ± 4.84 0.30 ± 0.16

0.9

32 84.71 ± 0.08 84.77 ± 0.06
100 85.27 ± 0.04 69.98 ± 3.55
256 85.34 ± 0.04 70.34 ± 4.73
1024 84.29 ± 0.00 12.03 ± 0.48
2048 79.35 ± 2.03 4.65 ± 0.17

(b)

Figure 9: Instability for a dense ResNet-18 model trained on CIFAR10 with different training configura-
tions, featuring more batch sizes. We show the full interpolation curve in (a) and the error barrier in (b).
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Table 10: Validation accuracy of ResNet-18 lottery tickets extracted for CIFAR-10 given more extreme
batch sizes at different sparsity levels. CAUTION: these results were attained with only a single run each.

Ticket Parameters Sparsity
µ Pretrain Batch Size 0.00% 67.23% 89.26% 96.48% 98.85%

0.0 ✗

8 95.29 ± 0.00% 95.54 ± 0.00% 94.81 ± 0.00% 93.79 ± 0.00% 91.93 ± 0.00%
32 95.41 ± 0.00% 95.29 ± 0.00% 94.71 ± 0.00% 93.68 ± 0.00% 91.72 ± 0.00%

1024 91.87 ± 0.00% 91.81 ± 0.00% 91.62 ± 0.00% 91.24 ± 0.00% 89.86 ± 0.00%
2048 90.92 ± 0.00% 90.74 ± 0.00% 90.37 ± 0.00% 90.00 ± 0.00% 88.78 ± 0.00%

0.9 ✗

8 92.92 ± 0.00% 88.31 ± 0.00% 77.92 ± 0.00% 70.27 ± 0.00% 10.00 ± 0.00%
32 94.53 ± 0.00% 93.75 ± 0.00% 91.49 ± 0.00% 90.02 ± 0.00% 88.62 ± 0.00%

1024 94.03 ± 0.00% 94.30 ± 0.00% 93.54 ± 0.00% 92.80 ± 0.00% 90.57 ± 0.00%
2048 93.14 ± 0.00% 93.46 ± 0.00% 93.60 ± 0.00% 93.54 ± 0.00% 92.31 ± 0.00%

0.0 ✓

8 95.28 ± 0.00% 95.24 ± 0.00% 95.54 ± 0.00% 94.86 ± 0.00% 93.34 ± 0.00%
32 95.56 ± 0.00% 95.39 ± 0.00% 95.52 ± 0.00% 94.78 ± 0.00% 93.38 ± 0.00%

1024 92.12 ± 0.00% 91.92 ± 0.00% 91.70 ± 0.00% 91.60 ± 0.00% 89.87 ± 0.00%
2048 90.19 ± 0.00% 90.27 ± 0.00% 90.33 ± 0.00% 90.29 ± 0.00% 88.17 ± 0.00%

0.9 ✓

8 92.31 ± 0.00% 90.93 ± 0.00% 88.98 ± 0.00% 87.20 ± 0.00% 63.56 ± 0.00%
32 94.57 ± 0.00% 93.74 ± 0.00% 93.08 ± 0.00% 91.63 ± 0.00% 89.78 ± 0.00%

1024 94.22 ± 0.00% 93.89 ± 0.00% 93.96 ± 0.00% 93.22 ± 0.00% 91.69 ± 0.00%
2048 92.90 ± 0.00% 92.92 ± 0.00% 93.05 ± 0.00% 92.47 ± 0.00% 90.91 ± 0.00%

B.2 Finding optimal rewind points

For several parameter configurations of ResNet-18 + CIFAR-10, the default rewind point of 2 epochs was
insufficient to provide stability to SGD noise. As such, we conduct a study to determine at which points
(measured in epochs) SGD stability emerges. We follow the same definition of stability as in Frankle et al.
(2020), meaning if the error across the linear path is less than 2%, the weights are considered stable to SGD
noise. Note that this definition assumes an absolute difference of 2%, not relative difference to the accuracies.

To speed up this procedure, we use a binary search algorithm to determine the first stable rewind point for
each configuration. For this algorithm to work, we assume that stability to SGD noise increases monotonic,
which we have validated experimentally. This allows us to find this rewind point in ⌈log2200⌉ + 1 = 9 steps.
We employ three random initializations for the rewind point, and to measure stability we use three different
sets of SGD noise, for a total of 9 runs per configuration. In total this results in ∼ 81 full training runs for
each configuration.

We list the results in Table 11. We notice that, as discussed in the main paper, both momentum and lower
batch size impact stability negatively. In particular, the use of momentum has a significant impact, where
we notice that in those cases stability only emerges at the earliest at around 10% of the total training epochs.
In the worst case scenario, stability is only achieved at around 23% of the total training time.

Table 11: The first epoch at which stability to SGD noise occurs for the considered model and dataset
combinations trained under different hyperparameter settings.

µ = 0.0 µ = 0.9
Network Dataset 100 BS 256 BS 100 BS 256 BS

ResNet-18 CIFAR-10 2.3 ± 0.5 1.7 ± 0.5 42.7 ± 1.9 23.7 ± 1.2
ResNet-18 CIFAR-100 3.0 ± 0.0 2.0 ± 0.0 47.3 ± 2.1 19.0 ± 0.8
ResNet-34 TinyImageNet 5.0 ± 0.0 3.7 ± 0.9 36.7 ± 1.9 18.0 ± 1.4
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C Additional feature emergence results

C.1 Linear Probing

In Figures 10 to 12 we visualize the probes at each sparsity to complement the tabular results of Table 4 in the
main paper and Tables 12 and 13 below. We can see that the selection of useful features evolves throughout
the pruning process. While the features are all similar in the randomly initialized dense network, during the
first few pruning iterations the most stable approaches show a steady increase in feature performance, while
no evolution is noticeable in the most unstable approaches. Furthermore, we can see that those more stable
approaches also have higher quality features in the deeper layers, which is not the case for those that are
more unstable.

Table 12: Linear probing results at different locations in a ResNet-18 ticket extracted for CIFAR-10
under different training configurations. Note that unlike the ResNet-34 + TinyImageNet results in the main
paper, we can achieve a good feature extractor without late rewinding, namely for µ = 0.0, batch size = 256,
which coincidentally has better instability than the other configurations tested, thus reinforcing our belief.

Ticket parameters 89.26% sparsity 96.48% sparsity
µ Batch Size Pretrained Block 4 Block 8 Block 4 Block 8

0.0 100

✗

33.61 ± 1.60% 30.93 ± 0.82% 33.45 ± 0.41% 30.51 ± 0.38%
0.0 256 51.38 ± 0.81% 82.87 ± 0.84% 52.17 ± 1.22% 80.85 ± 1.57%
0.9 100 29.48 ± 2.03% 28.65 ± 0.92% 29.39 ± 1.81% 25.71 ± 1.03%
0.9 256 30.70 ± 0.52% 27.83 ± 1.55% 29.87 ± 1.42% 28.15 ± 0.21%
0.0 100

✓

52.08 ± 0.95% 73.11 ± 1.16% 49.32 ± 1.95% 65.81 ± 1.77%
0.0 256 56.27 ± 0.48% 84.53 ± 1.07% 55.91 ± 0.69% 83.71 ± 1.35%
0.9 100 39.27 ± 1.58% 48.92 ± 3.44% 36.74 ± 0.67% 42.49 ± 2.03%
0.9 256 37.27 ± 5.31% 46.29 ± 7.13% 33.97 ± 1.76% 38.62 ± 3.30%
Permuted (µ = 0.0, BS=256) 32.57 ± 1.68% 33.69 ± 0.56% 29.88 ± 1.36% 31.81 ± 0.61%

Table 13: Linear probing results at different locations in a ResNet-18 ticket extracted for CIFAR-100
under different training configurations. Note that unlike the ResNet-34 + TinyImageNet results in the main
paper, we can achieve a good feature extractor without late rewinding, namely for µ = 0.0, batch size = 256,
which coincidentally has less instability than the other configurations tested, thus reinforcing our belief.

Ticket parameters 89.26% sparsity 96.48% sparsity
µ Batch Size Pretrained Block 4 Block 8 Block 4 Block 8

0.0 100

✗

9.50 ± 0.21% 9.31 ± 0.76% 9.82 ± 0.45% 10.51 ± 0.32%
0.0 256 15.19 ± 0.41% 44.26 ± 0.88% 15.48 ± 0.35% 36.57 ± 0.87%
0.9 100 7.13 ± 0.87% 7.14 ± 0.27% 7.29 ± 0.94% 7.41 ± 1.54%
0.9 256 8.22 ± 0.09% 7.84 ± 0.08% 8.73 ± 0.43% 8.38 ± 0.62%
0.0 100

✓

16.02 ± 0.21% 34.57 ± 0.48% 14.32 ± 0.75% 22.01 ± 1.17%
0.0 256 18.40 ± 0.59% 49.56 ± 0.85% 17.52 ± 0.66% 43.71 ± 1.19%
0.9 100 8.63 ± 0.16% 14.37 ± 1.17% 8.43 ± 0.61% 11.11 ± 0.28%
0.9 256 11.54 ± 1.21% 21.07 ± 2.74% 11.01 ± 1.30% 16.18 ± 2.03%
Permuted (µ = 0.0, BS=256) 8.43 ± 0.03% 10.13 ± 0.61% 7.18 ± 0.34% 4.88 ± 0.18%
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Figure 10: Linear probing results at all sparsities for ResNet-18 Lottery Tickets on CIFAR-10 given
different hyperparameter configurations. (a) Without late rewinding, and (b) with late rewinding.
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Figure 11: Linear probing results at all sparsities for ResNet-18 Lottery Tickets on CIFAR-100 given
different hyperparameter configurations. (a) Without late rewinding, and (b) with late rewinding.
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Figure 12: Linear probing results at all sparsities for ResNet-34 Lottery Tickets on TinyImageNet given
different hyperparameter configurations. (a) Without late rewinding, and (b) with late rewinding.

C.2 Transferability

In Tables 14 and 15 we show the transferability results for frozen tickets extracted for CIFAR-100 and
TInyImageNet. When listing the datasets in order of increasing complexity, we can achieve the following
list: MNIST < EuroSAT ≈ CIFAR-10 < CIFAR-100 < TinyImageNet. We notice in some experiments that
our frozen tickets at initialization don’t outperform any of the frozen fully trained dense networks. More
specifically, in most of the cases where we transfer from a more complex dataset to a less complex dataset, the
trained dense network outperforms the best pruned ticket by some margin. Additionally, transferring from
frozen CIFAR-100 tickets seems better than transferring from frozen TinyImageNet tickets, either because
the CIFAR-100 tickets have less instability, or due to the network structure.
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Table 14: Transferability of frozen 89.26% ResNet-18 tickets extracted on CIFAR-100 with different
configurations. Starred(∗) entries correspond to dense trained networks, meaning the feature extractors have
a sparsity of 0.00%.

Ticket parameters Target dataset
µ Batch Size Pretrained MNIST CIFAR-10 TinyImageNet EuroSAT

0.0 100

✗

84.47 ± 0.80% 38.17 ± 0.23% 8.74 ± 0.31% 73.05 ± 1.00%
0.0 256 97.18 ± 0.20% 67.60 ± 0.89% 20.59 ± 0.97% 86.59 ± 0.54%
0.9 100 79.71 ± 0.79% 34.95 ± 1.95% 6.78 ± 0.07% 66.08 ± 1.99%
0.9 256 79.34 ± 3.08% 35.84 ± 0.97% 7.29 ± 0.61% 68.76 ± 0.70%
0.0 100

✓

96.83 ± 0.07% 65.44 ± 1.14% 22.81 ± 1.07% 86.67 ± 1.10%
0.0 256 97.53 ± 0.18% 70.40 ± 0.48% 24.62 ± 0.51% 89.03 ± 0.09%
0.9 100 91.92 ± 0.58% 47.79 ± 1.06% 11.27 ± 1.61% 74.14 ± 1.63%
0.9 256 95.47 ± 0.46% 53.86 ± 2.86% 16.44 ± 1.08% 80.78 ± 1.61%
Frozen dense∗ (µ = 0.0, BS=256) 95.83 ± 0.24% 78.12 ± 0.11% 17.10 ± 0.97% 79.14 ± 2.16%
Frozen dense∗ (µ = 0.9, BS=100) 90.10 ± 0.36% 75.39 ± 0.41% 13.16 ± 0.46% 67.04 ± 3.70%

Table 15: Transferability of a frozen 89.26% ResNet-34 tickets extracted on TinyImageNet with different
configurations. Starred(∗) entries correspond to dense trained networks, meaning the feature extractors have
a sparsity of 0.00%.

Ticket parameters Target dataset
µ Batch Size Pretrained MNIST CIFAR-10 CIFAR-100 EuroSAT

0.0 100

✗

66.05 ± 1.23% 27.87 ± 0.60% 10.25 ± 0.63% 63.25 ± 0.76%
0.0 256 92.29 ± 2.16% 46.72 ± 1.98% 22.86 ± 1.06% 78.19 ± 0.30%
0.9 100 62.50 ± 11.85% 26.54 ± 1.83% 6.98 ± 1.12% 46.19 ± 8.49%
0.9 256 67.25 ± 4.44% 26.83 ± 2.69% 8.87 ± 1.71% 54.25 ± 5.52%
0.0 100

✓

93.38 ± 1.46% 50.19 ± 3.07% 26.99 ± 2.08% 80.38 ± 1.01%
0.0 256 96.56 ± 0.45% 59.00 ± 1.22% 35.73 ± 2.02% 87.88 ± 1.04%
0.9 100 85.83 ± 3.89% 40.15 ± 1.69% 13.60 ± 1.41% 68.28 ± 0.63%
0.9 256 86.63 ± 5.18% 38.01 ± 2.34% 13.23 ± 1.79% 68.76 ± 3.24%
Frozen dense∗ (µ = 0.0, BS=256) 92.77 ± 0.00% 62.58 ± 0.09% 40.91 ± 0.46% 90.10 ± 0.45%
Frozen dense∗ (µ = 0.9, BS=100) 92.79 ± 0.56% 65.11 ± 0.19% 44.24 ± 0.02% 90.28 ± 0.52%

D Additional results for limited Mask Search Budgets

Table 16: AIMP results for different hyperparameter settings of ResNet-18 on CIFAR-10.

Ticket Parameters Sparsity
Budget µ Batch Size Pretrained 67.23% 89.26% 96.48% 98.85%

20eps

0.0 100

✗

94.34% 93.76% 92.65% 90.26%
0.0 256 93.30% 92.69% 91.57% 88.34%
0.9 100 95.18% 94.82% 93.31% 91.75%
0.9 256 95.01% 94.55% 93.25% 91.18%

50eps

0.0 100

✗

94.31% 93.66% 92.57% 90.70%
0.0 256 93.71% 93.38% 93.08% 91.50%
0.9 100 95.07% 94.24% 92.74% 90.83%
0.9 256 95.14% 94.69% 93.65% 91.90%
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E Additional few-shot learning results

In Figures 13 to 15 we visualize the full few-shot results at all sparsities to complement the tabular results
recorded in Table 6 in the main paper and Tables 17 and 18 below. As with the linear probing results,
we notice that the initial dense network has limited propensity for few-shot learning, but this increases for
the more stable approaches during the initial few pruning iterations. This shows that the better few-shot
performance is associated with the linear probing efficacy. Indeed, it is quite logical to assume that if good
features are already encoded in the network, the network has a ’headstart’ for training with limited data,
and consequently can achieve better accuracy with limited samples.

0.4

0.6

0.8

No Late Rewinding

1% data 2% data 5% data 10% data

20.0%
67.23%

89.26%
96.48%

98.85%

Sparsity

0.4

0.6

0.8

Late Rewinding

20.0%
67.23%

89.26%
96.48%

98.85%

Sparsity
20.0%

67.23%
89.26%

96.48%
98.85%

Sparsity
20.0%

67.23%
89.26%

96.48%
98.85%

Sparsity

Batch Size
100
256
Momentum
0.0
0.9

Figure 13: Few-shot performances at all sparsities for ResNet-18 Lottery Tickets on CIFAR-10 given
different hyperparameter configurations.
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Figure 14: Few-shot performances at all sparsities for ResNet-18 Lottery Tickets on CIFAR-100 given
different hyperparameter configurations.
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Figure 15: Few-shot performances at all sparsities for ResNet-34 Lottery Tickets on TinyImageNet given
different hyperparameter configurations.

Table 17: Validation accuracies of a 89.26% sparse ResNet-10 ticket when trained on a CIFAR-10 subset.

Ticket parameters Subset sizes
µ Batch Size Pretrained 1% 2% 5% 10%

0.0 100

✗

44.22 ± 1.47% 53.37 ± 1.41% 68.40 ± 0.96% 78.90 ± 0.30%
0.0 256 85.43 ± 0.58% 88.03 ± 0.62% 90.58 ± 0.21% 91.82 ± 0.11%
0.9 100 42.93 ± 2.12% 52.80 ± 3.05% 71.35 ± 1.49% 80.96 ± 0.29%
0.9 256 37.02 ± 1.03% 47.38 ± 1.35% 63.93 ± 4.25% 75.44 ± 1.05%
0.0 100

✓

68.02 ± 2.81% 74.49 ± 0.60% 83.43 ± 0.25% 88.69 ± 0.48%
0.0 256 85.84 ± 0.70% 88.09 ± 0.47% 90.40 ± 0.21% 91.68 ± 0.11%
0.9 100 53.85 ± 3.47% 59.29 ± 2.70% 71.10 ± 0.55% 81.51 ± 0.90%
0.9 256 45.06 ± 4.52% 53.55 ± 5.55% 66.54 ± 0.32% 76.99 ± 0.75%

Dense Network 42.54 ± 1.15% 51.25 ± 0.78% 67.15 ± 0.34% 78.42 ± 0.53%

Table 18: Validation accuracies of a 89.26% sparse ResNet-18 ticket when trained on a CIFAR-100 subset.

Ticket parameters Subset sizes
µ Pretraining Batch Size 1% 2% 5% 10%

0.0 100

✗

11.20 ± 0.13% 16.71 ± 0.40% 28.61 ± 0.40% 42.01 ± 0.21%
0.0 256 49.60 ± 0.53% 56.13 ± 0.84% 63.70 ± 0.26% 67.36 ± 0.44%
0.9 100 8.63 ± 0.31% 14.23 ± 0.42% 24.13 ± 0.28% 37.31 ± 0.78%
0.9 256 9.24 ± 0.68% 13.43 ± 0.61% 22.54 ± 1.03% 35.58 ± 0.49%
0.0 100

✓

30.69 ± 1.38% 38.44 ± 0.70% 51.03 ± 0.72% 60.29 ± 0.18%
0.0 256 50.10 ± 0.39% 56.36 ± 0.31% 63.23 ± 0.50% 67.32 ± 0.35%
0.9 100 14.44 ± 0.97% 19.51 ± 0.61% 29.91 ± 1.60% 42.48 ± 1.64%
0.9 256 15.91 ± 2.34% 21.50 ± 2.43% 33.17 ± 3.51% 45.86 ± 1.76%

Dense Network 9.44 ± 0.48% 13.69 ± 0.45% 22.73 ± 0.09% 34.34 ± 0.48%
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E.1 Using forgetting scores as selection criterion

The results earlier in this section, and in Section 5.2 in the main paper are achieved with randomly selected
class-balanced subsets from the training dataset. In this experiment we study a more robust selection criterion
by using sample-wise forgetting statistics from Toneva et al. (2019) to generate class-balanced dataset subsets.
We show the results for CIFAR-10 subsets on the 89.26% sparse ticket achieved with µ = 0.0, batch size
256 in Table 19. Compared to the random selection results in Table 17, we notice that random selection is
indeed a robust baseline at this data sparsity, as forgetting statistics fail to convincingly outperform. We
however notice that interestingly for ticket the 10% most forgotten samples generalize better, while for the
permuted ticket and dense network the least-forgotten samples perform better at 10% subset size.

Table 19: Validation accuracies for a 89.26% sparse ticket, a permuted version of the ticket and a dense
ResNet-18 model trained on different dataset subsets of CIFAR-10. Each model was achieved with
µ = 0.0, batch size 256.

Least forgotten subset Most forgotten subset
Network 1% 10% 1% 10%
Ticket 85.53 ± 0.12% 87.28 ± 0.04% 82.32 ± 0.91% 91.40 ± 0.15%
Permuted 47.12 ± 0.80% 68.62 ± 0.25% 31.51 ± 0.50% 47.21 ± 0.26%
Dense 46.54 ± 0.68% 68.21 ± 0.52% 31.87 ± 0.38% 45.52 ± 0.74%

F Hyperparameter configurations

General parameters. Each training run contains of 200 epochs with a chosen batch size and momentum
parameter. Throughout training the learning rate starts at 0.1 (0.2 for TinyImageNet) and is cosine annealed.
We also apply a weight decay of 1E-4. Each dataset uses normalization, random cropping and horizontal
flipping as data augmentation.

LTH parameters. Each iteration 20% of the unpruned parameters are pruned. Late-rewinding involves
training for 2 epochs to determine the rewinding point. Each experiments consists of 25 (20 for TinyIma-
geNet) rounds of IMP.

Linear Probing. Each linear probe is trained for 5 epochs with a learning rate of 0.005 and weight decay
of 1E-4. No LR scheduling is applied in this case.
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