
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HELENE: HESSIAN LAYER-WISE CLIPPING AND
GRADIENT ANNEALING FOR ACCELERATING FINE-
TUNING LLM WITH ZEROTH-ORDER OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) poses significant memory challenges,
as the back-propagation process demands extensive resources, especially with
growing model sizes. Recent work, MeZO, addresses this issue using a zeroth-
order (ZO) optimization method, which reduces memory consumption by matching
the usage to the inference phase. However, MeZO experiences slow convergence
due to varying curvatures across model parameters. To overcome this limitation,
we introduce HELENE, a novel scalable and memory-efficient optimizer that
integrates annealed A-GNB gradients with a diagonal Hessian estimation and layer-
wise clipping, serving as a second-order pre-conditioner. This combination allows
for faster and more stable convergence. Our theoretical analysis demonstrates
that HELENE improves convergence rates, particularly for models with hetero-
geneous layer dimensions, by reducing the dependency on the total parameter
space dimension. Instead, the method scales with the largest layer dimension,
making it highly suitable for modern LLM architectures. Experimental results on
RoBERTa-large and OPT-1.3B across multiple tasks show that HELENE achieves
up to a 20× speedup compared to MeZO, with average accuracy improvements of
1.5%. Furthermore, HELENE remains compatible with both full parameter tuning
and parameter-efficient fine-tuning (PEFT), outperforming several state-of-the-art
optimizers. The codes will be released after reviewing.

1 INTRODUCTION

LLMs have demonstrated remarkable capabilities across various downstream tasks. Fine-tuning these
models has become the standard approach for improving task-specific performance, in which the first-
order optimizers like Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951), Adam (Diederik,
2014) and AdamW (Hutter & Loshchilov, 2017) are widely used. While effective, however, these
methods demand significant memory resources primarily due to the backpropagation process, which
makes fine-tuning challenging, especially for large-scale models. To overcome this limitation, Malladi
et al. (2023) proposed a memory-efficient zeroth-order optimizer (MeZO) that estimates gradients
using only two forward passes per training step, contributing to considerable memory savings.

However, recent studies show that loss functions in deep learning often exhibit heterogeneous
curvatures across different model parameters and different model layers (Sagun et al., 2016; Ghorbani
et al., 2019; Zhang et al., 2022; Yao et al., 2020), which poses challenges to zeroth-order (ZO)
optimization. This variation in curvature can overall hinder training efficiency and lead to the sub-
optimal solution. To address this issue, more advanced techniques are required, such as incorporating
second-order information to better account for curvature differences (Liu et al., 2023; Tran &
Cutkosky, 2022; Jahani et al., 2021). However, in ZO optimization, directly computing the Hessian
from first-order derivatives is nearly impossible, and partial Hessian evaluations are computationally
intensive, leading to slower convergence. Moreover, we also observe that these methods like Naive
Newton’s method and Sophia (Liu et al., 2023) fail in fine-tuning LLMs in practice as illustrated in
Figure 1 and Figure 2.

To overcome the aforementioned challenges, we propose HELENE, a novel optimizer designed to
estimate second-order curvature information efficiently in the context of ZO optimization. Originating
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Figure 1: The motivating toy example. HE-
LENE can maintain stable updates when fac-
ing curvature issues, while other second-order
optimizers are severely affected by them.
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Figure 2: Comparison of HELENE with Newton’s
method and Sophia. The performance of this training
loss cross-checks with the toy sample in Figure 1.

from label-sampling-based Gaussian-Newton Garlett (GNB) Estimator (Schraudolph, 2002; Wei et al.,
2020; Martens, 2020), in our HELENE algorithm, we introduce a label-sampling-free and efficient
Hessian estimator called the asymptotic Gauss-Newton-Bartlett estimator (A-GNB) Estimator, which
estimates the diagonal of the Hessian matrix. A-GNB is proven to asymptotically converge to the
unbiased Gauss Newton matrix. Additionally, HELENE includes a layer-wise adaptive clipping
mechanism that enables more precise curvature-aware updates, while magnitude-based clipping
helps prevent the overestimation of extreme values in the Hessian diagonal. Unlike existing methods
that rely on global clipping, which can distort gradient signals, HELENE preserves the integrity of
gradient information by applying clipping on a per-layer basis.

One of the key innovations of HELENE is its ability to adaptively clip Hessian updates according to
the curvature of each layer, which significantly enhances convergence rates. While the convergence
of state-of-the-art optimizers like MeZO-Sophia which may require O(d) steps; in contrast, the
convergence of HELENE requires significantly less steps, which is O(maxi di) based on the largest
layer dimension maxi di across all layers, making it more suitable for modern deep architectures. We
observed that zero-order methods require a stronger emphasis on momentum due to the increasing
noise in SPSA gradient estimation as optimization progresses, due to the greater difficulty of training
as the model parameters approach a local minimum, causing the noise magnitude from sampling
perturbations to exceed that of the true gradient signal.So contracting to most momentum design in
first-order methods, the proposed HELENE algorithm also integrates an novel annealing exponential
moving average (EMA) of the gradients, tailored for Zero-order methods, where the factor alpha
dynamically reduce the weight of the gradient in the momentum update.

Overall, our key contributions can be summarized as follows:

1. HELENE integrates a novel asymptotic Gauss-Newton-Bartlett (A-GNB) estimator that
efficiently estimates the diagonal of the Hessian matrix without the need for label sampling
which may incur more noise in the Hessian estimation. This estimator asymptotically
converges to the unbiased diagonal Gauss Newton matrix, improving the efficiency and
precision of curvature-aware updates. In our proposed method, we also devise a new layer-
wise adaptive clipping mechanism by adjusting Hessian updates according to the curvature
of each layer. HELENE integrates an new annealing exponential moving average (EMA) of
the gradients, ensuring robustness in non-convex loss landscapes.

2. Our theoretical analysis demonstrates that HELENE achieves improved convergence rates
compared to existing methods, particularly for models with many layers. By reducing
the convergence steps from O(d) to O(maxi di), HELENE is provably more scalable for
modern deep learning architectures, especially LLM fine-tuning.
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3. HELENE achieves up to 20× speedup compared to MeZO and improves performance by
1.5% on average. We conduct extensive experiments on RoBERTa-large and OPT-1.3B
across various downstream tasks to verify HELENE’s effectiveness. Furthermore, we
demonstrate that HELENE not only remains compatible with full parameter tuning and
PEFT, but also outperforms many of the latest optimizers across a range of tasks.

2 PRELIMINARIES

In this section, we briefly review essential background concepts related to zeroth-order optimization
and diagonal Hessian approximation, which are fundamental to the design of our proposed method.

2.1 ZEROTH-ORDER GRADIENT ESTIMATORS AND MEZO

Zeroth-order (ZO) optimization has long been studied in the context of convex and non-convex
objectives. One of the typical ZO gradient estimators is the simultaneous perturbation stochastic
approximation (SPSA) (Spall, 1992; Maryak & Chin, 2001). Given a model with parameters θ ∈ Rd

and loss function L, SPSA estimates the gradient on a minibatch B as:

gϵ(θ) =
L(θ + ϵz;B)− L(θ − ϵz;B)

2ϵ
z ≈ zz⊤∇L(θ;B) (1)

where z ∈ Rd with z ∼ N (0, Id) and ϵ is the perturbation scale.

Building on the basic principles of ZO optimization, MeZO (Malladi et al., 2023) introduces a
memory-efficient implementation of ZO-SGD. This approach reduces memory requirements, allowing
optimization to proceed with the same memory usage as the inference phase of a model. The key
innovation in MeZO lies in its use of a consistent random seed s to sample the random vector z,
ensuring the same perturbation z at each step.

2.2 DIAGONAL HESSIAN APPROXIMATION

While zeroth-order methods like MeZO provide valuable tools for gradient estimation, optimization
can be significantly enhanced by incorporating second-order information, such as curvature. However,
directly computing and applying the full Hessian matrix is computationally expensive, particularly in
high-dimensional parameter spaces. Specifically, directly applying the Hessian pre-conditioner by
calculating the inverse Hessian and multiplying it with the gradient vector at each iteration H−1g
is particularly computationally expensive. To address this challenge, inexact Newton methods have
been developed, where approximations of the Hessian are used instead of the full matrix (Dembo
et al., 1982; Bollapragada et al., 2019; Xu et al., 2020).

A simple yet effective alternative is to approximate the Hessian by its diagonal elements, which
reduces computational complexity while retaining useful curvature information. In this approach, a
general descent direction can be written as follows:

∆θ ≈ diag(H)−1g,

where diag(H) represents the diagonal elements of the Hessian matrix. This method enhances opti-
mization by enabling efficient inverse Hessian application and supporting inexact Newton methods,
providing improved convergence in complex problems.

3 METHOD

In this section, we formally present HELENE in Section 3.2, with pseudo-code provided in Algo-
rithm 1. In Section 3.4, we introduce A-GNB, followed by a detailed discussion of layer-wise clipped
diagonal Hessian in Section 3.5.

3.1 MOTIVATION

Highly variable curvature across different layers and parameters. Fine-tuning large language
models (LLMs) has become essential for achieving state-of-the-art performance on various down-
stream tasks. Commonly employed first-order optimizers such as Stochastic Gradient Descent
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(SGD)(Robbins & Monro, 1951), Adam(Diederik, 2014), and AdamW (Hutter & Loshchilov, 2017)
have proven effective in this regard. However, these methods require substantial memory, making
them difficult to apply to large models in memory-constrained environments. To mitigate this,
zeroth-order (ZO) optimizers, such as MeZO (Malladi et al., 2023), have been introduced, offer-
ing memory-efficient solutions by approximating gradients through forward passes. Nevertheless,
even with memory savings, existing ZO methods encounter significant challenges when dealing
with heterogeneous curvatures in LLMs, which can lead to inefficient convergence and sub-optimal
solutions. One key challenge is the inability of optimizers to adapt to the highly variable curvature
across different layers and parameters in large models (Sagun et al., 2016; Ghorbani et al., 2019;
Zhang et al., 2022). While techniques that estimate second-order information—such as curvature-
aware methods—have shown promise in improving optimization efficiency (Liu et al., 2023; Tran &
Cutkosky, 2022; Jahani et al., 2021), they are challenging to integrate into ZO optimizers due to the
noise from label-sampling and the difficulty of computing or approximating the Hessian efficiently in
high-dimensional spaces.

Limitation of EMA to balance short-term gradient noise and long-term convergence. A com-
monly used technique to manage these curvature variations is the Exponential Moving Average
(EMA), which smooths the gradient updates over iterations. However, EMA alone can be insufficient
for highly non-convex loss landscapes, especially when it lacks mechanisms to adaptively adjust the
weights between the past momentum and the current gradient in the presence of strong noise in gradi-
ent estimation. Without annealing, EMA risks accumulating excessive bias over time, particularly
when ZO gradient estimation is noisy, leading to suboptimal convergence. This issue is compounded
when the optimizer needs to balance short-term gradient noise and long-term convergence, calling for
more ZO-specific strategies to mitigate these effects.

Challenge in managing extreme curvature values using Universal clipping. Furthermore, clipping
the Hessian to manage extreme curvature values is another widely adopted strategy. Sophia (Liu
et al., 2023), for example, performs global clipping with value 1 of Hessian-based updates to ensure
numerical stability, which essentially can slow down the convergence. While effective at curbing
extreme updates, applying a universal clipping threshold across all parameters is inherently suboptimal
for models with heterogeneous curvatures. A universal clip might suppress meaningful gradient
information in some layers while insufficiently addressing extreme Hessian values in others, thus
limiting the optimizer’s ability to adaptively handle the diverse learning dynamics across layers (Tran
& Cutkosky, 2022). This approach may result in slower convergence or failure to escape saddle points
and local maxima, where more flexible, curvature-aware updates are required (Yao et al., 2020).

To overcome these limitations, HELENE addresses both the limitation of EMA and the issue of global
Hessian clipping. We instantiate MeZO-Gradient Descent, MeZO-Adam, MeZO-Newton’s method,
MeZO-Sophia, and HELENE on a simplified 2D problem to illustrate the advantages HELENE,
as shown in Figure 1. A visual comparison of the methods reveals that while MeZO-Adam and
MeZO-Gradient Descent struggle to converge effectively, Newton’s method and Sophia find it hard
to maintain stability when facing heterogeneous curvature, whereas HELENE succeeds. Refer to
Section 5 for a more comprehensive empirical analysis, including up to 20× faster convergence and
improved accuracy across various tasks and datasets.

3.2 HELENE: HESSIAN LAYER-WISE CLIPPING AND GRADIENT ANNEALING

In HELENE, we introduce an annealing mechanism to mitigate bias in SPSA-estimated gradients,
combined with a clipped diagonal Hessian pre-conditioner that adjusts parameter update step sizes
based on layer-wise curvature. First, the gradient is calculated using the SPSA, while the diagonal
Hessian is efficiently estimated by the proposed new A-GNB method, to eliminate the noise incured
in sampling labels from the model output used in GNB and Sophia. At each iteration, SPSA provides
an estimate gt using two forward passes with random perturbations, and A-GNB returns ht, the
diagonal Hessian of the mini-batch loss.

We apply an exponential moving average (EMA) to both the gradient and diagonal Hessian estimates
to reduce noise and improve stability. To further enhance convergence, we apply layer-wise magnitude-
based clipping to the diagonal Hessian, ensuring extreme values do not disproportionately affect
parameter updates. We provide our pseudo code in Algorithm 1 and each module description in the
following section in details.
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3.3 EMA OF DIAGONAL HESSIAN ESTIMATES

When using a mini-batch to compute the local Hessian (curvature), the resulting estimates are often
noisy. The Hessian diagonal can fluctuate significantly across different parameter dimensions of
the problem. Inspired by the exponential moving average (EMA) of gradient moments in Adam,
we apply a similar technique to reduce noise in the Hessian diagonal estimates over iterations. The
updated Hessian diagonal is computed in the following:

ht = β2ht−k + (1− β2)ĥt,

where ht represents the denoised Hessian diagonal at iteration t and ĥt is the current estimate of the
diagonal at the k-th iteration.

Algorithm 1 HELENE with Layer-wise Clipping

1: Input: Initial parameters θ1, step budget T , learning rate schedule {ηt}Tt=1, hyperparameters
{λi} , γ, β1, β2, ϵ.

2: Set m0 = 0, h0 = 0
3: for t = 1 to T do
4: Estimate gradient gt from ∇Lt(θt) obtained from Eq. (1).
5: α = Anneal(t)
6: mt = β1mt−1 + αgt
7: if t mod k = 1 then
8: Compute diagonal Hessian estimator ĥt = A-GNB(θt)
9: ht = β2ht−k + (1− β2)ĥt

10: else
11: ht = ht−1

12: end if
13: Apply weight decay: θt = θt − ηtϵθt
14: For each layer i, update: θt+1,i = θt,i − ηt · mt,i

γ·max(ht,i,λi)+ϵ

15: end for
1: Subroutine Anneal(t)

α← β1 + (1− β1) · exp (−t/T ) (2)

3.3.1 ANNEALING MECHANISM

As illustrated in Figure 5, the native gradient EMA introduces bias, which adversely affects the
training process and results in an increase in loss during the later stages. To mitigate these issues, we
introduce a gradient annealing mechanism to work in tandem with EMA. This adaptive adjustment
is crucial for ensuring that the model becomes less influenced by noisy or outdated gradients in
later stages. We observe that, unlike first-order methods such as SGD, Zero-order methods require
a stronger emphasis on momentum due to the increasing noise in SPSA gradient estimation as
optimization progresses, as illustrated in Appendix Figure 7. To address this, we introduce a novel
annealing strategy tailored for Zero-order methods, where the factor α, dynamically adjusts the
weight of the gradient in the momentum update. The increase in noise in SPSA is likely due to
the greater difficulty of training as the model parameters approach a local minimum, causing the
noise magnitude from sampling perturbations to exceed that of the true gradient signal. Notably, our
annealing approach is simple to implement, requiring the tuning of only a single hyperparameter.

At each iteration, the annealing mechanism computes α using an exponential decay schedule in Eq. 2,
where T is a predefined hyperparameter controlling the annealing rate. The increase in noise in SPSA
is likely due to the greater difficulty of training as the model parameters approach a local minimum,
causing the noise magnitude from sampling perturbations to exceed that of the true gradient signal.
To address this, as t increases, α gradually decreases to reduce the impact of gradient on the update,
mitigating the bias introduced by EMA. This ensures that, in the later stages of training, the model
focuses more on stable gradient estimates and less on noisy or rapidly changing updates via SPSA
estimated gradient. The annealing mechanism is incorporated into the EMA update rule as line 6 in
Algorithm 1. Via dynamical α the annealing mechanism ensures that the optimizer can effectively
balance short-term noise with long-term convergence.
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3.4 ASYMPTOTIC GAUSS-NEWTON-BARTLETT (A-GNB) ESTIMATOR

The original GNB (Martens, 2020) estimator relies on sampled labels ŷb drawn from the categorical
distribution based on the model’s output. However, this induces stochasticity due to label sampling,
which could be problematic when label distributions are highly imbalanced, as is the case in large
language model (LLM) training. We propose a new estimator, which we call the Asymptotic Gauss-
Newton-Bartlett (A-GNB) Estimator, that replaces the sampled labels ŷb with the true labels yb
and asymptotically converges to the true diagonal of the Gauss-Newton matrix, which is a biased
estimator for the diagonal of the Hessian as shown below:

∇2
θL(θ) ≈ Jθf(θ,x) · S · Jθf(θ,x)⊤ (3)

where Jθf(θ, x) is the Jacobian of the model’s output f(θ,x) with respect to the parameters θ,
and S = ∂2L(t,y)

∂t2 is the second-order derivative of the loss w.r.t. the logits t = f(θ,x) and

y ∼ p(y|x), which implies that S = Ey∼p(θ,x)

[
∂2L(t,y)

∂t2

]
assuming that L is the Cross-Entropy loss.

Consequently, the diagonal of the Gauss-Newton matrix for the mini-batch loss is estimated as:

diag(Jθf(θ,x) · S · Jθf(θ,x)⊤]) = Ey∼p(y|x)

[
diag(Jθf(θ,x)

∂L(t, y)

∂t

∂L(t, y)

∂t

⊤
Jθf(θ,x)

⊤)

]
= Ey∼p(y|x)

[
diag(∇θL(f(θ,x), y)∇θL(f(θ,x), y)

⊤)
]

≈ 1

B

B∑
b=1

[(g(θ,xb, yb)]⊙ [(g(θ,xb, yb)]

where diag(·) represents the diagonal elements of a matrix, and B denotes the batch size and g is
the estimated gradient from Eq. (1). In contrast to GNB estimator, which includes sampling label ŷ
from the logit probability output from the model, we replace it by yb, the true label, thereby avoiding
the need for post-output label sampling. By eliminating the stochasticity induced by sampled labels
ŷ, we reduce the variance caused by sampling noise, and it is especially beneficial in imbalanced
data scenarios, when samples from minor class is rarely selected unless sampling significantly many
times.

The estimated gradient terms now correspond directly to the true labels, and their outer product sums
up to the true Gauss-Newton approximation of the Hessian. As the batch size B →∞, the A-GNB
estimator converges to the true Hessian’s diagonal:

lim
B→∞

1

B

B∑
b=1

[g(θ,xb, yb)]⊙ [g(θ,xb, yb)] = diag(Jθf(θ,x) · S · Jθf(θ,x)⊤)

Therefore, The A-GNB estimator asymptotically converges to the true diagonal of the Gauss-Newton
matrix as B increases.

Algorithm 2 Asymptotic Gauss-Newton-Bartlett (A-GNB)

1: Parameters: θ
2: Draw a mini-batch of the input {xb}Bb=1

3: Estimate diagnal Hessian matrix by h =
∑B

b=1[g(θ,xb, yb)]⊙ [g(θ,xb, yb)]
4: return h

3.5 LAYWERWISE CLIPPED DIAGONAL HESSIAN TO HELP NEWTON’S METHOD

As discussed in the motivating examples, fine-tuning LLMs and optimizing non-convex functions
pose challenges for Newton’s method, which uses the Hessian as a pre-conditioner. The method
may converge to local maxima rather than local minima. Moreover, the inaccuracy of Hessian
estimates and changes in the Hessian along the optimization trajectory can render second-order
information unreliable. To address these issues, we draw inspiration from Sophia. While Sophia
performs clipping on the Newton update H−1g, we propose a more robust approach by applying
layer-wise clipping directly to the Hessian matrix H .using a universal clipping threshold for the

6
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update H−1g disregards the differences in layer-wise Hessian and gradient magnitudes, which are
frequently observed during DNN training, and may distort valuable gradient information. Moreover,
H−1g introduces excessive bias, potentially distorting useful gradient information, whereas clipping
extreme Hessian values more effectively preserves essential second-order information.

In particular, we improve convergence rates by (1) considering only the positive entries of the diagonal
Hessian and (2) introducing per-coordinate, layer-wise clipping of the Hessian values. This approach
adapts the clipping threshold across layers to account for the diverse curvature across different parts
of the model. Given a clipping threshold λi > 0 for layer i, the clipping function is defined as:

clip(hi) = max(hi, λi), λi ∈ R,

where all operations are applied element-wise for each layer. The update rule for layer i is then
written as:

θt+1,i = θt,i − η · mt,i

γ ·max(ht,i, λi) + ϵ
,

where ϵ > 0 is a small constant to avoid division by zero, and λi controls the fraction of clipped
Hessian values per layer. By applying layer-wise clipping, we ensure that the optimizer is capable of
adapting to the curvature of each layer individually, leading to improved stability and convergence
rates across different parts of the model. We present the pseudo-code of our Hessian-clipped method
in Algorithm 1.

For further information about the differences of HELENE with previous work, please reference the
related work in Appendix A.

4 CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of the convergence of our proposed method. The
key improvement in our method comes from the use of layer-wise parameters λi, which reduces the
dependency on the total dimension d and instead relies on the maximum layer dimension maxi di.

The theoretical bound for the number of steps T in our method is given by the following theorem
with two assumptions:
Assumption 1. Let L : Rd → R be a loss function. We assume L is twice continuously differentiable
strictly convex, and has a unique minimizer denoted by θ∗. For each layer i, define µi as the minimum
eigenvalue of the Hessian matrix of L concerning the parameters of that layer evaluated at its
minimizer:

µi ≡ λmin(∇2
θi
L(θ∗))

where∇2
θi

denotes the Hessian with respect to the parameters of the i-th layer.

Assumption 2. Regarding the Hessian∇2L(θ) of the loss function, we assume:

• There exists a radius Ri > 0 such that for any θi,θ
′
i ∈ Rd with ∥θi − θ′

i∥2 ≤ Ri, the
following inequality holds:∥∥∇2L(θ′

i | θ−i)
−1∇2L(θi | θ−i)

∥∥
2
≤ 2

where ∥ · ∥2 represents the spectral norm.

Theorem 1. Under Assumptions 1 and 2, let η = 1
2 and λi =

Ri

2
√
di

. The update reaches a loss at
most ϵ in

T ≤ max
i

{
di · (L(θ0,i)−minL) + ln

(
µiR

2
i

32diϵ

)}
.

steps, where L is the loss function, θ0,i is the initial parameter vector for layer i, µi is the strong
convexity constant for layer i, and Ri is the bound on the distance between θ0,i and θ∗

i .

The best known theoretical bound for the number of steps T required by Sophia to reach a loss at most
ϵ is given by Sophia in which TSOPHIA ∼ O(d), where d is the total dimension of the parameter space.
This result implies that the convergence rate depends linearly on the total dimension d, which can lead
to slow convergence for models with large parameter spaces. In contrast, our method introduces layer-
wise parameters ρi = Ri

2
√
di

, where Ri is the bound on the distance between the initial parameters θ0,i

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and the optimal parameters θ∗
i for layer i, and di is the dimension of the parameter space for layer i.

This layer-wise setting significantly reduces the complexity to TSOPHIA ∼ O(maxi di), which is the
maximum dimension across layers. Besides the lower runtime bound, our method allow each layer to
have its own parameter ρi, allowing the method to adapt to the specific geometry of each layer. Refer
to Appendix B.3 for the empirical study on the significant variance using unified parameter clipping
across different layers. This flexibility leads to a more efficient optimization process, as each layer
is treated independently based on its characteristics. In large models where some layers have much
smaller dimensions than others, our method is able to achieve faster convergence by focusing on the
most difficult layer with the largest dimension, therefore making our method more scalable for deep
models with many layers. Detailed proof can be seen in the Appendix C.

5 EXPERIMENTS

Since the introduction of the Transformer (Vaswani, 2017), language models (LMs) have progressively
developed through the use of different Transformer-based architectures. One of the iconic work is
BERT (Devlin, 2018), which is based on the encoder architecture of Transformer and pre-trained
with techniques like masked language modeling. As the field of natural language processing (NLP)
develops, more powerful decoder-only LLMs also have shown their great potential.

Therefore, to rigorously evaluate the capability and universality of HELENE, we follow the ex-
periments conducted in MeZO on both medium-sized masked LMs (RoBERTa-large (Liu, 2019),
350M) and auto-regressive LLMs (OPT-1.3B (Zhang et al., 2023)) under both few-shot and many-
shot settings. Additionally, all optimization algorithms are evaluated with three tuning methods:
fine-tuning (FT) and two parameter-efficient fine-tuning (PEFT) methods, LoRA (Hu et al., 2021)
and prefix-tuning (Li & Liang, 2021). We also do experiments with zeroth-order (ZO) versions of
some optimizers as well as ZO-SGD variants introduced in Zhang et al. (2024), and present them in
Section 5.3.

The experimental results show that across all settings, HELENE not only outperforms MeZO on most
datasets by approximately 1.5% on average, but also makes the convergence process of gradient-free
optimization more stable and faster, boosting to 20× times the original speed.

5.1 MASKED LANGUAGE MODELS

For masked LMs, we conduct experiments using RoBERTa-large on three types of NLP tasks,
sentiment classification, natural language inference, and topic classification with k = 16 examples
per class. We run HELENE for 5,000 steps and FT for 1,000 steps. The experimental results are
listed in Table 1.

Task Type SST-2 SST-5 SNLI MNLI RTE TREC
—— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0
LP 76.0 (±2.8) 40.3 (±1.9) 66.0 (±2.7) 56.5 (±2.5) 59.4 (±5.3) 51.3 (±5.5)

FT 91.9 (±1.8) 46.7 (±1.9) 77.5 (±2.6) 70.0 (±2.3) 66.4 (±7.2) 85.0 (±2.5)
FT(LoRA) 91.4 (±1.7) 46.7 (±1.1) 74.9 (±4.3) 67.7 (±1.4) 66.1 (±3.5) 82.7 (±4.1)
FT(Prefix) 91.9 (±1.0) 47.7 (±1.1) 77.2 (±1.3) 66.5 (±2.5) 66.6 (±2.0) 85.7 (±1.3)

MeZO 90.5 (±1.2) 45.5 (±2.0) 68.5 (±3.9) 58.7 (±2.5) 64.0 (±3.3) 76.9 (±2.7)
MeZO (LoRA) 91.4 (±0.9) 43.0 (±1.6) 69.7 (±6.0) 64.0 (±2.5) 64.9 (±3.6) 73.1 (±6.5)
MeZO (Prefix) 90.8 (±1.7) 45.8 (±2.0) 71.6 (±2.5) 63.4 (±1.8) 65.4 (±3.9) 80.3 (±3.6)

HELENE 92.6 (±2.3) 46.7 (±0.8) 72.0 (±2.6) 58.9 (±1.1) 65.7 (±1.2) 78.1 (±1.5)
HELENE (LoRA) 90.6 (±0.3) 41.8 (±1.0) 68.5 (±2.0) 59.0 (±1.1) 66.8 (±3.2) 67.4 (±2.1)
HELENE (Prefix) 91.7 (±0.6) 46.0 (±0.7) 69.5 (±1.9) 64.6 (±2.1) 66.1 (±1.8) 77.4 (±2.1)

Table 1: Experiments on RoBERTa-large (350M parameters, k = 16). PEFT represents the LoRA
and prefix and we report the best of them. All reported numbers are averaged accuracy (standard
deviation) across 5 runs.
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Task SST-2 RTE CB BoolQ WSC WIC COPA ReCoRD SQuAD
Task type ——————— classification ——————— — multiple choice — – generation –

Zero-shot 53.4 53.1 37.5 45.7 44.2 57.0 75.0 70.3 27.1
ICL 80.3 53.1 48.2 58.5 44.2 50.6 69.0 71.0 59.0
LP 80.3 52.7 44.6 58.9 47.1 50.6 69.0 71 75.9

MeZO 89.6 55.8 77.0 59.6 55.0 58.0 74.0 60.0 62.2
MeZO (LoRA) 90.8 63.0 78.0 67.2 51.2 58.0 79.0 59.8 67.6
MeZO (prefix) 92.4 52.8 66.0 61.6 51.6 52.8 74.0 56.8 56.0

HELENE 91.2 64.4 87.0 60.8 55.4 58.4 69.0 55.6 63.8
HELENE (LoRA) 91.4 50.6 76 64.0 49.6 52.6 82.0 60.2 60.4
HELENE (prefix) 92.4 51.6 74.0 62.5 52 57.2 80.0 58.8 68.4
FT (12× memory) 90.8 73.4 77 70.2 53 60.2 81.0 59.6 70.9

Table 2: Experiments on OPT-1.3B (with 1000 examples). ICL: in-context learning; LP: linear
probing; FT: full-parameter fine-tuning with Adam. We highlight the best results in bold to facilitate
comparison.
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Figure 3: Performance and convergence of MeZO and HELENE for fine-tuning, LoRA, and prefix-
tuning of OPT-1.3B on different datasets. HELENE achieves approximate 10× speedup and up to
15% accuracy improvement compared to MeZO.

HELENE largely outperforms zero-shot and linear probing. On all six datasets, HELENE can
stably optimize the pre-trained LM and consistently perform better than zero-shot and linear probing.

HELENE delivers a 20× speed improvement over MeZO while also maintaining its perfor-
mance. With the guidance of layer-wise clipped Hessian information, HELENE can reach conver-
gence in about 5000 steps on average across the datasets, accelerating the optimization process by
approximate 20× times than MeZO. Meanwhile, the results show that HELENE can still achieve
performance on par with MeZO, with leading average accuracy of three tuning methods on the dataset
SST-2, SST-5, MNLI and RTE.

5.2 AUTO-REGRESSIVE LLMS

LLMs such as GPT-3 (Brown et al., 2020), LLaMA (Touvron et al., 2023), and ChatGLM (Du et al.,
2021) have become the predominant models in NLP, we include experiments with auto-regressive
LLM OPT-1.3B on three different task: text classification, multiple choice, and text generation.
We use various datasets from the SuperGLUE benchmark (Wang et al., 2019), which includes the
following datasets: SST-2, RTE, CB, WSC, WIC, COPA, and ReCoRD. Additionally, we also
experiment on BoolQ (Clark et al., 2019) and SQuAD (Rajpurkar, 2016). We run HELENE with
about 10,000 training steps for each dataset. The results are summarized in Table 2, from which we
can have the following observations.

HELENE has clear performance advantages compared with MeZO. Table 2 shows that HELENE
with its LoRA and prefix variants can consistently outperform MeZO. Specifically, the average
performances of HELENE with its LoRA and prefix variants remarkably exceed MeZO’s by 5.3%,
2.1% and 1.3% on CB, SQuAD and COPA, respectively.

HELENE accelerates 10× times while remaining compatible with PEFT methods. In Figure 3,
we present results from four selected datasets across different tasks under three tuning methods. It
indicates that HELENE can consistently speed up the convergence by up to 10× times, and also
enhances the capability.
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SST2 Roberta-Large OPT-1.3B

FT LoRA Prefix FT LoRA Prefix

FO-SGD 91.4 91.2 89.6 91.1 93.6 93.1

Forward-Grad 90.1 89.7 89.5 90.3 90.3 90.0

ZO-SGD 89.4 90.8 90.0 90.8 90.1 91.4
ZO-SGD-MMT 89.6 90.9 90.1 85.2 91.3 91.2
ZO-SGD-Cons 89.6 91.6 90.1 88.3 90.5 81.8
ZO-SGD-Sign 52.5 90.2 53.6 87.2 91.5 89.5
ZO-Adam 89.8 89.5 90.2 84.4 92.3 91.4
HELENE 92.6 90.6 91.7 90.8 91.4 92.4

Table 3: Performance of LLM fine-tuning on SST2
over pre-trained Roberta-Large and OPT-1.3B. Best
performance among ZO methods (including Forward-
Grad) are in bold.
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Figure 4: Validation losses for ZO-
optimizers. MeZO:0.426, Adam:0.286,
AdamW:0.351, Lion:0.343, HELENE:0.283.

5.3 EXPERIMENTS WITH OTHER ZO ALGORITHMS

It is worth noting that the ZO optimization technique utilized in Malladi et al. (2023) is primarily the
basic SGD version (ZO-SGD), and it is still not clear how effective HELENE is when comparing with
other ZO optimization algorithms like ZO-SGD, ZO-SGD-MMT, ZO-SGD-Cons, ZO-SGD-Sign and
ZO-Adam as introduced in Liu et al. (2020). Therefore, we reference the statistics of performances
summarized in Zhang et al. (2024) and experiment under the same setting with them (Table 3),
through which HELENE shows good functionality especially for FT and prefix-tuning.

We further implement the ZO versions of Adam, AdamW and Lion (Chen et al., 2024) and plot the
results in Figure 4. The results indicate that HELENE helps the model converge faster as well as
obtain lower validation loss value.

5.4 ABLATION STUDY

We conduct a comprehensive ablation study on the key techniques of HELENE in Appendix B,
including in-depth analysis of the effects of magnitude clipping across different ranges. Additionally,
we explore the factors resulting in Sophia’s initial convergence and subsequent divergence.

6 CONCLUSION

In this paper, we present a novel optimizer, HELENE, which is designed to address the challenges of
fine-tuning LLMs. HELENE integrates a new asymptotic Gauss-Newton-Bartlett (A-GNB) estimator
for diagonal Hessian estimation, and a novel layer-wise clipping with the annealing module. The A-
GNB estimator eliminates the need for label sampling, providing an unbiased Hessian approximation
and improving the precision of curvature-aware updates. Furthermore, our layer-wise clipping
mechanism provably ensures more adaptive Hessian updates based on the curvature of each layer,
enhancing stability and scalability. Theoretical analysis shows that HELENE reduces convergence
steps fromO(d) toO(maxi di), making it highly scalable for modern architectures with many layers.
Experimental results on models like RoBERTa-large and OPT-1.3B demonstrate that HELENE
achieves up to a 20× speedup compared to MeZO and improves performance by 1.5% on average.
Compatible with both full parameter tuning and parameter-efficient fine-tuning, HELENE outperforms
many state-of-the-art optimizers across diverse tasks and datasets.
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Doubly adaptive scaled algorithm for machine learning using second-order information. arXiv
preprint arXiv:2109.05198, 2021.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi Liu,
and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and uncertainty
in zeroth-order optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 18363–18371, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Mingrui Liu, Zhenxun Zhuang, Yunwen Lei, and Chunyang Liao. A communication-efficient
distributed gradient clipping algorithm for training deep neural networks. Advances in Neural
Information Processing Systems, 35:26204–26217, 2022.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle. In
International Conference on Learning Representations, 2019.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for
recurrent neural networks. In International Conference on Learning Representations, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

James Martens et al. Deep learning via hessian-free optimization. In Icml, volume 27, pp. 735–742,
2010.

John L Maryak and Daniel C Chin. Global random optimization by simultaneous perturbation
stochastic approximation. In Proceedings of the 2001 American control conference.(Cat. No.
01CH37148), volume 2, pp. 756–762. IEEE, 2001.

Yurii Nesterov and B. T. Polyak. Cubic regularization of newton method and its global performance.
Math. Program., 108(1):177–205, aug 2006. ISSN 0025-5610.

R Pascanu. Revisiting natural gradient for deep networks. arXiv preprint arXiv:1301.3584, 2013.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity
and beyond. arXiv preprint arXiv:1611.07476, 2016.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International
conference on machine learning, pp. 343–351. PMLR, 2013.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Yujie Tang, Junshan Zhang, and Na Li. Distributed zero-order algorithms for nonconvex multiagent
optimization. IEEE Transactions on Control of Network Systems, 8(1):269–281, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hoang Tran and Ashok Cutkosky. Better sgd using second-order momentum. Advances in Neural
Information Processing Systems, 35:3530–3541, 2022.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and explicit regularization effects of dropout.
In International conference on machine learning, pp. 10181–10192. PMLR, 2020.

Peng Xu, Fred Roosta, and Michael W Mahoney. Newton-type methods for non-convex optimization
under inexact hessian information. Mathematical Programming, 184(1):35–70, 2020.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE international conference on big data (Big data), pp.
581–590. IEEE, 2020.

Haishan Ye, Zhichao Huang, Cong Fang, Chris Junchi Li, and Tong Zhang. Hessian-aware zeroth-
order optimization for black-box adversarial attack. arXiv preprint arXiv:1812.11377, 2018.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: Practical second-order optimization with kronecker-
vectorized approximation. In The Eleventh International Conference on Learning Representations,
2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models, 2022. URL https://arxiv. org/abs/2205.01068, 3:19–0, 2023.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 ZERO-ORDER OPTIMIZATION

Zeroth-order (ZO) optimization, which only relies on the forward passes of neural networks, offers
significant memory savings during the training process. Recently, MeZO (Malladi et al., 2023) adapted
the traditional zeroth-order SGD optimization method for fine-tuning LMs, achieving performance
comparable to full-parameter fine-tuning while significantly reducing memory usage. Thus, zeroth-
order optimization is regarded as a promising approach for memory-efficient fine-tuning of LLMs.
Several studies have aimed to improve the MeZO algorithm. For instance, Gautam et al. (2024)
introduced a zeroth-order optimization algorithm that integrates both full-batch and mini-batch
information to produce asymptotically unbiased, low-variance gradient estimations. However, the
convergence rate of their approach still leaves room for improvement. In pursuit of better gradient
estimation, Jiang et al. (2024) proposed an innovative perturbation sampling technique inspired by
the Adam optimizer. Other methods, such as SPSA (Spall, 1992; Maryak & Chin, 2001), have shown
to be effective in non-convex multi-agent optimization (Tang et al., 2020; Hajinezhad & Zavlanos,
2018) and in generating black-box adversarial examples (Chen et al., 2017; Cai et al., 2021; Liu et al.,
2019; Ye et al., 2018).

A.2 SECOND-ORDER INFORMATION FOR FINE-TUNING LLMS

Classic second-order optimization algorithms pre-condition the gradient with curvature informa-
tion (BROYDEN, 1970; Nesterov & Polyak, 2006; Conn et al., 2000). Over the years, people have
developed numerous ways to adapt these methods to deep learning. To the best of our knowledge,
BECKER (1988) was the first to use diagonal Hessian as the pre-conditioner. Martens et al. (2010)
approximated the Hessian with conjugate gradient. Schaul et al. (2013) automatically tuned the
learning rate of SGD by considering diagonal Hessian. Pascanu (2013) considered Gaussian Newton’s
approximation of Hessian and Fisher information matrix. Martens & Grosse (2015) and follow-up
works (Ba et al., 2017; George et al., 2018; Martens et al., 2018; Zhang et al., 2022) proposed to
approximate the Hessian based on the structure of neural networks. Despite these progress on deep
learning applications, for decoder-only LLMs, Adam still appears to be the most popular optimizer.
The authors of this paper suspect that many previous second-order optimizers face the challenge that
the computational / memory overhead due to frequent Hessian computation hinders improvements in
wall-clock time (Martens & Grosse, 2015; Gupta et al., 2018). Some of them also depend on specific
model architecture or hardware structures, e.g., Anil et al. (2020) offloads hessian computation to
CPUs, and George et al. (2018) needs ResNet and very large batch size to approximate the Fisher
information matrix. To the best of our knowledge, there was no previous report that second-order
optimizers can achieve a speed-up on LLMs in total compute.

There is also a concurrent work HiZOO (Zhao et al., 2024) that utilizes Hessian information to
enhance zeroth-order optimization for fine-tuning LLMs. A major focus of HiZOO is to introduce one
more forward pass to handle heterogeneous curvatures across parameter dimensions. However, our
work focus on incorporating layer-wise clipping to exclude extreme Hessian values and Exponential
Moving Average (EMA) to improve generalization.

A.3 GRADIENT CLIPPING

Global gradient clipping has been a widely adopted practice in fine-tuning LLMs (Chen et al., 2020;
Zhang et al., 2019; Liu et al., 2022). This technique stabilizes training by mitigating the impact of
rare examples and large gradient noise. In addition to gradient clipping, HELENE is the first method
to clip the Hessian matrix in second-order optimization techniques. This approach addresses the issue
of the Hessian matrix fluctuating along the optimization trajectory and reduces the errors in Hessian
approximations.
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(a) Ablation study for key components of HELENE.
The effectiveness of annealing and the clipped diagonal
Hessian are demonstrated progressively from high to
low.

(b) The image on the right is a zoomed-in
view of the left one, showing that our pro-
posed HELENE is twice as fast as the com-
pared methods.

Figure 5: Comparison of tuning processes and ablation studies with different optimization algorithms.

B ABLATION STUDY

B.1 EVALUATING THE IMPACT OF KEY COMPONENTS ON CONVERGENCE AND STABILITY

Figure 5 illustrates the effectiveness of each component in our algorithm. Adding momentum to
MeZO alone doesn’t improve performance. Introducing bias in the gradient boosts convergence
speed, but causes loss to increase later in training due to biased gradient estimates. To counter this,
we added an annealing term to make the gradient asymptotically unbiased, which stabilizes the loss.
Inspired by Sophia, we introduced the clipped Hessian to address heterogeneous curvatures, further
improving convergence speed. Our ablation study validates both the motivation and effectiveness of
these components.

B.2 MAGNITUDE CLIPPING

Figure 6 addresses the robustness of clipping in our optimizer. Our empirical study is as follows:
First, we explored the impact of lower bounds ranging from 1 to 3, all of which demonstrated stability.
As a hyperparameter, this lower bound shows consistent robustness. However, when the lower bound
was set to 0.9, the model performance dropped by 10 points, leading us to believe that problematic
Hessian values are concentrated below 1, while values above 1 are less critical. Second, we argue
that layer-wise clipping based on magnitude is reasonable in a zeroth-order setting, as performing
percentage-based clipping for each layer would be time-consuming.

B.3 INVESTIGATION INTO THE CONVERGENCE INSTABILITY OF SOPHIA

We study the reasons for Sophia’s failure in the Figure 1 by counting the number of clip triggers.
We computed the loss between timesteps 400 and 800, with a mean value of 0.57. The average
loss between timesteps 1400 and 1800 was 0.65. We then analyzed the number of times the Sophia
clipping mechanism was triggered within these two time intervals. Our analysis covered the Q, K,
V matrices, fully connected layers, and bias layers. We found that the frequency of clipping in the
interval where the mean loss was 0.65 was 1.18 to 1.22 times higher than in the interval where the
mean loss was 0.57.

Based on these experimental observations, we conclude that Sophia’s clipping mechanism tends to be
over-triggered in complex data scenarios, particularly when faced with heterogeneous curvature. This
over-triggering can result in non-convergence, aligning with our intuition. In the zeroth-order setting,
gradients are estimated using SPSA, and excessive clipping of the g

H terms can lead to instability and
failure of the model to converge.
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Figure 6: Performance and convergence of HELENE for fine-tuning of OPT-1.3B on SST2 with
different clipping lower bound.
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Figure 7: Gradient Descent methods, SPSA gradient estimation becomes increasingly noisy as
optimization progresses.

C DETAILED CONVERGENCE ANALYSIS

Lemma 1 (Divergence to Infinity). Under Assumption 1, for each layer i in a neural network model,
assume the function L : Rdi → R is strictly convex, twice continuously differentiable, and has a
unique minimizer denoted by θ∗

i . For any parameter vector θi of layer i such that ∥θi − θ∗
i ∥2 ≥ 1,

the function L(θi) diverges to infinity as ∥θi∥2 →∞.
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Proof. By the strict convexity of L, for any θi such that ∥θi − θ∗
i ∥2 ≥ 1, we have:

L(θi)− L(θ∗
i )

∥θi − θ∗
i ∥2

≥ min
∥ϕ∥2=1

L(θ∗
i + ϕ)− L(θ∗

i ), (4)

where ϕ is a unit vector. For the convenience, here L(θi) denotes L(θi|θ−i) where θ−i denotes the
parameters in the whole model except θi, and L(θ∗

i ) denotes L(θ∗
i |θ∗

−i). Define ∆i as:

∆i = min
∥ϕ∥2=1

L(θ∗
i + ϕ)− L(θ∗

i ), (5)

a positive constant due to the strict convexity of L indicating the minimal rate of increase of L around
θ∗
i .

Thus, the inequality can be written as:

L(θi) ≥ ∥θi − θ∗
i ∥2∆i + L(θ∗

i ). (6)

This implies that as ∥θi∥2 →∞, which necessarily implies ∥θi − θ∗
i ∥2 →∞, the loss L(θi) also

diverges to infinity, since the term ∥θi − θ∗
i ∥2∆i dominates and increases without bound.

Note: We do not require the Hessian of the loss function, ∇2L(θi), to be Lipschitz continuous;
Assumption 2 only requires that the Hessian is continuous in a multiplicative sense within a neighbor-
hood of constant radius.

Lemma 2 (Parameter Bound). Let L : Rd → R be a loss function for a neural network composed
of multiple layers, each with parameters θi, and L is twice continuously differentiable and strictly
convex with respect to each layer’s parameters at a global minimizer θ∗. Assume each layer i satisfies
the following condition:

L(θi)−minL ≤ µiR
2
i

4
,

where µi is the minimum eigenvalue of the Hessian of L at the minimizer for parameters of layer i,
and Ri is a predefined radius. Then, it holds that

∥θi − θ∗
i ∥2 ≤ Ri.

Proof. Suppose, by way of contradiction, there exists a θi such that L(θi) ≤ µiR
2
i

4 , but ∥θi−θ∗
i ∥2 >

Ri. Define θ′
i as:

θ′
i = θ∗

i +
√

2(L(θi)−minL)
θi − θ∗

i

µi∥θi − θ∗
i ∥2

. (7)

Since θ′
i is a point between θi and θ∗

i , and due to the strict convexity of L, we have L(θ′
i) < L(θi)

by convexity. Considering the Taylor expansion of L at θ∗
i along the direction towards θ′

i, we have:

f(t) = L(θ∗
i + t(θ′

i − θ∗
i )), f(1) = L(θ′

i), f(0) = L(θ∗
i ), f ′(0) = 0, (8)

f ′′(t) = (θ′
i − θ∗

i )
T∇2L(tθ′

i + (1− t)θ∗
i )(θ

′
i − θ∗

i ), (9)

Given f ′′(t) ≥ µi

2 ∥θ
′
i − θ∗

i ∥22 from Assumption 2 and the convexity, the Taylor expansion yields:

f(1) ≥ f(0) + f ′(0) +
1

2
f ′′(t) = L(θ∗

i ) +
µi

2
∥θ′

i − θ∗
i ∥22,

thus,
L(θ′

i) ≥ L(θ∗
i ) +

µi

2
∥θ′

i − θ∗
i ∥22

which contradicts the assumption that L(θ′
i) < L(θi). Therefore, the original assumption that

|θi − θ∗
i ∥2 > Ri must be false, concluding that∥θi − θ∗

i ∥2 ≤ Ri.

Lemma 3 ( Gradient Norm Bound). For any θi in layer i of a neural network, satisfying
∥∇L(θi)∥2 ≤

µiRi

2 , where µi is the minimum eigenvalue of the Hessian of L at the minimizer
for layer i parameters, it holds that ∥θi − θ∗

i ∥2 ≤ Ri.
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Proof. Assume, by way of contradiction, there exists a θi with ∥∇L(θi)∥2 ≤
µiRi

2 and ∥θi−θ∗
i ∥2 >

Ri. Define a function f(t) by:

f(t) = ∇L(θ∗
i + t · (θi − θ∗

i )) ·
θi − θ∗

i

∥θi − θ∗
i ∥2

, (10)

where f(0) = ∇L(θ∗
i ) due to θ∗

i being a minimizer, and f(Ri) = ∇L(θi).
Due to the strict convexity of L, f(t) is a strictly monotone increasing function. The derivative with
respect to t, must satisfy:

f ′(t) =
d

dt

(
∇L(θ∗

i + t · (θi − θ∗
i )) ·

θi − θ∗
i

∥θi − θ∗
i ∥2

)
≥ ∥∇L(θi)∥2

2
, (11)

by Assumption 2 and the fact that the gradient norm does not increase more than twice in any direction
within the ball of radius Ri.

The fundamental theorem of calculus and the above inequality imply:

f(Ri) = f(0) +

∫ Ri

0

f ′(t)dt ≥
∫ Ri

0

∥∇L(θi)∥2
2

dt =
Ri∥∇L(θi)∥2

2
, (12)

However, f(Ri) = ∥∇L(θi)∥2 and this leads to

∥∇L(θi)∥2 ≥
Ri∥∇L(θi)∥2

2
, (13)

a contradiction unless ∥θi − θ∗
i ∥2 ≤ Ri.

Therefore, the original assumption that ∥θi − θ∗
i ∥2 > Ri must be false, proving the lemma.

Lemma 4 (Stability of Gradient Flow). Suppose the gradient∇L(θi(t)) and the Hessian∇2L(θi(t))
of the loss function L satisfy the conditions for all t ∈ [0, 1] that ensure stability and convergence to
a minimizer θ∗

i . Assume the differential equation

dθi(t)

dt
= −

(
∇2L(θi(t))

)−1∇L(θi(t)), θi(0) = θi, θi(1) = θ∗
i , (14)

has at least one solution on the interval [0, 1] and satisfies ∇L(θi(t)) = (1 − t)∇L(θi) for all
t ∈ [0, 1].

Proof. We demonstrate this by showing that the given ordinary differential equation (ODE) is
well-posed under the assumptions. The initial value problem

dθi(t)

dt
= −

(
∇2L(θi(t))

)−1∇L(θi(t)), (15)

can be solved over the interval [0, 1] due to the continuity and positive definiteness of∇2L, which
ensures the existence and uniqueness of the solution by the Picard-Lindelöf theorem.

Define Tmax,i as the largest positive number such that the solution exists on [0, Tmax,i]. We claim
Tmax,i ≥ 1, based on the behavior of the gradient along the solution path. Considering:

d

dt
∇L(θi(t)) = ∇2L(θi(t))

dθi(t)

dt
= −∇L(θi(t)), (16)

which implies that ∇L(θi(t)) = e−t∇L(θi). Since ∇L(θi(t)) = (1− t)∇L(θi) for t ∈ [0, 1], the
condition aligns perfectly.

Finally, since θi(1) has zero gradient by the construction of the ODE, θi(1) must be θ∗
i . This

completes the proof.

Lemma 5 (Quadratic Form Integration). Assume the gradient norm ∥∇L(θi)∥2 and the Hessian
∇2L(θi) satisfy certain conditions over the interval [0, 1]. Suppose either

1. L(θi)−minL ≤ µiR
2
i

16 , or
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2. ∥∇L(θi)∥2 ≤
µiRi

4 ,

where µi is the minimum eigenvalue of the Hessian at the minimizer for the parameters of layer i,
then it holds that ∥∥∇L(θi)T (∇2L(θi))

−1∇L(θi)
∥∥ ≤ 4(L(θi)−minL). (17)

Proof. Let {θi(t)}1t=0 be the solution of the following differential equation:

dθi(t)

dt
= −(∇2L(θi(t)))

−1∇L(θi(t)), θi(0) = θi, θi(1) = θ∗
i . (18)

From Lemma 4, adapted for each layer, we have ∇L(θi(t)) = (1 − t)∇L(θi) for all t ∈ [0, 1].
Assume ∥θi(t)− θ∗

i ∥ ≤ Ri/2 by Lemmas 2 and 3.

By Assumption 2, for each layer, this implies:

(∇2L(θi(t)))
−1 ≥ 1

2
(∇2L(θi))

−1 (19)

for all t ∈ [0, 1].

Integrating the quadratic form along the path, we have:

L(θi)−minL = L(θi(0))− L(θi(1))

=

∫ 1

0

(1− t)2(∇L(θi))T (∇2L(θi(t)))
−1∇L(θi)dt. (20)

Substituting the inequality from equation 19, we simplify:

1

2

∫ 1

0

(1− t)2dt(∇L(θi))T (∇2L(θi))
−1∇L(θi)

=
1

6
(∇L(θi))T (∇2L(θi))

−1∇L(θi).
(21)

This integration shows that
∥∥∇L(θi)T (∇2L(θi))

−1∇L(θi)
∥∥ ≤ 4(L(θi)−minL), completing the

proof.

Lemma 6 (Gradient and Loss Bound). Assuming the gradient norm ∥∇L(θi)∥2 and the conditions
on the loss function L are such that either

1. L(θi)−minL ≤ µiR
2
i

4 , or

2. ∥∇L(θi)∥2 ≤ Riµi

2 ,

it holds that
L(θi)−minL ≤ 1

µi
∥∇L(θi)∥2. (22)

Proof. The proof follows a reasoning similar to that of Lemma 5 but adapted for each layer. Given
the conditions on L(θi)−minL or the norm of the gradient ∥∇L(θi)∥2, we utilize the connection
between the gradient norm and the difference in loss to bound L(θi)−minL.

From the gradient norm bound ∥∇L(θi)∥2 and the positive definiteness and continuity of∇2L, the
loss function exhibits quadratic behavior near the minimizer. This is characterized by the Taylor
expansion:

L(θi) ≈ L(θ∗
i ) +

1

2
(θi − θ∗

i )
T∇2L(θ∗

i )(θi − θ∗
i ), (23)

where θ∗
i is the minimizer of L.

Using the bound ∥∇L(θi)∥2 ≤ Riµi

2 , the Taylor series expansion around θ∗
i implies:

L(θi)−minL ≤ 1

2µi
∥∇L(θi)∥2, (24)
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satisfying the condition given by Lemma 6.

This completes the proof by relating the behavior of the loss function’s gradient at θi to its minimum
value, leveraging the quadratic approximation provided by the Hessian at the minimizer.

Lemma 7 (Norm Bound on Inverse Hessian and Gradient Product). Assuming the gradient∇L(θi)
and the Hessian∇2L(θi) satisfy certain conditions such that either

1. L(θi)−minL ≤ µiR
2
i

16 , or

2. ∥∇L(θi)∥2 ≤ Riµi

4 ,

it holds that

∥∇2L(θi)
−1∇L(θi)∥2 ≤

8(L(θi)−minL)

µi
. (25)

Proof. We derive this by using the properties of the Hessian and the gradient for the loss function L
specific to layer i. From Lemma 2, we have:

∥θi − θ∗
i ∥2 ≤ Ri.

Given that∇2L(θ∗
i ) ≥

µi

2 I , and from Lemma 5 adapted for layer i, it holds that:

4(L(θi)−minL) ≥ ∥∇L(θi)T (∇2L(θi))
−1∇L(θi)∥.

Expanding and manipulating the inequality, we derive:

∥∇L(θi)∥T (∇2L(θi))
−1∥∇L(θi)∥ = ∥∇2L(θi)

−1∇L(θi)∥2.
Given ∇2L(θi)

−1 ≤ 2
µi
I , we can substitute this into our calculation to find:

∥∇2L(θi)
−1∇L(θi)∥2 ≤

2

µi
∥∇L(θi)∥2 ≤

4(L(θi)−minL)

µi
,

and finally,

∥∇2L(θi)
−1∇L(θi)∥2 ≤

8(L(θi)−minL)

µi
,

completing the proof.

Lemma 8. For any θi ∈ Rdi , where θi represents the parameters for the i-th layer, and satisfying
that

∥∇2L(θi)
−1∇L(θi)∥2 ≤

R

2
,

it holds that

L(θi)−minL ≤ ∇L(θi)T (∇2L(θi))
−1∇L(θi) ≤ 4(L(θi)−minL).

Proof. Let {θi(t)}1t=0 be the solution of the following differential equation:

dθi(t)

dt
= −(∇2L(θi(t)))

−1∇L(θi(t)),

where θi(0) = θi and θi(1) = θ∗
i .

We claim that for all t ∈ [0, 1], ∥θi(t) − θi∥2 ≤ Ri. If not, let T be the smallest positive number
such that ∥θi(T ) − θi∥2 = Ri. Such T exists because ∥θi(t) − θi∥2 is continuous in t and
∥θi(0)− θi∥2 = 0.

We can now bound the distance:

Ri = ∥θi(T )− θi(0)∥2 ≤
∫ T

0

∥∥∥∥dθi(t)dt

∥∥∥∥
2

dt.

Substituting the derivative expression for θi(t), we get:

=

∫ T

0

∥∥(∇2L(θi(t)))
−1∇L(θi(t))

∥∥
2
dt
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≤
∫ T

0

∥∇2L(θi(t))
−1∥2∥∇L(θi(t))∥2dt.

From Assumption 2, we know that:

∇2L(θi)
−1 ≤ 2(∇2L(θi(t)))

−1.

Thus, we can bound this integral:

≤ 2

∫ T

0

∥∇2L(θi(t))
−1∇L(θi(t))∥2dt

≤ 2T∥∇2L(θi(t))
−1∇L(θi(t))∥2.

Using the assumption that ∥∇2L(θi)
−1∇L(θi)∥2 ≤ Ri

2 , we get:

≤ 2T
Ri

2
= RiT,

which implies that T = 1.

Therefore, for all t ∈ [0, 1], ∥θi(t)− θi∥2 ≤ Ri. By Assumption 2, we also have:

2(∇2L(θi))
−1 ⪯ (∇2L(θi(t)))

−1 ⪯ 1

2
(∇2L(θi))

−1.

Now, we compute the difference in the loss function:

L(θi)−minL = L(θi(0))− L(θi(1)) =

∫ 1

0

∇L(θi(t))T (∇2L(θi(t)))
−1∇L(θi(t))dt.

=

∫ 1

0

(1− t)∇L(θi)T (∇2L(θi))
−1∇L(θi)dt.

Thus:
L(θi)−minL ≤ 1

2
∇L(θi)T (∇2L(θi))

−1∇L(θi).

Finally, using the fact that
∫ 1

0
(1− t)dt = 1

2 , we complete the proof, showing that:

L(θi)−minL ≤ ∇L(θi)T (∇2L(θi))
−1∇L(θi) ≤ 4(L(θi)−minL).

Lemma 9. If λi ≤ Ri

2
√
di

, then for any ∆ ≤ Riµ
10 and any θi ∈ Rℶ

di satisfying

di∑
i=1

min
{
pT
i ∇L(θi)σ−1

i pT
i ∇L(θi)

}
≤ ∆,

where ∇2L(θi) = ViΣiV
T
i is the eigen-decomposition of ∇2L(θi), pi is the i-th row of Vi, and

Σi = diag(σ1, . . . , σdi
), it holds that

L(θi)−minL ≤ 25∆2

λ2
iµ

.

Proof. Let {θi(t)}1t=0 be the solution to the ODE

dθi(t)

dt
= −(∇2L(θi(t)))

−1∇L(θi(t)),

starting from θi(0) = θi and assume θi(1) = θ∗
i as derived in previous lemmas.

By Lemma 2, ∥θi(t)− θ∗
i ∥2 ≤ Ri for all t ∈ [0, 1]. Define I0 ⊆ [di] as the indices where clipping

does not occur. We have: ∑
i∈I0

σ−1
i

∣∣pT
i ∇L(θi)

∣∣2 ≤ ∆.
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Using Assumption 2, the Hessian continuity within a local radius implies:∑
i∈I0

∣∣pT
i ∇L(θi(t))

∣∣2 ≤ ∆.

For the newly restricted convex function L0 on Rℶ
I0 , which is L restricted to the subspace of Rℶ

di

spanned by vectors corresponding to I0, by Lemma 1 and assuming L0 is strictly convex, we apply
Lemmas 6 and 8 by restricting to I0:

∥∇L0(θi) + V T
I0θ

∗
i ∥22 = ∥∇L0(θi)∥22 ≤ µ−1∥∇L0(θi)∥22 ≤

25∆2

λ2
iµ

.

Integrating the differential for L0, we can show:

L(θi)−minL ≤
∫ 1

0

∇L(θi(t))T (∇2L(θi(t)))
−1∇L(θi(t))dt ≤

25∆2

λ2
iµ

.

This completes the proof.

Lemma 10 (Descent Lemma). For any η > 0 and per-layer λi > 0 with ηλi ≤ Ri√
di

, define

L(θ+
i )− L(θi) ≤ −(η − η2βiλi)

di∑
j=1

min

{
λi,

1

σi,j
|vT

i,j∇L(θi)|2 + C(δ2g + δ2H)

}
. (26)

θ+
i = θi − ηclip

(
(ĝiĝi)

−1ĝi, λi

)
,

where ĝi is the estimated gradient using a zero-order finite difference method with noise ϵ, such that:

ĝi = ∇L(θi) + ϵ.

The theoretical bound for the descent is given by:

L(θ+
i )− L(θi) ≤ −(η − η2βiλi)

di∑
j=1

min

{
λi,

1

σi,j
|vT

i,j∇L(θi)|2 + C(δ2g + δ2H)

}

≤ −(η − η2)

d∑
i=1

min
{
λi |ĝi|, (ĝiĝi)−1|ĝi|2

}
+O(h) +O(1/

√
m),

where h is the step size of the finite difference and m is the number of perturbations performed for
finite difference estimation.

Proof. Step 1. Derivation of the upper bound for ∥ĝi−∇L(θi)∥. To derive a theoretical bound for
∥ĝi−∇L(θi)∥, where ĝi is the gradient estimated using our proposed zero-order method, and∇L(θi)
is the true gradient, we need to quantify the error due to using finite perturbations to approximate the
gradient. Let’s denote this error by ϵ, such that:

ϵi = ĝi −∇L(θi)

Specifically, the gradient estimate for dimension i is obtained by:

ĝi =
1

m

m∑
k=1

L(θ + huk)− L(θ)

h
u
(i)
k ,

where m is the number of perturbations,h is the step size for finite differences, and u
(i)
k represents

the i-th component of the random vector uk. The true gradient, on the other hand, is:
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∇L(θi) = lim
h→0

L(θ + huk)− L(θ)

h
u
(i)
k ,

The error between the estimated gradient ĝi and the true gradient ∇L(θi) arises from two main
sources. To derive a theoretical bound for the estimation error, ∥ĝi −∇L(θi)∥, we consider both
sources of error.

1. Finite Difference Approximation Error. By Taylor expansion, for a small step size h, we have:

L(θ + huk) = L(θ) + h∇L(θ)Tuk +
h2

2
uT
kH(θ)uk +O(h3),

where H(θ) is the Hessian of L at θ. - Thus, the error due to finite differences is of order O(h).
Specifically, the bias in the gradient estimate is proportional to:

Bias = O

(
h

2
∥H(θ)∥

)
.

2. Monte Carlo Sampling Error. The gradient estimate involves averaging over m samples of random
perturbations. By the Central Limit Theorem, the variance of the gradient estimate decreases with the
number of samples m. Specifically:

Variance = O

(
σ2

m

)
,

where σ2 is the variance of the directional derivative∇L(θ)Tuk.

The total error can be expressed as a combination of the bias and variance components. Using a norm
(e.g., Euclidean norm) to quantify the error, we have:

∥ĝi −∇L(θi)∥ ≤ O (h∥H(θ)∥) +O

(
σ√
m

)
.

Thus, the theoretical bound on the error is:

∥ĝi −∇L(θi)∥ = O

(
h∥H(θ)∥+ σ√

m

)
.

Step 2. Derivation of the upper bound for ∥ĝ2
i − diag(∇2L(θi))∥. Let’s denote diag(∇2L(θi)) as

the diagonal of the true Hessian, and Ĥi = ĝ2
i as the diagonal Hessian estimated from the zero-order

gradient estimate, where each diagonal element is given by ĝiĝi.

To derive the theoretical bound for ∥Ĥi −Hi∥, we consider:

∥Ĥi −Hi∥ = ∥ĝ2
i − diag(∇2L(θi))∥.

Let’s rewrite ĝi as:

ĝi = ∇L(θi) + ϵi,

where ϵi represents the noise introduced due to the limited number of perturbations.

The estimated diagonal Hessian element for each component i can be written as:

Ĥ
(i)
i = (∇L(θi) + ϵi)

2.
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Expanding this expression gives:

Ĥ
(i)
i = (∇L(θi))2 + 2∇L(θi)ϵi + ϵ2i .

The true diagonal Hessian element is:

H
(i)
i = diag(∇2L(θi))

(i).

Thus, the error for each component can be expressed as:

Ĥ
(i)
i −H

(i)
i = (∇L(θi))2 + 2∇L(θi)ϵi + ϵ2i −H

(i)
i .

To find the bound for the error, we need to bound the terms involving ϵi:

1. Term 1: 2∇L(θi)ϵi
This term represents the interaction between the true gradient and the noise. Since ∥ϵi∥ ≤
O
(
h∥H(θi)∥+ σ√

m

)
, we can bound this term as:

|2∇L(θi)ϵi| ≤ 2∥∇L(θi)∥O
(
h∥H(θi)∥+

σ√
m

)
.

2. Term 2: ϵ2i
The noise squared term can be bounded by:

ϵ2i ≤ O

(
h2∥H(θi)∥2 +

σ2

m

)
.

Combining these results, we have:

∥Ĥi−Hi∥ = O

(
(∇L(θi))2 −Hi + 2∥∇L(θi)∥

(
h∥H(θi)∥+

σ√
m

)
+

(
h2∥H(θi)∥2 +

σ2

m

))
.

Thus, the error bound for the diagonal Hessian estimation is:

∥Ĥi −Hi∥ = O

(
h2∥H(θi)∥2 +

σ2

m
+ 2h∥∇L(θi)∥∥H(θi)∥+

2∥∇L(θi)∥σ√
m

)
.

Step 3. Combination of the bounds. Let ui = clip
(
(ĝiĝi)

−1ĝi, λi

)
. By the definition of the

clipping operation:

||ui||∞ ≤ λi.

Thus:

||θ+
i − θi|| = η||ui|| ≤ ηλi

√
di.

Define the function:

f(t) = L(θi + (1− t)ui).

By Assumption 4.2, we know that:
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f ′′(t) ≤ 2f ′′(0) for all t ∈ [0, 1],

and hence:

f(1) = f(0) + f ′(0) +

∫ 1

0

∫ s

0

f ′′(s) ds dt ≤ f(0) + f ′(0) + f ′′(0).

The zero-order estimate introduces noise ϵ in the estimated gradient:

ĝi = ∇L(θi) + ϵ.

Thus:

f ′(0) = −η
d∑

i=1

min
{
λi |ĝi|, (ĝiĝi)−1|ĝi|2

}
.

Using the bound for the error ||ϵ|| ≤ O
(
h ||H(θi)||+ σ√

m

)
, the noise affects the effective descent

rate. Therefore, the new bound for f ′(0) is:

f ′(0) ≈ −η
d∑

i=1

min
{
λi (|∇L(θi)|+ |ϵ|), (ĝiĝi)−1(|∇L(θi)|+ |ϵ|)2

}
.

The Hessian is estimated using ĝ2
i . The noise in the diagonal Hessian estimate affects the curvature.

Therefore, for the second derivative, we have:

f ′′(0) ≤ η2
d∑

i=1

min
{
λi |ĝi|, (ĝiĝi)−1|ĝi|2

}
.

The noise in the Hessian (δH ) affects the estimation, and thus the bound is affected as follows:

f ′′(0) ≤ η2
d∑

i=1

min
{
λi (|∇L(θi) + ϵ|), (ĝiĝi)−1(|∇L(θi) + ϵ|)2

}
.

Combining these results, the descent bound is affected by both the gradient and Hessian noise. We
obtain:

L(θ+
i )− L(θi) ≤ −(η − η2)

d∑
i=1

min
{
λi |ĝi|, (ĝiĝi)−1|ĝi|2

}
+ C(δ2g + δ2H),

where C is a constant that depends on the properties of the function L. δg represents the bound on the

gradient estimation noise δg = O
(
h ||H(θi)||+ σ√

m

)
, and δH represents the bound on the Hessian

estimation noise:

δH = O

(
h2||H(θi)||2 +

σ2

m
+ 2h ||∇L(θi)|| ||H(θi)||+

2||∇L(θi)||σ√
m

)
.

Lemma 11 (Convergence Lemma). For any λi ≤ Ri√
di

and some Ti ∈ N, if L(θTi,i)−minL ≤ µ2
i

8 ,
then for all t ≥ Ti,

1. θt+1,i = θt,i − η(∇2
θi
L(θt,i))

−1∇L(θt,i),

2. L(θt,i)−minL ≤ (1− η(1− η))t−Ti(L(θTi,i)−minL).
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Proof. By Lemma 10, we have for all t ≥ T , (θt,i)−minL ≤ L(θT,i)−minL ≤ µ2

8 . Therefore,
by Lemma 7, we have that ∥∇2L(θt,i)−∇L(θt,i)∥2 ≤ λi for all t ≥ T , which implies clipping will
not happen.

For the second claim, by Lemmas 5 and 10, we have that

L(θt+1,i)− L(θt,i) ≤ −(η − η2)

d∑
i=1

σ−1
i |v

T
i ∇L(θt,i)|2, (27)

where vi is the i-th row of matrix V from the eigen-decomposition of∇2L(θi). By further simplifi-
cation,

−(η − η2)∇L(θt,i)T (∇2L(θt,i))
−1∇L(θt,i) ≤ −η(1− η)(L(θt,i)−minL),

thus, we conclude that the loss decreases at least geometrically by the factor (1− η(1− η)) each step
after time T , thereby proving the convergence rate.

Theorem 2. Under Assumptions 1 and 2, let η = 1
2 and λi =

Ri

2
√
di

. The update reaches a loss at
most ϵ in

T ≤ max
i

{
di · (L(θ0,i)−minL) + ln

(
µiR

2
i

32diϵ

)}
. (28)

steps, where L is the loss function, θ0,i is the initial parameter vector for layer i.

Proof. Phase 1: Initial Rapid Decrease.

By Lemma 10 (Descent Lemma), we have a guarantee on the descent rate per step for each layer i:

L(θt+1,i)− L(θt,i) ≤ −(η − η2)

di∑
j=1

min

{
λi;

1

σi,j

∣∣vTi,j∇L(θt,i)∣∣2} ,

where σi,j is the j-th eigenvalue corresponding to the i-th layer, and vi,j is the corresponding
eigenvector.

Applying this result, we estimate a decrease in the loss function per layer under the condition that the
gradient norm for layer i is significantly larger than the error threshold ϵ. This phase continues until
the loss reduction per step for each layer falls below a certain threshold, say when:

L(θt,i)−minL ≤ µ2
i

8
.

Phase 2: Exponential Decay.

Once the loss for each layer is sufficiently reduced, Lemma 11 guides the convergence from this
point:

L(θt,i)−minL ≤ (1− η(1− η))t−Ti(L(θTi,i)−minL),

indicating an exponential decay in error for each layer. The factor (1 − η(1 − η)) represents the
contraction per step, dependent on the learning rate η.

To calculate the total number of steps Ti for each layer, consider that:

µ2
i

8
≈ ϵ⇒ Ti ≈

ln
(

L(θ0,i)−minL
ϵ

)
− ln(1− η(1− η))

.

Simplifying the expression for η = 1
2 , we get:

Ti ≈ 2 ln

(
L(θ0,i)−minL

ϵ

)
,

since ln(1− η(1− η)) ≈ −η(1− η) for small η.

Combining Phases 1 and 2.
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For each layer, combining the estimates from Phase 1 and Phase 2, the total number of steps Ti

needed to reach a loss of ϵ for layer i is given by:

Ti ≤ di · (L(θ0,i)−minL) + ln

(
µiR

2
i

32diϵ

)
,

Finally, to ensure convergence across all layers, we take the maximum over all layers:

T ≤ max
i

{
di · (L(θ0,i)−minL) + ln

(
µiR

2
i

32diϵ

)}
.

This completes the proof by integrating the rapid initial decrease and the subsequent exponential
decay for each layer.

This reflects an improved convergence rate due to the use of different λi values for different layers,
reducing the dependency on the total dimension d into the dimension maxi di.

C.1 LIMITATIONS

Like other second-order optimizers, HELENE stores the history of gradients and Hessian values,
with memory usage proportional to the size of the parameters. Therefore, both theoretically and
practically, HELENE requires only three times the memory of MeZO. For example, in OPT-1.3b,
MeZO/zero-shot requires 4GB, ICL needs 6GB, Prefix Fine-Tuning uses 19GB, and full-parameter
fine-tuning consumes 27GB, while HELENE needs just 14GB. Despite this, HELENE achieves up to
20 times faster convergence and delivers the best overall performance.

28


	Introduction
	Preliminaries
	Zeroth-Order Gradient Estimators and MeZO
	Diagonal Hessian Approximation

	Method
	Motivation
	HELENE: Hessian Layer-wise Clipping and Gradient Annealing
	EMA of diagonal Hessian estimates
	Annealing Mechanism

	Asymptotic Gauss-Newton-Bartlett (A-GNB) Estimator
	Laywerwise Clipped Diagonal Hessian to help Newton's method

	Convergence Analysis
	Experiments
	Masked Language Models
	Auto-Regressive LLMs
	Experiments With Other ZO Algorithms
	Ablation Study

	Conclusion
	Related work
	Zero-order Optimization
	Second-order Information for Fine-tuning LLMs
	Gradient Clipping

	Ablation Study
	Evaluating the Impact of Key Components on Convergence and Stability
	Magnitude clipping
	Investigation into the Convergence Instability of Sophia

	Detailed Convergence Analysis
	Limitations


