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ABSTRACT

In vision-language models (VLMs), misalignment between textual descriptions
and visual coordinates often induces hallucinations. This issue becomes partic-
ularly severe in dense prediction tasks such as spatial-temporal video grounding
(STVG). Prior approaches typically focus on enhancing visual-textual alignment
or attaching auxiliary decoders. However, these strategies inevitably introduce
additional trainable modules, leading to significant annotation costs and computa-
tional overhead. In this work, we propose a novel visual prompting paradigm that
avoids the difficult problem of aligning coordinates across modalities. Specifi-
cally, we reformulate per-frame coordinate prediction as a compact instance-level
identification problem by assigning each object a unique, temporally consistent
ID. These IDs are embedded into the video as visual prompts, providing explicit
and interpretable inputs to the VLMs. Furthermore, we introduce STVG-R1, the
first reinforcement learning framework for STVG, which employs a task-driven
reward to jointly optimize temporal accuracy, spatial consistency, and structural
format regularization. Extensive experiments on six benchmarks demonstrate the
effectiveness of our approach. STVG-R1 surpasses the baseline Qwen2.5-VL-
7B by a remarkable margin of 20.9% on m_IoU on the HCSTVG-v2 benchmark,
establishing a new state of the art (SOTA). Surprisingly, STVG-R1 also exhibits
strong zero-shot generalization to multi-object referring video object segmenta-
tion task, achieving a SOTA 47.3% J &F on MeViS.

1 INTRODUCTION

In video grounding task, hallucination in vision—language models (VLMs) is a common phe-
nomenon, where timestamps may extend beyond video duration or coordinates may exceed the
frame resolution (Wang et al.,|2024a}; |[Liu et al., 2024a; |Chen et al., |2024). A widely accepted per-
spective is that the hallucinations stem from misalignments between the visual and textual modalities
(Lin et al., 2024; Wang et al.,|2024b)). Such misalignment leads to greater performance degradation
in dense prediction tasks, where bounding box or segmentation mask for each frame are required.

To reduce the impact of cross-modal misalignment, existing research focuses on improving the
alignment capability of VLMs (Wang et al., |2025a; |Ye et al., |2024) or avoiding direct coordinate
prediction (Yuan et al.| [2025; Sun et al.l 2025). Despite their success, these strategies typically
introduce additional learnable components and exhibit limited generalization. As illustrated in Fig-
ure|[I] alignment-based approaches (Li et al.l 2025) directly output explicit frame-level coordinates,
but struggle in multi-object scenes and often yield inconsistent or even meaningless predictions,
such as [0.00, 0.00,0.27,0.00]. In contrast, decoder—based methods alleviate this by introducing
segmentation tokens for cross-frame consistent prediction, yet their implicit outputs limit general-
ization. Motivated by these challenges and prior attempts, we propose a core idea: if the complex
per-frame coordinate prediction can be reformulated into a compact and interpretable formulation,
it becomes possible to mitigate visual-textual misalignment and enhance generalization.

Based on the above observation, we draw inspiration from existing research on visual prompts,
which demonstrates the effectiveness of simple yet consistent referential cues for object represen-
tation (Shtedritski et al.l 2023} [Cai et al., [2024; |Yang et al., [2024)). Taking GPT4Scene (Q1 et al.,
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Main Task
Spatial-Temporal Video Grounding

Question: At what point in the video can we observe there is a frisbee
away from a dog taking place? Where is the corresponding
subject/object located?

Question: Give the query: rabbits eating leaves. Where is the
corresponding subject/object located?

008

the left of the dog taking place. The coordinates is

@ The event happens in 0.0 - 5.0 seconds. The frisbee is on
Qwen | [0, 276, 358, 358].

{65 The rabbits is in the center of the image. There are three
white rabbits. The coordinates is [89, 16, 903, 672].

During the span of 12.9s-13.6s. Object bounding box:
12.9s: [0.44, 0.45, 0.56, 0.59], ... , 13.4s:
LLaVa-ST) [0.39, 0.33, 0.53, 0.51], 13.6s: [0.47, 0.48, 0.61, 0.65].

Object bounding box: 0s: [0.26, 0.00, 0.63, 0.63], ...,
8.4s: [0.00, 0.00, 0.27, 0.00], 8.6s: [0.00, 0.00, 0.27, 0.00],
LLaVa-ST| g gs: [0.00, 0.00, 0.27, 0.00].

Our object-centric visual prompting paradigm

<think> The rabbit (ID 1) is seen eating leaves in the
Wil ®8 | first frame, and this behavior continues in the
subsequent frames as well. The rabbit (ID 2) is also

<think> The frisbee (ID2) away from the dog (ID1) is
il 88 | visible on the ground in the first few seconds of the video.
i1 The dog is seen interacting with another frisbee. </think> ia
STVG-R1 | <answer> Target ID: 2, Time range: 0.00 to 3.96. STVG-R1 | cating leaves. </think>

</answer> <answer> Target ID: 1, 2. </answer>

Figure 1: Comparisons of general VLMs, specialized VLMs, and proposed STVG-R1 model. While
Qwen2.5-VL-7B outputs a single meaningless bounding box without timestamps, LLaVA-ST is re-
stricted to one bounding box per frame. In contrast, STVG-R1 achieves strong performance on both
spatial-temporal video grounding and zero-shot multi-object referring video object segmentation.

2025) as an example, consistent object IDs across multi-view images is embedded to enhance 3D
understanding. Following this insight, in this paper, we introduce an object-centric visual prompting
paradigm for spatial-temporal video grounding (STVG). Specifically, each object is automatically
assigned a unique and temporally consistent identifier throughout the video sequence. Concretely,

the first frame is processed with an object detector (Tian et al.| 2025}, [Liu et al, [2024b} [Xiao et al.}

[2023) to obtain candidate bounding boxes, which are further refined using the segmentation and
tracking capabilities of SAM2 2024). To handle newly appearing or previously missed
objects, re-detection is performed at fixed intervals, and RelD is employed to maintain temporal
consistency. Finally, each candidate instance is overlaid with a numeric marker that serves as its
object ID on its center, yielding a compact yet interpretable formulation for video spatial grounding.

Building on this paradigm, we introduce STVG-R1, the first reinforcement learning framework for
STVG. Unlike conventional supervised fine-tuning (SFT), which relies on token-level loss, STVG-
R1 incorporates a task-driven reward that jointly optimizes temporal accuracy, spatial consistency,
and structural correctness. A positive spatial consistency reward is obtained when the predicted
object ID is aligned with the ground truth and also falls within the localized temporal segment.

The object-centric visual prompting paradigm achieves substantial performance improvements
across three general VLMs in zero-shot settings. Specifically, InternVL3-8B 2025),
Qwen2.5-VL-7B, and Qwen2.5-VL-72B improve vloU@0.3 by +3.6%, +12.5%,
and +6.0% on HCSTVG-v1 (Tang et al.| 2021). Beyond zero-shot scenarios, the enhanced reasoning
capability introduced by reinforcement learning establishes new SOTA results on five benchmarks.
Remarkably, the STVG-R1 also achieves strong performance on the unseen multi-object referring
video object segmentation task, highlighting its robust generalization ability. We attribute this gen-
eralization to the incorporation of object-centric visual prompts, which provide explicit object iden-
tifiers during reinforcement learning, enabling instance-level reasoning and grounding.

The main contributions of this paper are as follows: (1) We introduce a simple yet effective object-
centric visual prompting paradigm that reformulates dense per-frame coordinate prediction into a
compact object ID identification task. (2) We propose STVG-R1, the first reinforcement learning
framework for spatial-temporal video grounding. (3) Extensive experiments across six benchmarks
demonstrate the effectiveness of our approach. Moreover, its strong performance on the unseen
multi-object referring video object segmentation task further highlights its generalization capability.
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Figure 2: Comparison of paradigms: (a) VLM produces both timestamps and frame-level coordi-
nates with a trainable alignment block; (b) VLM generates segmentation tokens, which are then
processed by a trainable decoder; (c) our method uses training-free object-centric visual prompted
video for spatial-temporal video grounding.

2 RELATED WORK

2.1 SPATIAL TEMPORAL VIDEO GROUNDING

In the research on spatial-temporal video grounding, existing approaches can be broadly categorized
into models based on visual-language pretraining (VLP) and models leveraging VLMs. VLP-based
methods typically employ pretrained encoders, such as CLIP (Radford et al., 2021}, I3D (Carreira &
Zisserman,, |2017), InternVideo-v2 (Wang et al., [2024c)), and BERT (Devlin et al., 2019), to extract
visual and textual features, followed by the design of task-specific modules for multimodal feature
fusion and tailored decoding. These approaches (Gu et al.,[2024}2025; |Lin et al.,2022) still demon-
strate dominant performance on several STVG benchmarks (Tang et al.| 2021; Zhang et al., |2020).
However, despite their effectiveness, these VLP-based task-specific models continue to struggle with
generalization, even on simpler spatial-only or temporal-only video grounding tasks.

Recent efforts have increasingly adopted VLMs (Li et al.|[2024; Bai et al.| 2025} /Abdin et al., 2024;
Zhang et al.l 2024) for video spatial grounding, owing to their superior cross-modal reasoning and
generalization abilities. Within this line of research, as shown in Figure a), one direction directly
exploits VLMs for dense prediction, producing both temporal segments and frame-level spatial lo-
calization results. For example, LLaVA-ST (Li et al.,|2025) enhances the alignment between textual
descriptions and visual coordinates by incorporating additional tokens into the input text embed-
dings. Subsequently, SpaceVLLM (Wang et al., [2025a)) follows a similar strategy by introducing
spatio-temporal query tokens to address the alignment challenge. However, these additional train-
able tokens require large-scale, high-quality dense prediction data and lead to substantial computa-
tional overhead. As shown in Figure [2|b), another direction mitigates the impact of misalignment
by prompting VLMs to generate segmentation tokens (Yuan et al.l [2025}; |Sun et al., 2025} [Munas-
inghe et al.,[2025), which are then passed into a trainable decoder (Ravi et al.,[2024)). However, their
reliance on iterative decoding further increases training complexity and time.

2.2 REINFORCEMENT LEARNING IN VLMS

Reinforcement learning (RL) has demonstrated strong potential in improving the reasoning capa-
bilities of LLMs, particularly through reinforcement learning with verifiable reward (RLVR) (Guo
et al., 2025} (Chen et al., [2025a; Jaech et al.| 2024). For VLMs, many works (Liu et al.| 2025; Shen
et al.| 2025} [Zhang et al., [2025; (Chen et al., 2025b) also apply this reward-driven training paradigm
to tackle complex tasks (Yang et al.,|2025; |Fu et al.,|2025)). Specifically, Video-R1 (Feng et al.,[2025))
is the first attempt to explore the R1 paradigm in the video domain, introducing the T-GRPO algo-
rithm to explicitly encourage temporal understanding by shuffling the order of input video frames.
Building on this foundation, Time-R1 (Wang et al., 2025b) proposes a novel post-training frame-
work for temporal video grounding, also based on the Group Relative Policy Optimization (GRPO)
algorithm (Shao et al.|, [2024). More encouragingly, Time-R1 demonstrates that using continuous
metrics such as IoU as rewards provides more intuitive optimization signals and achieves better
performance than token-level supervised fine-tuning. However, applying RL to jointly address spa-
tial-temporal video grounding remains an underexplored yet promising direction. To bridge this
gap, our proposed STVG-R1 takes a step forward and demonstrates superior performance.
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Figure 3: An illustration of our proposed STVG-R1 framework. Each object is assigned a unique
ID via visual prompts, and the policy model is trained with spatial, temporal, and template rewards.

3 METHOD

3.1 STVG-R1 FRAMEWORK

Our approach reformulates spatial-temporal video grounding as a paradigm shift from dense per-
frame bounding box regression to a compact formulation based on visual prompts. Figure [3]illus-
trates the overall architecture of the STVG-R1 model. Specifically, given a video V = {I1,...,Ir}
with 7" frames, each frame I is first augmented with a set of visual prompts,

Pe=1{pl... b}, LELOP, (1
where ¢ € {1,...,T} indexes frames, K is the number of instances in frame ¢, and & denotes over-
laying the visual prompts onto the frame I;, yielding the augmented sequence V = {I3,...,Ir}.

To control memory consumption, we constrain each video to approximately R = 1.6 x 105 pixels
in total. Concretely, for a video V with frame resolution /I x W and duration D seconds, we resize
frames to H' x W’ ~ R/(2D), where frames are uniformly sampled at 2 FPS. For example, a
30-second video yields 60 frames, each with a resolution of about 96 x 96 x 3. Finally, the sequence
of visual prompt—augmented frames V' and a textual query q are fed into a VLM 7y, which jointly
predicts the temporal interval [ts, t.] and the corresponding object identifier .

3.2 OBIECT-CENTRIC PROMPTED VIDEO CONSTRUCTION

Data format. Each sample is denoted as {V, g, P, M, A}, where P = {P;}1_; represents the set
of visual prompts over frames, M is the segmentation mask database, and A is the ground-truth
answer, defined as the target object ID. Concretely, M stores for each frame I; a set of instance IDs
paired with their run-length encoded masks (Golomb), |1966). For consistency with the ground-truth
annotations, each mask m/, is further converted into its corresponding bounding box by,

To formally derive A, we establish a frame-level correspondence between the ground truth and
candidate bounding boxes. For each frame I;, we compute the IoU between the ground-truth g; and
all candidate bounding boxes {b}, kK:tl, and assign to frame ¢ the ID 2; with the highest overlap:
U =arg _max ToU(gy, bl). ()
€

oo Kt

Over the entire video V, the final answer A is obtained by majority voting:

T
A = arg max Z 1o = 4], 3)
t=1

where 1[-] denotes the indicator function. This defines the target object as the identifier with the
highest overall IoU consistency across the video.

Data generation pipeline. To construct object-centric visual prompted videos, we integrate several
existing vision models into a unified pipeline. The first frame I; of each video is processed by an

off-the-shelf object detector to produce bounding boxes {b}, f:ll for all candidate instances across
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COCO categories. These detections serve as prompts for SAM2, which generates high-quality seg-
mentation masks {mi}kKél that are then propagated to subsequent frames via tracking. To capture
newly appearing or previously missed objects, periodic re-detection with IoU-based matching is
performed. For each mask m!, we embed a compact visual prompt p}, at its centroid (z},, y!).

Importantly, although the COCO taxonomy does not fully cover all categories present in the videos,
the detector can still provide bounding boxes for nearly all instances. For example, while fish is
absent from the COCO label set, such instances are nevertheless detected under alternative cate-
gories. These semantic misclassifications do not affect our framework, as supervision depends only
on consistent instance identities rather than precise class labels.

Data source. Two widely adopted STVG datasets are used for training. HCSTVG (Tang et al.,
2021)) focuses on human-centric grounding data. We merge the training splits of vl and v2, and
remove any samples that appear in the validation or test sets. VidSTG (Zhang et al., 2020) covers
both humans and objects with diverse query types, providing both visual and linguistic diversity.

3.3 ENHANCING VLMS WITH REINFORCEMENT LEARNING

Since dense per-frame prediction is reformulated as a compact instance-level identification task, re-
inforcement learning can be directly applied to optimize the policy model with task-specific rewards.
These identifiers further enable the model to produce more precise and interpretable reasoning chains
during RL training, leading to more coherent spatial-temporal predictions.

Reward modeling. Building on DeepSeek-R1 (Guo et al.l [2025)), the reward design in STVG-R1

integrates both accuracy and format components. The accuracy reward measures the correctness

of predictions, while the format reward enforces structural compliance with a predefined reasoning

template. To capture both temporal and spatial accuracy, the accuracy reward is further decomposed

into a temporal IoU reward and a spatial consistency reward. The temporal IoU reward quantifies

the overlap between the predicted interval [t, t.] and the ground-truth segment [t’,, ¢/], defined as:
[ts,te] N [th, TL]

rt(o) = [t87 te] U [tf tle]a (4)

s)7e

where A N B and A U B denote the intersection and union of intervals A and B, respectively.

The spatial consistency reward verifies whether the predicted object ID is correct and appears within
the localized temporal segment:

ra(0) = {1, if 2 = +* and 1 appears in [t,, t.], 5)

0, otherwise,

where ¢ and ¢* denote the predicted and ground-truth object ID. This design is consistent with the
vloU metric in STVG, defined as |P,|~"Y", . p, ToU(bt, b} ), where P; and P, are the intersection
and union of the predicted and ground-truth temporal segments, and b; and b} are the predicted
and ground-truth bounding boxes at frame ¢. Since vIoU jointly evaluates temporal and spatial
accuracy, constraining the predicted ID to fall within the localized segment prevents trivial solutions
and mitigates overfitting to dataset-specific temporal patterns, improving optimization stability.

Beyond accuracy, the format reward r 7 (o) enforces compliance with the predefined reasoning struc-
ture, encouraging the model to explicitly generate its reasoning process. A value of 1 is assigned
only if the response encloses the reasoning within <think>. . .</think> and the final prediction
within <answer>. ..</answer>. Reasoning traces with timestamps and instance IDs provide
clearer references and more precise grounding.

The overall reward is the sum of the three components:

R(0) = ri(0) +rs5(0) +75(0). (6)

3.4 TRAINING STRATEGIES

The training objective is to optimize the policy model 7y with GRPO (Guo et al.,|2025), which has
shown strong effectiveness in tasks with well-defined evaluation signals. Given a video-text query
pair (V, ¢) sampled from the training distribution D, the model generates n candidate responses
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o = {o1,...,0,}, each assigned a reward R(o;) as defined in Equation@ In our experiments, n is
set to 8. To normalize rewards within a group, the advantage A; of each response is computed as:

 R(or) — mean({R(0,)}1,)
A= TRy @

The policy update objective encourages the current policy my to assign higher probabilities to re-
sponses with larger normalized advantages, relative to the previous policy 7y ,. Formally, the opti-
mization objective is defined as:

old *

Jareo(0) = E(ﬁ,q)~D7 {oi}

o1~ (1)

[1 Z (win (MA“ clip(m7 L= l+4e)d;) - 5DKL(w9|Wref))] L ®

ne- T 0ot (Oi |q) 0 (Oi |Q)

where ¢ is the clipping parameter, /3 controls the strength of KL regularization, and 7.t denotes the
frozen reference policy. The clipping term prevents excessively large updates, while the KL penalty
constrains policy drift, together stabilizing optimization.

4 EXPERIMENTS

4.1 SETTING

Implementation details. We employ the Qwen2.5-VL-7B (Bai et al., 2025) as the pre-trained
model. We use AdamW (Loshchilov & Hutter, [2017) optimizer with a linear learning rate scheduler.
The learning rate is 1.0e — 6 and the batch size is 1 per device. The object detector used during our
training and evaluation is yolov12 (Tian et al.| 2025). The model is trained for 1 epoch on our
object-centric visual prompting dataset, and all experiments are conducted on 8 x A100 GPUs.

Benchmarks. For STVG, HCSTVG-vl and HCSTVG-v2 (Tang et al., |2021) are widely used for
human-centric grounding, while ST-Align (Li et al.| |2025) extends evaluation to both humans and
objects and supports spatial video grounding (SVG). To capture fine-grained spatial understanding,
MeViS (Ding et al., [2023) evaluates mask-level grounding under complex multi-object scenarios.
Beyond STVG and SVG, we also consider video temporal grounding (VTG) with Charades-STA
(Gao et al., 2017) and TVGBench (Wang et al., [2025b) to evaluate generalization.

Evaluation metrics. For STVG, following (Yang et al.,[2022; Gu et al.,[2024), we report m_tloU for
temporal localization accuracy and m_vIoU, vIoU@R for joint spatial-temporal grounding quality.
For VTG, we adopt m_tloU and tloU@R. For mask-level referring video object segmentation, 7 is
used to assess region similarity and F to measure contour accuracy.

Table 1: Performance comparison with state-of-the-art models on HCSTVG-v1 test set and
HCSTVG-v2 val set (%). The results of GroundingGPT-7B are reported from SpaceVLLM, while
those of InternVL3-8B, Qwen2.5-VL-7B and Qwen2.5-VL-72B are generated by our experiments.
The best and second-best results are shown in bold and underlined.

Models \ HCSTVG-v1 \ HCSTVG-v2
| mtloU mwvloU vIoU@0.3 vIoU@0.5| m_tloU m_vloU vIoU@0.3 vIoU@0.5
TubeDETR - 324 49.8 23.5 53.9 36.4 58.8 30.6
STVGFormer - 36.9 62.2 34.8 58.1 38.7 65.5 33.8
CG-STVG 52.8 38.4 61.5 36.3 60.0 39.5 64.5 36.3
TA-STVG 53.0 39.1 63.1 36.8 60.4 40.2 65.8 36.7
GroundingGPT-7B 22.2 16.7 15.0 4.9 19.6 14.7 16.6 3.1
SpaceVLLM-7B 56.9 39.3 66.6 36.9 58.0 34.0 56.9 24.7
InternVL3-8B 22.6 11.7 15.3 2.8 24.9 12.8 14.2 3.2
+VisualPrompt | 22.9 10.3 13.8 1+2.1 189 1+3.6 4.2 1+1.4 [25.01+0.1 154 1+2.6 18.1 1+3.9 4.51+1.3
Qwen2.5-VL-7B 40.3 19.7 28.2 7.9 45.1 19.3 26.0 8.2
+VisualPrompt | 38.7 [1.6 24.8 1+5.1 40.7 1+12.5 13.41+5.5| 44.7 104 19.51+0.2 28.7 1+2.7 10.9 1+2.7
Qwen2.5-VL-72B 40.7 239 37.0 15.1 43.9 23.4 36.1 134
+VisualPrompt | 38.8 1.9 26.0 1+2.1 43.01+6.0 152 1+0.1| 42.0 [1.9 27.31+3.9 43.51+7.4 16.3 1+2.9
STVG-R1 | 56.9 39.1 66.7 386 | 62.0 40.2 67.8 38.8
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Table 2: Performance comparison with state-of-the-art models on ST-Align benchmark (%). The
results of Qwen2.5-VL-7B are generated by our experiments.

\ Spatial-Temporal Video Grounding \ Video Spatial Grounding
Models
| loU@0.5 mtloU vIoU@0.5 mvloU | vioU@0.3 vIoU@O.5 m_vloU

GroundingGPT-7B 7.1 12.2 29 9.2 19.7 5.4 17.9
VTimeLLM-7B 7.1 15.5 - - - - -
Grounded-VideoLLM-7B 30.0 33.0 - - - - -
LLava-ST-7B 44.6 43.8 21.1 22.8 47.2 30.9 325
Qwen2.5-VL-7B 352 374 17.1 143 44.6 39.5 355

+VisualPrompt 36.0 1+0.8 38.31+0.9 21.51+4.4 1951452 |57.7 1+13.1 51.41+11.9 46.6 1+11.1
STVG-R1 | 436 45.1 25.9 234 | 60.3 53.9 48.6

4.2 EVALUATION RESULTS ON SPATIAL TEMPORAL VIDEO GROUNDING

Table E] and Table @] present results on HCSTVG-v1/v2 and ST-Align. TubeDETR (Yang et al.,
2022), STVGFormer (Lin et al., 2023), CG-STVG (Gu et al., [2024])), and TA-STVG (Gu et al., |2025)
are four VLP-based specialized models. InternVL3-8B (Zhu et al., 2025) and Qwen2.5-VL-7B/72B
(Bai et al.| [2025) first perform temporal grounding to predict the frame range, and then apply spatial
grounding on frames within the intersection of predicted b; and ground-truth b} for evaluation.

Zero-shot. The object-centric visual prompting paradigm outperforms the two-stage evaluation
across InternVL3-8B, Qwen2.5-VL-7B and Qwen2.5-VL-72B, achieving m_vIoU scores of 15.4%,
19.5%, and 27.3% on HCSTVG-v2, respectively. The improvement can be attributed to the ability of
our paradigm to leverage information from the entire video sequence when generating spatial predic-
tions. However, temporal performance slightly declines for Qwen2.5-VL models due to occlusion
of fine-grained details and distributional shifts introduced by visual prompts.

Fine-tuning. Reinforcement learning yields substantial gains in both temporal and spatial per-
formance, establishing new state-of-the-art results on HCSTVG-vl, HCSTVG-v2, and ST-Align.
On HCSTVG-v2, compared with the strongest SFT-trained VLM model SpaceVLLM, STVG-R1
achieves absolute improvements of 4.0%, 6.2%, 10.9% and 14.1% across four evaluation metrics.
As shown in Table[2] STVG-R1 also surpasses the strongest ST-Align model LLaVA-ST by +0.6%
on m_vloU. These spatial gains highlight the effectiveness of our object-centric visual prompting
paradigm in enforcing consistent object-level predictions, while reinforcement learning further en-
hances reasoning ability, leading to more coherent spatial-temporal video grounding.

4.3 EVALUATION RESULTS ON VIDEO SPATIAL GROUNDING

Since vIoU in STVG is inevitably affected Table 3: Performance comparison with state-of-the-
by temporal prediction quality, we further art models on MeViS (%). The results of TrackGPT
evaluate video spatial grounding to isolate are generated by VISA.

spatial capability. As shown in Table 2] “Models | J F J&F
the proposed object-centric visual prompt- pyas ”eoTT 5070 257 299 27.8
ing paradigm achieves a notable zero-shot  \TTR (Botach ct al, 2022) 28.8 312 30.0
gain of 11.1% on m_vloU on ST-Align ReferFormer (Wu ef al| [2022) 29.8 32.2 31.0
video spatial grounding. And after RL, LMPM (Dingetal;2025) 342402 372
STVG-RI surpasses the second-best model ~ LISA (Lai et al 2024) 35.1 394 372
LLaVA-ST by 13.1% on m_vIoU. More im- glr%ckc(ig r (Str?h,ﬁ)uﬁt)) %? Z% g igé
an et al.}, |20 . . .
portantly, Tablereports the results on the VideoGTaMM (Munasinghe et al}, 2025) [42.1 4822 4522

multi-object referring video object segmen-
tation task. STVG-RI sets a new state-of- S1YORI LIS O NS
the-art of 47.3% on J&JF on MeViS, despite being trained only on single-object STVG data. This
demonstrates the strong generalization ability of our visual prompting paradigm, where the simpli-
fied identifier-based formulation facilitates transfer to more complex multi-object scenarios.

4.4 EVALUATION RESULTS ON VIDEO TEMPORAL GROUNDING

We further evaluate STVG-R1 on out-of-distribution video temporal grounding benchmarks. As
shown in Table ] STVG-R1 achieves the best zero-shot performance on Charades-STA, surpassing
the second-best model LLaVA-ST by +7.7% at tloU@0.5. Although slightly below the task-specific
Time-R1, STVG-R1 achieves competitive results on TVGBench, highlighting strong generalization.
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Table 4: Performance comparison with state-of-the-art models on Charades-STA and TVGBench
(%). The results marked with * represent models training on corresponding dataset, while others

indicate zero-shot settings.

| Charades-STA | TVGBench
Models

| tloU@0.3 tloU@0.5 | tloU@0.3 tloU@0.5
TimeSuite (Zeng et al., [2024) 69.9 48.7 31.1 18.0
TRACE (Guo et al.;|2024) - 40.3 37.0 25.5
LLaVA-ST (L1 et al.;]2025) 63.1 44.8 - -
Time-R1 (Wang et al.;|2025b) 78.1% 60.8* 41.8 29.4
STVG-R1 \ 73.2 52.5 \ 42.5 27.4

4.5 ABLATION

Ablation on visual prompt design. Fol-
lowing prior work (Cai et al., |2024; [Sht-
edritski et al., [2023)), red-colored visual
prompts consistently yield superior perfor-
mance in number identification. As shown
in Table 5] reducing the font size improves

Table 5: Ablation study on visual prompt designs
on HCSTVG-v1 with zero-shot Qwen2.5-VL-7B. U-
Letters denotes uppercase letters, L-Letters denotes
lowercase letters, and Mix refers to a combination of
numbers and uppercase letters.

- . Size Type |m_tloU m_vIoU vIoU@0.3 vIoU@0.5
temporal grounding accuracy, since lafge 10 Number | 38.1 246 394 2.0
prompts obscure fine-grained video details. 55 Number | 380  24.9 40.6 12.2
However, when the size is reduced to 10, 30 Number | 37.5 24.1 38.9 11.8
spatial accuracy drops sharply. Regarding 40 Number | 374 232 36.4 11.6
prompt types, uppercase and lowercase 30 U-Letters| 39.0 244  38.0 12.6
letters achieve stronger temporal grounding 20 L-Letters| 38.7  24.0 374 12.1
than numbers, likely because letters are al- 20 Mix 387 157 20.0 5.7

ways single characters, whereas numbers

greater than 9 occupy more space and obscure details. Nevertheless, spatial accuracy with letters is
consistently lower than with numbers. Motivated by this, we tested a mixed type where numbers
greater than 9 are mapped to letters. However, this design further degrades spatial accuracy, sug-
gesting that simple and consistent prompts are more effective. Based on these findings, red-colored
numbers with font size 20 are adopted as the default prompt design for all experiments.

Ablation on mask filtering thresholds. To reduce
visual clutter from dense prompts, we apply mask
filtering that removes small instances whose size
falls below a fraction of the maximum mask within
each category per frame. As shown in Table [6]
higher thresholds 6 degrade data quality, with
m_vloU dropping to 65.1% at 1/2 on HCSTVG-v1.
In contrast, zero-shot evaluation with Qwen2.5-
VL-7B shows that moderate filtering improves spa-
tial grounding while maintaining temporal accu-

Table 6: Experimental results of mask filter-
ing thresholds on HCSTVG-v1. Values before
‘I’ denote the upper bound, and those after ‘/’
are zero-shot results with Qwen2.5-VL-7B.

6 | mtloU mvloU vIoU@0.3 vIoU@0.5

0 ]100.0/37.5 69.1/23.3 97.2/37.4 89.9/11.9
1/4]100.0/38.0 68.3/24.6 95.8/40.5 88.5/11.6
1/31100.0/38.0 67.7/24.9 94.6/40.6 87.6/12.1
1/2|100.0/38.1 65.1/24.1 89.9/38.2 83.5/11.4

racy. A threshold of 1/3 achieves the best trade-off between data quality and zero-shot performance,
indicating that many small-scale objects are not semantically salient and may even introduce noise.

Ablation on our modules. We further conduct ablation studies to explore the individual contri-
butions of object-centric visual prompting paradigm and reinforcement learning. Without visual
prompts, GRPO follows the zero-shot two-stage evaluation and is optimized only with the temporal

Table 7: Ablation study with different modules on HCSTVG-v1 and HCSTVG-v2.

Models \ HCSTVG-vl \ HCSTVG-v2
|m_tloU m_vloU vIoU@0.3 vIoU@0.5|m_tloU m_vIoU vloU@0.3 vIoU@0.5
Qwen2.5-VL-7B 403 197 28.2 7.9 451 193 26.0 8.2
+VisualPrompt 387 2438 40.7 13.4 447 192 28.7 10.9
+GRPO 57.5 247 37.8 17.6 61.4 242 371 15.4
+VisualPrompt-SFT 50.9 343 60.2 28.0 544 365 60.8 313
+VisualPrompt-GRPO| 569  39.1 66.7 38.6 62.0  40.2 67.8 38.8
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Table 8: Ablation study with different modules on ST-Align.

Models \ Spatial-Temporal Video Grounding \ Spatial Video Grounding
| tloU@0.5 m_tloU vIoU@0.5 m.vloU | vIoU@0.3 vIoU@0.5 m_vloU
Qwen2.5-VL-7B 35.2 37.4 17.1 14.3 44.6 39.5 35.5
+VisualPrompt 36.0 38.3 21.5 19.5 57.7 514 46.6
+GRPO 41.8 43.7 17.3 20.0 - - -
+VisualPrompt-SFT 34.6 36.6 21.5 19.3 58.6 52.3 47.2
+VisualPrompt-GRPO 43.6 45.1 25.9 234 60.3 53.9 48.6

reward. As shown in Table [7] and Table [8] visual prompts primarily enhance spatial localization,
while GRPO substantially improves temporal accuracy. VisualPrompt-SFT improves all metrics but
slightly reduces temporal grounding on ST-Align, where reasoning is critical. The combination of
visual prompt and GRPO yields the most consistent gains, achieving state-of-the-art performance.

4.6 VISUALIZATION

In Figure[d] we present a case of spatial-temporal video grounding with our object-centric prompting
paradigm. The model first identifies the object IDs relevant to the query and then determines the
temporal boundaries. During the reasoning process, complex descriptive appearance expressions
are compactly mapped into object IDs, facilitating precise instance-level reasoning and grounding.

' Query: The curly man in a light gray suit walks towards the man in the red suit and stretches his left
' hand to rest on the left shoulder of the man.

5.00

Question: Each object in the video is marked with a red number at its center.

To accurately pinpoint the event "[Query]" in the video:

1.Determine the precise time period of the event occurs. 2.Identify which object ID is corresponding to the
described event. Output thought process within the <think> </think>, including both a temporal analysis and a
spatial analysis. Finally, provide the start and end times, and object ID in the format "Target ID: [ID], Time range:
[start time to end time]" within the <answer> </answer> tags.

Reasoning: <think> To determine the event "The curly man in a light gray suit walks towards the man in the red
suit and stretches his left hand to rest on the left shoulder of the man," I need to identify the objects involved:

- The curly man in a light gray suit: Object ID 2. - The man in the red suit: Object ID 3.

The event happens when Object ID 2 approaches Object ID 3 and extends their left hand to touch the left
shoulder of Object ID 3. I need to analyze the sequence of events in the video clips.

1. The curly man in a light gray suit (Object ID 2) is initially seen standing still. 2. The man in the red suit (Object
ID 1) is also standing still. 3. The curly man in a light gray suit begins to walk towards the man in the red suit. 4.
As he approaches, the curly man in a light gray suit extends his left hand and places it on the left shoulder of the
man in the red suit.

Based on this analysis, - The event starts around 5.00 seconds when the curly man in a light gray suit begins to
walk towards the man in the red suit. - The event ends around 11.00 seconds when the curly man in a light gray
suit places his hand on the left shoulder of the man in the red suit. </think>

Figure 4: Case study of STVG-RI1 on the spatial-temporal video grounding task.

5 CONCLUSION

This work addresses challenges of coordinates visual-textual misalignment and instance prediction
inconsistency across videos. We propose an object-centric visual prompting paradigm that reformu-
lates per-frame coordinate prediction into a compact and interpretable instance-level identification
problem. We further introduce STVG-R1, a reinforcement learning framework optimized with task-
driven rewards. Experiments across six benchmarks demonstrate the effectiveness of compact visual
prompts and reinforcement learning in enhancing reasoning consistency and generalization. Future
work will extend our detector-based framework from natural images to broader visual domains.
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6 REPRODUCIBILITY STATEMENT

We make every effort to ensure the reproducibility of our work. Detailed descriptions of the model
architecture, training pipeline, training datasets, and reward design for STVG-R1 are provided in
Section [3] Implementation details are reported in Section 4.1l The design of visual prompts and
filtering thresholds is described in Section [4.5] and the prompts used for training and evaluation
across different tasks are presented in Section|A.T}
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A APPENDIX

A.1 PROMPT FOR TRAINING AND EVALUATION

The prompt for spatial-temporal video grounding is shown in Figure [3

( \
Each object in the video is marked with a red number at its center.

To accurately pinpoint the event "[Query]" in the video:
1.Determine the precise time period of the event occurs.
2.1dentify which object ID is corresponding to the described event.

Output thought process within the <think> </think>, including both temporal analysis and spatial
analysis. Finally, provide the start and end times, and object ID in the format "Target ID: [ID],
Time range: [start time to end time]" within the <answer> </answer> tags.

Figure 5: Prompt for spatial-temporal video grounding.

The prompt for video spatial grounding and referring video object segmentation is shown in Figure[6]

Each object in the video is marked with a red number at its center.

To accurately pinpoint the event "[Query]" in the video:
1.Identify which object ID is corresponding to the described event.

Output thought process within the <think> </think>, including spatial analysis. Finally, provide the
object ID in the format "Target ID: [ID]" within the <answer> </answer> tags.

Figure 6: Prompt for video spatial grounding and referring video object segmentation.

The prompt for video temporal grounding is shown in Figure

( )
Each object in the video is marked with a red number at its center.

To accurately pinpoint the event "[Query]" in the video:
1.Determine the precise time period of the event occurs.

Output thought process within the <think> </think>, including temporal analysis. Finally, provide
the start and end times in the format "Time range: [start time to end time]" within the <answer>
</answer> tags.

Figure 7: Prompt for video temporal grounding.

A.2 VISUALIZATIONS OF DIFFERENT TASKS

We provide more cases of spatial-temporal video grounding and referring video object segmentation
tasks, as presented in Figure[8|and Figure[9] Although some visual prompts are filtered out in certain
frames, the corresponding instances remain stored in the mask database, thereby enhancing the final
spatial localization capability.
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10.00 1699  Time
Query: The blue man walks a few steps forward as he speaks, and then sits down.

Reasoning: <think> To determine the event "The blue man walks a few steps forward as he speaks,
and then sits down," I need to identify the blue man first. The blue man is object ID 4. He wears a
blue robe and a black hat. In the video, the blue man starts by standing still and then begins to walk
forward while speaking. After walking a few steps, he stops and sits down on the ground. This
sequence happens between 10.00 and 16.99 seconds. </think>

<answer> Target ID: 4, Time range: 10.00 to 16.99 </answer>

@ & >
4.00 8.00 Time
Query: The woman in the gray dress turns and takes a step forward, looking back at the woman wearing
a white headscarf, and then takes another step back, looking at the woman wearing a white headscarf.

Reasoning: <think> To determine the event "The woman in the gray dress turns and takes a step
forward, looking back at the woman wearing a white headscarf, and then takes another step back,
looking at the woman wearing a white headscarf," I need to analyze the sequence of actions:

1. The woman in the gray dress (ID 2) initially faces the woman in the white headscarf (ID 4).
2. She turns her body slightly towards the camera.

3. She takes a step forward while still facing the woman in the white headscarf.

4. She looks back at the woman in the white headscarf.

5. She takes another step back while still facing the woman in the white headscarf.

Based on this sequence, the event occurs between the moments when she turns her body and takes
the first step forward until she takes the second step back.

Temporal Analysis:
- The event starts around 4.00 seconds when the woman in the gray dress turns her body.

- The event ends around 8.00 seconds when she takes the second step back.

Spatial Analysis:
- The woman in the gray dress (object ID 2) is the target object for the event. </think>

<answer> Target ID: 2, Time range: 4.00 to 8.00 </answer>

Figure 8: Cases for spatial-temporal video grounding.
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Reasoning: <think> To determine the event 'The birds inside the cage, continuously hopping
around.', I need to observe the behavior of the birds in the video. The birds appear to be moving
around the cage, which suggests they are hopping. The bird labeled as '1' seems to be more active,

moving around the cage more frequently than the bird labeled as '2'. The bird labeled as '2' appears to
be less active and mostly stationary. </think>

<answer> Target ID: 1, 2 </answer>

Query: A cluster of wandering domesticated birds.

Reasoning: <think> The event 'A cluster of wandering domesticated birds.' seems to occur
throughout the video as the geese move around the enclosure. However, the geese appear to be more

active and moving together in the middle part of the video, specifically from around 0.00 to 10.00
seconds. </think>

<answer> Target ID: 1, 2, 3, 4, 5 </answer>

Query: The white pigeon that hasn't moved from its position.

Reasoning: <think> To determine the event 'The white pigeon that hasn't moved from its position,' I
need to identify the white pigeon in the cage and observe if it remains stationary throughout the video.
The white pigeon is located in the middle of the cage, and it appears to be the second pigeon from the
left. It seems to be the only one that hasn't moved significantly compared to the others. </think>

<answer> Target ID: 2 </answer>

e T h T e

Query: bigger one of the two planes moving left and landing.

Reasoning: <think> The event 'bigger one of the two planes moving left and landing' can be
observed from the moment the plane starts descending towards the runway until it touches down.

The plane labeled as '1' is the bigger one among the two planes. It is positioned on the right side of
the frame and moves leftward as it lands.</think>

<answer> Target ID: 1 </answer>

Figure 9: Cases for referring video object segmentation.
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A.3 MORE EXPERIMENTS

Since video temporal grounding task does not inherently require object-centric visual prompts, their
addition may even obscure fine-grained video details and slightly hinder temporal accuracy in the
zero-shot setting. To further verify this, we compare STVG-R1 with and without visual prompts on
Charades-STA and TVGBench. As shown in Table[9] visual prompts bring a marginal decrease in
performance, indicating that visual prompts are not essential for temporal-only task.

Table 9: Comparison of STVG-R1 with and without visual prompts on temporal grounding bench-
marks Charades-STA and TVGBench (%). Adding visual prompts slightly affects temporal perfor-
mance, showing that object-centric prompts are less critical for temporal-only tasks.

Models | Charades-STA | TVGBench

| tloU@0.3 tloU@O0.5 | tloU@0.3 tloU@O0.5
STVG-R1 w. visualprompt 72.2 52.1 41.8 27.2
STVG-R1 w/o. visialprompt 73.2 52.5 42.5 274

A.4 VISUALIZATIONS OF UNSEEN CATEGORY IN OBJECT DETECTOR

Figure [T0] presents an example where the queried object (fish) is not included in the detector’s tax-
onomy and is thus misclassified into an incorrect category (bird). Nevertheless, our framework
assigns a consistent ID and correctly localizes the target instance. This demonstrates that category
misclassification does not affect the effectiveness of our approach.

Object detection and tracking:

[ : G F\F
| ol )

Object-centric visual prompt video:

ol

Query: Red fish with the most pronounced up-and-down motion

Reasoning: <think> To identify the red fish with the most pronounced up-and-down motion, I need
to observe the movement of each fish in the video. The red fish appears to be the one labeled as "5"
on the right side of the tank. It seems to have a more noticeable up-and-down motion compared to
the other fish. </think>

<answer> Target ID: 5 </answer>

Final segmentation results:

I . I

Figure 10: Visualizations of unseen category in object detector.
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A.5 TRAINING CURVES

Figure [1 1| shows that the accuracy reward improves steadily while the format reward quickly con-
verges to near-perfect compliance, indicating stable and reliable RL optimization.

(a) (b)

Figure 11: Training reward curves of STVG-RI1. (a) Accuracy reward. (b) Format reward.

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)
We employed large language models for language polishing to improve the clarity and readability

of the manuscript. Specifically, LLMs were used to refine grammar, adjust sentence structure, and
enhance overall flow, without altering the technical details and experimental results.
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