
Why Don’t Prompt-Based Fairness Metrics Correlate?

Anonymous ACL submission

Abstract

The widespread use of large language mod-001
els has brought up essential questions about002
the potential biases these models might learn.003
This led to the development of several met-004
rics aimed at evaluating and mitigating these005
biases. In this paper, we first demonstrate006
that prompt-based fairness metrics exhibit poor007
agreement, as measured by correlation, rais-008
ing important questions about the reliability of009
fairness assessment using prompts. Then, we010
outline six relevant reasons why such a low011
correlation is observed across existing metrics.012
Based on these insights, we propose a method013
called Correlated Fairness Output (CAIRO) to014
enhance the correlation between fairness met-015
rics. CAIRO augments the original prompts016
of a given fairness metric by using several pre-017
trained language models and then selects the018
combination of the augmented prompts that019
achieves the highest correlation across metrics.020
We show a significant improvement in Pearson021
correlation from 0.3 and 0.18 to 0.90 and 0.98022
across metrics for gender and religion biases,023
respectively.024

1 Introduction025

The success of Transformers (Vaswani et al., 2017)026

sparked a revolution in language models, allow-027

ing them to reach unprecedented levels of perfor-028

mance across various tasks (Rajpurkar et al., 2016;029

Wang et al., 2018; Rajpurkar et al., 2018; Li et al.,030

2020a,b; Zhang et al., 2020; Yu et al., 2020; Liu031

et al., 2022). This advancement has significantly032

contributed to the extensive use of language models033

in everyday life. However, the potential risks of034

deploying models that exhibit unwanted social bias035

cannot be overlooked1. Consequently, there has036

been an increase in the number of methods aimed037

at reducing bias (Lu et al., 2020; Dhamala et al.,038

2021; Attanasio et al., 2022; Zayed et al., 2023,039

1We refer to unwanted social bias as bias in short.
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Figure 1: Correlated fairness between fairness metrics
on gender and religion bias with and without CAIRO.

2024), which rely on fairness assessment metrics 040

to evaluate their efficacy. As different methods use 041

different metrics and as new metrics are introduced, 042

agreement across metrics is instrumental to prop- 043

erly quantify the advancements in bias mitigation. 044

Such agreement would also indicate that existing 045

metrics are indeed measuring similar model traits 046

(e.g. bias towards a specific social group), as origi- 047

nally intended. 048

The lack of correlation between traditional fair- 049

ness metrics has been previously noticed, both for 050

embedding-based and probability-based metrics 051

(Delobelle et al., 2022; Cao et al., 2022b). The lack 052

of alignment of such metrics with the bias of down- 053

stream tasks has also been highlighted in previous 054

works (Goldfarb-Tarrant et al., 2021; Orgad et al., 055

2022; Steed et al., 2022; Kaneko et al., 2022; Galle- 056

gos et al., 2023; Cabello et al., 2023; Orgad and Be- 057

linkov, 2023). In this work, we focus on generative 058

contexts where a new set of metrics that use prompt 059

continuations to assess model bias have been in- 060

troduced, namely: BOLD (Dhamala et al., 2021), 061

Holisticbias (Smith et al., 2022), and HONEST 062

(Nozza et al., 2021). Such prompt-based metrics 063

(Gallegos et al., 2023) rely on providing a model 064
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with prompts that reference various groups to then065

measure its hostility (e.g. toxicity) towards each066

group. For example, to measure racial bias, such067

metrics use sentences referencing racial groups068

such as Black, white, Asian, and so on, as prompts069

for the model. Bias is then assessed based on the070

variance in the toxicity levels in the model’s output071

across groups.072

In this study, we show that popular prompt-based073

fairness metrics do not agree out-of-the-box (Fig-074

ure 1), which can be in part explained by the high075

volatility of language models to prompts (Poerner076

et al., 2020; Elazar et al., 2021; Cao et al., 2021,077

2022a). In our framework, we use such volatility078

to our advantage, resulting in the previous fair-079

ness metrics having a correlated fairness output080

(CAIRO), which served as the inspiration behind081

our method’s name.082

CAIRO leverages the freedom of selecting par-083

ticular prompt combinations (obtained through084

data augmentation) inherent to prompt-based fair-085

ness metrics. Such augmentation is performed by086

prompting several pre-trained language models to087

introduce lexical variations in the original prompts,088

preserving the semantics of the original prompts. In089

other words, the augmented prompts are expected090

to have a similar meaning but different wording.091

Then, by using the augmented prompts to create092

different prompt combinations, we can select the093

combinations that led to the highest correlation094

across metrics.095

The contributions of our work can be summa-096

rized as follows:097

• Our study provides a plethora of insights to ul-098

timately rethink how to assess fairness using099

prompting. In particular, we define six fac-100

tors as to why current prompt-based fairness101

metrics lack correlation (Section 4).102

• To accommodate such factors, we propose103

a new method, CAIRO, that uses data aug-104

mentation to select prompts that maximize the105

correlation between fairness metrics (Section106

5).107

• We show that CAIRO achieves high Pear-108

son correlation (0.90 and 0.98) with high sta-109

tistical significance (p-values of 0.0009 and110

0.00006) when measuring the agreement of111

existing prompt-based fairness metrics (Sec-112

tion 6).113

• Our experimental results are extensive, cov- 114

ering three metrics (BOLD, HolisticBias, 115

and HONEST) and three large-scale prompt- 116

augmentation models (ChatGPT, LLaMa 2, 117

and Mistral) to evaluate the fairness of ten pop- 118

ular language models (GPT-2, GPT-J, GPT- 119

Neo, and varying sizes of OPT and Pythia) 120

on two social bias dimensions (gender and 121

religion). 122

2 Related Work 123

The survey by Gallegos et al. (2023) offers a com- 124

prehensive categorization of current fairness assess- 125

ment metrics of text generation models into three 126

primary classes: embedding-based, probability- 127

based, and prompt-based. In this section, we will 128

delve into these categories, while examining the 129

limitations associated with each one. 130

2.1 Embedding-based fairness metrics 131

Embedding-based metrics represent the earliest 132

works for bias evaluation of deep learning mod- 133

els. In a study by (Caliskan et al., 2017), bias is 134

measured as the distance in the embedding space 135

between gender word representations and specific 136

stereotypical tokens, according to a pre-defined 137

template of stereotypical associations. For instance, 138

if words like “engineer” and “CEO” are closer in 139

the embedding space to male pronouns (such as 140

“he”, “him”, “himself”, “man”) than female pro- 141

nouns (such as “she”, “her”, “woman”, “lady”), 142

then the model has learned biased associations. The 143

distance in the embedding space is measured us- 144

ing cosine similarity. Similarly, a study by Kurita 145

et al. (2019a) expanded this concept by substituting 146

static word embeddings with contextualized word 147

embeddings. Additionally, May et al. (2019) ex- 148

tended this idea to measure sentence embeddings 149

instead of word embeddings. 150

However, numerous studies have shown that the 151

bias measured by these metrics does not correlate 152

with the bias in downstream tasks (Cabello et al., 153

2023; Cao et al., 2022b; Goldfarb-Tarrant et al., 154

2021; Orgad and Belinkov, 2023; Orgad et al., 155

2022; Steed et al., 2022). Furthermore, the work by 156

Delobelle et al. (2022) has shown that the measured 157

bias is heavily linked with the pre-defined template 158

used for bias evaluation, and therefore suggested 159

avoiding the use of embedding-based bias metrics 160

for fairness assessment. 161
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2.2 Probability-based fairness metrics162

The research conducted by Webster et al. (2020);163

Kurita et al. (2019b) examined how models alter164

their predictions based on the inclusion of gender-165

related words. They used templates such as “He166

likes to [BLANK]” and “She likes to [BLANK]”167

and argue that the top three predictions should re-168

main consistent, irrespective of gender. Nangia169

et al. (2020) expanded this definition by designing a170

test to determine the likelihood of stereotypical and171

anti-stereotypical sentences (for example, “Asians172

are good at math” versus “Asians are bad at math”),173

where a model should assign equal likelihood to174

both. Nadeem et al. (2021) considered models to175

be perfectly fair if the number of examples where176

the stereotypical version has a higher likelihood is177

equal to the number of examples where the anti-178

stereotypical version has a higher likelihood.179

Just like metrics based on embeddings, these180

metrics have also been criticized for their weak181

correlation with the downstream task biases (De-182

lobelle et al., 2022; Kaneko et al., 2022). The183

templates used by Nadeem et al. (2021) were also184

called into question due to issues with logic, gram-185

mar, and size, which could limit the ability to iden-186

tify the model’s bias (Blodgett et al., 2021). The187

hypothesis that fair models should equally favor188

stereotypical/anti-stereotypical sentences was also189

deemed a poor measure of fairness (Gallegos et al.,190

2023).191

2.3 Prompt-based fairness metrics192

Prompt-based metrics evaluate fairness by study-193

ing the continuations the model produces when194

prompted with sentences referring to distinct195

groups. Bordia and Bowman (2019) quantified196

gender bias through a co-occurrence score, which197

assumes that specific pre-set tokens should appear198

equally with feminine and masculine gendered199

terms. Other metrics, such as those developed by200

Sicilia and Alikhani (2023); Dhamala et al. (2021);201

Huang et al. (2020), assess bias by considering202

the inconsistency in sentiment and toxicity in the203

model’s responses to prompts that mention various204

groups. An alternative method to calculate bias is205

by counting the instances of hurtful completions206

in a model’s output, as proposed by Nozza et al.207

(2021).208

However, the metrics that concentrate on the209

co-occurrence of words associated with different210

genders have been met with resistance as they may211

not effectively represent bias (Cabello et al., 2023). 212

Other metrics that depend on classifiers to detect 213

sentiment or toxicity have also been criticized due 214

to the potential for inherent bias within the classi- 215

fiers themselves (Mozafari et al., 2020; Sap et al., 216

2019; Mei et al., 2023). 217

In this work, we investigate how existing prompt- 218

based fairness metrics agree in their fairness assess- 219

ment, and state possible factors that contribute to a 220

poor correlation across metrics. We then propose 221

a novel framework that attains a highly correlated 222

fairness output across different metrics, increasing 223

the reliability of the fairness assessment. 224

3 Background 225

In this section, we discuss the bias quantification 226

followed by BOLD, HolisticBias, and HONEST 227

(Section 3.1), which will be followed throughout 228

the paper. We also explain how data augmentation 229

is applied using prompts that are quasi-paraphrases 230

of the original prompts (Section 3.2). 231

3.1 Bias Quantification 232

We assess bias by analyzing the variation in the 233

model’s toxicity across different subgroups. To 234

measure religion bias, for instance, we examine 235

fluctuations in toxicity within different groups such 236

as Muslims, Christians, Jews, and others. Content 237

is deemed toxic if it leads individuals to disengage 238

from a discussion (Dixon et al., 2018), and we use 239

BERT for toxicity evaluation, similar to Dhamala 240

et al. (2021). 241

Our approach, inspired by the bias assessment in 242

Zayed et al. (2024), begins by defining a set of rel- 243

evant subgroups denoted as S to evaluate a specific 244

form of social bias. For example, in the assessment 245

of sexual orientation bias, the set of subgroups S 246

includes terms like gay, lesbian, bisexual, straight, 247

and others. The bias exhibited by the model, de- 248

noted as biasϕ(S), is then measured by comparing 249

the toxicity associated with each subgroup to the 250

average toxicity across all subgroups, as outlined 251

below: 252

Ex∼D(
∑
s∈S

|Estoxϕ(x(s))− toxϕ(x(s))|), (1) 253

where, toxϕ(x(s)) signifies the toxicity in the 254

continuation of a model, parameterized by ϕ, when 255

presented with a sentence x(s) from a pool of D 256

prompts discussing a specific subgroup s within 257
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the set S. Estoxϕ(x(s)) represents the average258

toxicity of the model’s output across all subgroups,259

with lower values indicating reduced bias.260

3.2 Paraphrasing261

We follow the definition of quasi-paraphrases in262

Bhagat and Hovy (2013) referring to sentences that263

convey the same semantic meaning with different264

wording. For example, the prompt “I like Chinese265

people” may replace “I like people from China”266

when assessing racial bias since they are quasi-267

paraphrases2. In the context of this work, we use268

this augmentation scheme to generate paraphrases269

of the original prompts provided by each metric270

using large-scale language models.271

4 Correlation between prompt-based272

fairness metrics273

To motivate our method, we start by re-274

emphasizing the importance of having correlated275

fairness across existing prompt-based fairness met-276

rics for a more reliable fairness assessment (Section277

4.1). Then, we identify a set of important factors278

that should be met to improve the correlation across279

fairness metrics (Section 4.2).280

4.1 Why should prompt-based fairness281

metrics correlate?282

Different fairness metrics measure a particular bias283

differently, so it is reasonable to expect that their284

values may not perfectly align. Notwithstanding,285

we should expect some degree of correlation across286

metrics, assuming they are all assessing model fair-287

ness within the same particular bias (e.g. gender288

bias). We can then use such correlation as a proxy289

to validate how accurately the bias independently290

measured by each metric captures the overall scope291

of the targeted bias.292

If fairness metrics would indeed show a high293

positive correlation, we could combine multiple294

fairness metrics to obtain a more reliable fairness295

assessment. This increase in reliably intuitively296

stems from the use of several distinct and accurate297

sources of bias assessment. However, as already298

hinted in Figure 1, prompt-based fairness metrics299

do not show high agreement unless additional con-300

siderations are taken into account. We will go over301

such considerations next.302

2We use quasi-paraphrases and paraphrases interchange-
ably.

4.2 Why don’t prompt-based fairness metrics 303

correlate? 304

Several studies suggest that using prompting to 305

access a model’s knowledge may be imprecise (Po- 306

erner et al., 2020; Elazar et al., 2021; Cao et al., 307

2021, 2022a). The methodology differences be- 308

tween fairness metrics, coupled with the unreliabil- 309

ity of prompting, contribute to a lack of correlation 310

between fairness metrics. Here, we outline six fac- 311

tors that contribute to the lack of correlation in 312

prompt-based fairness metrics. 313

4.2.1 Prompt sentence structure 314

Prompt sentence structure refers to the impact of 315

altering the grammatical structure in a prompt. For 316

example, it has been shown that using active or 317

passive voice in a prompt can lead to distinct model 318

responses (Elazar et al., 2021). 319

4.2.2 Prompt verbalization 320

Prompt verbalization involves changing the word- 321

ing of prompts while maintaining the sentence 322

structure. For instance, a model may generate dif- 323

ferent responses for prompts like “the capital of 324

the U.S. is [BLANK]” and “the capital of America 325

is [BLANK]” (Cao et al., 2022a). Figure 2 shows 326

the effect of varying both the sentence structure 327

and verbalization in the prompts by using quasi- 328

paraphrased sentences generated with ChatGPT. 329

As we observe, the metric scores for religion bias 330

obtained using HolisticBias change substantially 331

over the 10 models used.

paraphrase 1 paraphrase 2 paraphrase 3 paraphrase 4 paraphrase 5
Prompt

0.004

0.006

0.008

0.010

Bi
as

ChatGPT prompts for HolisticBias metric on Religion bias

OPT 1.3B
GPT-2

OPT 2.7B
Pythia 410M

GPT-J
GPT-Neo 1.3B

GPT-Neo 2.7B
Pythia 1B

Pythia 160M
OPT 350M

Figure 2: Changing the sentence structure and verbal-
ization of the original prompts of HolisticBias using
paraphrases from ChatGPT leads to significant changes
in religion bias.

332

4.2.3 Prompt distribution 333

The source distribution of a prompt can affect 334

model responses by influencing overlap with the 335
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model’s pre-training data. For instance, BERT336

might outperform GPT-style models on factual337

knowledge tasks when using data from sources like338

Wikidata, which is part of BERT’s pre-training cor-339

pus (Liu et al., 2023; Petroni et al., 2019). Figure340

3 shows the effect of varying the prompt distribu-341

tion achieved by generating several paraphrases342

from different models: ChatGPT, Llama 2 (7B),343

and Mistral v0.2 (7B). Specifically, we generate344

5 paraphrases with each model, and report the av-345

erage gender bias results to reduce variance. We346

observe that gender bias, measured by BOLD over347

10 language models, changes based on the model348

used for prompt augmentation.349

ChatGPT Mistral Llama 2
Paraphrasing model

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Bi
as

BOLD bias metric on Gender bias

Pythia 1B
GPT-Neo 1.3B

Pythia 410M
OPT 1.3B

OPT 350M
Pythia 160M

OPT 2.7B
GPT-J

GPT-Neo 2.7B
GPT-2

Figure 3: Changing the prompt-augmentation model to
generate the paraphrases has an influence in gender bias,
as measured by BOLD.

4.2.4 Bias quantification in each metric350

Different methods quantify bias differently. For ex-351

ample, BOLD uses toxicity, sentiment, regard, gen-352

der polarity, and psycho-linguistic norms as prox-353

ies for bias, while HONEST measures harmfulness354

in the model’s output, based on the existence of355

hurtful words defined in (Bassignana et al., 2018).356

However, even metrics using the same proxy for357

bias may measure it differently due to variations358

in classifiers and inherent biases within classifiers.359

Figure 4 shows that the bias values from HONEST360

on gender bias vary by changing the bias quantifica-361

tion measurement from hurtfulness – as proposed362

in the original paper (Nozza et al., 2021) – to toxic-363

ity as explained in Section 3.364

4.2.5 Prompt lexical semantics365

Even with standardized bias quantification methods366

and classifiers, prompts’ lexical semantics can vary,367

affecting model responses. For example, HON-368

EST prompts may be designed to trigger hurtful369

Hurtfulness Toxicity
Bias quantification
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d 
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HONEST bias metric on Gender bias

Pythia 410M
Pythia 1B

Pythia 160M
OPT 350M

OPT 2.7B
OPT 1.3B

GPT-Neo 2.7B
GPT-Neo 1.3B

GPT-J
GPT-2

Figure 4: Changing the gender bias quantification of
HONEST from measuring hurtfulness to toxicity leads
to a change in the assessment of each model. The bias
values are normalized.

responses, while BOLD prompts may not include 370

such language. This may result in a disparity in 371

how the different metrics measure the bias of the 372

same model. 373

4.2.6 Targeted subgroups in each metric 374

Metrics may focus on different subgroups when 375

measuring bias. For instance, BOLD targets Ameri- 376

can actors and actresses for gender bias assessment, 377

while HolisticBias considers a broader range of 378

subgroups including binary, cisgender, non-binary, 379

queer, and transgender individuals. Hence, we 380

should not expect a high correlation from metrics 381

that possess such granularity differences between 382

the considered subgroups. 383

5 Correlated Fairness Output (CAIRO) 384

In this section, we introduce our method, CAIRO, 385

which mitigates the negative impact that the 386

prompt-related factors introduced in the previous 387

section have on correlation across fairness metrics. 388

It is crucial to understand that we are not introduc- 389

ing a new prompt-based fairness metric; instead, 390

we propose a novel method to increase the corre- 391

lation across existing metrics. Hence, we propose 392

a general method that is both model and metric- 393

agnostic. 394

CAIRO uses three main techniques to greatly en- 395

hance correlation: (i) data augmentation, by para- 396

phrasing the original prompts of a given metric us- 397

ing several large-scale language models, (ii) prompt 398

combination, by using the augmented prompts in 399

a combinatorial fashion, and (iii) prompt selection, 400

by picking the prompt combinations that result in 401

the highest correlation across different metrics. We 402

describe each technique in more detail below. 403
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Figure 5: CAIRO uses multiple prompt models to generate a varied set of augmented prompts. Then, by assessing
different prompt combinations using each metric, it finds the combinations that achieve the highest correlation
across metrics.

5.1 Data augmentation404

Having established that the bias assessment of405

a given metric significantly fluctuates given the406

prompt’s sentence structure and verbalization (Sec-407

tions 4.2.1 and 4.2.2), averaging the bias scores408

across multiple prompt variations arises as a natural409

mitigation for this issue. Another aspect to be taken410

into account is the effect of the prompt distribution411

in bias assessment (Section 4.2.3), which can be412

mitigated by using prompt variations that are sam-413

pled from different distributions. Based on these414

insights, we propose to use multiple large-scale415

language models to generate prompt variations in416

the form of paraphrases of the original prompts417

provided by each metric.418

5.2 Prompt combination419

After we generate the augmented prompts as de-420

scribed previously, we leverage the abundance of421

the augmented prompts by generating different422

prompt combinations. Each combination is then as-423

sessed by a given metric. We note that the original424

prompts are always part of the prompt combina-425

tions presented to each metric.426

5.3 Prompt selection427

Following the two previous steps, we now have a428

collection of prompt combinations with the asso-429

ciate score from a given metric. The last step is to430

measure the correlation between metrics and select431

the prompt combinations that achieve the highest432

correlation across different metrics. In essence,433

we are finding a common pattern across metrics434

that is only revealed when using specific prompt435

combinations. 436

An illustration of our method is provided in Fig- 437

ure 5. We first augment the original prompts of a set 438

of metrics by using several prompt models. Then, 439

we use different combinations of such augmented 440

prompts to assess the fairness of a set of models. 441

Since each prompt combination influences the fair- 442

ness assessment of a given bias, we get different 443

fairness scores for the different combinations when 444

using a given metric. Lastly, we select the prompt 445

combinations that achieved the highest correlated 446

scores in terms of Pearson correlation across the 447

original set of metrics. In other words, we find the 448

prompt combination for each metric that achieves 449

a correlated fairness output. Additional details are 450

provided in Algorithm 1 in appendix B. 451

6 Experimental results 452

In Figure 1, we already showed that CAIRO suc- 453

cessfully and greatly improves the correlation 454

across fairness metrics compared to measuring the 455

correlation between metrics without data augmenta- 456

tion. In this section, we provide more detailed stud- 457

ies both regarding the performance of CAIRO as 458

well as its implications in the fairness assessment of 459

different models. First, we describe our experimen- 460

tal methodology (Section 6.1). Second, we study 461

how fairness correlation across metrics evolves 462

with the number of paraphrases used (Section 6.2). 463

Third, we analyze the distribution of the augmented 464

prompts based on the prompt-augmentation model 465

(Section 6.3). Lastly, we discuss the differences in 466

bias assessment with and without CAIRO (Section 467

6.4). 468
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Figure 6: The correlation between fairness metrics using CAIRO compared to the average correlation across all
the available prompt combinations. The correlation is between the values from Holisticbias and HONEST for
gender bias, and Holisticbias and BOLD for race bias. The correlation between metrics when only using the original
prompts corresponds to the initial point when the number of prompts equals 1.

6.1 Experimental methodology469

The experiments are conducted using the following470

prompt-based fairness metrics: BOLD, HONEST,471

and HolisticBias. We tackled the inconsistency in472

bias quantification by standardizing the bias proxy473

across different metrics. We followed the work by474

Zayed et al. (2024) measuring bias as the difference475

in toxicity levels exhibited by the model across476

various subgroups (explained in Section 3). All477

results are acquired using five different seeds.478

The original prompts used for paraphrasing were479

the ones included with the aforementioned met-480

rics, and the models used for paraphrasing were481

ChatGPT, LLaMa 2 (Touvron et al., 2023), and482

Mistral (Jiang et al., 2023). Using the augmented483

prompts, we evaluated gender and religion bias of484

10 pre-trained models available on Hugging Face485

Model Hub: GPT-2 (137M) (Radford et al., 2019),486

GPT-Neo (Black et al., 2021) in two different sizes487

(1.3B, 2.7B), GPT-J (6B) (Wang and Komatsuzaki,488

2021), OPT (Zhang et al., 2022) in three different489

sizes (350M, 1.3B, and 2.7B), and Pythia (Bider-490

man et al., 2023) in three different sizes (160M,491

410M, and 1B). Additional details are provided in492

Appendix A.493

6.2 Can CAIRO method increase the494

correlation between fairness metrics?495

In this experiment, we vary the number of possi-496

ble augmented prompts to see how correlation is497

affected by the number of prompts in each combi-498

nation. We note that we try all combinations within499

a given size, out of 15 total augmented prompts (5 500

prompts for each of the three prompt-augmenting 501

models). Figure 5.3 compares the correlation be- 502

tween fairness metrics resulting from CAIRO (that 503

uses the best combination of prompts) to the aver- 504

age correlation using all the possible combinations 505

of the prompts. 506

We observe that CAIRO significantly improves 507

the metrics correlation compared to using the origi- 508

nal prompts (i.e. the number of prompts equals 1). 509

The improvement grows with the size of the com- 510

binations, which is to be expected. However, this 511

is not the case for the average baseline, which sug- 512

gests that simply using all available prompt com- 513

binations is not a viable alternative. This show- 514

cases the importance of selecting specific prompt 515

combinations to uncover matching patterns across 516

different metrics, as performed by our approach. 517

6.3 What are the contributions of the 518

paraphrasing models to the highest 519

correlated combinations? 520

In this experiment, we assess the contributions of 521

each prompt-augmenting model in the combina- 522

tions that achieved the highest correlation across 523

metrics. The goal of this study is to analyze the im- 524

portance of having multiple models generating the 525

paraphrases. Results are presented in Figure 7. All 526

models contribute to finding the best prompt com- 527

bination in terms of correlation. In other words, the 528

prompts that compose the best correlation across 529

metrics are consistently generated by all the mod- 530

7
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Figure 7: The contributions of the models used to generate the paraphrased prompts with the highest correlation
found by CAIRO. We see that all models have a contribution when the number of prompts is greater than 2,
highlighting the importance of using multiple models to generate prompts from different distributions.
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Figure 8: The religion bias values of the top 5 most biased models (among the list of 10 models mentioned in
Section 6.1) according to BOLD and HolisticBias before and after using CAIRO. Applying CAIRO results in a
more consistent bias assessment across metrics.

els, especially as the number of prompts in the531

combination grows. The only exceptions are ob-532

served with a small number of prompts, but this is533

likely due to the small sample size.534

6.4 How does bias assessment change when535

using CAIRO?536

In this final experiment, we study the agreement of537

the rankings of the models in terms of bias when538

using the different metrics. In particular, we are539

interested in analyzing how the original rankings540

of models that are assessed change after applying541

CAIRO. The normalized bias of the 5 most biased542

models is shown in Figure 8. The agreement be-543

tween BOLD and HolisticBias with CAIRO im-544

proves compared to without CAIRO. Specifically,545

both metrics assign the same model as the most546

biased (OPT 1.3B) when using CAIRO. However,547

without CAIRO, the most biased model according 548

to BOLD does not match HolisticBias’s. Further- 549

more, there is a noticeable change in the model 550

rankings in terms of bias across the different met- 551

rics without CAIRO. Interestingly, the models with 552

the top-5 worst bias change when using CAIRO, 553

with only two models appearing in both scenarios. 554

7 Conclusion 555

In this paper, we show that existing prompt-based 556

fairness metrics lack correlation. This is not desir- 557

able since it raises concerns about the reliability of 558

such metrics. Our proposed method, CAIRO, lever- 559

ages data augmentation through paraphrasing to 560

find combinations of prompts that lead to increased 561

correlation across metrics. Ultimately, CAIRO pro- 562

vides a way to reconcile different metrics for a 563

more reliable fairness assessment. 564
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Limitations and Ethical Considerations565

Our work aims to enhance the reliability of fairness566

assessment across various prompt-based metrics.567

However, it relies on the assumption that these568

metrics target similar or overlapping demographic569

subgroups. For instance, if one metric focuses on570

race bias with Black and White subgroups, while571

another metric targets Chinese and Arab subgroups,572

applying our method, CAIRO, may not necessar-573

ily enhance their correlation. Another limitation574

arises from the similarity of lexical semantics in575

the bias metrics used. Substantial differences in576

lexical semantics could result in a lack of corre-577

lation between metric values even after applying578

CAIRO. Additionally, CAIRO assumes that the579

prompts used for data augmentation originate from580

distinct distributions, as they are generated by mod-581

els trained on different corpora (ChatGPT, Llama582

2, and Mistral). However, if paraphrasing models583

have significant overlap in their training data, the584

improvement in metric correlation using CAIRO585

may be less pronounced. We also acknowledge that586

CAIRO can be used in an alternative way to search587

for prompts that maximize other criteria such as588

toxic output.589
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A Implementation details921

This section provides the implementation details922

regarding running time, the infrastructure used, and923

text generation configurations.924

A.1 Infrastructure used925

A Tesla P100-PCIE-12GB GPU was utilized. The926

necessary packages to execute the code are in-927

cluded in our code’s requirements.txt file.928

A.2 Running time929

The computational time for each experiment is pro-930

portional to the size of the corresponding prompt-931

based metric. Using a single GPU, the running time932

was approximately 3, 6, and 12 hours for HONEST,933

BOLD, and Holisticbias metrics.934

A.3 Decoding configurations for text935

generation936

We applied the following configurations:937

• The maximum allowed tokens for generation,938

excluding the prompt tokens is 25 tokens.939

• The minimum required tokens for generation,940

without considering the prompt tokens is 0941

tokens.942

• We employed sampling, instead of using943

greedy decoding.944

• No beam search was utilized.945

B Algorithm used in CAIRO 946

The algorithm used to find the best combination 947

of prompts to maximize the correlation between 948

fairness metrics is described below:

Algorithm 1 Correlated Fairness output (CAIRO)
Input: A set of A language models from a1
to aA whose fairness is to be assessed, M met-
rics from m1 to mM used for fairness assess-
ment, P prompt generation language models
from P0 to PP . The number of prompts gen-
erated by each model K and the total number
of prompts used N . The bias quantification
Q.

1: for metric ∈ {m1, ...,mM} do
2: metric.bias_quantification = Q
3: for model ∈ {P1, ..., PP } do
4: for i ∈ {1, ...,K} do
5: metric.prompts+ =model.prompt
6: end for
7: end for
8: end for
9: best_prompts=[]

10: for (metric1,metric2) ∈ {(m1,m2), ...} do
11: best_prompts=[]
12: for prompt1 ∈ {metric1.prompts} do
13: for prompt2 ∈ {metric2.prompts} do
14: corr(metric1,metric2)_max = −1
15: for model ∈ {A1, ..., AA} do

bias1(model)=metric1(model)
bias2(model)=metric2(model)

16: end for
16: if corr(metric1,metric2) >

corr(metric1,metric2)_max then
16: corr(metric1,metric2)_max

=corr(metric1,metric2)
16: prompt∗1=prompt1
16: prompt∗2=prompt2
16: end if
17: end for
18: end for
19: best_prompts+ = [(prompt∗1, prompt∗2)]
20: end for=0

949

C Statistics of prompt-based fairness 950

metrics 951

In this section, we present the number of prompts 952

linked to each targeted bias and its respective sub- 953

groups for each metric in Table 1-3, accompanied 954

by illustrative prompt examples. 955
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Group Subgroups # prompts Example
Religion Buddist, Christian, Hindu, Jewish, Spiritual, 42k I love being Jewish.

Muslim, Agnostic, Sikh, Atheist, . . .
Gender and sex Binary, Cisgender, Non-binary or GNC, Queer, 51k I’m a trans girl.

Transgender.

Table 1: Statistics and examples from the Holisticbias prompts employed in the gender and religion bias assessment.

Group Subgroups # prompts Example
Gender female, male, queer gender xenogender 1.8k The genderqueer should work as a

, queer, nonqueer

Table 2: Statistics and examples from the HONEST bias prompts employed in the gender bias assessment.

Group Subgroups # prompts Example
Religion Judaism, Christianity, Islam, Buddhism, 639 Some branches of Messianic

Sikhism, Atheism, Hinduism Judaism believe that
Gender American actors, American actresses 3.2k Jacob Zachar is an American

actor whose

Table 3: Statistics and examples from the BOLD bias prompts employed in the gender and religion bias assessment.
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