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ABSTRACT

Time series forecasting is a long-standing challenge in a variety of industries, and
deep learning stands as the mainstream paradigm for handling this forecasting
problem. With recent success, representations of time series components (e.g.,
trend and seasonality) are also considered in the learning process of the models.
However, the residual remains under explored due to difficulty in formulating its
inherent complexity. In this study, we propose a novel Irregularity Reflection Neu-
ral Network (IRN) that reflect the residual for the time series forecasting. First,
we redefine the residual as the irregularity and express it as a sum of individual,
short regular waves considering the Fourier series in a micro perspective. Sec-
ond, we design a module, based on the convolutional architectures to mimic the
variables of the derived irregularity representation, named Irregularity Represen-
tation Block (IRB). IRN comprises IRB on top of a forecasting model to learn the
irregularity representation of time series. Extensive experiments on multiple real-
world datasets demonstrate that IRN outperforms the state-of-the-art benchmarks
in time series forecasting tasks.

1 INTRODUCTION

Figure 1: The Traffic data and its time series
components (i.e., trend, seasonality, and irreg-
ularity).

Owing to the ubiquitous computing systems, time
series is available in a wide range of domains in-
cluding traffic (Chen et al., 2001), power plant
(Gensler et al., 2016), stock market indices (Song
et al., 2021), and so on (Liu et al., 2015; Duan
et al., 2021). Spontaneously, interests in time se-
ries forecasting have grown, and as a result, an in-
tensive research for a more accurate prediction.

In recent literature, many deep learning models
have been favored for forecasting problems (Lim
& Zohren, 2021). Recurrent Neural Network
(RNN) and its extensions such as Long Short-
Term Memory (LSTM) (Hochreiter & Schmid-
huber, 1997) and Gated Recurrent Unit (GRU)
(Chung et al., 2014) are popular choices for ana-
lyzing long sequences. Nevertheless, these mod-
els tend to be restricted in handling multivariate
time series. As a powerful alternative, Convolu-
tion Neural Networks (CNNs) has been introduced to capture overall characteristics of time series
through parallel calculations and filter operations. Building on the success in forecasting task, CNN-
based models have been proposed according to the type of time series data. Temporal Convolutional
Network (TCN) was applied to audio datasets (Oord et al., 2016), whereas Graph Convolutional
Network (GCN) was utilized in the time series with graph characteristics (e.g., human skeleton-
based action recognition (Zhang et al., 2020) and traffic dataset (Bai et al., 2020)). The attention
models have also been applied to emphasize the specific sequence data that are primarily referenced
when making the predictions (Liu et al., 2021b).
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Despite the great efforts made, forecasting performance has room for further improvement as afore-
mentioned models learn feature representations directly from complex real-world time series, often
overlooking essential information. Recently, incorporating representations of time series compo-
nents (e.g., trend, seasonality) used in conventional econometric approaches have shown to lead to
better performances of the learning models. For instance, N-BEATS (Oreshkin et al., 2019), Aut-
oformer (Wu et al., 2021), and CoST (Woo et al., 2022) reflected the trend and seasonality of the
time series and achieved improvements. However, as shown in Figure 1, time series also include the
irregularity that is not accounted by the trend and seasonality, and is yet under explored (Woo et al.,
2022).

To address this challenge, we show how to deal with the irregularity of the time series data to
improve the forecasting performance of the deep learning models. To this end, we represent the
irregularity into an encodable expression on basis of Fourier series viewed from a micro perspective.
The derived representation is encoded using convolutional architectures, and named as Irregularity
Representation Block (IRB). Then, IRB embedded on a base model builds the Irregularity Reflection
Neural Network (IRN). We demonstrate that IRN outperforms existing state-of-the-art forecasting
models on eleven popular real-world datasets.

2 RELATED WORK

2.1 DEEP LEARNING FOR TIME SERIES FORECASTING

Sequential deep learning models such as RNN, LSTM, and GRU have long been used for time series
forecasting (Elman, 1990; Hochreiter & Schmidhuber, 1997; Chung et al., 2014). Although effective
in capturing the temporal dependencies of time series, RNN-based models neglect the correlations
in-between time series. To tackle this issue, Liu et al. (2020) propose a dual-stage two-phase (DSTP)
to extract the spatial and temporal features. Shi et al. (2015) present convLSTM replacing the states
of LSTM block with convolutional states. Another limitation of the sequential models are that the
discrepancy between ground truth and prediction is accumulated over time as predictions are referred
to predict further into the future (Liu et al., 2021a).

More recent works have demonstrated that CNNs can be applied in multivariate time series problems
as well. Ravi et al. (2016) introduce the 1D convolution for human activity recognition, whereas
Zhao et al. (2017) suggest the use of 2D convolution. CNN models are parallelizable, and hence
show following advantages: the consideration of the correlation between variates and the prevention
of error accumulation (Liu et al., 2019). A downside is the limited receptive field when predicting
long sequences due to the increasing number of the parameters (Zhao et al., 2017). Wang et al.
(2019) tackle this challenge by decomposing the long sequences according to long, short and close-
ness.

CNN-based models have received increasing attention to enhance the forecasting performance. For
example, the dilated casual convolutional layer is used to increase the receptive field by down-
sampling and improve long sequences prediction (Sen et al., 2019; Oord et al., 2016). Another
approach is Graph Convolutional Network (GCN), that analyzes the relation between nodes with
specific position and edge relation, especially in traffic data (Fang et al., 2021; Song et al., 2020)
and human body skeleton data (Yoon et al., 2022; Chen et al., 2021). Attention-based models have
also been adopted (Liu et al., 2019) and further developed into Transformer (Zhou et al., 2021; Liu
et al., 2021b). However, these approaches do not take into account the characteristics of time series
such as trend, seasonality and irregularity.

2.2 REFLECTING THE REPRESENTATIVE COMPONENTS OF TIME SERIES

Considerable studies on time series analysis have relied on the decomposition of time series into
non-random components. For instance, DeJong et al. (1992) conducted analysis on the trends of the
macroeconomic time series as well as Lee & Shen (2009) emphasized the importance of obtaining
significant trend relationship in linear time complexity. Jonsson & Eklundh (2002) extracted and
analyzed the seasonality of the time series data and Taylor & Letham (2018) considered both trend
and seasonality. When extracting these non-random components, a non-stationary time series be-
comes stationary, meaning time-independent. As conventional statistical methods such as ARIMA
(Autoregressive Integrated Moving Average) (Williams & Hoel, 2003) and GP (Gaussian Process)
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Figure 2: An overview of IRN framework. In IRN, (a) IRB extracts the irregularity feature from the
input sequences and (b) Irregularity Reflection module conducts the time series forecasting.

Figure 3: (a) The irregular wave ψ(t) consisting of multiple regular waves and (b) the irregular wave
from a micro perspective ψ (ta∼b).

(Van Der Voort et al., 1996) perform better on stationary data (Cheng, 2018), differentiation for
stationarity has been conducted (Atique et al., 2019). As such, extraction of the representative time
series components for forecasting problems has been a major research topic (Brockwell & Davis,
2009; Cleveland et al., 1990).

Recently, direct learning from input sequences of the deep forecasting models is regarded to be
enough, thereupon researchers focus on how to incorporate the components of time series in the
learning process. For instance, Oreshkin et al. (2019) proposed a hierarchical doubly residual topol-
ogy as the interpretable architecture to extract time series representations: trend, and seasonality. Wu
et al. (2021) proposed a transformer-based model which decomposes and reflects the trend and sea-
sonality by using auto-correlation mechanism. Woo et al. (2022) introduced disentangled Seasonal-
Trend Representation Learning by using the independent mechanisms. They deviced disentanglers
for the trend and seasonal features, mainly composed of a discrete Fourier transform to map the
intermediate features to frequency domain. These studies successfully reflect representations of
trend and seasonality which are the time dependent value, and improve forecasting performances.
However, the irregularity, which cannot be explained by the trend or seasonality and is the time
independent value, is not sufficiently addressed. In this paper, we build and reflect the irregularity
representation to complement the previous researches in forecasting tasks.

3 METHODOLOGY

In this section, we discuss how to reinterpret the irregularity of the time series in term of Fourier
series, extract and reflect the irregularity representation using convolutional architectures. Our pro-
posed model IRN is shown in Figure 2.

3.1 THEORETICAL APPROACH

3



Under review as a conference paper at ICLR 2023

Figure 4: Architecture of the Irregularity Repre-
sentation Block.

A time series is generally in the form of an ir-
regularity. Hence, its representation is essential
for time series forecasting. Among many exist-
ing approaches to represent irregularity, Fourier
series is perhaps the most widely used. Fourier
series approximates irregularity by the linear
superposition of multiple regular waves with
varying height, period, and direction as de-
picted in Figure 3 (a) (Bloomfield, 2004). The
irregularity ψ (t) can be expressed as:

ψ (t) =

∞∑
n=0

Cnrn(t) (1)

where rn(t) is n-th regular wave, Cn is the
coefficient of rn(t), t is the time. The con-
cept of infinity in Equation 1 is challenging for
the learning model to handle. Therefore, we
reinterpret ψ (t) into an encodable equation by
viewing it at the micro level. When the irreg-
ularity ψ(t) in the time domain is observed at
the moment ta∼b, it can be interpreted as a regular wave ψ (ta∼b) with a vertical shift, which is the
average value of the regular waves. Under this concept, Equation 1 is rewritten as:

ψ (ta∼b) = C0r0(ta∼b) +

∞∑
n=1

Cnrn(ta∼b) (2)

where C0r0(ta∼b) is the representative regular wave characteristic. C0r0(ta∼b) is the regular wave
with a mean of 0 without vertical shift. The representative regular wave r0(ta∼b) oscillates between
the constant maximum and minimum values in a period of time and can be defined as Amplitude×
sin(ω× ta∼b), where the angular velocity ω is constant due to the periodicity of the wave, ω× ta∼b

is denoted as the angle θ of r0(ta∼b), and sin(ω × ta∼b) is the phase of r0(ta∼b). Amplitude is
calculated with the peaks of the wave. Accordingly, the representative regular wave r0(ta∼b) can be
rewritten as:

r0(ta∼b) =
max(ta∼b)−min(ta∼b)

2
× sin(θ(ta∼b)) (3)

where sin(θ(ta∼b)) is the phase of r0(ta∼b) at ta∼b. Therefore, C0r0(ta∼b) in Equation 2 is re-
defined by referring to Equation 3. The remaining infinity term

∑∞
n=1 Cnrn(ta∼b) in Equation 2

corresponds to the vertical shift and can be expressed as the average value A(ta∼b) of ψ (ta∼b)
as depicted in Figure 3 (b). The representative regular wave C0r0(ta∼b) and the average value∑∞

n=1 Cnrn(ta∼b) convert Equation 2 into:

ψ (ta∼b) ≈ A(ta∼b) +
max(ta∼b)−min(ta∼b)

2
× sin(θ(ta∼b)) (4)

When the regular waves are sequentially connected, we obtain the irregularity ψ (t) consisting of
the regular waves that change with time ta∼b. We redefine the Equation 4 as follows:

ψ (t) ≈ A(t) +
max(t)−min(t)

2
× sin(θ(t)) (5)

where max(t)−min(t)
2 is the amplitude of the regular wave C0r0(ta∼b) at ta∼b, sin(θ(t)) is the

phase of C0r0(ta∼b) at ta∼b, and A(t) is the average which is the sum of remained regular waves∑∞
n=1 Cnrn(ta∼b) at ta∼b. According to Equation 5, the irregularity ψ (t) can be represented by

the combinations of the minimum, maximum, average, and phase values.

3.2 IRREGULARITY REPRESENTATION BLOCK

Based on Equation 5, the irregularity is encoded to incorporate into deep learning models. In this pa-
per, convolutional architectures are adopted since convolutional layers allow the parallel prediction
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as well as analysis of relations existing in multivariate time series through filter operations. We input
the multivariate time series xinput ∈ RT×d , where T is a look-back window of fixed length, and d
is the number of variates. Our model stacks multiple convolution layers with the RELU activation
function, a dilation filter and same padding. The RELU activation increases the model complexity
through space folding (Montufar et al., 2014), and the dilation operation helps expand the receptive
fields (Oord et al., 2016). The convolution layer extracts the feature that has the same size of the
xinput through the same padding. Accordingly, Equation 5 is transformed into

xirregular = A(xinput)⊕ max(xinput)−min(xinput)

2
⊗ sin(θ(xinput)) (6)

where ⊕ is the pointwise summation, ⊗ is the pointwise multiplication, and xirregular is the ir-
regularity. Through this transformation, the xirregular is converted from time dependent to data
dependent and the main operations (i.e., A(), max(), min(), and sin(θ())) are expressed by using
the convolution layers and pooling layers which extract the average, the maximum, the minimum,
and the phase value from xinput under microscopic perspective condition. The main operations are
encoded like Figure 4 as follows:

Maver(x
input) = RCav(Pav(RC0(x

input))) ≈ A(xinput) (7)

Mamp(x
input) =

RCmax(Pmax(RC0
(xinput)))−RCmin(Pmin(RC0

(xinput)))

2

≈ max(xinput)−min(xinput)
2

(8)

Mphase(x
input) = Ttanh(CCphase(RC0

(xinput))) ≈ sin(θ(xinput)) (9)

where Pmax, Pmin, and Pav are the max, min, and average pooling operations, respectively. C is the
convolution layer without activation, R is C with the RELU activation and Ttanh is the hyperbolic
tangent(tanh) activation. Through this process, the average, amplitude, and phase values in Equation
6 are converted to trainable values. To extract the representation of the average value from xinput,
we stack the 2D convolution filter and the 2D average pooling as in Equation 7. To decompose
the representation of the amplitude from xinput, we construct the structure same as Equation 8
with the 2D max and min pooling. To obtain the representation of the adaptive phase value using
xinput under microscopic aspect condition, referring to the Equation 9, we use the tanh activation
after convolution layer. Consequently, these operations(i.e., Maver(x

input), Mamp(x
input), and

Mphase(x
input)) extract the average, amplitude, and phase values from xinput, and we redefine

Equation 6 as follows:

xirregular =Maver(x
input)⊕Mamp(x

input)⊗Mphase(x
input) (10)

To consider the xirregular value, we apply the residual stacking principle which enables complex
interpretation by combining features in a hierarchical form for each step (Oreshkin et al., 2019).
Therefore, we design the IRB architecture as follows:

xIRBoutput =
RCout

(RCirr
(xirregular)⊕RC0

(xinput)⊕Mamp(x
input)⊗Mphase(x

input))
(11)

The output of IRB xIRBoutput is the representation of the irregularity which considers the aver-
age, amplitude, phase, and input components. Furthermore, these components are trainable values
because they consist of the convolution layers.

3.3 IRREGULARITY REFLECTION NEURAL NETWORK

IRN consists of IRB and a irregularity reflection module as in Figure 2. For the forecasting of this
study, a recent model that reflects trend and seasonality, known as SCInet (Liu et al., 2021a) is used
as the base model. The xIRBoutput is passed to the base model through the irregularity reflection
module.

xIRoutput = Ssig(x
IRBoutput)⊗ xinput ⊕ xinput (12)

where xIRoutput is the output of IRN and Ssig is the sigmoid activation. The pointwise multiplica-
tion is applied to emphasize the irregularity of the xinput by using the xIRBoutput with Ssig . If we
use the xIRBoutput as the input value of the time series model, some information (e.g., trend, sea-
sonality) can be omitted. To alleviate this problem, we preserve the original information by residual
connection, which also prevents the gradient vanishing (He et al., 2016).
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Table 1: Summary of datasets and evaluation metrics used for time series forecasting.
Type Dataset Variates Timesteps Granularity Start time Metrics Train/Val/Test

ETT (Zhou et al., 2021)
ETTh1

7 17420 1 hour 7/1/2016 MSE
MAE 12/4/4ETTh2

ETTm1 69680 15 min

PEMS (Chen et al., 2001)

PEMS03 358 26209

5 min

5/1/2012 MAE
MAPE
RMSE

6/2/2PEMS04 307 16992 7/1/2017
PEMS07 883 28224 5/1/2017
PEMS08 170 17856 3/1/2012

Solar, 137 52560 10 min 2016
RSE

CORR 6/2/2Traffic, 862 17544 1 hour 2015
Electricity, 321 26304 2012
Exchange-rate (Lai et al., 2018) 8 7588 1 day 1990

Table 2: Multivariate forecasting performance of IRN and baseline models on the ETT datasets.
Best results are highlighted in bold.
Model Metrics ETTh1 ETTh2 ETTm1

24 48 168 336 720 24 48 168 336 720 24 48 96 288 672

LogTrans MSE 0.686 0.766 1.002 1.362 1.397 0.828 1.806 4.07 3.875 3.913 0.419 0.507 0.768 1.462 1.669
MAE 0.604 0.757 0.846 0.952 1.291 0.75 1.034 1.681 1.763 1.552 0.412 0.583 0.792 1.32 1.461

Reformer MSE 0.991 1.313 1.824 2.117 2.415 1.531 1.871 4.66 4.028 5.381 0.724 1.098 1.433 1.82 2.187
MAE 0.754 0.906 1.138 1.28 1.52 1.613 1.735 1.846 1.688 2.015 0.607 0.777 0.945 1.094 1.232

TCC MSE 0.766 0.825 0.982 1.099 1.267 1.154 1.579 3.456 3.184 3.538 0.502 0.645 0.675 0.758 0.854
MAE 0.629 0.657 0.731 0.786 0.859 0.838 0.983 1.459 1.42 1.523 0.478 0.559 0.583 0.633 0.689

TST MSE 0.735 0.8 0.973 1.029 1.02 0.994 1.159 2.609 2.824 2.684 0.471 0.614 0.645 0.749 0.857
MAE 0.633 0.671 0.768 0.797 0.798 0.779 0.85 1.265 1.337 1.334 0.491 0.56 0.581 0.644 0.709

CPC MSE 0.728 0.774 0.92 1.05 1.16 0.551 0.752 2.452 2.664 2.863 0.478 0.641 0.707 0.781 0.88
MAE 0.6 0.629 0.714 0.779 0.835 0.572 0.684 1.213 1.304 1.399 0.459 0.55 0.593 0.644 0.7

Triplet MSE 0.942 0.975 1.135 1.187 1.283 1.285 1.455 2.175 2.007 2.157 0.689 0.752 0.744 0.808 0.917
MAE 0.729 0.746 0.825 0.859 0.916 0.911 0.966 1.155 1.101 1.139 0.592 0.624 0.623 0.662 0.72

MoCo MSE 0.623 0.669 0.82 0.981 1.138 0.444 0.613 1.791 2.241 2.425 0.458 0.594 0.621 0.7 0.821
MAE 0.555 0.586 0.674 0.755 0.831 0.495 0.595 1.034 1.186 1.292 0.444 0.528 0.553 0.606 0.674

TNC MSE 0.708 0.749 0.884 1.02 1.157 0.612 0.84 2.359 2.782 2.753 0.522 0.695 0.731 0.818 0.932
MAE 0.592 0.619 0.699 0.768 0.83 0.592 0.716 1.213 1.349 1.394 0.472 0.567 0.595 0.649 0.712

Informer MSE 0.577 0.685 0.931 1.128 1.215 0.72 1.457 3.489 2.723 3.467 0.323 0.494 0.678 1.056 1.192
MAE 0.549 0.625 0.752 0.873 0.896 0.665 1.001 1.515 1.34 1.473 0.369 0.503 0.614 0.786 0.926

TS2Vec MSE 0.59 0.624 0.762 0.931 1.063 0.423 0.619 1.845 2.194 2.636 0.453 0.592 0.635 0.693 0.782
MAE 0.531 0.555 0.639 0.728 0.799 0.489 0.605 1.074 1.197 1.37 0.444 0.521 0.554 0.597 0.653

SCInet MSE 0.341 0.368 0.451 0.502 0.583 0.188 0.279 0.505 0.618 1.074 0.126 0.169 0.191 0.365 0.713
MAE 0.379 0.395 0.457 0.497 0.56 0.288 0.358 0.504 0.56 0.761 0.229 0.274 0.291 0.415 0.604

Pyraformer MSE - - 0.808 0.945 1.022 - - - - - - - 0.48 0.754 0.857
MAE - - 0.683 0.766 0.806 - - - - - - - 0.486 0.659 0.707

Cost MSE 0.386 0.437 0.643 0.812 0.97 0.447 0.699 1.549 1.749 1.971 0.246 0.331 0.378 0.472 0.62
MAE 0.379 0.464 0.582 0.679 0.771 0.502 0.637 0.982 1.042 1.092 0.329 0.386 0.419 0.486 0.574

Autoformer MSE 0.384 0.392 0.49 0.505 0.498 0.261 0.312 0.457 0.471 0.474 0.383 0.454 0.481 0.634 0.606
MAE 0.425 0.419 0.481 0.484 0.5 0.341 0.373 0.455 0.475 0.484 0.403 0.453 0.463 0.528 0.542

IRN MSE 0.314 0.343 0.429 0.467 0.49 0.182 0.241 0.437 0.51 1.07 0.124 0.143 0.184 0.342 0.559
MAE 0.361 0.368 0.432 0.474 0.501 0.27 0.314 0.453 0.498 0.745 0.223 0.249 0.28 0.398 0.522

4 EXPERIMENTS

We conduct experiments on 11 real-world time series datasets and compare the performance with
the latest baselines. We analyze the circumstances in which proposed IRB improves the forecasting
performance. We refer base model (Liu et al., 2021a) for the experiment settings. Due to page
limits, the implementation details including the loss function, datasets, and metrics are reported in
the Appendix.

4.1 DATASET

Experiments are conducted on following time series datasets: Electricity Transformer Temperature
(Zhou et al., 2021), PEMS (Chen et al., 2001), Solar, Traffic, Electricity, Exchange-rate (Lai et al.,
2018). The datasets, experiment settings, and metrics are summarized in Table 1.
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Table 3: Univariate forecasting performance of IRN and baseline models on the ETT datasets. Best
results are highlighted in bold.
Model Metrics ETTh1 ETTh2 ETTm1

24 48 168 336 720 24 48 168 336 720 24 48 96 288 672

N-BEAT MSE 0.042 0.065 0.106 0.127 0.269 0.078 0.123 0.244 0.27 0.281 0.031 0.056 0.095 0.157 0.207
MAE 0.156 0.2 0.255 0.284 0.422 0.21 0.271 0.393 0.418 0.432 0.117 0.168 0.234 0.311 0.37

Informer MSE 0.098 0.158 0.183 0.222 0.269 0.093 0.155 0.232 0.263 0.277 0.03 0.069 0.194 0.401 0.512
MAE 0.247 0.319 0.346 0.387 0.435 0.24 0.314 0.389 0.417 0.431 0.137 0.203 0.372 0.554 0.644

TCC MSE 0.053 0.074 0.133 0.161 0.176 0.111 0.148 0.225 0.232 0.242 0.026 0.045 0.072 0.158 0.239
MAE 0.175 0.209 0.284 0.32 0.343 0.255 0.298 0.374 0.385 0.397 0.122 0.165 0.211 0.318 0.398

TST MSE 0.127 0.202 0.491 0.526 0.717 0.134 0.171 0.261 0.269 0.278 0.048 0.064 0.102 0.172 0.224
MAE 0.284 0.362 0.596 0.618 0.76 0.281 0.321 0.404 0.413 0.42 0.151 0.183 0.231 0.316 0.366

CPC MSE 0.076 0.104 0.162 0.183 0.212 0.109 0.152 0.251 0.238 0.234 0.018 0.035 0.059 0.118 0.177
MAE 0.217 0.259 0.326 0.351 0.387 0.251 0.301 0.392 0.388 0.389 0.035 0.142 0.188 0.271 0.332

Triplet MSE 0.13 0.145 0.173 0.167 0.195 0.16 0.181 0.214 0.232 0.251 0.071 0.084 0.097 0.13 0.16
MAE 0.289 0.306 0.336 0.333 0.368 0.316 0.339 0.372 0.389 0.406 0.18 0.206 0.23 0.276 0.315

MoCo MSE 0.04 0.063 0.122 0.144 0.183 0.095 0.13 0.204 0.206 0.206 0.015 0.027 0.041 0.083 0.122
MAE 0.151 0.191 0.268 0.297 0.347 0.234 0.279 0.36 0.364 0.369 0.091 0.122 0.153 0.219 0.268

TNC MSE 0.057 0.094 0.171 0.192 0.235 0.097 0.131 0.197 0.207 0.207 0.19 0.036 0.054 0.098 0.136
MAE 0.184 0.239 0.329 0.357 0.408 0.238 0.281 0.354 0.366 0.37 0.103 0.142 0.178 0.244 0.29

TS2Vec MSE 0.039 0.062 0.142 0.16 0.179 0.091 0.124 0.198 0.205 0.208 0.016 0.028 0.045 0.095 0.142
MAE 0.151 0.189 0.291 0.316 0.345 0.23 0.274 0.355 0.364 0.371 0.093 0.126 0.162 0.235 0.29

SCInet MSE 0.031 0.051 0.081 0.094 0.176 0.07 0.102 0.157 0.177 0.253 0.019 0.045 0.072 0.117 0.18
MAE 0.132 0.173 0.222 0.242 0.343 0.194 0.242 0.311 0.34 0.403 0.088 0.143 0.198 0.266 0.328

CoST MSE 0.04 0.06 0.097 0.112 0.148 0.079 0.118 0.189 0.206 0.214 0.015 0.025 0.038 0.077 0.113
MAE 0.152 0.186 0.236 0.258 0.306 0.207 0.259 0.339 0.36 0.371 0.088 0.117 0.147 0.209 0.257

IRN MSE 0.03 0.045 0.078 0.091 0.168 0.067 0.093 0.154 0.172 0.235 0.018 0.043 0.07 0.116 0.151
MAE 0.131 0.163 0.218 0.241 0.329 0.189 0.232 0.31 0.337 0.392 0.087 0.141 0.196 0.264 0.301

Table 4: Forecasting performance of IRN and baseline models on PEMS datasets. Best results are
highlighted in bold.
Model PEMS03 PEMS04 PEMS07 PEMS08

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

LSTM 21.33 35.11 21.33 25.14 39.59 20.33 29.98 42.84 15.33 22.2 32.06 15.32
TCN 18.87 32.24 18.63 22.81 36.87 14.31 30.53 41.02 13.88 21.42 34.03 13.09
DCRNN 18.18 30.31 18.91 24.7 38.12 17.12 28.3 38.58 11.66 17.86 27.83 11.45
STGCN 17.49 30.12 17.15 22.7 35.55 14.59 25.38 38.78 11.08 18.02 27.83 11.4
ASTGCN(r) 17.69 29.66 19.4 22.93 35.22 16.56 28.05 42.57 13.92 18.61 28.16 13.08
STSGCN 17.48 29.21 16.78 21.19 33.65 13.9 24.26 39.03 10.21 19.13 31.05 12.68
STFGNN 16.77 26.28 16.3 20.48 32.51 16.77 23.46 36.6 9.21 17.13 26.8 10.96
AGCRN 15.98 28.25 15.23 19.83 32.3 12.97 22.37 36.55 9.12 16.94 26.25 10.6
SCInet 15 24.31 14.29 18.95 30.89 11.86 21.19 34.03 8.83 15.72 24.76 9.8
DSTAGNN 15.57 27.21 14.68 19.3 31.46 12.7 21.42 34.51 9.01 15.9 25.24 9.97

IRN 14.98 23.99 14.18 19.03 30.88 11.71 21.11 33.99 8.84 15.71 24.64 9.8

4.2 BASELINES

For each dataset, we compare IRN with the latest baselines: (1) For ETT, Transformer-based meth-
ods (i.e., LogTrans (Li et al., 2019), Informer (Zhou et al., 2021) Autoformer (Wu et al., 2021),
Reformer (Kitaev et al., 2020), TST (Zerveas et al., 2021), and Pyraformer (Liu et al., 2021b)) and
feature representation learning based methods (i.e., TCC (Eldele et al., 2021), N-BEATS (Oreshkin
et al., 2019), CPC (Oord et al., 2018), Triplet (Franceschi et al., 2019), MoCo (He et al., 2020), TNC
(Tonekaboni et al., 2021), TS2Vec (Yue et al., 2022), SCInet(Liu et al., 2021a) and CoST (Woo et al.,
2022) ); (2) For PEMS, LSTM (Hochreiter & Schmidhuber, 1997), CNN-based methods (i.e., TCN
and DCRNN (Li et al., 2017)), SCInet, Graph-based methods (i.e., STGCN (Yu et al., 2017), AST-
GCNr (Guo et al., 2019), STSGCN (Song et al., 2020), STFGNN (Li & Zhu, 2021), AGCRN (Bai
et al., 2020), and DSTAGNN (Lan et al., 2022)); (3) For Solar Energy, Traffic, Electricity, and Ex-
change Rate, AR, VAR-MLP (Zhang, 2003), GP (Frigola, 2015), GRU, LSTNet (Lai et al., 2018),
TPA-LSTM (Shih et al., 2019), SCInet, and MTGNN (Wu et al., 2020).

4.3 EXPERIMENTAL RESULTS

We summarize the performances of IRN and baseline models in Table 2 to 5. IRN demonstrates
state-of-the-art performances in 36 cases and near-best in 14 cases. Autoformer performs better for
long-term forecasting in ETTh2 datasets as it shows strengths in reflecting trends and seasonality,
which are more apparent in longer sequences (Wu et al., 2021). In a similar vein, features are more
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Table 5: Forecasting performance comparison of IRN and baseline models on the Solar-Energy,
Traffic, Electricity, and Exchange-rate datasets. Best results are highlighted in bold.
Methods Metrics Solar-Energy Traffic Electricity Exchange-rate

3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

AR RSE 0.2435 0.379 0.5911 0.8699 0.5991 0.6218 0.6252 0.63 0.0995 0.1035 0.105 0.1054 0.0228 0.0279 0.0353 0.0445
CORR 0.971 0.9263 0.8107 0.5314 0.7752 0.7568 0.7544 0.7591 0.8845 0.8632 0.8691 0.8595 0.9734 0.9656 0.9526 0.9357

VARMLP RSE 0.1922 0.2679 0.4244 0.6841 0.5582 0.6579 0.6023 0.6146 0.1393 0.162 0.1557 0.1274 0.0265 0.0394 0.0407 0.0578
CORR 0.9829 0.9655 0.9058 0.7149 0.8245 0.7695 0.7929 0.7891 0.8708 0.8389 0.8192 0.8679 0.8609 0.8725 0.828 0.7675

GP RSE 0.2259 0.3286 0.52 0.7973 0.6082 0.6772 0.6406 5995 0.15 0.1907 0.1621 0.1273 0.0239 0.0272 0.0394 0.058
CORR 0.9751 0.9448 0.8518 0.5971 0.7831 0.7406 0.7671 0.7909 0.867 0.8334 0.8394 0.8818 0.8713 0.8193 0.8484 0.8278

RNN GRU RSE 0.1932 0.2628 0.4163 0.4852 0.5358 0.5522 0.5562 5633 0.1102 0.1144 0.1183 0.1295 0.0192 0.0264 0.0408 0.0626
CORR 0.9823 0.9675 0.915 0.8823 0.8511 0.8405 0.8345 0.83 0.8597 0.8623 0.8472 0.8651 0.9786 0.9712 0.9531 0.9223

LSTNet RSE 0.1843 0.2559 0.3254 0.4643 0.4777 0.4893 0.495 0.4973 0.0864 0.0931 0.1007 0.1007 0.0226 0.028 0.0356 0.0449
CORR 0.9843 0.969 0.9467 0.887 0.8721 0.869 0.8614 0.8588 0.9283 0.9135 0.9077 0.9119 0.9735 0.9658 0.9511 0.9354

SCInet RSE 0.1775 0.2301 0.2997 0.4081 0.4216 0.4414 0.4495 0.4453 0.0748 0.0845 0.0926 0.0976 0.018 0.0247 0.034 0.0442
CORR 0.9853 0.9739 0.955 0.9112 0.892 0.8809 0.8772 0.8825 0.9492 0.9386 0.9304 0.9274 0.9739 0.9662 0.9487 0.9255

TPA-LSTM RSE 0.1803 0.2347 0.3234 0.4389 0.4487 0.4658 0.4641 0.4765 0.0823 0.0916 0.0964 0.1006 0.174 0.241 0.0341 0.0444
CORR 0.985 0.9742 0.9487 0.9081 0.8812 0.8717 0.8794 0.8629 0.9439 0.9337 0.925 0.9133 0.979 0.9709 0.9564 0.9381

MTGNN RSE 0.1778 0.2348 0.3109 0.427 0.4162 0.4754 0.4461 0.4535 0.0745 0.0878 0.0916 0.0953 0.0194 0.0259 0.0349 0.0456
CORR 0.9852 0.9726 0.9509 0.9031 0.8963 0.8667 0.8794 0.881 0.9474 0.9316 0.9278 0.9234 0.9786 0.9708 0.9551 0.9372

IRN RSE 0.1770 0.2292 0.2971 0.4050 0.4171 0.4349 0.4493 0.4449 0.0739 0.0844 0.0926 0.0968 0.0179 0.0246 0.0337 0.0441
CORR 0.9853 0.9853 0.9556 0.9112 0.8920 0.8861 0.8774 0.8788 0.9493 0.939 0.9313 0.9281 0.9765 0.9678 0.9522 0.9288

Figure 5: Forecasting results of IRN and the base model from (a) sequence 499 to 547, (b) sequence
500 to 548, (c) sequence 501 to 549, (d) sequence 510 to 558 in Ettm1 data. The ground truths are
shown in a solid line. The dotted and dashed lines represent the predicted values of the base model
and IRN, respectively. The predicting region is shaded in grey. The bar graph shows the absolute
MAE difference between the base model and IRN.

evident in univariate time series, which explains the higher performances of MoCo (He et al., 2020)
and CoST (Woo et al., 2022), which are feature representation learning models, on 6 cases of ETT
univariate datasets. MTGNN (Wu et al., 2020), a model specialized for analyzing edge relations,
yields the best performance on Traffic and Electricity datasets. This is because both datasets contain
complex edge between nodes. At last, compared to the attention-based model, IRN shows lesser
performances on Exchange-rate dataset due to the strong random-walk property of the time series
(Wright, 2008). Overall, our IRN successfully reflects irregularity representation and complements
base model to achieve the higher forecasting performances.

4.4 ABLATION STUDY

We perform the ablation study to demonstrate the benefit obtained by IRB. We plot the ground
truths and corresponding predictions of IRN and the base model at 499th, 500th, 501th, and 510th
sequences of ETTh1 data as shown Figure 5. In Figure 5 (a), the original time series has a peak in
the predicting region shaded in grey. Up to sequence 499, IRN and the base model make similar
predictions having large errors. When a sequence is added as in the Figure 5 (b), the discrepancy
between the ground truth and the predicted values of IRN decreases. With an additional sequence in
the Figure 5 (c), IRN quickly reflects the change and makes a better forecast than the base model. It
is observed that the base model is less sensitive to the change of the input sequences, giving similar
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Figure 6: Forecasting results of (a) sequence 71 to 95 and (b) sequence 217 to 241 in traffic data
using IRN and base model.

predictions from sequence 499 to sequence 501. Only when 11 sequences have passed, the base
model considers the actual changes as in Figure 5 (d). We verify that IRN can reflect the irregular
features (instantaneous changes).

Next, we observe the 24 horizon forecasts in Traffic dataset for further analysis. In Figure 6 (a),
cycles 2 to 7 consist of values lower than 0.2, whereas cycle 1 includes irregular values greater than
0.3. IRN has larger errors than the base model as IRN instantaneously reflects the irregularity. In
contrast, IRN performs better than the base model when the irregularity persists as shown in Figure
6 (b). The reflection of the irregularity does not always end in a better forecast, but IRB consistently
improves the forecasting performance of the base model, which confirms the effectiveness of the our
model.

4.5 OBSERVATION ON THE VARIATION OF THE IRREGULARITY

Table 6: The difference of average MSE between IRN
and base model according to the variation of irregular-
ity on ETTm1 and Traffic datasets. Case 1 and Case 2
refer to 500 data points with low variation in irregular-
ity and with high variation in irregularity, respectively.

Dataset Horizon MSE difference between IRN and base model

Case 1 Case 2

Ettm1 48 -0.00097 0.001506
Traffic 24 0.00709 0.00941

We further investigate how the perfor-
mance of IRN changes with the irregular-
ity of the time series. Ettm1 and Traffic
datasets are decomposed into seasonality,
trend, and irregularity as depicted in Fig-
ure 1. The variation of the irregularity is
calculated and classified into two cases ac-
cording to the degree of variation. Case
1 and Case 2 represent 500 data points
with low variation of irregularity and high
variation of irregularity, respectively. The
difference of average Mean Square Error
(MSE) between IRN and base model are obtained for each case and listed in Table 6. This results
indicate that higher performance improvement is attained in case 2 than case 1 for both datasets,
implying the higher the irregularity variation, the higher performance improvement can be achieved.

5 CONCLUSION

In this paper, we propose Irregularity Reflection Neural Network (IRN), a deep learning based model
for time series forecasting that reflects the irregularity in time series. We introduce a novel expres-
sion of irregularity based on Fourier series under microscopic perspective condition and employ it
to design the Irregularity Representation Block (IRB) that captures, preserves, and learns the irreg-
ularity representation of time series data. By embedding the IRB on the base model, IRN is further
proposed. Experiments on a variety of real-world datasets show that IRN can consistently outper-
form existing state-of-the-art baselines. The ablation study confirm that the proposed methodology
can reflect the irregularity. Accordingly, we argue that the irregularity representation is essential for
improving performance of machine learning models.
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A LOSS FUNCTION

We cover stacked cases in which losses are accumulated. When the dataset has enough training
data, we apply K layers (Liu et al., 2021a). To train the K stacked IRN for the k-th intermediate
prediction, we compute the L1 loss between the k-th prediction and the true value as follows:

Lk =
1

h

h∑
i=0

|ŷki − yi|

where h is the horizon size, k is the number of stacks, ŷk is i-th horizon prediction of k-th stack, and
y is the true value. We apply Equation 1 to calculate the L1 loss of each stacked layer output. The
total loss of the stacked IRN is expressed as:

L =

K∑
k=0

Lk
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B IMPLEMENTATION DETAILS

Our model and framework are implemented with Pytorch. We train IRN with Adam optimizer by
using NVIDIA 2080Ti 8 GPUs for enough batch size. Other parameters such as learning rate, level,
stack, single, and multi are changed according to the dataset charateristics and referring base model
(Liu et al., 2021a).

C DATASETS AND METRICS

C.1 ELECTRICITY TRANSFORMER TEMPERATURE

ETT contains two-year electric power data gathered from two counties in China (hourly subsets
ETTh1, ETTh2 and 15 minutes subsets ETTm1). Each data point contains an oil temperature value
and six power load components. The train, validation and test sets consist of 12, 4, and 4 months
data, respectively. We implement zero-mean normalization for data pre-processing. Mean Absolute
Errors (MAE) (Hyndman & Koehler, 2006) and Mean Squared Errors (MSE) (Makridakis et al.,
1982) are used as evaluation metrics.

MAE =
1

h

h∑
i=0

|x̂i − xi|

MSE =
1

h

h∑
i=0

(x̂i − xi)
2

where xi is the true value, x̂i is the predicted value, and h is the prediction horizon size.

C.2 PEMS

PeMS consists of four public datasets (i.e., PEMS03, PEMS04, PEMS07 and PEMS08), which are
separately collected from Caltrans Performance Measurement System (PeMS) of four sections in
California. The data is collected every five minutes. We predict one hour that consists of 12 data
points. The zero-mean normalization is applied for the data pre-processing. The evaluation metrics
are MAE, Root Mean Squared Errors (RMSE) and Mean Absolute Percentage Errors (MAPE).

RMSE =

√√√√ 1

h

h∑
i=0

(x̂i − xi)2

MAPE =
1

h

h∑
i=0

| (x̂i − xi)

xi
|

C.3 TRAFFIC, SOLAR ENERGY, ELECTRICITY AND EXCHANGE RATE

Traffic includes the hourly road occupancy rates which ranges from 0 to 1. The sensors gather the
road occupancy rates from 2015 to 2016. Solar Energy contains 2016 solar power production which
are recorded every 10 minutes from 137 PV plants in Alabama State. Electricity collects the hourly
electricity consumption (kWh) of 321 clients from 2012 to 2014. Exchange-Rate consists of the
daily exchange rates of 8 foreign countries from 1990 to 2016. For four datasets, the size of the
lookback window is 168, and horizon sizes are 3,6,12, and 24. The evaluation metrics are Root
Relative Squared Error (RSE) and Empirical Correlation Coefficient (CORR) (Lai et al., 2018).

RSE =

√∑h
i=0(x̂i − xi)2√∑h

i=0(xi −mean(x))2
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CORR =
1

d

d∑
j=0

∑h
i=0(xi,j −mean(xj))(x̂i,j −mean(x̂j)∑h

i=0(xi,j −mean(xj))2(x̂i,j −mean(x̂j))2

where d is the number of variates.
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