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Abstract
The rapid rise of Generative AI (GenAI) tools has
sparked debate over their role in complementing
or replacing human workers across job contexts.
We present a mathematical framework that mod-
els jobs, workers, and worker-job fit, introducing
a novel decomposition of skills into decision-level
and action-level subskills to reflect the comple-
mentary strengths of humans and GenAI. We an-
alyze how changes in subskill abilities affect job
success, identifying conditions for sharp transi-
tions in success probability. We also establish suf-
ficient conditions under which combining work-
ers with complementary subskills significantly
outperforms relying on a single worker. This ex-
plains phenomena such as productivity compres-
sion, where GenAI assistance yields larger gains
for lower-skilled workers. We demonstrate the
framework’s practicality using data from O*NET
and Big-bench Lite, aligning real-world data with
our model via subskill-division methods. Our
results highlight when and how GenAI comple-
ments human skills, rather than replacing them.

1. Introduction
The rapid emergence of capabilities in Generative Artificial
Intelligence (GenAI) has drawn global attention. Multi-
modal models like OpenAI’s GPT-4 and DeepMind’s Gem-
ini seamlessly interpret and generate text and images, trans-
forming tasks such as content creation, summarization, and
contextual understanding (OpenAI, 2023; DeepMind, 2023).
Similarly, models like OpenAI’s Codex and GitHub Copilot
show strong performance in code generation and debugging
(OpenAI, 2024; Jaffe et al., 2024). Notably, GPT-4 scores
on standardized tests, including SAT, GRE, and AP, are
comparable to those of human test-takers (OpenAI, 2023).
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These advances have intensified focus on their implica-
tions for work and workers. Institutions such as the
BBC (Annabelle Liang, 2024; Chris Vallance, 2023),
the IMF (Cazzaniga et al.), and the World Economic
Forum (Shine & Whiting, 2023), along with many re-
searchers (Brynjolfsson et al., 2023; Felten et al., 2023;
Noy & Zhang, 2023; Agarwal et al., 2023; Angelova et al.,
2023; Cabrera et al., 2023; Vaccaro et al., 2024; Jaffe et al.,
2024; Otis et al., 2024), have explored the evolving labor
landscape. A growing view holds that GenAI may recom-
pose, rather than eliminate, work. Autor (2024) argues that
GenAI has the potential to enable middle-skill workers to
take on tasks traditionally reserved for high-skill experts.
Still, some see GenAI as a disruptive force: the IMF esti-
mates that nearly 40% of jobs could be affected, raising con-
cerns about large-scale displacement (Cazzaniga et al.; Chris
Vallance, 2023; Microsoft, 2023; Paradis, 2024; Kochhar,
2023). Others emphasize complementarity: GenAI tools can
enhance human capabilities rather than replace them (Ace-
moglu & Johnson, 2023). Empirical studies show that such
tools improve the performance of less experienced workers,
narrowing the productivity gap with more skilled profes-
sionals (Brynjolfsson et al., 2023; Noy & Zhang, 2023).
This raises a central question: Do GenAI tools substitute for
human workers—or enable them to succeed in new ways?

Recent studies have empirically examined GenAI’s impact
on various aspects of work, including accuracy, productivity,
and implementation cost (Agarwal et al., 2023; Brynjolf-
sson et al., 2023; Vaccaro et al., 2024; Jaffe et al., 2024;
Klubnikin et al., 2024; Brodsky, 2024; Anthropic, 2023;
Guo et al., 2025). Vaccaro et al. (2024), for example, ana-
lyzed 106 experiments comparing human-AI collaboration
to human- or AI-only performance on job tasks. They found
that while collaboration improves outcomes in content cre-
ation, it lags in decision-making, underscoring the nuanced
ways GenAI complements human skills. Brynjolfsson et al.
(2023) and Jaffe et al. (2024) studied GenAI integration
in real-world workflows, showing measurable productivity
gains. In one case, AI-assisted customer service agents re-
solved 14% more issues per hour, suggesting that GenAI
can amplify human efficiency. Other work has highlighted
implementation barriers: studies such as Klubnikin et al.
(2024); Brodsky (2024) identify hidden costs and opera-
tional challenges that hinder widespread GenAI adoption.
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This paper focuses on understanding the impact of GenAI
on job accuracy. Addressing this requires modeling jobs,
worker abilities (whether human or AI), and how these abil-
ities relate to job performance. A key resource we draw on
is the Occupational Information Network (O*NET) (U.S.
Department of Labor, Employment and Training Admin-
istration, 2023), a comprehensive database maintained by
the U.S. Department of Labor that provides standardized
descriptions of thousands of jobs. For example, O*NET
characterizes Computer Programmers by skills (e.g., Pro-
gramming, Written Comprehension, Oral Expression), tasks
(e.g., Correcting errors, Developing websites), and knowl-
edge areas. Each skill is rated by importance and required
proficiency—for instance, Writing might be rated 56/100
for importance and 46/100 for proficiency. While O*NET
offers rich and structured data, it does not specify how tasks
depend on skills, nor how to evaluate performance at the
level of a skill, task, or job (see Section E for more detail).
Recent work has begun to address these limitations using
compositional and task-skill dependency models (Arora &
Goyal, 2023; Okawa et al., 2023; Yu et al., 2024).

Metrics for evaluating human workers include Key Perfor-
mance Indicators (KPIs) (KPI.org, 2024), customer feed-
back, peer reviews, and productivity measures. For example,
KPIs might assess a programmer’s ability to fix a certain
number of bugs within a set timeframe, while customer feed-
back evaluates the perceived quality of service. However,
such metrics often conflate outcomes with underlying com-
petencies, making it difficult to isolate a worker’s ability
on specific skills. In contrast, GenAI tools are typically
evaluated using skill-specific benchmarks in areas such as
coding, writing, and mathematical reasoning (Borji, 2022;
Bubeck et al., 2023; bench authors, 2023; OpenAI, 2023;
Abdin et al., 2024; Yu et al., 2024; Reid & Vempala, 2024;
He et al., 2024). For instance, bench authors (2023) intro-
duced the BIG-bench Lite (BBL) dataset, which evaluates
24 skills, including code generation, by comparing the per-
formance of GenAI models and human workers (see Sec-
tion E.2). One representative task, Automatic Debugging,
tests whether a model can infer the state of a program given
partial code—e.g., determining the value of a variable at a
specific line without executing the program.

While GenAI tools perform well on structured or repetitive
tasks, they often struggle with skills that require contextual
understanding, planning, or emotional intelligence (Bender
et al., 2021; Arora & Goyal, 2023; Services, 2024; Ma-
howald et al., 2024). These limitations are compounded by
noisy and narrowly scoped evaluations, making it difficult to
draw reliable conclusions about performance (Miller, 2024;
bench authors, 2023). Consider a company that sets a KPI
target of fixing 20 bugs per week. If a programmer fixes
18, their score would be 18/20 = 90%. But such metrics
conflate distinct abilities: reasoning skills (e.g., diagnosing

the root cause) and action skills (e.g., implementing the fix).
This conflation obscures the underlying sources of success
or failure, leading to biased or incomplete evaluations. In
addition, evaluations are rarely standardized across settings,
and lab-based assessments often fail to capture the broader
skillsets required in real-world jobs (Microsoft, 2023; Vac-
caro et al., 2024). In summary, significant challenges re-
main in evaluating human workers and GenAI tools: (i) The
conflation of reasoning and action, leading to inaccurate per-
formance attributions. (ii) The statistical noise inherent in
limited-scope evaluations. (iii) The lack of standardization,
creating inconsistencies across assessments.

Our contributions. We introduce a mathematical frame-
work to assess job accuracy by modeling jobs, workers, and
success metrics. A key feature is the division of skills into
two types of subskills: decision-level (problem solving) and
action-level (solution execution) (Section 2). Skill difficulty
is modeled on a continuum [0, 1], where 0 represents the
easiest and 1 the hardest. Workers, whether human or AI,
are characterized by ability profiles (α1, α2), representing
decision- and action-level abilities. These profiles quantify
a worker’s capability for each skill s ∈ [0, 1], incorporating
variability through probability distributions. Jobs are mod-
eled as collections of tasks, each requiring multiple skills.
We define a job-success probability metric, combining error
rates across skills and tasks to evaluate overall performance
(Equation (1)). This framework addresses challenges in
evaluation by isolating abilities, accounting for noise, and
providing a metric for accuracy. Our main results include:

• Phase transitions: small changes in average ability can
cause sharp jumps in job success (Theorem 3.2).

• Merging benefit: combining workers with complemen-
tary subskills yields superadditive gains (Theorem 3.3).

• Compression effect: our model explains the productiv-
ity compression observed by Brynjolfsson et al. (2023),
where GenAI narrows the performance gap between
low- and high-skilled workers (Corollary 3.4).

• Empirical validation: we apply our framework to real-
world data from O*NET and BIG-bench Lite, aligning
task descriptions and GenAI evaluations with subskill-
based models (Section 4).

• Interventions and extensions: we explore upskilling
strategies through ability/noise interventions (Sec-
tion D.1), and extend our analysis to dependent sub-
skills and worker combinations (Figures 3, 4.2).

• Bias and noise: we analyze how misestimated ability
profiles distort evaluations (Section D.2).

Our findings inform strategies for integrating GenAI into the
workplace, including combining human and AI strengths,
designing fairer evaluations, and supporting targeted up-
skilling. Additional related work is reviewed in Section A.
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2. Model
The job model. We model a job as a collection of m ≥ 1
tasks, where each task Ti requires a subset of n ≥ 1 skills.
This induces a bipartite task-skill dependency graph where
edges connect tasks to the skills they depend on (Figure 12),
aligning with prior work (Arora & Goyal, 2023; Okawa
et al., 2023; Yu et al., 2024).

Each skill j is decomposed into two subskills: a decision-
level component (e.g., problem-solving, diagnosis) and an
action-level component (e.g., execution, implementation),
following distinctions made in cognitive and labor mod-
els (Licklider, 1960; Kahneman, 2011; Inga et al., 2023).
For example, the skill “programming” involves both solving
a problem (decision-level) and implementing a solution in
code (action-level). This decomposition allows for more
precise modeling of ability, especially for evaluating hybrid
human-AI work. Adapting from O*NET, each skill j ∈ [n]
is associated with subskill difficulties sj1, sj2 ∈ [0, 1],
where 0 indicates the easiest and 1 the hardest. These scores
are used to index the worker’s ability distributions. This
representation mirrors the proficiency levels used in O*NET
and simplifies the mathematical formulation; see Section E.

The worker model. We model a worker by two ability
profiles, α1 and α2, which govern their decision-level and
action-level subskills, respectively. Each profile maps a sub-
skill difficulty s ∈ [0, 1] to a probability distribution over
[0, 1], from which a performance value is drawn, represent-
ing the worker’s effectiveness on that subskill. This reflects
the stochastic nature of skill performance (Sadeeq, 2023;
Bubeck et al., 2023). We consider ability profiles in which,
for each subskill difficulty s ∈ [0, 1], the worker has an
average ability E(s), and their actual performance is mod-
eled by adding a stochastic noise term ε(s). The resulting
ability value is used to define the worker’s distribution over
outcomes for that subskill.

We study two natural noise models: (i) Uniform noise: The
noise term ε(s) is sampled from a scaled uniform distribu-
tion: ε(s) ∼ min{E(s), 1 − E(s)} · Unif[−σ, σ], where
σ ∈ [0, 1] controls the noise level. The scaling ensures that
the perturbed value remains within the valid range [0, 1].
This model provides a simple yet effective way to introduce
bounded variability and is often used in our analysis. (ii)
Truncated normal noise: Here, we model ε(s) using a trun-
cated normal distribution: ε(s) ∼ TrunN(E(s), σ2; 0, 1),
where the mean is E(s), the variance is σ2, and the sup-
port is clipped to remain within [0, 1]. This model captures
fluctuations consistent with human performance variability
and is aligned with empirical measurements of GenAI tool
behavior (bench authors, 2023) (see Figure 9).

We assume that the average ability function E(s), which
maps subskill difficulty s ∈ [0, 1] to expected performance,

is monotonically decreasing in s. That is, workers are not ex-
pected to perform worse on easier subskills (s = 0 denotes
the easiest and s = 1 the hardest).

Linear ability profile. A natural used form is the linear
function: E(s) := c − (1 − a)s, for parameters a, c ∈
[0, 1] satisfying a+ c ≥ 1. Here, c represents the worker’s
maximum ability (attained at s = 0), and 1− a is the rate
at which ability decreases with difficulty. This profile aligns
with evaluations of GenAI tools (Hendrycks et al., 2021;
bench authors, 2023); see also Figure 11 and Section B.1
for Big-bench Lite analysis. As a special case, setting a = 1
yields a constant ability function E(s) ≡ c, where the
worker has uniform performance across all subskills.

Polynomial ability profile. To model nonlinear improve-
ments, we also consider the polynomial form: E(s) =
1 − sβ , where β ≥ 0 controls the sensitivity of ability to
difficulty. Larger values of β produce sharper gains in abil-
ity as s → 0, representing workers whose skills improve
rapidly as tasks become easier.

Note that nearby subskills (e.g., s = 0.7 and 0.8) yield sim-
ilar values of E(s), reflecting the smoothness of the ability
profile and inducing implicit correlations across adjacent
subskills. Section B.1 provides additional visualizations of
these profiles under uniform noise. Section B.2 shows that
these profiles satisfy stochastic dominance (Definition B.1):
for any fixed s ∈ [0, 1] and threshold x ∈ [0, 1], the proba-
bility PrX∼α(s)[X ≥ x] increases monotonically with the
average ability.

Measuring job-worker fit. To evaluate how well a worker
fits a job, we define a sequence of aggregation functions that
compute error rates at the subskill, skill, task, and job levels,
based on the worker’s ability profiles (α1, α2).

For each skill j ∈ [n], let sj1, sj2 ∈ [0, 1] denote the diffi-
culty levels of its decision-level and action-level subskills.
We define the random subskill error rate as: ζjℓ := 1−X ,
where X ∼ αℓ(sjℓ), for ℓ ∈ {1, 2}. That is, ζjℓ represents
the probability of failure (or error rate) for the ℓ-th subskill
of skill j, drawn from the worker’s ability distribution.

To compute the error rate for skill j, we apply a skill error
function h : [0, 1]2 → [0, 1], which aggregates the two sub-
skill error rates ζj1 and ζj2. This gives the overall error rate
for skill j, combining both decision-level and action-level
performance. We assume a common skill error function h
for all skills, typically chosen as the average h(a, b) = a+b

2
or the maximum h(a, b) = max{a, b} (KPI.org, 2024;
Walker, 2023), both of which are monotonic.

Similarly, to compute the error rate for a task Ti, we ap-
ply a task error function g : [0, 1]∗ → [0, 1], which maps
the error rates of the skills in Ti to a task-level error:
g ({h(ζj1, ζj2)}j∈Ti).
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Finally, we define a job error function f :
[0, 1]m → [0, 1], which aggregates the task error
rates into a single overall job error rate: Err(ζ) :=
f (g ({h(ζj1, ζj2)}j∈T1

) , . . . , g ({h(ζj1, ζj2)}j∈Tm)).

In our empirical analysis (Section 4), we instantiate g and
f as weighted averages, where the weights reflect the im-
portance of individual skills and tasks. More generally, we
assume that h, g, and f are monotonic: improving subskill
abilities cannot increase the resulting error rate.

Given a threshold τ ∈ [0, 1], we say a job succeeds if the job
error rate satisfies Err(ζ) ≤ τ . The job success probability
for a worker with profiles (α1, α2) is then defined as:

P (α1, α2, h, g, f, τ) := Prζjℓ [Err(ζ) ≤ τ ] . (1)

In the special case of noise-free abilities, the job success
probability becomes binary, taking values in {0, 1}.

3. Theoretical results
This section presents our theoretical results on how the
job success probability P (1) varies with worker ability pa-
rameters. We fix the job instance throughout: task-skill
structure {Ti}, subskill difficulties {sjℓ}, aggregation func-
tions h, g, f , and success threshold τ . Given this setup,
P (α1, α2, h, g, f, τ), abbreviated as P , depends only on
α1 and α2. We begin by analyzing a single worker with
decision- and action-level profiles parameterized by aver-
age ability µℓ ≥ 0 and noise level σℓ ≥ 0 for ℓ ∈ {1, 2}.
Fixing µ2, σ1, σ2, we show that P undergoes a sharp phase
transition as µ1 crosses a critical value (Theorem 3.2).

Next, we study the benefits of merging two workers with
complementary abilities. Given workers A and B with
profiles (α

(A)
1 , α

(A)
2 ) and (α

(B)
1 , α

(B)
2 ), we consider all

four possible combinations of decision-level and action-
level profiles: (α

(A)
1 , α

(A)
2 ), (α

(A)
1 , α

(B)
2 ), (α

(B)
1 , α

(A)
2 ),

(α
(B)
1 , α

(B)
2 ). Theorem 3.3 gives conditions under which

merging improves success probability. We conclude with
Corollary 3.4, which connects this analysis to the productiv-
ity compression observed in Brynjolfsson et al. (2023).

3.1. Notation and assumptions

We begin with a structural observation: since the error aggre-
gation functions h, g, f are all monotonic, their composition
Err is also monotonic in the subskill error rates ζjℓ. Hence,
to show that the job success probability P increases with µ1,
it suffices to show that higher µ1 leads to lower values of ζj1.
Recall that ζjℓ = 1−X , where X ∼ αℓ(sjℓ). Thus, lower
error rates correspond to higher sampled ability values. This
follows from stochastic dominance: for any s, x ∈ [0, 1],
PrX∼αℓ(s)[X ≥ x] increases with µℓ; see Proposition B.1.

Independent noise assumption. We assume independence
across the random noise realizations at the subskill level.
This assumption pertains only to execution noise: once the
ability profiles α1 and α2 are fixed, the realized perfor-
mances across subskills are modeled as independent draws.
The ability profiles themselves may still induce correla-
tions—e.g., via a smooth expected ability function E(s)
where adjacent subskills have similar mean performance.

Assumption 3.1 (Noise independence). For all j ∈ [n]
and ℓ ∈ {1, 2}, the subskill error rates ζjℓ are independent
drawn from αℓ(sjℓ).

This modeling choice is standard for both human and GenAI
workers. For example, GenAI tools often produce condition-
ally independent task outputs given a fixed model state. We
explore noise-dependent settings in Section 4 and extend
our theoretical analysis to such settings in Section C.5. In
particular, we find that strong correlations in noise reduce
the sensitivity of P to changes in ability parameters.

Notation on sensitivity to ability parameters. To
study how the job success probability P varies with abil-
ity, we begin by analyzing the expected job error rate:
Erravg(µ1, σ1, µ2, σ2) := Eζ [Err(ζ)], where the expecta-
tion is taken over the subskill error rates ζjℓ = 1 − X ,
with X ∼ αℓ(sjℓ). This quantity captures the average
error rate for a fixed job instance and ability parameters
(µ1, σ1), (µ2, σ2). To quantify the impact of decision-level
ability on average error, we consider

∣∣∣∂Erravg

∂µℓ

∣∣∣. This mea-
sures how sensitive the average job error is to changes in µℓ,
holding the other parameters fixed. Given fixed values of the
noise levels and the other ability parameter, the minimum
influence of µ1 on the expected job error is defined as:

MinDerµ1
(σ1, µ2, σ2) := infµ1≥0

∣∣∣∂Erravg

∂µ1
(µ1, σ1, µ2, σ2)

∣∣∣ .
A large value of MinDerµ1

indicates that small increases
in decision-level ability µ1 can significantly reduce the ex-
pected job error. MinDerµ2

(µ1, σ1, σ2) is defined similarly.

As an example, consider Err(ζ) = 1
2n

∑
j,ℓ ζjℓ be av-

erage over all subskills and αℓ(s) = 1 − (1 − aℓ)s +
εℓ(s) be linear profiles, where εℓ(s) ∼ min{(1 −
aℓ)s, 1 − (1 − aℓ)s} · Unif[−σℓ, σℓ]. We compute that∣∣∣∂Erravg

∂aℓ

∣∣∣ = 1
2n

∑
j∈[n] sjℓ. This implies that MinDerµ1 =

1
2n

∑
j∈[n] sj1 and MinDerµ2 = 1

2n

∑
j∈[n] sj2.

Lipschitz assumption. We assume the job error function
Err is L-Lipschitz with respect to ℓ1-norm:

|Err(ζ)−Err(ζ ′)| ≤ L · ∥ζ − ζ ′∥1 for all ζ, ζ ′ ∈ [0, 1]2n.

When Err is the average of subskill errors, L = 1
2n .
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3.2. Threshold effect in job success probability

We now quantify how the success probability P changes
with decision-level ability µ1, holding other parameters
fixed. We prove a sharp threshold behavior: once the ex-
pected job error crosses the success threshold τ , even small
changes in µ1 can cause the success probability to jump
from near zero to near one. This phenomenon—formalized
below—shows a phase transition in job success probability,
controlled by a critical ability level µc1.

Theorem 3.2 (Phase transition in job success probability).
Fix the job instance, action-level ability µ2, and noise levels
σ1, σ2. Let µc1 be the unique value such that the expected
job error equals the success threshold:

Erravg(µ
c
1, σ1, µ2, σ2) = τ.

Let θ ∈ (0, 0.5) be a confidence level, and define the tran-

sition width: γ1 :=
L
√
n(σ2

1+σ
2
2)·ln(1/θ)

MinDerµ1 (σ1,µ2,σ2)
, where L is the

Lipschitz constant of the job error function. Then the job
success probability satisfies:

P ≤ θ if µ1 ≤ µc1 − γ1 and P ≥ 1− θ if µ1 ≥ µc1 + γ1.

Theorem 3.2 shows that increasing µ1 by approximately 2γ1
transitions the success probability P from at most θ to at
least 1− θ. A smaller value of γ1 implies that even modest
gains in decision-level ability can have a significant impact
on job success. Conversely, a slight increase in the threshold
τ can sharply reduce P . As expected, γ1 increases with the
Lipschitz constant L and total noise variance n(σ2

1 + σ2
2),

and decreases with the sensitivity MinDerµ1
. The core tech-

nical step is to relate the probability P to the expectation
Erravg, using a concentration bound under the independence
assumption (Assumption 3.1), via McDiarmid’s inequal-
ity (Kontorovich, 2014).

Illustrative example: linear ability profiles. Consider
a random job with m tasks, each requiring k randomly
chosen skills from a pool of n. Let all aggregation func-
tions h, g, f be averages. In the balanced case, the job
error simplifies to: Err(ζ) = 1

2n

∑n
j=1(ζj1 + ζj2), with

L = 1
2n . Suppose the ability profile is linear with

noise: αℓ(s) = 1 − (1 − aℓ)s + ε(s), where ε(s) ∼
min{1− (1− aℓ)s, (1− aℓ)s} · Unif[−σ, σ], and assume
sjℓ ∼ Unif[0, 1]. Then the expected subskill difficulty is
0.5 and MinDerµ1

(σ1, µ2, σ2) =
1
2n

∑
j sj1 ≈ 0.25. Thus,

γ1 = O(σ
√
ln(1/θ)/n). This implies that elite workers

(small σ) or large jobs (large n) experience sharper transi-
tions in job success with ability.

Figure 1 shows this empirically. For σ = 0.1, increasing
a1 by just 4.3% (from 0.492 to 0.513) raises P from 0.2
to 0.8. As σ decreases, the transition sharpens, validating
our theoretical prediction. Figure 1(c) shows that for jobs

with P ≥ 0.5, either increasing a1 or reducing σ effectively
improves success.

Generalization. In Section C.1, we prove a generalized
form of Theorem 3.2 that accommodates arbitrary noise
models ε(s), leveraging the notion of a subgaussian con-
stant to quantify the dispersion of ε(s). In Section C.2, we
further extend the analysis to non-linear aggregation rules
(e.g., max) and alternative ability profiles (e.g., constant,
polynomial). The resulting transition width γ1 varies from
O(1/n) to O(1), depending on the functional form and the
underlying distributional assumptions.

3.3. Merging workers to improve job success

The phase transition result (Theorem 3.2) shows that small
increases in ability parameters can sharply increase the suc-
cess probability P . We now apply this insight to demon-
strate how merging two workers with complementary skills
can result in a significant performance gain, especially rele-
vant in settings combining humans and GenAI tools.

Suppose Worker 1 (W1) has stronger decision-level ability,
while Worker 2 (W2) excels in action-level execution. Let
the decision-level profiles be denoted α(ℓ)

1 ∼ (µ
(ℓ)
1 , σ

(ℓ)
1 ),

and action-level profiles α(ℓ)
2 ∼ (µ

(ℓ)
2 , σ

(ℓ)
2 ) for ℓ ∈ {1, 2}.

Assume µ(1)
1 > µ

(2)
1 and µ(1)

2 < µ
(2)
2 , i.e., W1 is stronger

in decision skills, and W2 in action skills.

We define a merged worker W12 that uses the decision-
level ability of W1 and the action-level ability of W2:
α
(12)
1 := α

(1)
1 , α

(12)
2 := α

(2)
2 . Let P12 denote the suc-

cess probability of W12, and P2 that of W2. We now give
conditions under which the merged worker has substantially
higher success probability than either of the original work-
ers.

Theorem 3.3 (Success gain from merging com-
plementary workers). Fix the job instance. Let
θ ∈ (0, 0.5) be a confidence level, and define:

γ
(1)
1 :=

L·
√
n
(
(σ

(1)
1 )2+(σ

(2)
2 )2

)
·ln(1/θ)

MinDerµ1 (σ
(1)
1 ,µ

(2)
2 ,σ

(2)
2 )

, and γ
(2)
1 :=

L·
√
n
(
(σ

(2)
1 )2+(σ

(2)
2 )2

)
·ln(1/θ)

MinDerµ1 (σ
(2)
1 ,µ

(2)
2 ,σ

(2)
2 )

. If

Erravg(µ
(1)
1 − γ

(1)
1 , σ

(1)
1 , µ

(2)
2 , σ

(2)
2 ) ≤ τ ≤

Erravg(µ
(2)
1 + γ

(2)
1 , σ

(2)
1 , µ

(2)
2 , σ

(2)
2 ),

then under Assumption 3.1, we have: P12 − P2 ≥ 1− 2θ.

Gain from merging complementary workers. If the av-
erage error function Erravg is fully determined by the abil-
ity parameters, and Erravg(µ

(1)
1 − γ

(1)
1 , σ

(1)
1 , µ

(2)
2 , σ

(2)
2 ) =

τ = Erravg(µ
(2)
1 + γ

(2)
1 , σ

(2)
1 , µ

(2)
2 , σ

(2)
2 ), then it follows

that µ(1)
1 = µ

(2)
1 + γ

(1)
1 + γ

(2)
1 . This implies that if W1’s
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(a) P v.s. a1 (b) P v.s. σ (c) Heatmap of P

Figure 1. Plots illustrating the relationship between the success probability P (α1, α2, h, g, f, τ) and the parameters a1, σ for the linear
ability example of Theorem 3.2 with default settings of (n,m, τ, a2) = (20, 20, 0.25, 0.4) and subskill numbers sjℓ ∼ Unif[0, 1].

(a) (a
(1)
1 , a

(1)
2 ) = (0.5, 0.4) (b) (a

(1)
1 , a

(1)
2 ) = (0.5, 0.2) (c) (a

(1)
1 , a

(1)
2 ) = (0.3, 0.4)

Figure 2. Heatmaps of the probability gain ∆ = max {P1, P2, P12, P21}−max {P1, P2} by merging two workers for different ranges of
(a

(2)
1 , a

(2)
2 ) for the linear ability example of Theorem 3.3 with default settings of (n,m, σ, τ) = (20, 20, 0.5, 0.25). The region enclosed

by the dotted lines in each heatmap indicates where the corresponding job success probability is the highest among the four. For instance,
in Figure 2(a) with (a

(1)
1 , a

(1)
2 ) = (0.5, 0.4), we observe that when a

(2)
1 + a

(2)
2 < 0.9 and a

(2)
2 > 0.43, P12 is significantly larger than

both P1 and P2 by an amount of 0.6. Similarly, when a
(2)
1 + a

(2)
2 < 0.9 and a

(2)
1 > 0.52, P21 is significantly larger than both P1 and P2.

We note that the rapid color shifts in the heatmaps reflect an abrupt change in ∆, indicative of a phase transition phenomenon in P .

decision-level ability exceeds W2’s by this margin, then
their combination W12 can substantially outperform W2

alone in job success probability.

Illustration with linear ability profiles. Let Err(ζ) =
1
2n

∑
j,ℓ ζjℓ and assume subskill difficulties sjℓ ∼

Unif[0, 1]. Let each worker ℓ ∈ {1, 2} have a linear
ability function α(i)

ℓ (s) = 1 − (1 − a
(i)
ℓ )s + ε(s), where

ε(s) ∼ min{(1−a(i)ℓ )s, 1− (1−a(i)ℓ )s} ·Unif[−σ, σ], and
assume a common noise level σ for both workers. We ana-
lyze when merging W1 and W2 leads to a gain over either
alone. If a(2)ℓ ≤ a

(1)
ℓ , thenW1 is optimal. But if a(1)1 ≥ a

(2)
1

and a(1)2 ≤ a
(2)
2 , merging (P12) leads to a nontrivial gain.

If a(1)1 ≥ a
(2)
1 + O(σ

√
ln(1/θ)/n) and a

(1)
2 ≤ a

(2)
2 −

O(σ
√
ln(1/θ)/n), then by Theorem 3.3, P12−Pℓ ≥ 1−2θ

for ℓ ∈ {1, 2}. The gain grows as σ decreases, making the
merging criteria easier to satisfy.

Figure 2 illustrates this effect. For example, when a(1)1 =

0.5 = a
(2)
1 + 0.1 and a(1)2 = 0.4 = a

(2)
2 − 0.1, we observe

P12 = 1 while P1 = P2 = 0.4, yielding a gain of 0.6.

Implications. Our analysis informs both job-worker fit and
human-AI collaboration strategies. Theorem 3.2 demon-

strates the impact of targeted upskilling, especially for high-
ability, low-variance workers. Section D.1 explores the par-
tial derivative landscape to identify when such interventions
are most effective.

If W1 represents a human worker and W2 a GenAI sys-
tem (as motivated in Section 1), Theorem 3.3 shows that
even modest GenAI advantages in action-level tasks can
lead to meaningful gains in P12. As human action-level
ability decreases, P1 falls but P12 remains stable, widen-
ing the gap P12 − P1. This mirrors recent empirical find-
ings (Brynjolfsson et al., 2023; Noy & Zhang, 2023) and
contributes to the productivity compression effect, further
analyzed in Section 3.4. Thus, combining GenAI with hu-
man decision-making yields a productivity amplification
effect rather than a replacement dynamic. Organizations
should invest in decision-level skill development and in
reducing ability noise through workflows and training.

Finally, our results also highlight the risk of biased evalu-
ations: underestimating P can exclude strong candidates
(see Section D.2). Moreover, realizing the gains of merging
hinges on accurate evaluations of both human and AI abili-
ties (see also (Somers, 2023)). Section D.2 also quantifies
how imperfect evaluations can negate these gains.
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3.4. Application: Explaining productivity compression

Brynjolfsson et al. (2023) studied the effect of GenAI tools
on customer service productivity, measured by resolutions
per hour (RPH). They found that AI assistance dispropor-
tionately benefited lower-skilled workers, increasing their
RPH by up to 36% and narrowing the productivity gap
relative to higher-skilled workers. We now show how Theo-
rem 3.3 provides a theoretical explanation for this effect.

Let W1 and W2 be two human workers with the same fami-
lies of ability profiles. Assume µ(2)

2 > µ
(1)
2 , indicating that

W2 is more skilled than W1 at the action level. Let WAI

be a GenAI tool sharing the same family of ability profiles
as the human workers. For ℓ ∈ {1, 2}, let Pℓ denote the
job success probability of Wℓ before merging with WAI,
and let P ′

ℓ be the corresponding probability after merging.
Assuming the job competition time is stable, note that the
job success probability P is proportional to the productivity
measure RPH (resolutions per hour). Hence, |P2 − P1| and
|P ′

2 − P ′
1| represent the productivity gap between W1 and

W2 before and after merging, respectively. We define the
productivity compression as

PC = |P2 − P1| − |P ′
2 − P ′

1|,

which measures how much the productivity gap is reduced
by merging. A larger PC indicates that AI assistance more
effectively narrows the gap. As a consequence of Theo-
rem 3.3, we obtain the following corollary, deriving condi-
tions on the worker parameters to lower-bound PC.
Corollary 3.4 (Productivity compression). Fix the job
instance. Suppose both human workers have the same
decision-level abilities:

µ
(1)
1 = µ

(2)
1 = µ⋆1 > µ

(AI)
1 , σ

(1)
1 = σ

(2)
1 = σ

(AI)
1 = σ⋆1 .

Let θ ∈ (0, 0.5) be a confidence level, and for each ℓ ∈

{1, 2,AI}, define γ(ℓ)2 :=
L·

√
n
(
(σ⋆1 )

2+(σ
(ℓ)
2 )2

)
·ln(1/θ))

MinDerµ2 (σ
(ℓ)
2 ,µ⋆1 ,σ

⋆
1 )

. If

max
{
Erravg(µ

⋆
1, σ

⋆
1 , µ

(AI)
2 − γ

(AI)
2 , σ

(AI)
2 ),

Erravg(µ
⋆
1, σ

⋆
1 , µ

(2)
2 − γ

(2)
2 , σ

(2)
2 )

}
≤ τ ≤

Erravg(µ
⋆
1, σ

⋆
1 , µ

(1)
2 + γ

(1)
2 , σ

(1)
2 ),

then under Assumption 3.1, we have: PC ≥ 1− 2θ.

This result implies that if the AI assistant outperforms the
lower-skilled worker by at least γ(1)2 +γ

(AI)
2 , the productivity

gap can shrink significantly. To our knowledge, this is
one of the first formal models explaining the productivity
compression effect under realistic assumptions.

In Section C.4, we provide the proof of Corollary 3.4 and
further extend this analysis to the case where the GenAI tool
uses a different ability profile family, confirming that our
framework generalizes beyond identical distributions.

4. Empirical results
We demonstrate the usability of our framework using real-
world data and validate our theoretical findings in both noise-
dependent settings and scenarios involving the merging of
workers with distinct ability profiles. Key results are sum-
marized below, with full implementation details provided in
Section E. We further validate the robustness of our findings
across alternative modeling choices in Section E.4.

4.1. Data, subskills, abilities, and parameters

We derive job and worker data from O*NET and Big-bench
Lite. To bridge missing parameters, we introduce a general
subskill division method. As a running example, consider
the job of Computer Programmers.

Deriving job data. O*NET states that the Computer
Programmer job as requires n = 18 skills and m = 17
tasks, and provides their descriptions. It also gives
proficiency levels for each skill, represented by s =
(.41, .43, .45, .45, .45, .46, .46, .46, .46, .48, .5, .5, .52, .54,
.55, .55, .57, .7), where sj ∈ [0, 1] denotes the skill’s
criticality for the job. O*NET also provides task and skill
importance scores, which inform the choice of g and f .

Deriving workers’ abilities. We begin by considering lab
evaluations from Big-bench Lite (bench authors, 2023) for
both human workers and GenAI tools (specifically PaLM
(Chowdhery et al., 2023)). For example, we model the
ability profiles of a human worker (W1) and a GenAI tool
(W2) as α(1)(s) = TrunN(1 − 0.78s + 0.22, 0.013; 0, 1),
and α(2)(s) = TrunN(1− 0.92s+ 0.08, 0.029; 0, 1).

An approach for subskill division. Subskill divi-
sion becomes essential for analyzing worker perfor-
mance. We first use GPT-4o to determine the
decision-level degree for each skill, given by λ =
(0, 0, 1, 1, 1, .6, .7, .4, .4, 0, .3, 1, 1, .6, .7, .6, 0, .4). Using a
skill proficiency sj and its decision-level degree λj , we com-
pute subskill numbers as sj1 = λjsj , sj2 = (1− λj)sj .
These values are listed in Eq. (11). This formulation en-
sures that subskill numbers sj1 and sj2 are linear functions
of sj and λj , maintaining the property that sj1 + sj2 = sj .
Further examples are in Section E.3.

We decompose skill ability profiles α into subskill abil-
ity profiles α1 and α2. For α(s) ∼ TrunN(1 − (1 −
a)s, σ2; 0, 1) with decision-level degree λ ∈ [0, 1], we set
α1(s) = α2(s) = TrunN(1− (1− a)s, σ2/2; 0, 1), so that
the distribution of ζj1+ζj2 approximates first drawingX ∼
α(sj) and then outputting 1−X . Thus, skill profiles can be
(approximately) reconstructed by setting the skill success
probability function as h(ζ1, ζ2) = ζ1+ζ2. Thus, we obtain
α
(1)
ℓ (s) = TrunN(1 − 0.78s, 0.0065; 0, 1), α

(2)
ℓ (s) =

TrunN(1− 0.92s, 0.0145; 0, 1).
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Constructing the task-skill dependency. Using task and skill
descriptions from O*NET, we employ GPT-4o to generate
task-skill dependencies Ti ⊆ [n] for each task i ∈ [m].
Details are provided in Section E.3.

Choice of error functions and threshold. We set the skill
error function as h(ζ1, ζ2) = ζ1 + ζ2 to ensure consistency
with the skill ability function α derived from Big-bench Lite.
Task and job error functions, g and f , are weighted averages
based on the importance of skills and tasks from O*NET,
resulting in Err(ζ) =

∑
j∈[n] wj(ζj1 + ζj2). (See Eq.(13)

for details.) We set the threshold τ = 0.45, representing a
medium job requirement.

Summary. In this manner, all necessary job and worker
attributes can be extracted from sources such as O*NET and
Big-bench Lite, with GPT-4o (or similar models) assisting in
estimating skill proficiencies, decision-level intensities, and
task-skill mappings. This subskill decomposition method is
generic and can be applied to other job and worker datasets,
making it practical across diverse domains.

We note that O*NET and Big-bench Lite offer complemen-
tary but biased views of work. O*NET emphasizes tasks
involving judgment, creativity, and interpersonal skills, po-
tentially under-representing emerging digital or computa-
tional activities. Conversely, Big-bench Lite focuses on
structured, rule-based problems where GenAI systems tend
to excel. Empirical insights should therefore be interpreted
in light of these distributions, as each dataset highlights
different aspects of human–AI complementarity.

4.2. Evaluating worker-job fit with dependent abilities

Theorem 3.2 assumes independent subskill abilities (As-
sumption 3.1), but this may not hold in practice. For in-
stance, a worker’s current state—such as fatigue or motiva-
tion—can influence their abilities (J. et al., 1976), creating
dependencies between subskill error rates ζjℓ. This raises
the question: Under such dependencies, can a slight increase
in ability still lead to a dramatic nonlinear rise in success
probability?

Choice of parameters. We set α1(s) = TrunN(1 −
(1 − a)s, 0.0065; 0, 1) and α2(s) = TrunN(1 −
0.78s, 0.0065; 0, 1) to model a human worker, where the pa-
rameter a controls the decision-level ability. For s ∈ [0, 1],
let Fs denote the cumulative density function of α1(s). To
introduce dependency between subskills, we assume that
the worker has a random status β ∼ Unif[0, 1]. For each
subskill, ζjℓ ∼ 1 − αℓ(sjℓ) with probability 1 − p and
ζjℓ = 1 − F−1

sjℓ
(β) with probability p. As p increases,

the dependency between the ζjℓs strengthens. Specifically,
when p = 0, all ζjℓs are independent. Conversely, when
p = 1, all ζjℓs are fully determined by the worker’s status
β, making them highly correlated.

Analysis. We plot the job success probability P in Figure
3 as the ability parameter a and dependency parameter p
vary. Figure 3(a) shows that phase transitions in P persist
even when subskills are dependent (p > 0), although the
transition window narrows as p decreases. For example,
when p = 0, increasing a by 0.27 (from 0.07 to 0.34) raises
P from 0.2 to 0.8, whereas for p = 0.4, a greater increase
in a (0.44) is needed. Figure 3(b) shows that for fixed
a, P increases monotonically with p when P < 0.5 and
decreases monotonically when P > 0.5, similar to the trend
in P v.s. σ (Figure 1(b)). This is because the variance of
Err(ζ) increases with both p and σ. These results show that
workers with loosely coupled subskills (low p) experience
sharper gains in P from ability improvements, underscoring
the value of reducing skill interdependencies.

4.3. Merging two workers with distinct ability profiles

We empirically examine the utility of merging two work-
ers (W1 and W2). Theorem 3.3 assumes identical ability
profile families, ensuring that W1 consistently outperforms
W2 across all decision-level (action-level) subskills, or vice
versa. In practice, however, this may not hold—e.g., a
GenAI tool may surpass a human in some action-level sub-
skills but not others. This raises the question: Does the sharp
increase in job success probability from merging persist
when workers have ability profiles from different families?

Choice of parameters. We set the subskill ability profiles
of W1 to be linear: α

(1)
1 (s) = α

(1)
2 (s) = TrunN(1 −

0.78s, 0.0065; 0, 1), representing a human worker. For the
second worker (W2), we define α(2)

1 = TrunN(1 − (1 −
a)s, 0.0145; 0, 1) and α(2)

2 = TrunN(c, 0.0145; 0, 1). This
models a GenAI tool that excels at easier decision-level sub-
skills but degrades with difficulty, while maintaining strong
and uniform action-level abilities.

We analyze which decision- and action-level subskills
should be assigned to each worker and quantify the resulting
gain in job success probability.

If the average of α(1)
1 (s) exceeds that of α(2)

1 (s) (i.e.,
a < 0.22), all decision-level subskills are assigned to W1;
otherwise (a ≥ 0.22), to W2. Because the two workers’
action-level abilities differ non-monotonically, neither domi-
nates the other across all subskills. This renders the uniform
merging strategy from Section 3.3 sub-optimal. Instead, we
select the action-level subskill provider based on difficulty:
the average of α(1)

2 (s) is 1 − 0.78s, while for α(2)
2 (s) it is

constant at c. Thus, for sj2 ≤ 1−c
0.78 , W1 has higher expected

ability and is chosen; otherwise, W2 is selected. This cre-
ates a merged worker Wmerge whose decision-level ability
is linear and action-level ability is piecewise linear with a
breakpoint at sj2 = 1−c

0.78 . Let Pmerge denote the job success
probability of this merged worker.
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(a) P v.s. a (b) P v.s. p (c) Heatmap of P

Figure 3. Plots illustrating the relationship between the success probability P (α1, α2, h, g, f, τ) and the ability parameter a and depen-
dency parameter p for the Computer Programmer example with default settings of (σ, τ) = (0.08, 0.45).

(a) Heatmap of Pmerge (b) Heatmap of ∆

Figure 4. Heatmaps of the merged job success probability
Pmerge and the corresponding probability gain ∆ = Pmerge −
max{P1, P2}, shown across different values of the ability param-
eters (a, c) for the Computer Programmers example with default
threshold τ = 0.45. Rapid color transitions reflect persistent
phase shifts in both Pmerge and ∆, even when worker profiles differ.
Compared to Figure 2, the narrower bright region in Figure 4(b)
suggests that merging distinct profiles yields more gradual im-
provements than merging identical ones.

Analysis. Figure 4.2 plots the heatmaps of job success
probability Pmerge and probability gains ∆ = Pmerge −
max {P1, P2} as ability parameters a and c vary. When
a ≤ 0.22 (i.e., W2 has lower decision-level ability than
W1) and c ∈ [0.78, 0.82], we observe Pmerge = 1 while
P1, P2 ≤ 0.6, indicating a probability gain of at least
Pmerge − Pℓ ≥ 0.4. This occurs because c first reaches
0.78, triggering a sharp increase in Pmerge as predicted by
Theorem 3.2, and later reaches 0.82, aligning P2 with the
trend in Figure 2. The range of c is narrower than that
of α(2)

2 in Figure 2 since increasing c results in a smooth
transition in action-level subskills from W1 to W2. Con-
versely, when α(2)

2 surpasses α(1)
2 , all action-level subskills

shift abruptly, causing a more sudden transition. These
findings confirm that the nonlinear probability gain from
merging persists even when workers specialize in different
action-level subskills, affirming our hypothesis.

5. Conclusions, limitations, and future work
This work examines the evolving impact of GenAI tools in
the workforce by introducing a mathematical framework to
assess job success probability in worker-job configurations.
By decomposing skills into decision-level and action-level
subskills, the framework enables fine-grained analysis and

offers insights into effective human–AI collaboration. Our
theoretical results identify conditions under which job suc-
cess probability changes sharply with worker ability, and
show that merging workers with complementary subskills
can substantially enhance performance, reinforcing the view
that GenAI tools augment, rather than replace, human exper-
tise. This includes explaining the phenomenon of productiv-
ity compression, where GenAI assistance disproportionately
benefits lower-skilled workers, narrowing performance gaps,
consistent with empirical findings from recent field studies.

We demonstrate how the framework integrates with real-
world datasets such as O*NET and Big-bench Lite, high-
lighting its practical relevance. Empirical results validate
theoretical insights, even under relaxed assumptions.

Our analysis focuses primarily on job success probability.
In practice, performance also depends on factors such as
efficiency, time, and cost. Incorporating these dimensions
would yield a more comprehensive view of worker-job fit
and inform workforce optimization strategies.

Moreover, the datasets used may not fully capture the com-
plexity of skill attribution in dynamic work settings. O*NET
reflects static, survey-based assessments, while LLM-based
estimates from Big-bench may embed modeling biases. In-
corporating empirical benchmarks (e.g., HumanEval for
coding, customer support transcripts) could strengthen the
framework’s empirical grounding.

Our model underscores the importance of improving eval-
uation mechanisms to better reflect the strengths and lim-
itations of human and AI capabilities. More broadly, this
work contributes to the growing literature on AI and work
by offering a quantitative lens to study the interplay between
human expertise and GenAI systems. As AI continues to re-
shape labor markets, balancing human skill and automation
remains a critical challenge.

This paper offers a step toward quantifying that balance; fur-
ther research is needed to refine models, incorporate behav-
ioral studies, and promote equitable and effective human–AI
collaboration in an evolving workplace.
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Impact statement
This paper introduces a framework for assessing worker-
job fit for both human and AI workers, aiming to advance
workforce optimization in an era of rapid technological
change. Our insights and methodologies contribute to more
effective allocation of human and AI resources, improving
job success probability and facilitating productive human-
AI collaboration.

The societal implications are twofold. On one hand, the
framework empowers organizations to make data-driven
workforce decisions, enhancing productivity and job satis-
faction. On the other, it highlights challenges such as biases
in ability evaluation and the evolving role of GenAI in labor
markets, underscoring the need for careful consideration to
prevent exclusion or unfair treatment of workers.

While our work may influence hiring practices and percep-
tions of human-AI collaboration, these outcomes should be
interpreted within the broader goal of equitable and efficient
workforce optimization. We do not identify any immediate
ethical concerns beyond these considerations.
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A. Additional related work
Workforce optimization seeks to align employee skills with organizational objectives to improve productivity, efficiency, and
satisfaction (Sinclair & for Employment Studies, 2004; wik; Services, 2024; Naveh et al., 2007). Although this area has
been extensively studied empirically, theoretical models that systematically evaluate worker-job fit remain limited.

The emergence of GenAI tools has reignited debates around automation and its impact on skilled labor (Dillion et al., 2023;
Harding et al., 2023; Stade et al., 2024). Recent work demonstrates AI’s proficiency in complex tasks—from expert-level
reasoning (OpenAI, 2024; Will Knight, 2024) to high performance on domain-specific benchmarks such as LiveBench and
MMLU-Pro (White et al., 2024; Wang et al., 2024). These advances underscore the need for principled frameworks to assess
human–AI complementarity (Yu et al., 2024; Hendrycks et al., 2021).

Several studies compare human and AI capabilities across domains (Brynjolfsson et al., 2023; Noy & Zhang, 2023; Sharma,
2024; Eloundou et al., 2023). However, existing models often conflate decision-making and execution, overlooking their
distinct roles in work. Our framework explicitly separates decision-level and action-level subskills, enabling a more granular
analysis of how AI systems complement human abilities.

Research on the labor implications of AI suggests that GenAI tends to augment lower-skilled workers (Acemoglu & Autor,
2011), consistent with our finding that AI enhances action-level subskills while decision-level abilities remain critical.
Studies on AI-driven productivity gains (Noy & Zhang, 2023; Lo et al., 2024; Fosso Wamba et al., 2023) offer additional
empirical support for our model’s predictions. Integrating real-world data to further validate our theoretical insights is an
important direction for future work.

Recent work by Acemoglu (2025) presents a macroeconomic model that analyzes the effects of AI on productivity, wages,
and inequality via equilibrium-based task allocation between labor and capital. While developed independently, their
assumptions—such as task decomposition, differential AI performance across task types, and heterogeneity in worker
productivity—resonate with our framework’s decomposition of skills and modeling of worker ability. The key distinction
lies in scope: their model addresses aggregate, market-level outcomes, whereas ours focuses on job-level success and
collaboration between individual workers.

B. Properties of ability profiles
This section discusses the properties of several ability profiles.

B.1. Monotonicity, variability, and visualization for ability profiles

Below, we formalize three ability profiles: constant, linear, and polynomial with additive uniform noise.

• Constant profile. We consider a constant profile α ≡ c + ε for some c ∈ [0, 1] and ε distributed according to a
certain noise distribution, e.g., ε ∼ min {c, 1− c} · Unif[−σ, σ] for some σ ∈ [0, 1]. When σ = 0, α ≡ c is a
constant function. This model is useful for skills where ability does not vary with increased experience, such as
automated processes handled by GenAI tools, where the output remains consistent regardless of operational duration.
The scale of two parameters c and σ determines the performance of α. Parameter c determines the average ability of
constant profiles, where c = 0 represents the worst ability and c = 1 represents the best ability. Moreover, fixing σ,
the ability of a constant profile rises smoothly from the worst to the best as c increases from 0 to 1. Also note that
Var[α(s)] = min {c, 1− c} · σ

2

3 . Thus, parameter σ reflects the variability of α.

• Linear profile. We consider a linear profile α(s) = c − 1 − (1 − a)s + ε(s) for some a, c ∈ [0, 1] and noise
ε(s) ∼ min {(1− a)s, 1− (1− a)s} ·Unif[−σ, σ] for some σ ∈ [0, 1]. When a > 0, this model is apt for scenarios
involving workers whose ability to develop a skill increases linearly with the ease of the skill. Note that for any
s ∈ [0, 1], E(s) = c− (1− a)s is a monotone increasing function of both c and a. Thus, the average ability of a linear
profile rises smoothly from the worst to the best as a (or c) increases from 0 to 1. In this paper, we usually set c = 1
such that E(0) = 1, representing the highest ability for the easiest subskill.

• Polynomial profile. We consider a polynomial profile α(s) = 1 − sβ + ε(s), for some parameter β ≥ 0 and noise
ε(s) ∼ min

{
sβ , 1− sβ

}
·Unif[−σ, σ] for some σ ∈ [0, 1]. This function can be used to model how decision-making

subskills often improve nonlinearly with the easiness of the skill. The unique parameter, β, allows us to adjust the
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sensitivity of the ability function to changes in s, where β = 0 represents the worst ability α ≡ ε(s) and β = ∞
represents the best ability α ≡ 0. Moreover, higher values of β indicate a more pronounced increase in average ability
as s approaches 1.

We plot constant, linear, and polynomial profiles with additive uniform noise in Figure 5. In these models, we know that
ability profiles are usually characterized by a parameter measuring the average ability (e.g., c for constant profiles, a for
linear profiles, and β for polynomial profiles) and a parameter σ measuring the variability. A key problem in this paper
is quantifying how these parameters affect the performance of workers in a given job. Intuitively, the quality of an ability
profile typically improves as the average ability increases or the variability decreases.

(a) Constant profiles (b) Linear profiles when c = 1 (c) Polynomial profiles

Figure 5. Plots by varying the ability parameter for various families of ability profiles with an additive uniform noise when the noise level
σ = 0.1. Observe that the width of the domain α(s) is the largest when the average ability E(s) = 0.5 and is the smallest (0) when
E(s) ≡ 0 or 1. This noise level indicates that the best worker always completes the subskill flawlessly (α(s) ≡ 1), the worst worker
always fails at the subskill (α(s) ≡ 0), while the performance of a medium worker exhibits greater variability.

B.2. Stochastic dominance for ability profiles

We first define the stochastic dominance property for ability profiles.

Definition B.1 (Stochastic dominance for ability profiles). Let α, α′ be two ability profiles parameterized by ability
parameter µ, µ′, respectively, and the same noise parameter σ. Suppose µ ≤ µ′. We say α has stochastic dominance over
α′ if for any s ∈ [0, 1] and x ≥ 0:

Pr
ζ∼α(s)

[ζ ≥ x] ≤ Pr
ζ′∼α′(s)

[ζ ′ ≥ x].

We propose the following proposition that shows that the studied ability profiles have stochastic dominance properties.

Proposition B.1 (Stochastic dominance for ability profiles). The following hold:

• Constant profile Let α ≡ c + ε for some c ∈ [0, 1] and ε ∼ min {c, 1− c} · Unif[−σ, σ] for some σ ∈ [0, 1]. Let
α′ ≡ c′ + ε(s) for some c′ ∈ [0, 1] with c ≤ c′ and ε(s) ∼ Unif[−σ, σ]. Then α has stochastic dominance over α′.

• Slope parameter for linear profile Let α(s) = 1 − (1 − a)s + ε(s) for some a ∈ [0, 1] and noise ε(s) ∼
min {(1− a)s, 1− (1− a)s} · Unif[−σ, σ]. Let α′(s) = 1 − (1 − a′)s + ε(s) for some a′ ∈ [0, 1] with a ≤ a′

and noise ε(s) ∼ Unif[−min {(1− a′)s, 1− (1− a′)s}σ,min {(1− a′)s, 1− (1− a′)s}σ]. Then α has stochastic
dominance over α′.

• Polynomial profile Let α(s) = 1 − sβ + ε(s) for some β ∈ [0, 1] and noise ε(s) ∼ min
{
sβ , 1− sβ

}
·

Unif[−σ, σ]. Let α′(s) = 1 − sβ
′
+ ε(s) for some β′ ∈ [0, 1] with β ≤ β′ and noise ε(s) ∼

Unif[−min
{
sβ

′
, 1− sβ

′
}
σ,min

{
sβ

′
, 1− sβ

′
}
σ]. Then α has stochastic dominance over α′.

The first two items ensure that ability profiles satisfy stochastic dominance with respect to both ability parameters c and a.

Proof of Proposition B.1. We prove for each family of ability profiles.

15



A Mathematical Framework for AI-Human Integration in Work

Constant profile. For any x ≥ 0, we have

Pr
ζ∼α(s)

[ζ ≥ x] = min

{
1,max

{
0,
x− (1− c) + min {c, 1− c} · σ

2min {c, 1− c} · σ

}}
,

Note that when 1− c ≤ 0.5, we have

x− (1− c) + min {c, 1− c} · σ
2min {c, 1− c} · σ

= − 1

2σ
+ 0.5 +

x

2(1− c)σ
,

which is increasing with c. When 1− c > 0.5, we have

x− (1− c) + min {c, 1− c} · σ
2min {c, 1− c} · σ

=
1

2σ
+ 0.5− 1− x

2cσ
,

which is increasing with c. Overall, Prζ∼α(s) [ζ ≥ x] is increasing with c. Thus, since c ≤ c′, we have Prζ∼α(s) [ζ ≥ x] ≤
Prζ′∼α′(s) [ζ

′ ≥ x].

Linear profile. For any x ∈ [0, 1] and s ∈ [0, 1], we have

Pr
ζ∼α(s)

[ζ ≥ x] = min

{
1,max

{
0,
x− (1− a)s+min {(1− a)s, 1− (1− a)s}σ

2min {(1− a)s, 1− (1− a)s}σ

}}
.

Note that when (1− a)s ≤ 0.5, we have

x− (1− a)s+min {(1− a)s, 1− (1− a)s}σ
2min {(1− a)s, 1− (1− a)s}σ

= − 1

2σ
+ 0.5 +

x

2(1− a)sσ
,

which is increasing with a. When (1− a)s > 0.5, we have

x− (1− a)s+min {(1− a)s, 1− (1− a)s}σ
2min {(1− a)s, 1− (1− a)s}σ

=
1

2σ
+ 0.5− 1− x

2(1− (1− a)s)σ
,

which is increasing with a. Overall, Prζ∼α(s) [ζ ≥ x] is increasing with a. Since a ≤ a′, we have Prζ∼α(s) [ζ ≥ x] ≤
Prζ′∼1−α′(s) [ζ

′ ≥ x].

Polynomial profile. For any x ∈ [0, 1] and s ∈ [0, 1], we have

Pr
ζ∼α(s)

[ζ ≥ x] = min

{
1,max

{
0,
x− sβ +min

{
sβ , 1− sβ

}
σ

2min {sβ , 1− sβ}σ

}}
.

Note that when sβ ≤ 0.5, we have

x− sβ +min
{
sβ , 1− sβ

}
σ

2min {sβ , 1− sβ}σ
= − 1

2σ
+ 0.5 +

x

2sβσ
,

which is increasing with β. When sβ > 0.5, we have

x− sβ +min
{
sβ , 1− sβ

}
σ

2min {sβ , 1− sβ}σ
=

1

2σ
+ 0.5− 1− x

2(1− sβ)σ
,

which is increasing with β. Overall, Prζ∼α(s) [ζ ≥ x] is increasing with β. Since β ≤ β′, we have Prζ∼α(s) [ζ ≥ x] ≤
Prζ′∼α′(s) [ζ

′ ≥ x].

Thus, we complete the proof of Proposition B.1.

C. Proofs of results in Section 3 and extensions
In this section, we provide the omitted proofs of the results in Section 3 and demonstrate how to extend them to accommodate
general and dependent noise models. We further extend the analysis of linear ability profiles from Section 3.2 to alternative
choices of job error functions and ability profile families (see Section C.2).
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C.1. Proof of Theorem 3.2: Phase transition in success probability

We prove a generalized version of Theorem 3.2 that accommodates arbitrary noise models ε(s), extending beyond the
uniform and truncated normal distributions introduced in Section 2.

We first need the following notion that captures the dispersion degree of ability profiles (α1, α2).

Definition C.1 (Subgaussian constant and maximum dispersion). Let αℓ be parameterized by µℓ, σℓ ≥ 0. For each
subskill sjℓ, define the smallest constant sgjℓ(µℓ, σℓ) such that for all β ∈ R,

EX∼αℓ(sjℓ)

[
eβ(X−E[X])

]
≤ exp(

sgjℓ(µℓ, σℓ)
2β2

2
).

We define the subgaussian constant as:

sg(µ1, σ1, µ2, σ2) :=
∑

j∈[n],ℓ∈{1,2}

sgjℓ(µℓ, σℓ)
2.

Given σ1, µ2, σ2, the maximum dispersion over µ1 is defined as:

MaxDispµ1
(σ1, µ2, σ2) := sup

µ1≥0
sg(µ1, σ1, µ2, σ2).

MaxDispµ2
(σ2, µ1, σ1) is defined similarly.

Intuitively, the subgaussian constant sgjℓ quantifies the variability of a subskill’s ability distribution around its mean (van
Handel, 2014; Vershynin, 2018). The maximum dispersion MaxDisp captures the cumulative uncertainty across all subskills
by aggregating the subgaussian parameters. For example, under uniform noise ε(s), we have sgjℓ ≤ σ2

ℓ/4, yielding
MaxDispµ1

(σ1, µ2, σ2) ≤ n(σ2
1 + σ2

2)/4. Under truncated normal noise, sgjℓ ≤ σ2
ℓ , giving MaxDispµ1

(σ1, µ2, σ2) ≤
n(σ2

1 + σ2
2). As the noise parameters σℓ increase, MaxDisp also increases, reflecting greater dispersion in ability. In the

deterministic case where σ1 = σ2 = 0, we have MaxDisp = 0, indicating no uncertainty in abilities.

We propose the following generalized version of Theorem 3.2, where the term n(σ2
1 + σ2

2) in γ1 (designed for both uniform
and truncated normal noises) is replaced by the more general quantity MaxDispµ1

(σ1, µ2, σ2).

Theorem C.1 (Extension of Theorem 3.2 to general noise models). Fix the job instance, action-level ability µ2, and noise
levels σ1, σ2. Let µc1 be the unique value such that the expected job error equals the success threshold:

Erravg(µ
c
1, σ1, µ2, σ2) = τ.

Let θ ∈ (0, 0.5) be a confidence level, and define the transition width: γ1 :=
L
√

MaxDispµ1 (σ1,µ2,σ2)·ln(1/θ)
MinDerµ1 (σ1,µ2,σ2)

, where L is the
Lipschitz constant of the job error function. Then the job success probability satisfies:

P ≤ θ if µ1 ≤ µc1 − γ1 and P ≥ 1− θ if µ1 ≥ µc1 + γ1.

For preparation, we first introduce the following variant of McDiarmid’s inequality. Given a random variable X on R, we
define ∥X∥ψ2

to be the smallest number a ≥ 0 such that for any β ∈ R, E
[
eβX

]
≤ eβ

2a2/2.

Theorem C.2 (Refinement of Theorem 1 in (Kontorovich, 2014)). Let G : RT → R be a 1-lipschitz function. Suppose
X1, . . . , XT are independent random variables. Then we have for any t > 0,

Pr
X1,...,XT

[G(X1, . . . , XT ) ≥ E [G(X1, . . . , XT )] + t] ≤ e
− 2t2∑

j∈[T ] ∥Xj−E[Xj ]∥2ψ2 ,

and

Pr
X1,...,XT

[G(X1, . . . , XT ) ≤ E [G(X1, . . . , XT )]− t] ≤ e
− 2t2∑

j∈[T ] ∥Xj−E[Xj ]∥2ψ2 .

The theorem provides a concentration bound for the function value ofG when its input variables are independent subgaussian.
Now we are ready to prove Theorem C.1.
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Proof of Theorem C.1. Recall that Err is a function of 2n realized subskill abilities ζjℓ. By Assumption 3.1, ζjℓs are
independent random variables. Moreover, by Definition C.1, we know that

sgj(µℓ, σℓ) = ∥ζjℓ − Eζ∼1−αℓ(sjℓ) [ζ] ∥
2
ψ2
,

and hence,
sg(µ1, σ1, µ2, σ2) =

∑
j∈[n],ℓ∈{1,2}

sgj(µℓ, σℓ) =
∑

j∈[n],ℓ∈{1,2}

∥ζjℓ − Eζ∼1−αℓ(sjℓ) [ζ] ∥
2
ψ2
.

Since Err is L-lipschitz, function 1
L · Err is 1-lipschitz. Also, recall that Erravg(µ1, σ1, µ2, σ2) := Eζjℓ∼1−αℓ(sjℓ) [Err(ζ)].

Now we plugin T = 2n, G = 1
L · Err, Xjs being ζjℓs in Theorem C.2. We obtain that for any t > 0,

Pr
ζjℓ

[Err(ζ) ≥ Erravg(µ1, σ1, µ2, σ2) + t] = Pr
ζjℓ

[
1

L
· Err(ζ) ≥ 1

L
· Erravg(µ1, σ1, µ2, σ2) +

t

L

]
≤ e

− 2t2

L2sg(µ1,σ1,µ2,σ2) ,

and

Pr
ζjℓ

[Err(ζ) ≤ Erravg(µ1, σ1, µ2, σ2)− t] ≤ e
− 2t2

L2sg(µ1,σ1,µ2,σ2) . (2)

Note that MaxDispµ1
(σ1, µ2, σ2) ≥ sg(µ1, σ1, µ2, σ2). Thus, when t = L ·

√
MaxDispµ1

(σ1, µ2, σ2) · ln 1
θ , we have

Pr
ζjℓ

[Err(ζ) ≥ Erravg(µ1, σ1, µ2, σ2) + t] ≤ θ and Pr
ζjℓ

[Err(ζ) ≤ Erravg(µ1, σ1, µ2, σ2)− t] ≤ θ.

This implies that if Erravg(µ1, σ1, µ2, σ2) ≤ τ − t,

Pr
ζjℓ

[Err(ζ) ≤ τ ] ≥ 1− Pr
ζjℓ

[Err(ζ) > Erravg(µ1, σ1, µ2, σ2) + t] ≥ 1− θ. (3)

Also, if Erravg(µ1, σ1, µ2, σ2) ≥ τ + t,

Pr
ζjℓ

[Err(ζ) ≤ τ ] ≤ Pr
ζjℓ

[Err(ζ) > Erravg(µ1, σ1, µ2, σ2)− t] ≤ θ. (4)

Recall that γ1 :=
L
√

MaxDispµ1 (σ1,µ2,σ2)·ln(1/θ)
MinDerµ1 (σ1,µ2,σ2)

= t
MinDerµ1 (σ1,µ2,σ2)

. Then it suffices to prove the following lemma.

Lemma C.3. Let t > 0. Under Assumption 3.1, if µ1 ≤ µc1 − t
MinDerµ1 (σ1,µ2,σ2)

, then Erravg(µ1, σ1, µ2, σ2) ≥ τ + t; and

if µ1 ≥ µc1 +
t

MinDerµ1 (σ1,µ2,σ2)
, then Erravg(µ1, σ1, µ2, σ2) ≤ τ − t.

Proof. We first prove that ∂Erravg

∂µ1
(µ1, σ1, µ2, σ2) ≤ 0. It suffices to prove that for any µ, µ′ with µ ≥ µ′,

Erravg(µ, σ1, µ2, σ2) ≤ Erravg(µ
′, σ1, µ2, σ2). Let α1 be parameterized by (µ, σ1), α′

1 be parameterized by (µ′, σ1),
and α2 be parameterized by (µ2, σ2). By Proposition B.1, we know that α′

1 has stochastic dominance over α1. Thus, for
every j ∈ [n], there exists a coupling of (ζ, ζ ′) for ζ ∼ 1−α1(sjℓ) and ζ ′ ∼ 1−α′

1(sjℓ) such that ζ ≤ ζ ′. Let πj be the joint
probability density function of (ζ, ζ ′). We have

∫
ζ′
πj(ζ, ζ

′)dζ = α1(sj1)(ζ) and
∫
ζ
πj(ζ, ζ

′)dζ = α′
1(sj1)(ζ). Let πj be

the joint probability density function of (ζj1, ζ ′j1). We have
∫
ζ′
πj(ζ, ζ

′)dζ = α1(sj1)(ζ) and
∫
ζ
πj(ζ, ζ

′)dζ = α′
1(sj1)(ζ).

Then we have

Erravg(µ, σ1, µ2, σ2) = Eζjℓ∼1−αℓ(sjℓ) [Err(ζ)]

=

∫ ∏
j

πj(ζjℓ, ζ
′
jℓ)Err(ζ)dζjℓ (Assumption 3.1 and Defn. of πj)

≤
∫ ∏

j

πj(ζjℓ, ζ
′
jℓ)Err(ζ

′)dζjℓ (Montonicity of Err)

≤ Eζj1∼1−α′
1(sj1),ζj2∼1−α2(sj2) [Err(ζ)] (

∫
ζ

πj(ζ, ζ
′)dζ = α′

1(sj1)(ζ))

≤ Erravg(µ
′, σ1, µ2, σ2).
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Thus, if µ1 < µc1 − t
MinDerµ1 (σ1,µ2,σ2)

, we have

Erravg(µ1, σ1, µ2, σ2) ≥ Erravg(µ
c
1, σ1, µ2, σ2) + (µc1 − µ1) ·MinDerµ1

(σ1, µ2, σ2) (Defn. of MinDerµ1
(σ1, µ2, σ2))

≥ τ +
t

MinDerµ1
(σ1, µ2, σ2)

·MinDerµ1(σ1, µ2, σ2) (Erravg(µ
c
1, σ1, µ2, σ2) = τ)

= τ + t.

Similarly, we can prove that if µ1 > µc1 +
t

MinDerµ1 (σ1,µ2,σ2)
, then Erravg(µ1, σ1, µ2, σ2) < τ − t. This completes the proof

of Lemma C.3.

Combined with Lemma C.3, we have completed the proof.

C.2. Bounding γ1 for alternative choices of error functions and ability profiles

Similar to the illustrative example in Section 3.2, we analyze the window γ1 in Theorem 3.2 for alternative choices of the
error functions h, g, f and ability profiles α1, α2. We consider uniform noise such that MinDerµ1

(σ1, µ2, σ2) ≤ nσ2

4 . Then
the key is to bound the Lipschitz constant L and MinDerµ1

(σ1, µ2, σ2).

Analysis for max functions. Let h, g, f be max such that Err(ζ) = maxj∈[n],ℓ∈{1,2} ζjℓ. Suppose the ability profile is
linear with noise: αℓ(s) = 1− (1− aℓ)s+ ε(s), where ε(s) ∼ Unif[−σ, σ]. We can compute that

P =
∏

j∈[n],ℓ∈{1,2}

Pr[ζjℓ ≤ τ ].

Below, we analyze the window of the phase transition for this case from both the positive and negative sides of the parameter
range.

A positive example. Assume all sjℓ = 0.5, ac1 = a2 = 0.5, and τ = 0.75 + σ
4 − σ

4n . Then each Pr[ζjℓ ≤ τ ] is 1 − 1
2n ,

implying that

P =
∏

j∈[n],ℓ∈{1,2}

Pr[ζjℓ ≤ τ ] = (1− 1

2n
)2n ≈ 1/e.

Let γ1 = 4σ/n. On one hand, if a1 = ac1 − γ1, we can compute that for each j ∈ [n], Pr[ζj1 ≤ τ ] ≤ 1− 2
n . Then

P ≤ (1− 1

2n
)n · (1− 2

n
)n ≤ 1/e2 < 0.14.

On the other hand, if a1 = ac1 + γ1, Pr[ζj1 ≤ τ ] = 1 for each j ∈ [n]. Then

P = (1− 1

2n
)n ≥ 0.6.

Thus, increasing a1 from below ac1 − γ1 to above ac1 + γ1 results in a probability gain of 0.46. The window of this phase
transition is only γ1 = O(σ/n), which is even sharper than the O(σ/

√
n) window observed for the average error function.

A negative example. Assume all sjℓ = 0 except that s11 = 1, ac1 = a2 = 0.5, σ = 0.25 and τ = 0.5. Then

P =
∏

j∈[n],ℓ∈{1,2}

Pr[ζjℓ ≤ τ ] = Pr[ζ11 ≤ 0.5] = 0.5.

We can also compute that for a1 ∈ (0.35, 0.65),

P = Pr[ζ11 ≤ 0.5] = 0.5− a1 − 0.5

min {a1, 1− a1}
,

which is close to a linear function of a1. Then the window of phase transition is O(1), yielding a smooth, non-abrupt
transition.
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Analysis for weighted average functions. We still select the skill error function h(ζ1, ζ2) = 1
2 (ζ1 + ζ2) as the average

function. Given an importance vector w ∈ [0, 1]n for skills (e.g., derived from O*NET), we select the task error function

g({hj}j∈Ti) =
1∑

j∈Tj wj

∑
j∈Tj

wjhj ,

to be the weighted average function, where 1∑
j∈Tj

wj
is a normalization factor. Give an importance vector v ∈ [0, 1]m for

tasks (e.g., derived from O*NET), we select the job error function

f(g1, . . . , gm) =
1∑

i∈[m] vi

∑
i∈[m]

vigi,

to be the weighted average function, where 1∑
i∈[m] vi

∑
i∈[m] is a normalization factor. Then we have that their composition

function is:
Err(ζ) =

∑
j∈[n]

1

2

∑
i∈[m]:j∈Ti

vi∑
i′∈[m] vi′

wj∑
j′∈[Ti]

wj′
(ζj1 + ζj2). (5)

We have the following observation for the Lipschitzness of Err.

Proposition C.4 (Lipschitzness of Err in Equation (5)). The lipschitzness constant of Err in Equation (5) is L ≤
1
2 maxj∈[n]

∑
i∈[m]:j∈Ti

vi∑
i′∈[m] vi′

wj∑
j′∈[Ti]

wj′
.

For instance, when each wj = 1
n and vi = 1

m , we have L ≤ 1
2 maxj∈[n]

∑
i∈[m]:j∈Ti

1
m|Ti| . Specifically, when each Ti

contains k skills and each skill appears in km
n tasks, we have L ≤ 1

2n . Suppose the ability profile is linear with noise:
αℓ(s) = 1− (1− aℓ)s+ ε(s), where ε(s) ∼ Unif[−σ, σ]. Similarly, we can compute that

MinDera1(σ, a2, σ) =
1

2

∑
j∈[n]

∑
i∈[m]:j∈Ti

vi∑
i′∈[m] vi′

wj∑
j′∈[Ti]

wj′
sj1.

Then we have the following bound for γ1:

γ1 =
L
√
0.5nσ2 · ln(1/θ)

MinDerµ1
(σ1, µ2, σ2)

≤
maxj∈[n]

∑
i∈[m]:j∈Ti

vi∑
i′∈[m] vi′

wj∑
j′∈[Ti]

wj′
·
√
0.5nσ2 · ln(1/θ)∑

j∈[n]

∑
i∈[m]:j∈Ti

vi∑
i′∈[m] vi′

wj∑
j′∈[Ti]

wj′
sj1

.

Analysis for constant profiles. We select αℓ = cℓ +min {cℓ, 1− cℓ}Unif[−σ, σ] as constant profiles with noise level σ
as detailed in Section B.1. We still let Err(ζ) = 1

2n

∑n
j=1(ζj1 + ζj2), where L ≤ 1

2n . Note that MinDerc1(σ, c2, σ) =
1
2 .

Then we have the following bound for γ1:

γ1 =
L
√
0.5nσ2 · ln(1/θ)

MinDerc1(σ, c2, σ)
≤ σ ·

√
ln(1/θ)

2n
.

Analysis for polynomial profiles. We select αℓ ≡ 1− sβℓ +min
{
sβℓ , 1− sβℓ

}
Unif[−σ, σ] as polynomial profiles with

noise level σ. We still let Err(ζ) = 1
2n

∑n
j=1(ζj1 + ζj2), where L ≤ 1

2n . Then we have∣∣∣∣∂Erravg

∂β1
(β1, σ, β2, σ)

∣∣∣∣ = β1
2n

n∑
j=1

sβ1−1
j1 .

Note that this partial derivative is 0 when β1 = 0, which results in MinDerβ1(σ, β2, σ) = 0 and γ1 = ∞.

However, by the proof of Theorem C.1, it suffices to bound the partial derivative for β1 ∈ [βc1 − γ1, β
c
1 + γ1] instead of the

entire domain R≥0. Suppose we know that [βc1 − γ1, β
c
1 + γ1] ⊆ [0.5, 2]; this implies that

β1
2n

n∑
j=1

sβ1−1
j1 ≥ 1

4n

n∑
j=1

sj1.
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Figure 6. Heatmaps of productivity compression value PC = (P2 − P1) − (P ′
2 − P ′

1) by merging a low-skilled human worker with
action-level ability parameter a1 and a high-skilled human worker with action-level ability parameter a2 with a GenAI tool for different
ranges of (a1, a2) for the Computer Programmers example with default settings of τ = 0.45.

Thus, we have the following bound for γ1:

γ1 =
L
√
0.5nσ2 · ln(1/θ)
1
4n

∑n
j=1 sj1

≤ σ ·
√

2n · ln(1/θ)∑n
j=1 sj1

.

C.3. Proof of Theorem 3.3: Success gain from merging complementary workers

Similar to Section C.1, we extend Theorem 3.3 to handle a general noise model ε(s). The only difference is still the
introduction of MaxDisp.
Theorem C.5 (Extension of Theorem 3.3 to general noise models). Fix the job instance. Let θ ∈ (0, 0.5) be a confidence

level, and define: γ(1)1 :=
L·

√
MaxDispµ1 (σ

(1)
1 ,µ

(2)
2 ,σ

(2)
2 )·ln(1/θ)

MinDerµ1 (σ
(1)
1 ,µ

(2)
2 ,σ

(2)
2 )

, and γ(2)1 :=
L·

√
MaxDispµ1 (σ

(2)
1 ,µ

(2)
2 ,σ

(2)
2 )·ln(1/θ)

MinDerµ1 (σ
(2)
1 ,µ

(2)
2 ,σ

(2)
2 )

. If

Erravg(µ
(1)
1 − γ

(1)
1 , σ

(1)
1 , µ

(2)
2 , σ

(2)
2 ) ≤ τ ≤ Erravg(µ

(2)
1 + γ

(2)
1 , σ

(2)
1 , µ

(2)
2 , σ

(2)
2 ),

then under Assumption 3.1, we have: P12 − P2 ≥ 1− 2θ.

Proof. If Erravg(µ
(2)
1 + γ

(2)
1 , σ

(2)
1 , µ

(2)
2 , σ

(2)
2 ) ≥ τ , by the proof of Theorem 3.2, we know that

Erravg(µ
(2)
1 , γ

(2)
1 , µ

(2)
2 , σ

(2)
2 ) ≥ τ + γ

(2)
1 MinDerµ1

(σ
(2)
1 , µ

(2)
2 , σ

(2)
2 ) = τ + L ·

√
MaxDispµ1

(σ
(2)
1 , µ

(2)
2 , σ

(2)
2 ) · ln(1/θ).

By Inequality (4), we conclude that P2 ≤ θ. Similarly, by Erravg(µ
(1)
1 − γ

(1)
1 , σ

(1)
1 , µ

(2)
2 , σ

(2)
2 ) ≤ τ and Inequality (3), we

can obtain P12 ≥ 1− θ. Thus, ∆2 ≥ 1− 2θ, which completes the proof.

C.4. Proof of Corollary 3.4 and extension to distinct ability profiles

Similar to Section C.1, we extend Theorem 3.3 to handle a general noise model ε(s). The only difference is still the
introduction of MaxDisp.
Corollary C.6 (Extension of Corollary 3.4 to general noise models). Fix the job instance. Suppose both human workers
have the same decision-level abilities:

µ
(1)
1 = µ

(2)
1 = µ⋆1 > µ

(AI)
1 , σ

(1)
1 = σ

(2)
1 = σ

(AI)
1 = σ⋆1 .

Let θ ∈ (0, 0.5) be a confidence level, and for each ℓ ∈ {1, 2,AI}, define γ(ℓ)2 :=
L·

√
MaxDispµ2 (σ

(ℓ)
2 ,µ⋆1 ,σ

⋆
2 )·ln(1/θ))

MinDerµ2 (σ
(ℓ)
2 ,µ⋆1 ,σ

⋆
1 )

. If

max
{
Erravg(µ

⋆
1, σ

⋆
1 , µ

(AI)
2 − γ

(AI)
2 , σ

(AI)
2 ),Erravg(µ

⋆
1, σ

⋆
1 , µ

(2)
2 − γ

(2)
2 , σ

(2)
2 )

}
≤ τ ≤ Erravg(µ

⋆
1, σ

⋆
1 , µ

(1)
2 + γ

(1)
2 , σ

(1)
2 ),

then under Assumption 3.1, we have: PC ≥ 1− 2θ.
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Proof. By the assumption on the decision-level abilities, the merging of Wℓ and WAI must utilize a decision-level ability
profile parameterized by (µ⋆1, σ

⋆
1). Since Erravg(µ

⋆
1, σ

⋆
1 , µ

(2)
2 −γ(2)2 , σ

(2)
2 ) ≤ τ ≤ Erravg(µ

⋆
1, σ

⋆
1 , µ

(1)
2 +γ

(1)
2 , σ

(1)
2 ), it follows

from Theorem 3.3 that P2 − P1 ≥ 1− 2θ. Also, since Erravg(µ
⋆
1, σ

⋆
1σ

⋆
1 , µ

(AI)
2 − γ

(AI)
2 , σ

(AI)
2 ) ≤ τ ≤ Erravg(µ

⋆
1, σ

⋆
1 , µ

(1)
2 +

γ
(1)
2 , σ

(1)
2 ), it follows from Theorem 3.3 that P ′

1 − P1 ≥ 1− 2θ. Also note that P ′
1 ≤ P ′

2. Hence,

PC = |P2 − P1| − |P ′
2 − P ′

1| = P2 − P1 + P ′
1 − P ′

2.

If the merging of W2 and WAI utilizes W2’s action-level abilities, we have P2 = P ′
2 and hence,

PC = P2 − P1 + P ′
1 − P ′

2 = P ′
1 − P1 ≥ 1− 2θ.

Otherwise, if the merging of W2 and WAI utilizes WAI’s action-level abilities, we have P ′
2 = P ′

1 and hence,

PC = P2 − P1 + P ′
1 − P ′

2 = P2 − P1 ≥ 1− 2θ.

Overall, we have completed the proof.

Evaluating productivity compression with distinct ability profiles. Similar to Section 4, we investigate whether the
productivity compression effect induced by AI assistance persists when the ability profiles of human workers and GenAI
originate from different functional families.

Choice of parameters. We set the decision-level ability profiles of W1 and W2 to be linear with α(1)
1 (s) = α

(2)
1 (s) =

TrunN(1−0.78s, 0.0065; 0, 1), and define their action-level ability profiles as α(2)
ℓ (s) = TrunN(1−(1−aℓ)s, 0.0065; 0, 1).

We assume a2 > a1, representing two human workers with distinct skill levels. The parameter ranges are set as a1 ∈ [0, 0.2]
and a2 ∈ [0.3, 1], motivated by the observation that a = 0.22 corresponds to a job success probability of 0.55, characterizing
a medium-skilled worker. For the GenAI tool WAI, we define the decision-level ability as α(AI)

1 (s) = TrunN(1 −
0.92s, 0.0145; 0, 1) and the action-level ability as α(AI)

2 (s) = TrunN(0.8, 0.0145; 0, 1), such that the decision-level ability
is consistently weaker than that of Wℓ. We adopt the same merging scheme between human workers Wℓ and the GenAI tool
WAI. Recall that for ℓ ∈ {1, 2}, Pℓ denotes the job success probability of Wℓ before merging with WAI, and P ′

ℓ denotes the
corresponding probability after merging.

Analysis. Figure 6 presents a heatmap of PC := (P2−P1)− (P ′
2−P ′

1) as the ability parameters a1 and a2 vary. We observe
that PC increases with the ability gap a2 − a1, indicating that the benefit of merging is more pronounced for lower-skilled
workers. For instance, when a1 = 0.1 and a2 = 0.8, the productivity compression reaches PC = 0.8. These findings
confirm that the productivity compression effect from human-AI collaboration persists even when workers specialize in
different action-level subskills, thereby affirming our hypothesis.

C.5. Extending Theorem 3.2 to noise-dependent settings

We consider the noise-dependent setting introduced in Section 4. In this setting, a dependency parameter p ∈ [0, 1] controls
whether subskill errors are drawn from a shared latent factor β (with probability p) or independently (with probability
1− p). The following theorem extends Theorem 3.2, which corresponds to the independent case p = 0, to general p ∈ [0, 1].
Notably, the sensitivity window γ1 vanishes as p→ 1, indicating that stronger dependencies smooth out abrupt transitions.

Theorem C.7 (Phase transition in noise-dependent settings). Fix the job instance, action-level ability µ2, and noise
levels σ1, σ2. Let µc1 be the unique value such that the expected job error equals the success threshold:

Erravg(µ
c
1, σ1, µ2, σ2) = τ.

Let θ ∈ (0, 0.5) be a confidence level, p ∈ [0, 1] be a dependency parameter, and define the transition width: γ1 :=

L
√

MaxDispµ1 (σ1,µ2,σ2)·max{
√

ln
2(1−p)
θ ,

√
n ln 2p

θ }
MinDerµ1 (σ1,µ2,σ2)

, where L is the Lipschitz constant of the job error function. Then the job
success probability satisfies:

P ≤ θ if µ1 ≤ µc1 − γ1 and P ≥ 1− θ if µ1 ≥ µc1 + γ1.
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(a) |P ′| v.s. a (b) |P ′| v.s. σ

Figure 7. Plots illustrating the relationship between the absolute derivatives |P ′
a| and |P ′

σ| and a, σ for the Computer Programmers
example with default settings of (a, σ, τ) = (0.22, 0.08, 0.45).

Proof. The main difference is that the probability bound by Inequality (2) in the proof of Theorem 3.2 changes to be:

Pr
ζjℓ

[Err(ζ) ≤ Erravg(µ1, σ1, µ2, σ2)− t] ≤ (1− p) · e−
2t2

L2sg(µ1,σ1,µ2,σ2) + p · e−
2t2

L2n·sg(µ1,σ1,µ2,σ2) .

The choice of γ1 ensures the right-hand side to be at most θ, which completes the proof.

D. Additional implications of theoretical results
We empirically analyze the impact of workers’ ability profiles on job success probability. In Section D.1, we illustrate how
our framework can be used to determine strategies to upskill workers. In Section D.2, we analyze the impact of evaluation
bias on workers’ abilities.

D.1. Evaluating intervention effectiveness: Boosting ability v.s. reducing noise

As discussed in Section 3 (see also Figure 5(b)), both increasing the ability parameter and reducing the noise level are efficient
interventions for increasing the job success probability. We consider the “Computer Programmers” example with independent
abilities across subskills (p = 1) in Section 4. Then, the job error function Err is defined as in Equation (13) and the subskill
numbers are as in Equation (11). We set the subskill ability profiles to be α(1)

1 (s) = TrunN(1 − (1 − a)s, σ2/2; 0, 1)

and α(1)
2 (s) = TrunN(1− 0.78s, σ2/2; 0, 1), representing a human worker. We investigate which parameter-a, σ-has the

greatest impact on P . This analysis is crucial for guiding strategies to upskill workers for specific jobs. To this end, we first
compute the derivatives of P with respect to a and σ. We denote |P ′

a| and |P ′
σ| as the absolute values of the derivative of P

with respect to a and σ, respectively. We plot them in Figure 7 for the default parameters (a, σ, τ) = (0.22, 0.08, 0.45).

Figure 7(a) reveals that for σ = 0.08, when a ∈ [0, 0.15], |P ′
a| is larger; while when a ∈ [0.15, 1], |P ′

σ| is larger. In Figure
7(b), for a = 0.22, |P ′

σ| is always larger for any σ ∈ [0, 1]. Thus, in this specific example, depending on the ranges of (a, σ),
either |P ′

a| or |P ′
σ| may be larger, demonstrating that no single parameter universally outweighs the others in importance.

D.2. Analyzing the impact of inaccurate ability evaluation

We demonstrate how Theorem 3.2 highlights the importance of accurately evaluating workers’ abilities for companies.
Specifically, we consider the scenario where a worker’s ability evaluations are biased and discuss the consequences of this
bias. Mathematically, let the worker’s true decision-level ability parameter be µ1, while the observed parameter is µ̂1 = βµ1

for some β ∈ (0, 1), reflecting bias in the evaluation process. This bias model is informed by and builds upon a substantial
body of research on selection processes in biased environments (Kleinberg & Raghavan, 2018; Celis et al., 2020). Below,
we quantify the impact of such bias β on workers.
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Figure 8. Plots illustrating the relationship between the ratio rβ and the bias parameter β for the Computer Programmers example with
default settings of τ = 0.45.

Theoretical analysis. Suppose parameters µ⋆ℓ , σ
⋆
ℓ satisfy that Erravg(µ

⋆
1, σ

⋆
1 , µ

⋆
2, σ

⋆
2) = τ . Let θ ∈ (0, 0.5). Let γ1 :=

L·
√

MaxDispµ1 (σ1,µ2,σ2)·ln 1
θ

MinDerµ1 (σ1,µ2,σ2)
. According to Theorem 3.2, if µ1 ≥ µ⋆1+γ1, the job success probability P (α1, α2, h, g, f, τ) ≥

1 − θ, indicating that the worker fits the job. However, the evaluated success probability P̂ is based on a weaker ability
profile α̂, parameterized by (µ̂1, σ1). From Theorem 3.2, if µ̂1 ≤ µ⋆1 − γ1, the evaluated success probability P̂ ≤ θ,
implying that the evaluation process concludes the worker does not fit the job. Since µ̂1 = βµ1, we conclude that P̂ ≤ θ

if µ1 ≤ 1
β (µ

⋆
1 − γ1). Note that 1

β (µ
⋆
1 − γ1) > µ⋆1 + γ1 when β <

µ⋆1−γ1
µ⋆1+γ1

. Recall that γ1 = O(σ

√
ln 1
θ

n ) in the linear

ability example shown in Section 3.3, which is o(1) when σ ≪ 1√
ln 1
θ

or n ≫ ln 1
θ . Thus, the condition β <

µ⋆1−γ1
µ⋆1+γ1

is β < 1 − o(1). Consequently, for workers with ability parameter µ1 ∈ [µ⋆1 + γ1,
1
β (µ

⋆
1 − γ1)], the evaluated success

probability P̂ ≤ θ, while the true success probability P ≥ 1− θ. Thus, even a slight bias in ability evaluations can lead to
dramatic errors in predicting the worker’s job success probability, potentially causing companies to lose qualified workers.

Simulation for one worker. We study the ratio of high-qualified workers with P ≥ 0.8 who are mistakenly evaluated
as insufficiently qualified with P̂ ≤ 0.6 due to evaluation bias. Again, we take the example of “Computer Programmers”
as an illustration. We set the decision-level ability profile to be TrunN(1 − (1 − a)s, 0.0065; 0, 1) and the action-level
ability profile to be TrunN(1 − 0.78s, 0.0065; 0, 1), representing human workers. We assume the ability parameter a
follows from the density Unif[0, 1] for mathematical simplicity (can be changed to e.g., a truncated normal distribution).
By Figure 3(a), we know that P ≥ 0.8 if a ≥ 0.34. Thus, 66% of workers are highly qualified for this job. In contrast,
P̂ ≤ 0.6 if â = βa ≤ 0.25, i.e., a ≤ 0.25

β . Thus, high-qualified workers with ability parameter a ∈ [0.34, 0.25β ]
are mistakenly evaluated as insufficiently qualified. Then, the ratio of these workers among high-qualified workers is
rβ = min

{
1,max

{
0, 0.25β − 0.34

}
/0.66

}
; see Figure 8 for a visualization. We note that rβ > 0 when β ≤ 0.64, and it

increases super-linearly to 1 as β decreases from 0.64 to 0.25.

Simulation for merging two workers. Next, we study how inaccurate ability estimation affects the gain in success
probability from the merging process. We extend our merging analysis by introducing a trust parameter λ to the merging
experiment in Section 4, which models imperfect merging by letting the estimated ability ĉ = λc deviate from the true
action-level ability c of worker W2. We then assign action-level subskills to W2 when its scaled ability, λc, exceeds W1’s
ability (i.e., 1− 0.78sj2 ≤ λc, even though W2 completes skills at level c.

Figure 9 plots the probability gain ∆ = Pmerge −max{P1, P2} across different values of c and λ. We find that even modest
errors in λ can sharply reduce ∆. For example, when λ = 1.14 and c = 0.2, the probability gain becomes ∆ = −0.2,
indicating that merging reduces job success. This illustrates the critical importance of accurate ability estimation, and
complements the findings in Section D.2 on belief-driven merging.
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(a) ∆ v.s. c (b) ∆ v.s. λ (c) Heatmap of ∆

Figure 9. Plots illustrating the relationship between the probability gain ∆ = Pmerge −max{P1, P2} and the W2’s action-level ability
parameter c and trust parameter λ to W2’s action-level ability for the Computer Programmers example with default settings of τ = 0.45.
Here, λ > 1 indicates an overestimate of W2’s action-level ability, while λ < 1 indicates an underestimate. We assign action-level
subskills to W2 if its evaluated ability λc dominates that of W1, i.e., 1− 0.78sj2 ≤ λc. Notably, the probability gain ∆ can be negative
due to the imperfect merging introduced by the trust parameter.

E. Omitted details from Section 4
We provide additional details for the examples stated in Section 4.

O*NET. O*NET, developed by the U.S. Department of Labor, is a comprehensive database providing standardized
descriptions of occupations, including required skills, knowledge, abilities, and work activities. It helps job seekers,
employers, educators, and policymakers understand workforce needs and trends. O*NET aids career exploration, job
description development, curriculum design, and labor market analysis. Employers use it to identify workforce needs, while
educators align training programs with job market demands. O*NET provides skill proficiency levels but lacks granularity in
distinguishing decision-making from action-based abilities. GenAI excels in technical execution but struggles with strategic
problem-solving. Enhancing O*NET to capture these distinctions would improve AI-human job interaction analysis and
workforce planning.

E.1. Details of deriving job data from O*NET

The job of “Computer Programmer” consists of n = 18 skills and m = 17 tasks, together with their descriptions (link:
https://www.onetonline.org/link/summary/15-1251.00). O*NET also offers the importance of each
task, which may influence the choice of job error function f . The task importance vector is

v = (.86, .85, .84, .79, .76, .74, .65, .64, .63, .57, .57, .57, .56, .63, .56, .49, .46), (6)

where vi indicates the importance level of task i. Additionally, O*NET offers the importance and proficiency level of each
skill. The skill importance vector is

w = (.5, .53, .53, .53, .5, .6, .56, .56, .56, .53, .63, .6, .53, .53, .69, .69, .69, .94) ∈ [0, 1]n, (7)

where wj indicates the importance level of skill j, which may influence the choice of task error function g. The skill
proficiency vector is

s = (.41, .43, .45, .45, .45, .46, .46, .46, .46, .48, .5, .5, .52, .54, .55, .55, .57, .7) ∈ [0, 1]n, (8)

where sj represents the criticality of skill j for this job. We summarize how to derive this data in Figure 10. The derived
data for tasks and skills are summarized in Tables 1 and 2, respectively.

E.2. Details of deriving workers’ abilities from Big-bench Lite

We show how to formulate ability profiles for human workers and GenAI tools via skill evaluations in Big-bench Lite (bench
authors, 2023). BIG-bench Lite (BBL) is a curated subset of the Beyond the Imitation Game Benchmark (BIG-bench),
designed to evaluate large language models efficiently. While BIG-bench contains over 200 diverse tasks, BBL selects 24
representative tasks covering domains such as code understanding, multilingual reasoning, logical deduction, and social bias
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(a) List of Tasks (b) List of skills

(c) Task importance vi (d) Skill importance sj

(e) Skill proficiency wj : Step 1 (f) Skill proficiency wj : Step 2

Figure 10. Deriving job data for computer programmers from O*NET. Subfigures (a) and (b) are on the “Summary” page of the job (link:
https://www.onetonline.org/link/summary/15-1251.00). Subfigures (c) and (d) are on the “Details” page. Subfigures
(e) and (f) show how to obtain skill proficiencies sjs from O*NET.
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Table 1. Data for tasks associated with the job of “Computer Programmers.”
Task id Task name Importance (v%)

1 Write, analyze, review, and rewrite programs, using workflow chart and diagram,
and applying knowledge of computer capabilities, subject matter, and symbolic logic 86

2 Correct errors by making appropriate changes and rechecking the program to ensure that the desired results are produced 85
3 Perform or direct revision, repair, or expansion of existing programs to increase operating efficiency or adapt to new requirements 84

4 Write, update, and maintain computer programs or software packages to handle specific jobs such as
tracking inventory, storing or retrieving data, or controlling other equipment 79

5 Consult with managerial, engineering, and technical personnel to clarify program intent, identify problems, and suggest changes 76

6 Conduct trial runs of programs and software applications to be sure they will produce the desired information
and that the instructions are correct 74

7 Prepare detailed workflow charts and diagrams that describe input, output, and logical operation,
and convert them into a series of instructions coded in a computer language 65

8 Compile and write documentation of program development and subsequent revisions,
inserting comments in the coded instructions so others can understand the program 64

9 Consult with and assist computer operators or system analysts to define and resolve problems in running computer programs 63

10 Perform systems analysis and programming tasks to maintain and
control the use of computer systems software as a systems programmer 57

11 Write or contribute to instructions or manuals to guide end users 57

12 Investigate whether networks, workstations, the central processing unit of the system,
or peripheral equipment are responding to a program’s instructions 57

13 Assign, coordinate, and review work and activities of programming personnel 56
14 Train subordinates in programming and program coding 63
15 Develop Web sites 56
16 Train users on the use and function of computer programs 49
17 Collaborate with computer manufacturers and other users to develop new programming methods 46

Table 2. Data for skills associated with the job of “Computer Programmer”; sorted in an increasing order of proficiency.
Skill id Skill name Importance (w%) Proficiency (s%) Decomposition (λ) Decision (sj1) Action (sj2)

1 Coordination 50 41 0 0 0.41
2 Social Perceptiveness 53 43 0 0 0.43
3 Mathematics 53 45 1 0.45 0
4 Time Management 53 45 1 0.45 0
5 Monitoring 50 45 1 0.45 0
6 Systems Analysis 60 45 0.6 0.27 0.18
7 Judgment and Decision Making 56 46 0.7 0.322 0.138
8 Writing 56 46 0.4 0.184 0.276
9 Active Learning 56 46 0.4 0.184 0.276

10 Speaking 53 48 0 0 0.48
11 Quality Control Analysis 63 50 0.3 0.15 0.35
12 Reading Comprehension 60 50 1 0.5 0
13 Systems Evaluation 53 52 1 0.52 0
14 Operations Analysis 53 54 0.6 0.324 0.216
15 Complex Problem Solving 69 55 0.7 0.385 0.165
16 Critical Thinking 69 55 0.6 0.33 0.22
17 Active Listening 69 57 0 0 0.57
18 Programming 94 70 0.4 0.28 0.42
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assessment. bench authors (2023) assessed the accuracies of the best human rater, the average human rater, and the best
LLM for these skills in Big-bench Lite. By Figure 1(c) of (bench authors, 2023), we know that the best LLM refers to PaLM
(Chowdhery et al., 2023).

Our goal is to formulate the ability profile of a human worker using the data for the average human rater, and formulate the
ability profile for a GenAI tool using the data for the best LLM. Their accuracies for 24 skills are summarized in Table 3.
Note that the accuracy corresponds to the average ability of workers. Thus, to formulate ability profiles, we need to know
the proficiencies of these skills and the variance in the workers’ abilities. Below, we illustrate how to derive this data.

Deriving skill proficiencies. We use GPT-4o to derive proficiencies for the 24 skills and obtain a skill proficiency vector
in [0, 1]24:

s = (0, .87, .65, 1, .33, .98, .60, .80, .91, .27, 0, .20, .20, .75, .71, .25, .00, .73, .07, .91, .64, .00, .64, .50).

The prompt is: “# Table 3. Given the list of 24 skills in Big-bench Lite, please construct a 24-vector s where sj represents
the proficiency level of skill j with 0 for the easiest and 1 for the hardest.”

Deriving the ability profiles. Given accuracies in Table 3, we have the accuracies of the average human rater and the
best LLM. Combining the accuracies and the skill proficiency vector s, we observe that linear functions can fit skill ability
profiles of the average human rater and LLM; see Figure 11. We fit the ability of the average human rater by 1− 0.78s,
whose estimation variance is 0.013. Also, we fit the ability of the LLM by 1− 0.92s, whose estimation variance is 0.029.
Additionally, by Figure App.9 of (bench authors, 2023), we observe that the noise distribution of abilities is close to a
truncated normal distribution. Overall, we formulate the ability profiles of a human worker (W1) and a GenAI tool (W2) to
be

α(1)(s) = TrunN(1− 0.78s+ 0.22, 0.013; 0, 1) and α(2)(s) = TrunN(1− 0.92s+ 0.08, 0.029; 0, 1), (9)

respectively, where TrunN(µ, σ2; 0, 1) is a truncated normal distribution with mean µ and variance σ2 on interval [0, 1].
These ability profiles represent that both human workers and GenAI tools excel in easier skills but struggle with more
challenging ones.

Figure 11. Accuracies of the average human rater and LLM v.s. skill proficiency for tasks in Big-bench Lite. We use linear functions to fit
the plots. We fix the constant parameter c = 1 for ease of analysis such that the slope parameter a can vary from 0 to 1. The variances for
human and LLM are 0.013 and 0.029, respectively.

E.3. Details for subskill division, task-skill dependency, and the choices of error functions

This section details how our framework can be adapted to the derived data from O*NET and Big-bench Lite.

Deriving decision-level degree of skills. To derive subskill numbers, we first need to know the decision-level degree of a
skill. Suppose the decision-level subskill contributes λj-fraction and the action-level subskill contributes (1− λj)-fraction
for some λj ∈ [0, 1]. This quantization λj depends on both the skills and the considered jobs.

To this end, we first use GPT-4o to obtain the description of the decision and action aspects of each skill. According to the
descriptions, we also distinguish whether both the decision and action-level aspects can be evaluated separately. The prompt
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Table 3. Accuracies of average human raters and the best LLM for 24 skills in BIG-bench Lite; information from Figure 4 of (bench
authors, 2023). “NA” represents that the accuracy is unclear from the figure.

Skill Accruacy of average human rater Accuracy of the best LLM
auto debugging 0.15 NA

bbq lite json 0.73 0.73
code line description 0.6 0.46

conceptual combinations 0.83 0.48
conlang translation NA 0.5

emoji movie 0.94 0.9
formal fallacies 0.55 0.53

hindu knowledge NA 0.75
known unknowns 0.8 0.68

language identification NA 0.36
linguistics puzzles NA NA
logic grid puzzle 0.4 0.36
logical deduction 0.4 0.36

misconceptions russian NA 0.68
novel concepts 0.65 0.57

operators 0.46 0.36
parsinlu reading comprehension NA 0

play dialog same or different NA 0.63
repeat copy logic 0.39 0.12

strange stories 0.8 0.63
strategyqa 0.62 0.6

symbol interpretation 0.38 0.25
vitamin fact verification 0.63 0.57

winowhy NA 0.59

is “# Table 2. Given the list of skills for the job of Computer programmers from O*NET, please provide the description of
the decision-level and action-level aspects for each skill. Moreover, for each skill, determine which one of its decision and
action aspects is more essential and whether both decision-level and action-level aspects can be evaluated separately. Output
a LaTeX table in a box containing the above information.” See Table 4 for a summary. For instance, the decision and action
aspects of “Active Listening” are “Understanding Context” and “Engagement”, respectively. It is an action-type skill and the
decision and action aspects are difficult to be assessed separately. For such inseparable skills, we set λj = 0 for action ones
and λj = 1 for decision ones. For the remaining separable skills, we use GPT-4o to derive a decision-level degree λj . This
concludes the generation of the following vector λ for decision-level degree:

λ = (0, 0, 1, 1, 1, .6, .7, .4, .4, 0, .3, 1, 1, .6, .7, .6, 0, .4) ∈ [0, 1]n. (10)

The prompt is “# Table 4. For each skill j with “Separable = Y”, please construct a decision-level degree λj ∈ [0, 1]
representing the decision-level degree while 1− λj represents the action-level degree of skill j.”

Deriving subskill numbers from skill proficiency and decision-level degree. First, we note that we can not measure
the decision and action aspects of some skills separately. We take “Active Listening” as an example to illustrate how to
determine subskill numbers for these skills. It is an action skill with λj = 0. Then, the difficulty of the decision-level
subskill should be the easiest one, while the action-level subskill should be equal to the skill proficiency. This corresponds
to (sj1, sj2) = (0, sj). The case of λj = 1 is symmetric. Thus, we provide the following assumption.

Assumption E.1 (Extreme points for subskill allocation). We assume if λj = 1, (sj1, sj2) = (sj , 0); and if λj = 0,
(sj1, sj2) = (0, sj).

For the remaining skills j that can be well divided into decision and action aspects, we have λj ∈ (0, 1). To determine sj1
and sj2, we first analyze the desired properties of them. We take Programming as an example.
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Table 4. Subskill descriptions. In the column of “Separable”, “Y” represents that the decision-level and action-level aspects of skills
can be tested separately; “N” represents that the skill can not be tested independently; and finally, “Decision”/“Action” represents that
skills cannot be tested separately but can be tested independently, and the main aspect is decision/action, respectively. For “N” skills, a
possibility is to use group-based assessments, e.g., assign a group project with clear dependencies among team members to test Social
Perceptiveness + Coordination; or simulate a customer service scenario where candidates must listen to customer concerns and respond
effectively to test Speaking + Active Listening.

Skill id Skill name Decision Action Separable

1 Coordination Planning Interactions -
Identifying interdependencies

Adjusting Actions - Modifying
behavior to align with others N, action

2 Social Perceptiveness Recognizing Cues -
Understanding social signals

Response - Adjusting behavior
based on social understanding N, action

3 Mathematics Conceptual Analysis -
Choosing appropriate methods

Calculation - Executing
mathematical computations Decision

4 Time Management Prioritization - Deciding
task importance

Scheduling - Allocating
time to tasks N, decision

5 Monitoring Identifying Key Indicators -
Determining what to monitor

Observation - Actively
tracking performance Decision

6 Systems Analysis System Design - Understanding
how changes affect outcomes

Application - Using systems
knowledge to modify systems Y

7 Judgment and Decision Making Weighing Options - Assessing
risks and benefits

Execution - Choosing and
enacting the best course Y

8 Writing Planning Content - Structuring
and organizing ideas

Execution - Writing
clearly and coherently Y

9 Active Listening Understanding Context -
Interpreting information

Engagement - Showing
attentiveness through responses N, action

10 Speaking Content Selection -
Deciding what to convey

Delivery - Articulating
information effectively N, action

11 Quality Control Analysis Standards Evaluation -
Deciding quality benchmarks

Inspection - Physically testing
or inspecting outcomes Y

12 Reading Comprehension Interpretation - Extracting
key ideas from text

Application - Using information
in a practical context Decision

13 Systems Evaluation Assessing Performance - Setting
criteria for evaluation

Monitoring - Observing system
function relative to criteria N, decision

14 Operations Analysis Determining Requirements -
Identifying needs

Implementation - Designing
solutions based on analysis Y

15 Complex Problem Solving Analyzing Options -
Identifying potential solutions

Implementation - Applying
solutions to problems Y

16 Critical Thinking Evaluating Alternatives -
Comparing pros and cons

Logical Application - Applying
chosen solution Y

17 Active Learning Identifying Relevance -
Deciding useful information

Application - Using new
information to solve tasks Y

18 Programming Designing Algorithms -
Choosing the best approach

Writing Code - Implementing
code in specific languages Y
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• Fixing λj and increasing sj (i.e., increasing the programming difficulty), we expect that the difficulties of both decision
and action aspects increase, leading to an increase in sj1 and sj2.

• Fixing sj and increasing λj (i.e., increasing the importance of decision-making in programming), we expect that sj1 is
closer to sj . Specifically, when λj = 1, we have sj1 = sj by Assumption E.1. Moreover, we expect that sj2 decreases
since the requirement of action-level becomes easier. Symmetrically, as λj decreases, we expect that sj1 decreases and
sj2 is closer to sj .

These desired properties motivate the following assumption.

Assumption E.2 (Monotonicity for subskill allocation). We assume 1) sj1 and sj2 are monotonically increasingly as sj;
and 2) When λj increases from 0 to 1, sj1 is monotonically increasing from 0 to sj while sj2 is monotonically decreasing
from sj to 0.

Finally, note that sj1 and sj2 are derived from skill proficiency sj and λj only affects the allocation instead of the total skill
difficulty. Thus, we would like a recovery of sj using sj1 and sj2. Observed from Assumption E.1, we may expect that
sj1 + sj2 = sj holds. Accordingly, we have the following assumption.

Assumption E.3 (Subskill complementarity assumption). We assume that sj1 + sj2 = sj .

Under Assumptions E.1-E.3, we conclude the following unified form of sj1 and sj2:

sj1 = ψ(λj)sj and sj2 = (1− ψ(λj))sj ,

where ψ(·) : [0, 1] → [0, 1] is a monotonically increasing function with ψ(0) = 0 and ψ(1) = 1. The easiest way is to select
ψ(λ) = λ, which results in

s1 = (0, 0, .45, .45, .45, .27, .322, .184, .184, 0, .15, .5, .52, .324, .385, .33, 0, .28) ∈ [0, 1]n and
s2 = (.41, .43, 0, 0, 0, .18, .138, .276, .276, .48, .35, 0, 0, .216, .165, .22, .57, .42) ∈ [0, 1]n.

(11)

This choice makes sj1 and sj2 proportional to λj . Other choices of ψ include ψ(λ) = λ2, ψ(λ) = λ
λ+1−(1−λ)e−λ , and so

on.

Deriving subskill ability profiles. We provide an approach to decompose skill ability profiles α to subskill ability profiles
α1 and α2. When α(s) ∼ TrunN(1− (1− a)s, σ2; 0, 1) and the decision-level degree is λ ∈ [0, 1], we set

α1(s) = α2(s) = TrunN(1− (1− a)s, σ2/2; 0, 1).

This formula ensures that

1− α1(sj1) + 1− α2(sj2) = 2− TrunN(1− (1− a)sj1, σ
2/2; 0, 1)− TrunN(1− (1− a)sj2, σ

2/2; 0, 1)

≈ TrunN((1− a)(sj1 + sj2), σ
2; 0, 1) ≈ 1− TrunN(1− (1− a)(sj1 + sj2), σ

2; 0, 1) = 1− α(sj),

where the last equation applies the property that sj1 + sj2 = sj . This ensures that the distribution of h(ζj1, ζj2) is close
to first draw X ∼ α(sj) and then outputs 1−X . Thus, we can (approximately) recover the skill ability profile via such
subskill ability division by setting the skill success probability function h(ζ1, ζ2) = ζ1 + ζ2. Consequently, we have

α
(1)
ℓ (s) = TrunN(1− 0.78s, 0.0065; 0, 1) and α(2)

ℓ (s) = TrunN(1− 0.92s, 0.0145; 0, 1). (12)

In conclusion, we provide an approach to divide the data on skills into subskill numbers and ability profiles.

Details for deriving task-skill dependency. Given the descriptions of tasks and skills for the job of “Computer Pro-
grammers”, we use GPT-4o to generate the task-skill dependency Tis; see Figure 12. The prompt is: “# Tables 1
and 2. Given a list of m = 17 tasks with their descriptions and a list of n = 18 skills with their descriptions
in the job of Computer Programmers, please construct a subset Ti ⊆ [n] for each task i ∈ [m] that contains all
skills j associated to task i.” The resulting task-skill dependency is: T1 = [6, 8, 9, 16, 18], T2 = [5, 7, 11, 16, 18],
T3 = [5, 13, 14, 16, 18], T4 = [1, 4, 13, 18], T5 = [2, 7, 10, 17], T6 = [6, 11, 16, 18], T7 = [6, 8, 9, 18], T8 = [8, 11, 16, 18],
T9 = [1, 2, 10, 17], T10 = [5, 13, 14, 18], T11 = [2, 8, 9, 10], T12 = [7, 13, 14, 18], T13 = [1, 4, 7, 10], T14 = [7, 8, 16, 18],
T15 = [6, 11, 16, 18], T16 = [7, 10, 17, 18], and T17 = [9, 16, 17, 18].
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Figure 12. Task-skill dependency graph for the Computer Programmers example. In this graph, T1 = [6, 8, 9, 16, 18], T2 =
[5, 7, 11, 16, 18], T3 = [5, 13, 14, 16, 18], T4 = [1, 4, 13, 18], T5 = [2, 7, 10, 17], T6 = [6, 11, 16, 18], T7 = [6, 8, 9, 18],
T8 = [8, 11, 16, 18], T9 = [1, 2, 10, 17], T10 = [5, 13, 14, 18], T11 = [2, 8, 9, 10], T12 = [7, 13, 14, 18], T13 = [1, 4, 7, 10],
T14 = [7, 8, 16, 18], T15 = [6, 11, 16, 18], T16 = [7, 10, 17, 18], and T17 = [9, 16, 17, 18].

Choice of error functions. As discussed above, we select the skill error function h to be h(ζ1, ζ2) := ζ1 + ζ2 that takes
realized subskill abilities ζ1, ζ2 as inputs and outputs a skill completion quality. This choice of h aims to recover the
derived skill ability function α from Big-bench Lite. Using the skill importance w, we select the task error function g to
be g((hj)j∈Ti) :=

1∑
j∈Ti

wj

∑
j∈Ti wj · hj that takes associated skill completion qualities of task i as inputs and outputs

a task completion quality. This choice of g highlights the different importance of skills for the job. Finally, using the
task importance v, we select the job error function f to be f(g1, . . . , gm) := 1∑

j∈Ti
vi

∑
i∈[m] vi · gi that takes all task

completion qualities as inputs and outputs a job completion quality. Combining with the task-skill dependency, we can
compute the following function of job error rate composed by h, g, f : for any ζ ∈ [0, 1]2n,

Err(ζ) := 0.04(ζ1,1 + ζ1,2) + 0.04(ζ2,1 + ζ2,2) + 0.03(ζ4,1 + ζ4,2) + 0.03(ζ5,1 + ζ5,2) + 0.05(ζ6,1 + ζ6,2)

+ 0.07(ζ7,1 + ζ7,2) + 0.06(ζ8,1 + ζ8,2) + 0.05(ζ9,1 + ζ9,2) + 0.06(ζ10,1 + ζ10,2) + 0.05(ζ11,1 + ζ11,2)

+ 0.05(ζ13,1 + ζ13,2) + 0.04(ζ14,1 + ζ14,2) + 0.11(ζ16,1 + ζ16,2) + 0.06(ζ17,1 + ζ17,2)

+ 0.26(ζ18,1 + ζ18,2).

(13)

Overall, we show how to derive all the data for using our framework. We can simulate that the job success probabilities
of W1 and W2 are P1 = 0.55 and P2 = 0.00, respectively. We also provide a flow chart to summarize this procedure; see
Figure 13. We remark that we can compute P1 and P2 even without subskill division, i.e., only using data including skill
proficiencies as in Equation (8), skill ability profile as in Equation (9), and the function of job error rate as in Equation (13).
For τ = 0.45, we obtain that P1 = 0.84 and P2 = 0.00. The value of P1 is different but not too far from that computed
using the subskill division, which is convincing of the reasonability of our subskill division approaches.
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Figure 13. A flow chart for the Computer Programmers example that illustrates how to use our framework to assess job-worker fit.

E.4. Robustness across alternative modeling choices

Besides the use of the derived job and worker data in Section 4, we also do simulations with alternative modeling choices to
validate the robustness of our findings.

Alternative error functions. We replace the job/task error aggregation functions g and f with max to simulate more
fragile task environments; see Figures 14 and 15. The main patterns remain consistent with those for average error functions,
though line-crossings disappear due to monotonicity in the max-based error aggregation.

Alternative ability distributions. We substitute truncated normals with uniform noise in ability profiles (Figures 16 and
17), verifying that our key findings hold across distributions.

Robustness to task-skill graph variations. We randomly modify 5 edges in the task-skill dependency graph (Figures 18
and 19). Despite these changes, the phase transition behavior and heatmaps remain stable.
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(a) P v.s. a (b) P v.s. p (c) Heatmap of P

Figure 14. Plots illustrating the relationship between the success probability P (α1, α2, h, g, f, τ) and the ability parameter a and
dependency parameter p for the Computer Programmers example with default settings of (σ, τ) = (0.08, 0.6), replacing the error
functions g, f from weighted average in Section 4 to max. Note that we increase τ from 0.45 (for weighted average) to 0.6 (for max),
since the resulting error rate of max is higher. The job structure and worker ability profiles follow the same design as Figure 3 in our main
paper, demonstrating the robustness of our empirical results for the job error rate function JER.

(a) Heatmap of Pmerge (b) Heatmap of ∆

Figure 15. Heatmaps of job success probability Pmerge and the probability gain ∆ = Pmerge −max {P1, P2} by merging two workers
for different ranges of (a, c) for the Computer Programmers example with default settings of τ = 0.6, replacing the error functions
g, f from weighted average in Section 4 to max. Note that we increase τ from 0.45 (for weighted average) to 0.6 (for max), since the
resulting error rate of max is higher. The job structure and worker ability profiles follow the same design as Figure 4 in our main paper,
demonstrating the robustness of our empirical results for the job error rate function JER.

(a) P v.s. a (b) P v.s. p (c) Heatmap of P

Figure 16. Plots illustrating the relationship between the success probability P (α1, α2, h, g, f, τ) and the ability parameter a and
dependency parameter p for the Computer Programmers example with default settings of (σ, τ) = (0.2, 0.4), replacing the truncated
normal noise in Section 4 with the uniform noise. Setting σ = 0.2 ensures that the variance of the uniform distribution matches that of the
truncated normal distribution. The job structure and the job error rate function JER follow the same design as Figure 3 in our main paper,
demonstrating the robustness of our empirical results for worker ability profiles.
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(a) Heatmap of Pmerge (b) Heatmap of ∆

Figure 17. Heatmaps of job success probability Pmerge and the probability gain ∆ = Pmerge −max {P1, P2} by merging two workers
for different ranges of (a, c) for the Computer Programmers example with default settings of (σ1, σ2, τ) = (0.2, 0.29, 0.4), replacing the
truncated normal noise in Section 4 with the uniform noise. The variance parameters σ1 and σ2 are chosen so that the variance of the
uniform noise for both workers aligns with that of the truncated normal distribution. The job structure and the job error rate function JER
follow the same design as Figure 4 in our main paper, demonstrating the robustness of our empirical results for worker ability profiles.

(a) P v.s. a (b) P v.s. p (c) Heatmap of P

Figure 18. Plots illustrating the relationship between the success probability P (α1, α2, h, g, f, τ) and the ability parameter a and
dependency parameter p for the Computer Programmers example with default settings of (σ, τ) = (0.08, 0.45), randomly shifting five
edges in the task-skill dependency graph. The worker ability profiles and the job error rate function JER follow the same design as Figure
3 in our main paper, demonstrating the robustness of our empirical results for job structure.

(a) Heatmap of Pmerge (b) Heatmap of ∆

Figure 19. Heatmaps of job success probability Pmerge and the probability gain ∆ = Pmerge −max {P1, P2} by merging two workers
for different ranges of (a, c) for the Computer Programmers example with default settings of τ = 0.45, randomly shifting five edges in
the task-skill dependency graph. The worker ability profiles and the job error rate function JER follow the same design as Figure 4 in our
main paper, demonstrating the robustness of our empirical results for job structure.
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