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Abstract

The stock market provides a rich well of infor-001
mation that can be split across modalities, mak-002
ing it an ideal candidate for multimodal evalu-003
ation. Multimodal data plays an increasingly004
important role in the development of machine005
learning and has shown to positively impact006
performance. But information can do more007
than exist across modes— it can exist across008
time. How should we attend to temporal data009
that consists of multiple information types?010
This work introduces (i) the MEANT model,011
a Multimodal Encoder for Antecedent informa-012
tion and (ii) a new dataset called TempStock,013
which consists of price, Tweets, and graphi-014
cal data with over a million Tweets from all of015
the companies in the S&P 500 Index. We find016
that MEANT improves performance on exist-017
ing baselines by over 15%, and that the textual018
information affects performance far more than019
the visual information on our time-dependent020
task from our ablation study. 1021

1 Introduction022

Recently, multimodal models have garnered se-023

rious momentum, with the release of large pre-024

trained architectures such as Microsoft’s Kosmos-1025

(Huang et al., 2023) and OpenAI’s GPT-4 (OpenAI026

et al., 2023). Their general use has exploded in027

many domains, such as language and image pro-028

cessing (Lu et al., 2019; Kim et al., 2021; Huang029

et al., 2023). Particularly interesting to this study030

is the deployment of multimodal models on time-031

dependent environments, where recent successes032

have shown that event driven models processing033

multiple modalities are far more performant on034

stock market tasks than previously state of the art035

(SOTA) algorithms focusing purely on price infor-036

mation (Li et al., 2021; Zhang et al., 2022). Lan-037

guage data from news and social media sources038

have shown to greatly increase the performance of039

1The code and dataset will be made available upon publi-
cation.

models for price prediction (Li et al., 2021; Zhang 040

et al., 2022; Bybee et al., 2023; Mittermayer and 041

Knolmayer, 2006; Xu and Cohen, 2018). However, 042

these approaches typically lack attention compo- 043

nents specifically designed to process inputs with 044

sequential, time-dependent information (Li et al., 045

2021; Sun et al., 2017; Zhang et al., 2022; Xu and 046

Cohen, 2018). This type of data is particularly 047

important when making predictions about stock 048

prices or market movements, as price prediction 049

is a time series task (Zhang et al., 2022; Xu and 050

Cohen, 2018). 051

In this work, we introduce MEANT, a multi- 052

modal model architecture with a novel, tempo- 053

rally focused self-attention mechanism. We extract 054

image features using the TimeSFormer architec- 055

ture (Bertasius et al., 2021) to find relationships 056

in longer range information (i.e a graph of stock 057

prices over a month), while extracting language 058

features from social media information to pick up 059

more immediate trends (e.g.: Tweets pertaining to 060

stock prices over a five day period). Furthermore, 061

we release TempStock, a multimodal stock-market 062

dataset that is designed to be sequentially processed 063

in chunks of varying lag periods. 064

2 Related Work 065

Multimodal Models for Financial Twitter Data 066

Several studies have employed natural language 067

processing (NLP) techniques to financial markets, 068

giving birth to the field of natural language-based 069

financial forecasting (NLFF). Many of these stud- 070

ies have focused on public news (Ashtiani and 071

Raahemi, 2023; Bybee et al., 2023). However, 072

social media presents more time-sensitive infor- 073

mation from active investors. Thus, for short term 074

analysis, many researchers have begun to focus 075

on Tweets for feature extraction (Araci, 2019; Wu 076

et al., 2018), through which some have combined 077

NLP techniques with traditional analysis on price 078

data (Huang et al., 2022) . Since Tweets often cor- 079
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respond to events as they happen in real time, such080

data is better suited for smaller windows (Xu and081

Cohen, 2018; Zhang et al., 2022). When work-082

ing with stock market data, combining the features083

extracted through Natural Language Processing084

(NLP) methods with price data has shown promis-085

ing results (Li et al., 2021; Zhang et al., 2022; Xu086

and Cohen, 2018). However, it is ineffective to feed087

the concatenated information to the model without088

encoding temporal dependencies (Li et al., 2021).089

Modeling media-aware stock movements is es-090

sentially a binary classification problem. Many091

traditional machine learning methods have been092

deployed to solve it, including SVMs and Bayesian093

classifiers (Huang et al., 2012; Wang, 2003; Zuo094

et al., 2012). More recently, researchers have ap-095

plied deep learning to the problem. Huang et al.096

(2016) used a convolutional neural network to ex-097

plore the impact of Tweets on the stock market.098

Sun et al. (2017) and Selvin et al. (2017) then099

employed a recurrent architecture, specifically an100

LSTM, to extract relevant sentiments from Twitter101

data for stock market analysis, making their model102

multimodal, as it could handel Tweets and price103

information. Li et al. (2021) built atop this archi-104

tecture, employing different tensor representations105

for their LSTM input to create more meaningful106

relationships between the price and Tweets data.107

Xu and Cohen (2018) introduced StockNet, a108

large generative architecture built atop generative109

architectures, particularly the Variational Auto En-110

coder (VAE). StockNet represented the first deep111

generative model for stock market prediction (Xu112

and Cohen, 2018). TEANet, the most relevant113

work to our own, similarly used an LSTM to114

process their final output, but used a BERT-style115

transformer to extract relevant features from the116

Tweets (Zhang et al., 2022). TEANet is a language117

model equipped to handle lag periods similarly118

to MEANT. They concatenate their language fea-119

tures to price data as an input for an LSTM and a120

subsequent softmax temporal encoding. We aban-121

don recurrence altogether, developing a novel tem-122

poral mechanism, entirely based upon traditional123

self-attention methods (Vaswani et al., 2017). The124

temporal processing in TEANet consists of con-125

catenation methods similar to our own, but they126

do not employ attention over time. Furthermore,127

their model was built to handle Tweets and price128

inputs alone. MEANT can handle images as well,129

employing a dual encoder architecture similar to130

that of Su et al. (2023). 131

Financial Twitter Datasets Previous financial 132

datasets have shown the power of Twitter data for 133

financial analysis (Pei et al., 2022; Araci, 2019; 134

Li et al., 2021). Twitter is powerful in its ability 135

to generate real time information about the mar- 136

ket before traditional newswires (Pei et al., 2022). 137

Souza et al. (2015) focused on Twitter as a resource 138

for examine financial dynamics in the retail sec- 139

tor. Pei et al. (2022) introduced TweetsFinSent, 140

a large corpus specifically for sentiment analysis. 141

Sun et al. (2017) introduced a dataset consisting of 142

Tweets and prices, where the Tweets information 143

served as a sentiment analysis accompaniment for 144

the price data. Xu and Cohen (2018) introduced the 145

StockNet-dataset, consisting of Tweets and price 146

information for a selection of 88 companies over 147

a two year period from 01/01/2014 to 01/01/2016. 148

Mao et al. (2012) matched Tweets with price in- 149

formation from companies in the S&P 500 dataset, 150

which is the most similar to the TempStock dataset 151

that we introduce below. 152

3 TempStock Dataset 153

We collected a new dataset containing 1,755,998 154

Tweets and price information from all of the compa- 155

nies in the S&P 500 from 4/10/2022 to 4/10/2023. 156

From the price information, we calculated
the Moving Average Convergence-Divergence
(MACD) (Appel, 2005) for each company over
a year. The MACD is built on the back of Exponen-
tial Moving Average (EMA) (Brown, 1964). The
EMA is defined as follows:

EMAt = (1− α) · EMAt−1 + α · yt

where t represents the day of EMA and yt repre- 157

sents the closing price on that day, or in the case 158

of the signal line, the MACD value on that day. α 159

represents the degree of decrease, where α = 2
t+1 . 160

The MACD consists of (i) an MACD line, which is 161

the difference between the fast EMA and the slow 162

EMA (commonly set to 12 days and 26 days re- 163

spectively), (ii) a signal line, which is the EMA of 164

the MACD line itself (usually over a 9 day period), 165

and (iii) a histogram, which is the difference be- 166

tween the MACD and the signal line. The MACD 167

indicator was chosen 2 because it has been shown 168

to perform well against other indicators in terms 169

2For more on this, see 6.3
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Figure 1: An example of a graph from our MACD data,
which displays the MACD (in blue) and the signal line
(in red) for MMM (3M) over a 26 day period. Along the
x-axis, we see 11 of the dates listed, and the the y-axis
shows the value of the aforementioned indicators. In
each bar lies the value of the MACD histogram, which is
the difference between the MACD (blue) and the Signal
line (red).

Description Count
Total Tweets 1,755,998
Total MACD Values 122,959

Table 1: TempStock-large Raw Numbers

of making accurate assertions about price direc-170

tions (Appel, 2005; Chio, 2022). From our MACD171

data, we created graphs of the MACD indicator and172

the corresponding signal line over 26 day periods,173

which served as our image inputs to the MEANT174

model. A example of the graph inputs can be seen175

in Figure 1.176

The MACD of each ticker in the subset was taken177

over a year period, along with the Tweets mention-178

ing that company for each day in that period. The179

MACD information was gathered using the Yahoo-180

Finance API (Finance, 2024), and the Tweets were181

scraped using the snscraper (JustAnotherArchivist,182

2021) in April 2023.183

TempStock contains Tweets, graphs, and MACD.
Each input is arranged into five day lag periods
leading up to target day t, consisting of five MACD
vectors,

M = [Mt−5,Mt−4,Mt−3,Mt−2,Mt−1]

five days of Tweets,

X = [Xt−5, Xt−4, Xt−3, Xt−2, Xt−1]

and five images containing graphs of the MACD
indicator over 26 days.

G = [Gt−5, Gt−4, Gt−3, Gt−2, Gt−1]

For the Tweets stored daily, there were a variable
amount for each ticker. We concatenated all avail-
able Tweets with [SEP] tokens in between each
Tweet. These concatenations were then stored
for each day in the lag period, which produced
great informational variation across tickers and
across days. Each MACD vector Mi contains
the EMA12, EMA26, Signal line si, MACD his-
togram hi, and MACD value mi for that day.

Mt−i=5,. . . ,1 = [EMAi
12, EMAi

26, si, hi,mi]

In order to separate the dataset into positive and
negative signals, we chose to use the MACD signal
cross strategy (Appel, 2005). Data points were
classified as positive if the MACD value on our
preceding day to target day t, mt−1, was below the
Signal st−1, and if the MACD on our target day mt

was above our Signal st.

mt−1 < mt−1 ∧mt > st

Adversely, data points were classified as nega- 184

tive if mt−1 was above the Signal st−1, and if mt 185

was below st 186

mt−1 > st−1 ∧mt < st

The lag periods which did not fall in either of 187

these cases were removed, along with the lag pe- 188

riods in which there was insufficient tweet infor- 189

mation. This resulted in 92.57% of the lag pe- 190

riods being thrown out, with the exclusion of 41 191

tickers from the S&P500 all together. For more 192

specifics on the tickers that were included, and to 193

what extent they contributed to TempStock in its 194

final form, please see A.6. The resulting dataset 195

was surprisingly balanced, with no augmentation 196

or oversampling required. These stocks experience 197

similar degrees of up-trends and downtrends in the 198

time period according to the MACD rule employed 199

above, illustrating their stability in a good market 200

climate (Goetzmann and Massa, 2003). 201

Category Count Proportion

Positive 4,221 51.36%
Negative 3,997 48.64%

Total 8,218

Table 2: TempStock splits
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Figure 2: A schematic overview of the MEANT architecture. As seen in the diagram, the output of the language
encoder is processed in two different variants: sequence projection, and mean pooling.

4 MEANT202

MEANT combines the advantages of image and203

language processing with temporal attention, in204

order to extract dependencies from multimodal,205

sequential information, where 2 displays the full206

architecture. MEANT, similarly to most SOTA207

multimodal models (Liang et al., 2021; Kim et al.,208

2021; Su et al., 2019; Huang et al., 2023; OpenAI209

et al., 2023), is built atop the Transformer architec-210

ture (Vaswani et al., 2017).211

4.1 Encoder Only212

MEANT is an encoder-only model, similar to213

BERT (Devlin et al., 2018). Our model contains214

two pipelines, an image and a language pipeline.215

The language encoder stacks the attention mecha-216

nism with linear layers to extract relevant features217

from the input. Between the 2 parts of the en-218

coder, and before the output, there is a standard219

residual connection, meaning that the input to that220

portion of the architecture is fed through added221

with the original input. This is done to alleviate the222

vanishing gradient problem (Pascanu et al., 2013).223

The interleaved encoder structure is employed by224

the language pipeline is inspired by the Magneto225

model (Wang et al., 2022). It makes use of sub-226

layer normalization, meaning that a layer norm is227

interleaved between the attention and linear layer228

components of the encoder. This architecture was229

chosen because it has been shown to be successful230

on a wide variety of uni-modal and multimodal 231

problems (Huang et al., 2023; Wang et al., 2022). 232

For the backbone of our image pipeline, we 233

chose to use a variant of the TimeSFormer model 234

(Bertasius et al., 2021), which is an encoder model 235

designed to handle video inputs. We chose this 236

model because of its ability to extract dependencies 237

in the temporal dimension. Our lag graph inputs 238

change in place in a similar manner to a video. We 239

altered the implementation to make use of the inter- 240

leaved layernorm strategy from Magneto, and used 241

different positional embeddings. In earlier itera- 242

tions of the model, we used ViT encoders, and fed 243

the outputs of our image pipeline to our temporal 244

attention mechanism along with our Tweets. We 245

found this to be less performant (see 6). 246

4.2 Token and Patch Embeddings 247

Before being fed to the attention mechanism, the 248

two input types have to be prepared for process- 249

ing using two different embedding strategies. The 250

Tweets in MEANT are tokenized using the Fin- 251

BERT tokenizer (Araci, 2019) and we use the Fin- 252

BERT pretrained word embedding layer. 253

The images are first transformed into tensors 254

of rgb values and reshaped to a manageable size. 255

MEANT handles input image sizes of 3 x 224 x 256

224, where 3 represents the number of channels 257

and the subsequent dimensions are the height and 258

width respectively. TimeSFormer breaks down the 259

vectors using the patch embedding strategy from 260
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the original vision transformer (Dosovitskiy et al.,261

2020) (Bertasius et al., 2021).262

4.3 Positional Encoding263

In MEANT, the language and vision encoders use
different variants of the rotary embedding (Su et al.,
2021). The language encoder uses the xPos em-
beddings (Sun et al., 2022), while the TimeSFormer
uses both rotary and axial 2-D embeddings (Su
et al., 2021). In axial 2-D embeddings, the angle
θ of rotation is altered according to the following
equation:

θi = i ∗ floor(d/2) ∗ pi

4.3.1 Temporal Encoder264

We developed two different variants of our tempo-265

ral encoding pipeline, which work better in differ-266

ent cases: temporal attention with mean pooling,267

and temporal attention with sequence projection.268

In both cases, the outputs of our language en-269

coders Lout are tensors of the shape b× l× s× dl,270

where b denotes the batch size, l denotes the lag271

period, s is the sequence length, and dl is the dimen-272

sion of each encoded language token. For temporal273

attention with mean pooling, we use mean pooling274

along the s dimension:275

Lseq = mp(Lout) =
1

s

s∑
i=1

Lout[:, :, i, :] (1)276

For temporal attention with sequence projection,277

we use a parameterized projection matrix to reduce278

Lout along the s dimension:279

Lseq = sp(Lout) = GELU(layNm(Wsl(L
T
out)+bsl))

(2)280

Wsl ∈ Rs×1 represents our reduction weights for281

the language encoding. Essentially, we are extract-282

ing a latent representation for each lag day using a283

single layer coupled with a non-linear layer. The284

benefit of this is that each lag day comes to rep-285

resent a token in the sequence for the attention286

mechanism to process.287

Both of these strategies have different trade-offs,288

which we discuss in section 6.3 and illustrate in289

our ablation study (see section 7). Figure 2 indi-290

cates where the two variations are employed to the291

language encoding output.292

In both cases, Lseq has the shape b× l × dl. To293

emphasize, these are the alternate formulations for294

the same step:295

Lseq =

{
mp(Lout) (mean pooling)
sp(Lout) (sequence projection)

(3) 296

We then concatenate our Lseq outputs to our 297

MACD information M from that five day lag pe- 298

riod: 299

T = [Lseq,M ] ∈ Rl×dt (4) 300

Where T = [Tt−5, Tt−4, Tt−3, Tt−2, Tt−1]. T 301

has the shape b × l × dT , where dT is the tempo- 302

ral dimension, which is the sum of dl, and MACD 303

price length, which is 5. T signifies our inputs for 304

the temporal encoder. In the vanilla implementa- 305

tion of the MEANT model, the temporal dimension 306

is 773. 307

We then pass our outputs T to the temporal at- 308

tention mechanism. At this point in the pipeline, 309

relevant text features have been extracted for each 310

trading day in relation to themselves, not to one an- 311

other. The temporal attention mechanism focuses 312

on the day before our target, or the last day in our 313

lag period input, and its relationship to the pre- 314

ceding days. We put extra emphasis on this final 315

day because its when the stock has its final move- 316

ment. The inspiration for this increased focus on 317

the final day in the lag period comes from previous 318

work (Zhang et al., 2022)(Xu and Cohen, 2018), 319

which rely on simpler, softmax-focused informa- 320

tional dependencies between auxiliary trading days. 321

At inference time, we would want our model to 322

extract a pattern from the preceding days, and act 323

on current day with a sense of what will happen the 324

next day, choosing to produce a buy or sell recom- 325

mendation. MEANT does this by using a strategy 326

we call Query-Targeting, in which the query matrix 327

of the attention mechanism is produced from the 328

target day alone. To produce our query-targeted 329

matrix Qt, we first extract the pre-target day vec- 330

tors from our T input, Tt−1, which are of the shape 331

b× 1× dT . We then multiply our learned q matrix 332

by this value to produce Qt. 333

Qt = dot(Tt−1, q) (5) 334

The key and value matrices, K and V , are calcu- 335

lated normally over all of T . The attention compu- 336

tation then proceeds normally with our Qt, K, and 337

V matrices. 338

Tlang = tempAtten(Qt,K, V ) = softmax

(
QtK

T

√
d

)
V

(6) 339
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tempAtten(Qt,K, V ) results in out temporal340

language output Tlang, which has found the tempo-341

ral dependencies between our Tweets and prices in342

tandem.343

TimeSFormer uses a separate strategy to extract344

the temporal dependencies in our image inputs,345

called divided space-time attention (T + S) (Berta-346

sius et al., 2021). The following two equations are347

pulled directly from Bertasius et al. (2021). (T +348

S) uses the patch embeddings as input, similarly to349

the ViT (Dosovitskiy et al., 2020). (T + S) first ex-350

ecutes its temporal mechanism, where each patch351

attends to the patch at the same location across all352

of the frames.353

α
(ℓ,a)time
(p,t) = SM

(
q
(ℓ,a)

(p,t)√
Dh

·
[
k
(ℓ,a)

(0,0)

{
k
(ℓ,a)

(p,t′)

}
t′=1,...,F

])
(7)354

In the original paper, ℓ denotes the encoder block,355

a refers to the attention head, p is the patch, and t356

is the current frame. α(ℓ,a)time
(p,t) is then fed back into357

the spatial attention mechanisms, which executes358

the attention computation for each patch in relation359

to the other patches in its same frame, similarly to360

Dosovitskiy et al. (2020).361

α
(ℓ,a)space
(p,t) = SM

(
q
(ℓ,a)

(p,t)√
Dh

·
[
k
(ℓ,a)

(0,0)

{
k
(ℓ,a)

(p′,t)

}
p′=1,...,N

])
(8)362

α
(ℓ,a)space
(p,t) is then fed through a feed-forward net-363

work FF and added to a residual to produce our364

encoded image output Iout.365

Iout = FF (α
(ℓ,a)space
(p,t) ) + α

(ℓ,a)space
(p,t) (9)366

Our output Iout will have the shape b× p× dp,367

where p is the number of patches, and dp is the368

dimension of each patch. Similarly to how we pre-369

process the outputs of our language encoder Lout370

before temporal encoding, we now postprocess our371

image output Iout to extract the our temporal repre-372

sentation akin to the class token, using a sequence373

projection.374

Timg = GELU(layerNorm(Wsp(I
T
out) + bsp))

(10)375

Wsp represents our reduction weights for the pixel376

encoding. We do not use mean pooling for image377

outputs in any variant of MEANT-base. However,378

we did train a ViT variant of MEANT in which379

we experimented with mean pooling and sequence380

projection for the image output. See sections 6 and381

7.382

To produce our final classification output, we 383

concatenate our temporal representations into one 384

vector Tfinal. 385

Tfinal = [Tlang, Timg] (11) 386

WE then pass Tfinal to our MLP head to produce 387

a classification y. 388

y = MLP (Tfinal) (12) 389

5 Experiments 390

We ran the model at three different sizes, coined 391

MEANT-small, MEANT-large and MEANT-XL. 392

MEANT-small contained one encoder for lan- 393

guage and vision, along with one temporal encoder. 394

MEANT-large consisted of twelve language and 395

vision encoders, and one encoder for temporal at- 396

tention. twelve was selected as the number of en- 397

coders used in the original BERT model (Devlin 398

et al., 2018). MEANT-XL had 24 encoders in our 399

language pipeline and our TimeSFormer backbone, 400

along with one temporal encoder. Implementation 401

details can be seen in A.4. 402

Model Parameter Count

MEANT-base 48,304,272
MEANT-large 152,367,264
MEANT-XL 265,890,528

Table 3: MEANT Parameter Count

5.1 Fine-tuning on downstream tasks 403

We tested the viability of the MEANT architecture 404

on two tasks. 405

5.1.1 TempStock 406

TempStock is a binary classification task, identi- 407

fying lag periods which resulted in momentum 408

shifts and those that did not. To further mea- 409

sure MEANT’s performance, we ran some similar 410

SOTA encoder-based multimodal models on Temp- 411

Stock. TEANet, a key inspiration for this work, 412

was the most similar model in original purpose, so 413

proved the most interesting benchmark. For more 414

details on the baselines, experiment setup, input 415

differences and model sizes please see A.3 and 10. 416

5.1.2 Stocknet 417

The most similar dataset to TempStock was the 418

Stocknet dataset (Xu and Cohen, 2018), which con- 419

sists of Tweets and price values from a selected 420
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batch of stock tickers. Stocknet is different from421

TempStock as it is a unimodal dataset, contain-422

ing no graphical component, and is furthermore423

focused on binary price change rather than mo-424

mentum shift (as measured by MACD crossing in425

TempStock). Nonetheless, Stocknet represents one426

of the only datasets to our knowledge organized in427

lag periods and is therefore relevant as a benchmark428

for the MEANT model.429

Since the StockNet dataset does not have a vi-430

sual input, we implemented a MEANT model431

without the visual capabilities called MEANT-432

Tweet-price. We ran MEANT-Tweet-price against433

TEANet (Zhang et al., 2022) which was originally434

evaluated by the authors on the StockNet dataset, as435

well as the StockNet model itself (Xu and Cohen,436

2018). Details about the StockNet task, baselines437

used, training settings, input differences can be438

found in A.3.2, 9 and 10.439

6 Results440

Tables 4 and 5 in sections 6.1 and 6.2 show the441

results for our experiments respectively.442

6.1 TempStockLarge Experiment results443

Observing 4, we can see that MEANT-XL outper-444

formed all other models. MEANT-large performed445

comparably, coming in second for all three of those446

categories. The MEANT results in 4 use sequence447

projection, which performed better in this task (see448

7).449

Interestingly, TEANet outperformed MEANT-450

base. TEANet was followed closely by the LSTM451

baseline, which due to TEANet being built atop452

an LSTM backbone (Zhang et al., 2022), and that453

the LSTM takes advantage of temporal informa-454

tion (the MACD values mt−i over all of the lag455

days). The MLP baseline outperforms all other456

BERT-based models. This illustrates the impor-457

tance of the price information (further confirmed458

in 6) and attention without Query-Targeting does459

not perform well.460

ViLT outperforms VL-BERT with and without461

the price modification. ViLT has a more similar462

encoding structure to MEANT, taking advantage463

of the patch embedding strategy, which is likely464

one reason for its performance advantage over VL-465

BERT. Since both of VL-BERT and ViLT are not466

designed to process lag periods, the models were467

at a severe disadvantage in terms of extracting tem-468

poral dependencies in the information they were469

Model F1 P R

FinBERT 0.5047 0.5047 0.5047
BERT 0.5321 0.5300 0.5318
VL-BERT 0.3415 0.2593 0.5000
VL-BERT-price 0.3249 0.2407 0.5000
ViLT 0.5483 0.5554 0.5524
ViLT-price 0.6813 0.6814 0.6816
TimeSFormer 0.3415 0.2593 0.5000
MLP 0.7124 0.7145 0.7122
LSTM 0.7623 0.7622 0.7623
TEANet 0.7898 0.8198 0.7979

MEANT-base 0.7815 0.7917 0.7812
MEANT-large 0.8351 0.8399 0.8343
MEANT-XL 0.8440 0.8497 0.8430

Table 4: TempStock-Large Experiment Results, using
Precision (P), Recall (R), and F-1 scores.

given. 470

For a more in depth examination of how each 471

modality affected performance, see A.1. 472

6.2 Stocknet results 473

Model Acc% F1 P R

MLP 50.17 0.49 0.50 0.50
LSTM 54.76 0.47 0.59 0.54
FinBERT 46.17 0.29 0.21 0.50
BERTweet 49.20 0.32 0.24 0.50
StockNet 57.53 0.57 0.58 0.57
TEANet 67.75 0.68 0.67 0.68

M-Tweet-price-base 79.92 0.79 0.80 0.79
M-Tweet-price-large 81.35 0.81 0.81 0.81
M-Tweet-price-XL 82.15 0.82 0.82 0.8211

Table 5: StockNet-dataset experiment results using Pre-
cision (P), Recall (R), F-1 scores and testing accuracy
(Acc).

Looking at 5, MEANT-Tweet base and MEANT- 474

Tweet-large, both using mean pooling, outperform 475

all other models by a significant amount on the 476

StockNet task. MEANT-tweet-XL outperformed 477

TEANet, the previous SOTA on the StockNet 478

dataset, by 15%. We ran our own implementa- 479

tion of the TEANet model on the task following 480

their descriptions from the paper, as we could not 481

find publicly available code (see A.4). The original 482

accuracy score reported in the paper was 65.16% 483

(Zhang et al., 2022). 484

The importance of a temporal component for 485

the StockNet task is clear. BERTweet, a typical 486

encoder architecture without temporal support, per- 487

formed abysmally. StockNet performed marginally 488

better, but it is with the auxiliary temporal softmax 489

mechanism in TEANet that the first true perfor- 490
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mance gain can be seen. In these runs, our mean491

pooling mechanism was more effective than the492

sequence projection strategy for our temporal en-493

coding (see section 8).494

Clearly, the attention-based temporal mechanism495

in MEANT is the most performant for this problem.496

Query-Targeting is able to extract meaningful rela-497

tionships between the target day and the auxiliary498

trading days more effectively than previous mecha-499

nisms. There are likely a few reasons for this. Mod-500

els that depend on multi-head selt-attention (MSA)501

can be thought of as a low pass filters, meaning502

that they generally tend to flatten loss landscapes503

(Park and Kim, 2022). There are Tweets in the504

StockNet dataset that don’t correlate to the buy505

signal, but because of the nature of the data collec-506

tion, these are in the vast minority (Xu and Cohen,507

2018). However, since we are also extracting trends508

that are dependent on the order of these Tweets in509

time, a succession of even a few outlier or irrel-510

evant Tweets could be very damaging to the loss511

landscape of a more sensitive model. Our temporal512

attention mechanism is better able to handle the513

noise in the data. Furthermore, attention scales far514

better with parameter size, and our MEANT-XL515

model in particular dwarfs previous TEANet and516

StockNet in parameter size (Zhang et al., 2022; Xu517

and Cohen, 2018). Larger parameter spaces tend518

to lead to a more nuanced loss landscape (Fort and519

Jastrzebski, 2019; Fort and Scherlis, 2019; Park520

and Kim, 2022).521

6.3 Limitations522

Here, we outline considerations, trade-offs and de-523

sign decisions we have made:524

• Dataset To explore temporal information pro-525

cessing, we chose momentum buy signals in526

stock market data. We went with the MACD527

indicator because of its robustness, and corre-528

lation to strong positive returns against other529

indicators (Joshi, 2022; Chio, 2022). The530

serious drawback in this choice is in the in-531

frequency of buy and sell signals that occur,532

which leads to a less robust dataset.533

We gathered our stock price information from534

companies in the S&P 500. We chose this535

index because of its stability. However, as536

a result, we were unable to train our model537

on more extreme price patterns that are more538

common on obscure indexes (Goetzmann and539

Massa, 2003). Thus, in the case of extreme540

market events that result in periods of steep 541

decline or rise would likely confuse the model. 542

• MEANT The MEANT encoder is built atop 543

the Kosmos-1 encoder architecture, that uses 544

interleaved LayerNorms (Vu et al., 2022). The 545

authors thought this to lead to increased nu- 546

meric stability (Huang et al., 2023), which 547

in turn helps prevent the exploding gradient 548

problem. However, the inclusion of so many 549

layerNorms in each encoder in our models can 550

lead to an increase in bias, which eventually 551

can lead to a serious overfitting problem (Xu 552

et al., 2019). We chose to go ahead with this 553

risk, as previous architectures have shown the 554

stability gains from the interleaved normaliza- 555

tions to allow for better scaling (Wang et al., 556

2022; Huang et al., 2023). 557

MEANT was trained to identify buy signals 558

and sell signals, instead of trying to classify 559

price periods on a more nuanced scale. We 560

chose this path for simplicity’s sake. For prac- 561

tical use on financial data, we would likely 562

need more levels of categorization. 563

7 Conclusion and Future Work 564

We introduced a multimodal encoder with a novel 565

temporal component comprised entirely of self- 566

attention. MEANT outperforms previous models 567

on the StockNet benchmark by 15%, and proves to 568

be the most performant model on our own Temp- 569

Stock benchmark. To our knowledge, MEANT-XL 570

is the largest model to be applied to StockNet, and 571

is the first multimodal model to contain an attention 572

mechanism to deal with data over a lag period of 573

days. MEANT combines the realms of language, 574

vision, and time to produce SOTA results. We 575

would like to explore different early fusion meth- 576

ods in order to make MEANT more robust against 577

other common multi modal benchmarks, and ex- 578

pand upon our Query-Targeting strategy to empha- 579

size relevant queries automatically, rather manually 580

emphasizing any specific component such as the 581

final lag day. We believe that the MEANT architec- 582

ture has the potential to succeed on a wide variety 583

of tasks. Furthermore, the image space that we 584

trained MEANT on was limited. We would like to 585

introduce more variation into our image inputs, to 586

fully utilize the capabilities of that modality in our 587

model. 588
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8 Ethics Statement589

Bias and Data Privacy: We acknowledge that590

there are biases in our study, including limiting our591

work to a specific time period, a small sample of592

securities and the general public, where we cannot593

verify they financial expertise in assessing markets.594

The data collected in this work will only be made595

available via Tweet IDs collected to protect X’s596

users rights to remove, withdraw or delete their597

content. All datasets and Language Models are598

publicly available and were used under the license599

category that allows use for academic research.600

Reproducibility: We make all of our code pub-601

licly available upon publication on Github, where602

we provide instructions to reproduce our results.603

Use case: We strongly advise against the use of604

our proposed model and dataset for financial de-605

cision making, including automated or high fre-606

quency trading.607
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A Appendix958

A.1 Albation Study959

To examine the importance of the image and lan-960

guage modalities respectively, we also created961

many variations of the MEANT model, to target962

each modality and different combinations of them.963

Thus, we had a model for each modality individ-964

ually, and each combination of the three modal-965

ities. MEANT-vision-price and MEANT-Tweet-966

price, for instance, take in the inputs x = [G,M ]967

and x = [X,M ] respectively. All variants were968

similarly fine-tuned and evaluated on the Temp-969

Stock task (5.1.1) over 15 epochs, with a training970

batch size of 16, a starting learning rate of 5e-5, the971

AdamW optimizer, and a cosine-annealing learning972

rate scheduler with warm restarts.973

MEANT Ablation F1 P R

MEANT-base 0.7815 0.7917 0.7812
MEANT-large 0.8351 0.8399 0.8343
MEANT-XL 0.8440 0.8497 0.8430
MEANT-base-pt 0.7712 0.8039 0.7654
MEANT-large-pt 0.8249 0.8272 0.8258
MEANT-XL-pt 0.8312 0.8322 0.8288
MEANT-base-10 0.5731 0.5031 0.5631
MEANT-large-10 0.6294 0.6227 0.6285
MEANT-XL-10 0.6315 0.6321 0.6277
M-Tweet-price 0.7375 0.8168 0.7565
M-Tweet-price-large 0.8305 0.8346 0.8327
M-Tweet-price-XL 0.8337 0.8359 0.8348
MEANT-base-pt 0.7738 0.7542 0.7621
MEANT-large-pt 0.8352 0.8364 0.8279
MEANT-XL-pt 0.8340 0.8297 0.8130
M-Tweet 0.3415 0.2593 0.5000
M-Tweet-Large 0.4213 0.4176 0.5328
M-Tweet-XL 0.5013 0.4776 0.5593
M-vision-price 0.3249 0.2407 0.5000
M-vision-price-large 0.5237 0.3815 0.5769
M-vision-price-XL 0.7104 0.7103 0.7104
M-vision-no-price 0.3415 0.2593 0.5000
M-vision-no-price-l 0.3415 0.2593 0.5000
M-vision-no-price-XL 0.3725 0.3293 0.5784
M-price-large 0.7376 0.7285 0.7479
MEANT-ViT-Large 0.7477 0.7844 0.7639
MEANT-no-lag 0.5942 0.5145 0.5523

Table 6: TempStock MEANT-variant Results, using
Precision (P), Recall (R), and F-1 scores.

Examining 6, we see that MEANT-XL exhib- 974

ited the best performance in F1, precision, and re- 975

call. What is perhaps more interesting about these 976

results is examining the performance of MEANT- 977

Tweet-price vs MEANT. The performance drop-off 978

from MEANT-large to MEANT-Tweet-price-large 979

is only about 0.046 in F1 score. Yet MEANT- 980

vision-price-large exhibits a performance drop off 981

of 0.31 from MEANT-large. These results indi- 982

cate that the Twitter inputs contain features which 983

are more indicative of momentum changes in the 984

MACD indicator than the long-range graph inputs. 985

There are likely many reasons for this phenom- 986

ena, the primary of which being that stock prices 987

seem to flucuate on short time periods (Zhang et al., 988

2022) (Xu and Cohen, 2018). As such, the long 989

range information encoded in our graphs likely 990

just introduces noise which degrades model perfor- 991

mance. 992

We find that the five day lag period seems to 993

be ideal for price prediction problems. Testing on 994

a lag period of 10, MEANT performance drops 995

considerably. Tweet information in particular is 996

known to be short range, users tending to con- 997

tribute information predicated upon immediate 998

trends (Araci, 2019)(Nguyen et al., 2020)(Xu and 999
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Figure 3: Confusion matrix for MEANT-XL on Temp-
Stock

Cohen, 2018)(Zhang et al., 2022). As such, intro-1000

ducing information over a longer time period only1001

serves to weaken the relevant signals our model1002

is looking for. We also tested MEANT without a1003

lag period. Single-day data proves insufficient. As1004

such, 5 appears to be in our Goldilocks zone.1005

The price modality clearly important to the per-1006

formance of the MEANT model. MEANT-price,1007

which only takes in M as an input, performs1008

admirably, vastly outperforming MEANT-Tweet-1009

large and MEANT-vision-large, which take in X1010

and G as inputs respectively.1011

Removing the price modality from MEANT-1012

Tweet model reduces performance by 0.40 in F11013

for the large models. For the vision models, the re-1014

duction in performance for the large models is 0.36.1015

In fact, performance seems to collapse completely,1016

with the base, large, and XL models of MEANT-1017

vision achieving the same abysmal performance.1018

The price information is what determines to the la-1019

bels, so it makes sense that our model performance1020

would be negatively affected by the removal of the1021

M inputs.1022

We did try pretraining, using the TempStock raw1023

Tweets and graphs in masked-language-modeling1024

and masked-image-modling regimes. We found1025

that the pretrained models performed no better on1026

our task. The settings used for our pretraining1027

scheme can be seen in A.2.1028

In a previous iteration of the model, we used1029

ViTs as the image backbone, and actually fed our1030

concatenated image-tweet encoder outputs into the1031

same temporal attention mechanism. We found1032

that performance with this architecture was worse,1033

likely due to the confusion in the temporal attention1034

pass introduced by the early fusion strategy.1035

Figure 4: Confusion matrix for TEANet on TempStock

A.1.1 Sequence Projection Vs. Mean Pooling 1036

Using sequence projection vs mean pooling in our 1037

temporal attention mechanism had an affect on our 1038

model performance across both of our tasks. 1039

Looking at 7, sequence projection outperformed 1040

mean pooling for our language encoder outputs on 1041

the TempStock task by a reasonable margin, the 1042

disparity especially noticeable between MEANT- 1043

Large-MP and MEANT-Large-SP. 1044

TempStock is built upon the MACD indicator, 1045

which relies on information over a longer time 1046

period than simple price prediction (Joshi, 2022), 1047

with the MACD calculation involving price aver- 1048

ages over 12 and 26 days. Much of that information 1049

is not captured in our semantic inputs (Joshi, 2022) 1050

which tend to correlate to short term trends of a 1051

few days or so (see 6). Furthermore, Tweets tend 1052

to vary widely in terms of quality (Araci, 2019)(Xu 1053

and Cohen, 2018). What semantic information is 1054

pertinent to our final output must be captured with 1055

some degree of delicacy, similar to how Xu and Co- 1056

hen (2018) discerns what Tweets to throw away. A 1057

lot of the semantic input is likely just noise which 1058

confuses our model, and the parameterized extrac- 1059

tion of important Tweets for each lag day alleviates 1060

this problem to some extent. 1061

TempStock Seq. proj results F1 P R

MEANT-Large-MP 0.6143 0.6241 0.6173
MEANT-XL-MP 0.7983 0.8265 0.8058
MEANT-Large-SP 0.8351 0.8399 0.8343
MEANT-XL-SP 0.8440 0.8497 0.8430

Table 7: TempStock Seq proj results, using Precision
(P), Recall (R), and F-1 scores.

Interestingly, mean pooling actually performs 1062

better than sequence projection on the StockNet 1063
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task (see 8). The disparity in this case is glar-1064

ing. With sequence projection, MEANT performs1065

abysmally, essentially making random guesses with1066

each input. There are likely a few reasons for this.1067

For one, the StockNet task is a binary price1068

prediction problem, which exists on a far smaller1069

timescale than TempStock it terms of its informa-1070

tion. Thus, the semantic Tweet inputs are likely to1071

contain far more robust correlations to the labels1072

then in the TempStock problem. In other words, the1073

Tweets have a far larger sway over StockNet perfor-1074

mance then in TempStock (which is a phenomena1075

observed in previous work that measures on the1076

StockNet dataset (Xu and Cohen, 2018) (Zhang1077

et al., 2022)).1078

Mean pooling manages to preserve spatial infor-1079

mation, summarizing local neighborhoods (in this1080

case, Tweets that have been encoded into different1081

part of each sequence in X). A projection, on the1082

other hand, can destroy spatial correlations in the1083

new basis (Tao et al., 2022). What seems to be1084

happening here is our learned projection is throw-1085

ing away crucial Tweet information, in a problem1086

where the Tweets have a larger importance. While1087

the parameterization serves to intelligently extract1088

the ’relevant’ information, in the case where there1089

is little noise in our semantic information, this pa-1090

rameterized projection only serves to damage per-1091

formance.1092

Stocknet Seq. proj results F1 P R

M-Tweet-large-MP 0.8134 0.8135 0.8133
M-Tweet-XL-MP 0.8212 0.8225 0.8211
MEANT-Large-SP 0.4401 0.5704 0.5259
MEANT-XL-SP 0.4520 0.5725 0.5303

Table 8: Stocknet Seq proj results, using Precision (P),
Recall (R), and F-1 scores.

A.2 Pretraining1093

For experimental purposes, we tried pretraining1094

the MEANT language encoders on the TempStock1095

Tweets.1096

We follow typical pretraining methods. For our1097

language encoder, we used masked language mod-1098

eling on our raw TempStock data. We trained1099

our MEANT-small and MEANT-large language1100

encoders on 4 NVIDIA p100 GPUs for 3 and 101101

hours respectively. For MEANT-XL, we trained on1102

an A100 GPU for 10 hours. A training batch size1103

of 32 was used.1104

For the TimeSFormer backbone, we used1105

masked image modeling with block and channel 1106

masking. The image encoders were trained on 4 1107

NVIDIA p100 GPUs as well, for 20 hours. We 1108

used graphs G from the raw MACD data in Temp- 1109

Stock. For these encoders, we also used a training 1110

batch size of 32. 1111

A.3 Training Details 1112

All training was done with an AdamW optimizer 1113

(Loshchilov and Hutter, 2017) using betas of 0.9 1114

and 0.999, a cosine annealing learning rate sched- 1115

uler with warm restarts with 7 iterations for the first 1116

restart (Loshchilov and Hutter, 2016), and an initial 1117

learning rate of 5e−5. The experiments were all 1118

run on a single NVIDIA A100 GPU. More specific 1119

settings can be seen in 9. 1120

A.3.1 TempStock Experiment Setup 1121

TEANet makes use of a BERT-style encoder for 1122

the Tweet inputs, but uses an LSTM on the con- 1123

catenated price-Tweet data rather then relying on a 1124

pure self-attention based mechanism. Furthermore, 1125

TEANet’s temporal attention is a softmax-based 1126

mechanism which uses some simple concatenation 1127

to draw relationships between the last input day 1128

and the auxiliary days. TEANet can process lag 1129

periods, but cannot process the image inputs and 1130

is thus only fed the tweet and price information X 1131

and M . 1132

We also fine-tuned VL-BERT (Su et al., 2019) 1133

and ViLT (Kim et al., 2021) on TempStock. VL- 1134

BERT is an early-fusion multimodal model, that 1135

uses a Faster RCNN (Girshick, 2015) to extract 1136

the image features, which are concatenated to the 1137

textual features before being fed to a BERT-style 1138

encoder. VL-BERT cannot process the price data, 1139

or data over the lag period, so we fed the model 1140

the graphs and Tweets from the final auxiliary day, 1141

those being Gt−1 and Xt−1 respectively. 1142

ViLT is a single stream encoder that uses a ViT 1143

style patch embedding on the images, concatenat- 1144

ing these to the text embeddings before feeding the 1145

concatenated input to a BERT-style encoder (Kim 1146

et al., 2021). ViLT, similarly to VL-BERT, cannot 1147

process price data, or data over a lag period. So we 1148

fed the model the same inputs as VL-BERT. 1149

We recognized that the lack of price data 1150

could give tremendous advantages to TEANet and 1151

MEANT over ViLT and VL-BERT, as the labels of 1152

TempStock are determined directly from the price 1153

component. Thus, we added some extra function- 1154

ality to our own variants of ViLT and VL-BERT 1155
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models, called ViLT-price and VL-BERT-price re-1156

spectively, to handle prices for better comparison1157

of their multimodal strategies. We simply concate-1158

nated the price to our encodings of the images and1159

Tweets before feeding the vectors into the atten-1160

tion mechanism. These models recieved the price,1161

graphs, and text data from the last auxiliary day,1162

Mt−1, Gt−1, and Xt−1 respectively.1163

FinBERT and BERT were simply given the1164

Tweets Xt−1 from the final auxiliary day. For pa-1165

rameter comparisons, see 31166

For the TempStock experiment, we used 151167

epochs for all MEANT models and a train batch1168

size of 16. We decided to run TimeSFormer on1169

the dataset as well, giving it the images over the1170

lag period as a vision-only baseline. For more1171

simple baselines, we ran a simple MLP on Temp-1172

Stock without a lag functionality, only taking in1173

the prices Mt−1 from the day before the target pe-1174

riod. We also ran an LSTM (Sun et al., 2017), but1175

with a different input of the MACD values mt−i for1176

i = 1, ...5, to see if the recurrent properties could1177

extract a pattern.1178

We used the lag periods from 4/10/2022-1179

12/10/2023 for our training set, the periods from1180

11/10/2023-2/25/2023 as our validation set, and the1181

periods from 2/25/2023-4/10/2023 as our test set.1182

A.3.2 StockNet Experiment Setup1183

The StockNet model was the predecessor to1184

TEANet. StockNet took advantage of a similar1185

Temporal attention mechanism, but used gated re-1186

current units rather then a BERT-style encoder to1187

process the Tweets, and employed a the use of a1188

latent representation with a variational lower bound1189

for optimization (Xu and Cohen, 2018).1190

We ran BERTweet on the StockNet-dataset for1191

comparison (Nguyen et al., 2020). For the inputs1192

in this experiment, BERTweet can only process1193

the immediate Tweets before the target day, Xt−1.1194

The StockNet model can process the textual infor-1195

mation and price information over the lag periods,1196

those being X and M . TEANet X and M in their1197

entirety as well, putting TEANet, StockNet, and1198

MEANT-Tweet on relatively equal footing in terms1199

of their processing capabilities. Experimental set-1200

tings for each model can be seen in 9.1201

StockNet is a binary classification problem, like1202

TempStock. StockNet is built upon price move-1203

ment. Built over a five day lag period, the classifica-1204

tion of labels focused on the price change between1205

the adjusted closing price of the last auxiliary day1206

d − 1 and the target day d, denoted pcd and pcd−1 1207

respectively in the original paper (Xu and Cohen, 1208

2018). The labels are determined as follows: 1209

y = 1
(
pcd > pcd−1

)
(13) 1210

Lag periods that had a movement ratio r where 1211

−0.5% < r ≤ 0.55% were thrown out. The move- 1212

ment ratio is calculated as follows: 1213

r = (pcd − pcd−1)/p
c
d−1 (14) 1214

Model Task epochs Batch Patience

MEANT-B TempStock 15 16 3
M-Tweet-P-base StockNet 10 32 3
M-Large TempStock 15 16 3

MOSI 15 16 3
M-Tweet-P-Large StockNet 10 32 3
M-XL TempStock 15 16 3
M-Tweet-P-XL StockNet 10 32 3
FinBERT TempStock 11 16 3

StockNet 7 32 3
BERT TempStock 15 16 3

StockNet 10 32 3
BERTweet StockNet 15 16 3
VL-BERT TempStock 15 16 3
ViLT TempStock 15 16 3
TimeSFormer TempStock 15 16 3
MLP TempStock 15 16 3

StockNet 7 32 3
LSTM TempStock 15 16 3

StockNet 4 32 3
TEANet TempStock 15 32 5

StockNet 10 16 3

Table 9: Training Settings. M refers to MEANT, and P
to Price.

1215

A.4 Model Implementation Details 1216

All models were implemented in Pytorch (Paszke 1217

et al., 2019). MEANT was implemented using 1218

a typical transformer formula, employing the use 1219

of RMSNorm (Zhang and Sennrich, 2019), Flash- 1220

attention (Dao et al., 2022), and GELU activa- 1221

tion units (Hendrycks and Gimpel, 2016). For our 1222

TimeSFormer implementation, we decided to use 1223

Phil Wangs (Wang, 2021), for its simplicity, read- 1224

ability, and its use of the Einops library (Rogozh- 1225

nikov, 2022), which we used in our native MEANT 1226

implementations. 1227

There is no public implementation available for 1228

TEANet (Zhang et al., 2022), so we implemented 1229

the model from the details given in the paper. We 1230

used the built in torch LSTM implementation, and 1231

the FinBERT embedding layers (Araci, 2019) in 1232

15



order to balance against our implementation of1233

MEANT, and to take advantage of the FinBERT1234

tokenizer.1235

For all of our BERT-based encoder models, we1236

used the implementations from the transformer1237

models (Wolf et al., 2019).1238

Model Parameter Count

MLP 3,400,642
LSTM 16,400,642
VL-BERT 111,450,624
ViLT 111,595,008
BERT 134,899,968
MEANT-base 48,304,272
MEANT-large 152,367,264
MEANT-XL 265,890,528

Table 10: Parameter Counts

A.5 CMU-MOSI1239

We also decided to test our model on the CMU Mul-1240

timodal Opinion-level Sentiment Intensity (MOSI)1241

dataset (Zadeh et al., 2016).1242

This dataset includes audio, text, and video1243

modalities compiled in 299 annotated video seg-1244

ments collected from YouTube monologue movie1245

reviews. The data forms a binary sentiment analy-1246

sis classification task.1247

For our purposes, we focus on the text and video1248

modalities. We run MEANT on these inputs.1249

CMU-MOSI is of interest because it examines1250

videos with aligned text over time. Our vision back-1251

bone, the TimeSFormer model, is built for video in-1252

puts (Bertasius et al., 2021). We measured MEANT1253

against previous SOTA baselines. TEASEL is a1254

multimodal model that uses a pre-trained RoBerta1255

as a backbone (Arjmand et al., 2021), using a CNN1256

to break down the audio signals before coupling1257

those with the text. UniMSE is an encoder-decoder1258

model which breaks down the audio, visual, and1259

textual modalities in fusion layers (Hu et al., 2022).1260

UniMSE also uses a CNN to process the visual fea-1261

tures. MMML is the current SOTA for the CMU-1262

MOSI benchmark. MMML uses cross-modal atten-1263

tion, which is integrated into a fusion network (Wu1264

et al., 2024). Interestingly, MMML does not take1265

in visual inputs. The MEANT-large runs below1266

were collected after 15 epochs of training, using1267

the same optimizer and lr scheduler settings listed1268

above. The other results were taken from previous1269

work (Wu et al., 2024).1270

Looking at the results above, MEANT-large per-1271

forms considerably worse then previous SOTA1272

CMU-MOSI Results F1non0 F1has0 ACC2has0

TEASEL 85 84.72 84.79
UniMSE 86.42 85.83 85.85
MMML 89.67 87.45 87.51

MEANT-large 71.43 70.30 70.32

Table 11: Mosi-dataset experiment results using Pre-
cision (P), Recall (R), F-1 scores and testing accuracy
(Acc).

benchmarks on the MOSI task. The disparity is 1273

expected. Query-Targeting in MEANT is designed 1274

to put great emphasis on the final component in 1275

the information period. In the CMU-MOSI task, 1276

this refers to the final frame in the video clip, along 1277

with the final text token, which have been aligned. 1278

The clips in the dataset are short movie reviews. 1279

The final frame in these clips does not contain sig- 1280

nificant information as to the entire clip (Zadeh 1281

et al., 2016), in the manner that the final price day 1282

in a lag period does to a stock price (Zhang et al., 1283

2022) (Xu and Cohen, 2018). 1284

Furthermore, the previous state of the art bench- 1285

marks are designed to handle the audio component, 1286

which is better aligned to the textual inputs then the 1287

video embeddings (Zadeh et al., 2016). MEANT 1288

was working off of the visual and textual inputs 1289

alone. Thus, the performance we do achieve speaks 1290

to the soundness of our current architecture. 1291

We did run TEASEL and UniMSE on Temp- 1292

Stock, replacing the audio inputs to their CNNs 1293

with our graphical data G. We changed the models 1294

to support our price data M . They were trained 1295

over 15 epochs, and train batch size of 16, and all 1296

other experimental settings identical to those used 1297

in the original TempStock experiments. 1298

MOSI models on TempStock F1 P R

TEASEL 0.6228 0.6148 0.5745
UniMSE 0.7343 0.7238 0.7315

MEANT-large 0.8351 0.8399 0.8343

Table 12: Models which performed well on MOSI, ran
on TempStock. Results use Precision (P), Recall (R),
F-1 scores and testing accuracy (Acc).

The models which perform at such a high level 1299

on MOSI fail to perform as well on the TempStock 1300

task, as seen in 12. Ideally, one architecture could 1301

tackle both of these sorts of problems. In future 1302

work, we would like to make our temporal mecha- 1303

nism more robust to dependencies across the time 1304

16



dimension of the entire input. One method would1305

be to extend our Query-Targeting mechanism to1306

learn a parameterized selection of the best target1307

components, or to learn which parts of the input the1308

other auxiliary dependencies need to be collected in1309

relation to. This could involve a separate temporal1310

matrix, as in Rosin and Radinsky (2022), or some1311

sort of softmax query weighting prior to the atten-1312

tion computation. Creating a mechanism which1313

can perform at the highest level on any temporally1314

dependent benchmark remains an open problem.1315

A.6 TempStock Dataset Details1316

The tables below show the number of lag periods1317

used in TempStock for each ticker.1318

Ticker Count

DHI 32
HWM 31
PCG 30
LEN 28
DG 28
IR 27
EL 27
AVGO 26
CTRA 26
IEX 26
XRAY 26
TER 26
KR 26
UPS 25
PAYC 25
META 25
L 25
PGR 25
FITB 25
BKR 25
LYV 25
DRI 25
MET 25
WYNN 25
SHW 25
APTV 25
SEE 25
AMCR 24
ADI 24
ANSS 24
HUM 24
DXC 24
CRM 24
SBNY 24
STLD 24
CMI 24
PWR 24
MKTX 24
LUV 24
REGN 24
RTX 24
MNST 24
CDW 24
MHK 24
VRTX 24
TMUS 23
TRGP 23
WAB 23
APH 23
FTNT 23
GRMN 23
FDX 23

Table 13: TempStock Companies Chunk 1
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Ticker Count

FE 23
JNPR 23
INTU 23
HBAN 23
NOC 23
CLX 23
LVS 23
SBUX 23
JPM 23
NOW 23
DGX 23
LOW 23
PNC 23
PPG 23
ECL 23
ZTS 23
TMO 23
XYL 23
EPAM 22
DAL 22
LUMN 22
MRO 22
MGM 22
MTCH 22
ENPH 22
HSY 22
GIS 22
OTIS 22
NRG 22
WRB 22
EVRG 22
NDSN 22
NVR 22
CHD 22
CBOE 22
HCA 22
CDNS 22
SWKS 22
PEP 22
LW 22
TYL 21
RL 21
SWK 21
FANG 21
PTC 21
QCOM 21
DUK 21
MTD 21
AEP 21
LLY 21
MMM 21
ABT 21

Table 14: TempStock Companies Chunk 2

Ticker Count

ZBH 21
UNP 21
TSCO 21
TFC 21
LHX 21
HIG 21
HON 21
KEYS 21
KDP 21
CBRE 21
CMS 21
MSFT 21
NSC 21
VMC 21
AIG 21
GM 21
FOX 21
BAC 21
TTWO 21
BIO 21
ETSY 21
ZION 20
MCK 20
NVDA 20
CHRW 20
CAG 20
LKQ 20
BBY 20
BIIB 20
HLT 20
NEM 20
CCI 20
FTV 20
CARR 20
ODFL 20
PCAR 20
WBA 20
PEG 20
PSX 20
HII 20
GL 20
SJM 20
CI 20
FSLR 20
TJX 20
MAR 20
CSGP 20
UAL 20
T 20
SNPS 20
AEE 20
DTE 20

Table 15: TempStock Companies Chunk 3
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Ticker Count

ETN 20
WHR 20
GOOGL 19
GOOG 19
SYK 19
DLR 19
AES 19
ADP 19
AIZ 19
ADSK 19
AKAM 19
KEY 19
TRMB 19
UDR 19
JNJ 19
IBM 19
ILMN 19
CF 19
SCHW 19
CB 19
CINF 19
PAYX 19
PYPL 19
IVZ 19
FOXA 19
EFX 19
OXY 19
TECH 19
VRSK 19
HPE 19
NDAQ 19
NTRS 19
CNC 19
CMA 19
CSCO 19
ALL 19
ABBV 19
LNT 19
VFC 18
VTRS 18
AAL 18
AMGN 18
YUM 18
CEG 18
C 18
ON 18
NKE 18
NXPI 18
AAP 18
EXR 18
EQT 18
CE 18

Table 16: TempStock Companies Chunk 4

Ticker Count

ORLY 18
JCI 18
MPC 18
CVS 18
GE 18
K 18
TXN 18
HD 18
MOS 18
CVX 18
CL 18
HPQ 18
ITW 18
WMT 18
PM 18
MU 18
MPWR 18
MSCI 18
MAS 18
TEL 18
BAX 18
VZ 18
WMB 18
SLB 18
DFS 18
WST 18
MCD 18
MRK 18
DXCM 18
SYY 18
AMAT 18
AFL 17
A 17
MRNA 17
NTAP 17
NWSA 17
NEE 17
MAA 17
CSX 17
DHR 17
IRM 17
J 17
DE 17
CPT 17
OGN 17
ED 17
LIN 17
CAT 17
BSX 17
F 17
BEN 17
EXPD 17

Table 17: TempStock Companies Chunk 5
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Ticker Count

EA 17
EOG 17
CTSH 17
KLAC 17
CMG 17
FCX 17
FMC 17
IPG 17
BK 17
BKNG 17
TROW 17
PNR 17
CRL 17
WAT 17
WFC 17
RMD 17
BLK 17
EIX 17
EW 17
D 17
WDC 17
STX 17
SNA 17
RHI 17
SBAC 17
V 17
AXP 17
AMT 17
VLO 16
PSA 16
BBWI 16
BDX 16
TGT 16
TDY 16
WRK 16
WY 16
WTW 16
XEL 16
WBD 16
TSN 16
LRCX 16
LMT 16
BMY 16
GPN 16
GS 16
HSIC 16
CTVA 16
LYB 16
MA 16
GPC 16
GILD 16
CTLT 16

Table 18: TempStock Companies Chunk 6

Ticker Count

ROK 16
MKC 16
ADM 16
ACGL 16
ANET 16
AZO 16
ALLE 16
ELV 16
ETR 16
EXC 16
XOM 16
EMR 15
EQR 15
ESS 15
ZBRA 15
ACN 15
ATO 15
AMP 15
CTAS 15
PARA 15
ROP 15
GLW 15
MTB 15
MLM 15
DPZ 15
DD 15
NFLX 15
BRO 15
KMX 15
GD 15
USB 15
SRE 15
STT 15
CME 15
CMCSA 15
INCY 15
IFF 15
RSG 15
FDS 15
BWA 15
BXP 15
TFX 15
NI 15
NUE 15
ORCL 15
PNW 15
PLD 15
IT 15
AVB 15
AWK 15
AJG 14

Table 19: TempStock Companies Chunk 720



Ticker Count

UHS 14
VICI 14
FIS 14
GEN 14
NCLH 14
DLTR 14
IP 14
INVH 14
RJF 14
NWL 14
HST 14
PKG 14
CPB 14
COF 14
GNRC 14
EMN 14
MCHP 14
MDLZ 14
MS 14
CNP 14
PH 14
CCL 14
DVA 14
DVN 14
SPG 14
TSLA 14
ULTA 14
KMB 14
KHC 14
RCL 14
BALL 14
SYF 14
APD 13
MO 13
AMZN 13
AVY 13
EQIX 13
CZR 13
JBHT 13
PXD 13
VNO 13
RF 13
PFE 13
ISRG 13
ICE 13
INTC 13
LDOS 13
COST 13
MDT 13
COP 13
AON 13
AOS 13

Table 20: TempStock Companies Chunk 8

Ticker Count

STE 13
VTR 13
WM 13
DIS 13
JKHY 12
PG 12
IQV 12
AMD 12
FRT 12
ALB 12
KIM 12
MSI 12
ROST 12
URI 12
ES 12
HRL 12
O 12
GWW 12
PFG 12
PPL 12
ADBE 12
HAL 12
DOW 12
ARE 11
BR 11
IDXX 11
AAPL 11
BA 11
OKE 11
VRSN 11
WELL 11
TDG 11
SPGI 11
EBAY 11
CPRT 11
UNH 10
SO 10
NWS 10
KMI 10
REG 9
DOV 9
HES 1

Table 21: TempStock Companies Chunk 9
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