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Abstract

Bayesian optimization (BO) is widely used to optimize expensive-to-evaluate black-box func-
tions. It first builds a surrogate for the objective and quantifies its uncertainty. It then
decides where to sample by maximizing an acquisition function (AF) defined by the sur-
rogate model. However, when dealing with high-dimensional problems, finding the global
maximum of the AF becomes increasingly challenging. In such cases, the manner in which
the AF maximizer is initialized plays a pivotal role. An inappropriate initialization can
severely limit the potential of AF.
This paper investigates a largely understudied problem concerning the impact of AF max-
imizer initialization on exploiting AFs’ capability. Our large-scale empirical study shows
that the widely used random initialization strategy may fail to harness the potential of an
AF. Based on this observation, we propose a better initialization approach by employing
multiple heuristic optimizers to leverage the historical data of black-box optimization to
generate initial points for an AF maximizer. We evaluate our approach with a variety of
heavily studied synthetic test functions and real-world applications. Experimental results
show that our techniques, while simple, can significantly enhance the standard BO and
outperform state-of-the-art methods by a large margin in most test cases.

1 Introduction

Bayesian optimization (BO) is a well-established technique for expensive black-box function optimization.
It has been used in a wide range of tasks - from hyper-parameter tuning (Bergstra et al., 2011), onto
chemical material discovery (Hernández-Lobato et al., 2017) and robot control and planning (Lizotte et al.,
2007; Martinez-Cantin et al., 2009). BO tries to improve sampling efficiency by fitting a probabilistic
surrogate model (usually a Gaussian process (Seeger, 2004)) to guide its search. This model is used to
define an acquisition function (AF) that trades off exploitation (model prediction) and exploration (model
uncertainty). Maximizing the AF will get the next sequential query point that BO thinks is promising.

While BO shows good performance for low-dimensional problems, its application to high-dimensional prob-
lems is often not competitive with other techniques (Eriksson et al., 2019). Given that BO’s performance
depends on both the model-based AF itself and the process of maximizing the AF, either of them can be a
bottleneck for high-dimensional BO (HDBO). The vast majority of the prior work in BO has focused on the
former, i.e., designing the surrogate model and AF (Snoek et al., 2012; Srinivas et al., 2009; Wu & Frazier,
2016; Wang & Jegelka, 2017; Oh et al., 2018; Moss et al., 2021; Snoek et al., 2014). Little work is specialized
for improving the latter. A recent development in maximizing AF implements a multi-start gradient-based
AF maximizer in batch BO scenarios, achieving better AF maximization results than random sampling and
evolutionary algorithms (Wilson et al., 2018). However, as the dimensionality increases, even the multi-
start gradient-based AF maximizer struggles to globally optimize the AF. In such cases, the initialization
of the AF maximizer greatly influences the quality of AF optimization. Yet, it remains unclear how AF
maximizer initialization may impact the utilization of AF’s potential and the end-to-end BO performance.
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Upon reviewing the codes of popular BO packages, random initialization (selecting initial points from a set
of random points) emerges as a typical default setting. This is true for widely-used packages like BoTorch
(Balandat et al., 2020), skopt (Head et al., 2021) , GPyOpt (authors, 2016) and GPflowOpt (Knudde et al.,
2017a). Similarly, various HDBO implementations also adopt this default (Oh et al., 2018; Letham et al.,
2020; Wang et al., 2018; Kandasamy et al., 2015; Wu & Frazier, 2016; Wang et al., 2017). Spearmint (Snoek
et al., 2012) provides a different initialization strategy by using a Gaussian spray around the incumbent best
to generate initial points. However, the construction of such initialization is not rigorously examined. As
such, random initialization remains the most popular strategy for HDBO AF maximization. There is a need
to understand the role of the initialization phase in the AF maximization process.

The paper provides a systematic study on the impact of AF maximizer initialization in HDBO. This is
motivated by an observation that the pool of available candidates generated during AF maximisation often
limits the AF’s power when employing the widely used random initialization for the AF maximizer. This
limitation asks for a better strategy for AF maximizer initialization. To this end, our work provides a simple
yet effective AF maximizer initialization method to unleash the potential of an AF. Our key insight is that
when the AF is effective, the historical data of black-box optimization could help identify areas that exhibit
better black-box function values and higher AF values than those obtained through random searches of AF.

We develop AIBO1, a Python framework to employ multiple heuristic optimizers, like the covariance matrix
adaptation evolution strategy (CMA-ES) (Hansen et al., 2003) and genetic algorithms (GA) (Alam et al.,
2020), to utilize the historical data of black-box optimization to generate initial points for a further AF
maximizer. We stress that the heuristics employed by AIBO are not used to optimize the AF. Instead, they
capitalize on the knowledge acquired from the already evaluated samples to provide initial points to help
a AF maximizer find candidate points with higher AF values. For instance, CMA-ES generates candidates
from a multivariate normal distribution determined by the historical data of black-box optimization. To
investigate whether performance gains come from better AF maximization, AIBO also incorporates random
initialization for comparison. Each BO iteration runs multiple AF initialization strategies, including random
initialization on the AF maximizer, to generate multiple candidate samples. It then selects the sample with
the maximal AF value for black-box evaluation. Thus, heuristic initialization strategies work only when they
identify higher AF values than random initialization.

To demonstrate the benefit of AIBO in black-box function optimizations, we integrate it with the multi-start
gradient-based AF maximizer and apply the integrated system to synthetic test functions and real-world
applications with a search dimensionality ranging between 14 and 300. Experimental results show that
AIBO significantly improves the standard BO under various AF settings. Our analysis suggests that the
performance improvement comes from better AF maximization, highlighting the importance of AF maximizer
initialization in unlocking the potential of AF for HDBO.

The contribution of this paper is two-fold. Firstly, it investigates a largely ignored yet significant problem
in HDBO concerning the impact of the initialization of the AF maximizer on the realizing the AF capa-
bility. It empirically shows the commonly used random initialization strategy limits AFs’ power, leading
to over-exploration and poor HDBO performance. Secondly, it proposes a simple yet effective initialization
method for maximizing the AF, significantly improving the performance of HDBO. We hope our findings
can encourage more research efforts in optimizing the initialization of AF maximizers of HDBO.

2 Related Work

2.1 High-dimensional Bayesian Optimization

Prior works in HDBO have largely focused on dimensionality reduction or pinpointing the performance
bottleneck. There are two common approaches for dimensionality reduction. The first assumes the black-
box function has redundant dimensions. By mapping the high-dimensional space to a low-dimensional
subspace, standard BO can be done in this low-dimensional space and then projected up to the original
space for function evaluations (Wang et al., 2013; Letham et al., 2020; Binois et al., 2020; Qian et al., 2016).

1AIBO =Acquisition function maximizer Initialization for Bayesian Optimization; Code and data available at https://
anonymous.4open.science/r/AIBO-C5A5.
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A second approach targets functions with additive structures, i.e., cases where variables in the design space
are separable (Kandasamy et al., 2015; Wang et al., 2017; Gardner et al., 2017; Rolland et al., 2018; Li
et al., 2018). Both strategies are inadequate for many real-life scenarios, where the black-box function does
not exhibit additive structures, or there is little redundancy in dimensions. Besides these dimensionality
reduction techniques, efforts have been made to improve high-dimensional BO directly (Wang et al., 2018;
Rana et al., 2017; Oh et al., 2018; Eriksson et al., 2019), with TuRBO (Eriksson et al., 2019) as the state-
of-the-art method.

2.2 Acquisition Function Maximization

Given the posterior belief, BO uses an AF to select new queries. Random sampling, evolutionary algorithms
and gradient-based optimization are three mainstreamed AF maximization techniques. Random sampling
is efficient in low-dimensional problems (Bartz-Beielstein et al., 2005; Hutter et al., 2009; 2010) but can
be inadequate for high-dimensional problems (Hutter et al., 2011). Evolutionary algorithms are often used
where gradient information is unavailable (Kandasamy et al., 2020; Cowen-Rivers et al., 2020). For AFs
that support gradient information, a multi-start gradient-based optimization method is a good choice for
AF optimization (Wilson et al., 2018). Our end-to-end BO framework thus builds upon this technique.

Despite the importance of AF maximization, little attention has been paid to optimizing the initialization
phase for AF maximizers. Most prior work (Snoek et al., 2012; Knudde et al., 2017b; Klein et al., 2017; Wu &
Frazier, 2016; Kandasamy et al., 2020; Balandat et al., 2020; Oh et al., 2018; Kandasamy et al., 2015; Wang
et al., 2018; Cowen-Rivers et al., 2020; Letham et al., 2020; Nayebi et al., 2019) use random initialization.
This simple strategy can be effective in low dimensions, but as we will show in the paper, it is ill-suited
for high-dimensional problems. SMAC (Hutter et al., 2011) and Spearmint (Snoek et al., 2012) are few BO
techniques that do not use random initialization. Instead, they use a Gaussian spray around the incumbent
best to generate initial points to initialize its local maximizer. Our work provides a systematic study to
empirically demonstrate the importance of initialization for AF maximization. It proposes an initialization
optimization to improve prior work by leveraging multiple heuristic algorithms to more effectively utilize the
evaluated samples, significantly improving the performance of a given AF.

3 Background and Motivation

3.1 Background

BO is a class of machine-learning-based optimization methods to solve a black-box function optimization
problem, x∗ = arg minx f(x), by attempting to find x∗ with the fewest samples. BO has two main compo-
nents: a Bayesian statistical surrogate model for modeling the objective function and an acquisition function
(AF) for deciding where to sample next. The surrogate model is typically implemented as a Gaussian pro-
cess. It provides a Bayesian posterior probability distribution that describes potential values for f(x) at a
candidate point x. The posterior distribution is updated each time we observe f at a new sample point.
For trading off exploitation and exploration, the output of the surrogate model should contain both model
prediction and uncertainty, constituting an AF. One prevalent AF2 is the Upper Confidence Bound (UCB)
function Srinivas et al. (2009), denoted as:

α(x) = −µ(x) +
√

βt · σ(x) (1)

where µ(x) and σ(x) are the posterior mean (prediction) and posterior standard deviation (uncertainty) at
point x predicted by the surrogate model, and βt is a hyperparameter that trades off between exploration
and exploitation.

BO highly relies on fully maximizing the AF to uncover a global optimum, which is non-trivial for high-
dimensional problems. However, very little work has investigated the quality of candidate samples generated
during the AF maximization process and whether AF performs well in these candidates. In the following sub-
section, we present an example demonstrating that the commonly used random initialized AF maximization
process restricts the potential of AF.

2Other acquisition functions include probability of improvement (PI) and expected improvement (EI).
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(a) 10 AF maximizer restarts
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(b) 1000 AF maximizer restarts

Figure 1: Evaluating the sample chosen by AF-based selection against random and optimal selection among
all intermediate candidate points generated during the AF maximization process when applying BO-grad to
100D Ackley functions. We use two random initialization settings for AF maximization: (a) 10 restarts and
(b) 1000 restarts. In both settings, the performance of the native BO-grad (AF-based selection) is close to
optimal selection and better than random selection, suggesting that the AF is effective at selecting a good
sample from all candidates but is restricted by the pool of available candidates. Increasing the number of
restarts from 10 to 1000 does not enhance the quality of intermediate candidates, indicating that a more
effective initialization scheme, as opposed to random initialization, is necessary.

3.2 Motivation

As a motivation example, consider applying BO to optimize a 100 dimensional black-box Ackley function
that is extensively used for testing optimization algorithms. The goal is to find a set of input variables
(x) to minimize the output, f(x1, . . . , x100). The search domain is −5 ≤ xi ≤ 10, i = 1, 2, . . . , 100, with a
global minimum of 0. For this example, we use a standard BO implementation with UCB (βt = 1.96) as
the AF. Here, we use random search to create the initial starting points for a multi-start gradient-based AF
maximizer to iteratively generate multiple candidates, from which the AF chooses a sample for evaluation.
In each BO iteration, we first evaluate the AF on 100000 random points and then select the top n points as
the initial points for the further gradient-based AF maximizer. We denote this implementation as BO-grad.
In this example, we use two settings n = 10 and n = 1000 .

As shown in Fig. 1(a), the function output given by BO-grad with 10 AF maximizer restarts is far from the
global minimum of 0. We hypothesize that while the AF is effective, the low quality of candidate samples
generated in AF maximization limit the power of the AF. To verify our hypothesis, we further consider two
strategies: (1) either randomly select the next query point from all the candidate points generated during
AF maximization or (2) exhaustively evaluate them at each BO iteration. The former and latter strategies
correspond to “random selection” and “optimal selection” schemes, respectively. Despite the ideal but
costly “optimal selection” search scenario, BO does not converge well, indicating intrinsic deficiencies in the
AF maximization process. Meanwhile, the AF itself can choose a good candidate sample point to evaluate,
as the performance of the native AF-based BO-grad is close to that of “optimal selection" and better than
that of “random selection". This observation suggests that the AF is effective at selecting a good sample in
this case but its power is severely limited by the candidate samples generated during the AF maximization
process. We also observe similar results manifest when using other representative maximizers like random
sampling and evolutionary algorithms.

We then test what happens when we increase the number of AF maximization restarts of BO-grad to generate
more candidates for AF to select at each iteration. However, in Fig. 1(b), it is evident that even with an
increase in random restarts to 1000, the quality of intermediate candidate points generated during the AF
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Algorithm 1 Acquisition function maximizer initialization for high-dimensional Bayesian optimization
(AIBO)

Input: The number of search iterations T
Output: The best-performing query point x∗

1: Draw N samples uniformly to obtain an initial dataset D0
2: Specify a set of heuristic optimizers O, where the size is l
3: Use D0 to initialize a set of heuristic optimizers O
4: for t = 0 : T − 1 do
5: Fit a Gaussian process G to the current dataset Dt

6: Construct an acquisition function α(x) based on G
7: for i = 0 : l − 1 do
8: Xi ← oi.ask(num = k) ▷ Ask the heuristic to generate k candidates
9: X̃i ← top(α(Xi), n) ▷ Select top-n (n < k) candidates from Xi according to α(x)

10: Use X̃i to initialize an acquisition function maximizer M
11: xi

t ← arg max
x∈X

α(x)|M ▷ Use M to maximize α(x)

12: end for
13: xt ← arg max α(x) x ∈ {x0

t , x1
t , ..., xl−1

t } ▷ Select the point with the highest AF value
14: yt ← f(xt) ▷ Evaluate the selected sample
15: for each oi ∈ O do
16: oi.tell(xt, yt) ▷ Update heuristic optimizer oi with (xt, yt)
17: end for
18: Update dataset Dt+1 = Dt ∪ {(xt, yt)}
19: end for

maximization process remains similar to that with 10 restarts. Furthermore, in the case of 1,000 restarts, the
performance of BO-grad is still close to that of “optimal selection", reinforcing our observation that the pool
of candidates restricts AF’s power. This observation suggests that we need a better initialization scheme
rather than simply increasing the number of restarts of random initialization.

This example motivates us to explore the possibility of improving the BO performance by providing the
AF with better candidate samples through enhanced AF maximizer initialization. Our intuition is that the
potential of AF is often not fully explored in HDBO. Moreover, the commonly used random initialization of
the AF maximization process is often responsible for inferior candidates. We aim to improve the quality of
the suggested samples through an enhanced mechanism for AF maximizer initialization. As we will show in
Section 6, our strategy significantly improves BO on the 100D Ackley function, finding an output minimum
of less than 0.5, compared to 6 given by BO-grad after evaluating 5,000 samples.

4 Methodology

Our study focuses on evaluating the initialization phase of AF maximization. To this end, we developed
AIBO, an open-source framework to facilitate an exhaustive and reproducible assessment of AF maximizer
initialization methods.

4.1 Heuristic Acquisition Function Maximizer Initialization

AIBO leverages multiple heuristic optimizers’ candidate generation mechanisms to generate high-quality
initial points from the already evaluated samples. Given the proven effectiveness of heuristic algorithms in
various black-box optimization scenarios, they are more likely to create initial candidates near promising
regions. As an empirical study, our objective is to explore whether this initialization makes AF optimizer
yield points with higher AF values and superior black-box function values compared to random initialization.

As described in Algorithm 1, AIBO maintains multiple black-box heuristic optimizers o0, o2, ...ol−1. At each
BO iteration, each heuristic optimizer oi is asked to generate k raw points Xi based on its candidate genera-
tion mechanisms (e.g., CMA-ES generates candidates from a multivariate normal distribution). AIBO then
selects the best n points X̃i from Xi for each optimizer oi, respectively. After using these points to initial-
ize and run an AF maximizer for each initialization strategy, we obtain multiple candidates x0

t , x1
t , ..., xl−1

t .
Finally, the candidate with the highest AF value is chosen as the sample to be evaluated by querying the
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black-box function. Crucially, the evaluated sample is used as feedback to update each optimizer oi - for
example, updating CMA-ES’s normal distribution. This process repeats at each subsequent BO iteration.

Our current default implementation employs CMA-ES, GA and random search as heuristics for initialization.
Note that the usage of random initialization here guarantees that GA/CMA-ES initialization is selected only
if it yields larger AF values than random initialization.

CMA-ES CMA-ES uses a multivariate normal distribution N (m, C) to generate initial candidates in each
BO iteration. Here, the mean vector m determines the center of the sampling region, and the covariance
matrix C determines the shape of the region. By updating m and C using new samples after each BO
iteration, CMA-ES can gradually focus on promising regions.

GA GA keeps a population of samples to determine its search region. It uses biologically inspired operators
like mutation and crossover to generate new candidates based on the current population. Its population is
updated by new evaluated samples after each BO iteration.

Random Most BO algorithms or library implementations use random search for initializing the AF max-
imizer. We use it here to eliminate the possibility of AIBO’s performance improvement stemming from
GA/CMA-ES initialization yielding points with better black-box function values but smaller AF values.

4.2 Implementation Details

Since this study focuses on the AF maximization process, we utilize other BO settings that have demonstrated
favorable performance in prior work. We describe the implementation details as follows.

Gaussian process regression To support scalable GP regression, we implement the GP model based
on GPyTorch, an optimized library for GP (Gardner et al., 2018). GPyTorch implements the GP inference
via a modified batched version of the conjugate gradients algorithm, reducing the asymptotic complexity of
exact GP inference from O(n3) to O(n2). GPyTorch, the overhead of running BO with a GP model for a
few thousand evaluations would be acceptable.

We select the Matérn-5/2 kernel with ARD (each input dimension has a separate length scale) and a constant
mean function to parameterize our GP model. The model parameters are fitted by optimizing the log-
marginal likelihood before proposing a new batch of samples for evaluation. Following the usual GP fitting
procedure, we re-scale the input domain to [0, 1]d. We also use power transforms to the function values
to make data more Gaussian-like. This kind of transformation is useful for highly skewed functions like
Rosenbrock and has been proven effective in real-world applications (Cowen-Rivers et al., 2020). We use the
following bounds for the model parameters: length-scale λi ∈ [0.005, 20.0], noise variance σ2 ∈ [1e−6, 0.01].

Batch Bayesian optimization To support batch evaluation for high-dimensional problems, we employ
the UCB and EI AFs estimated via Monte Carlo (MC) integration. Wilson et al. (2018) have shown that MC
AFs naturally support queries in parallel and can be maximized via a greedy sequential method. Algorithm
1 shows the case where the batch size is one. Assuming the batch size is q, the greedy sequential acquisition
function maximization process will be as follows:

1. Maximize the initial MC acquisition function α0(x) to obtain the first query point x0.
2. Use the first query sample (x0, α0(x0)) to update α0(x) to α1(x) and maximize α1(x) to obtain the second

query point x1.
3. Similarly, successively update and maximize α2(x), α3(x), ..., αq−1(x) and obtain query points

x2, x3, ...xq−1.

We implement this process based on BoTorch (Balandat et al., 2020), which has provided both the MC-
estimated UCB acquisition function and the interface for updating it via query samples.
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Table 1: Benchmarks used in evaluation.

Function/Task #Dimensions Search Range

Ackley 20, 100, 300 [-5, 10]
Rosenbrock 20, 100, 300 [-5, 10]
Rastrigin 20, 100, 300 [-5.12, 5.12]
Griewank 20, 100, 300 [-10, 10]

Synthetic

Levy 20, 100, 300 [-600, 600]
Robot pushing 14 /
Rover trajectory planing 60 [0, 1]Robotics
Half-Cheetah locomotion 102 [-1, 1]

Hyper-parameter settings We use N = 50 samples to obtain the initial dataset D0 for all benchmarks.
We set k = 500 and n = 1 for each AF maximiser initialisation strategy. We use the implementations in
pycma (Hansen et al., 2022) and pymoo (Blank & Deb, 2020) for the CMA-ES and the GA initialization
strategies, respectively. For CMA-ES, we set the initial standard deviation to 0.2. For GA initialization,
we set the population size to 50. The default AF maximizer in AIBO is the gradient-based optimization
implemented in BoTorch. The default AF is UCB with βt = 1.96 (default setting in skopt library (Head
et al., 2021)), and the default batch size is set to 10. In Section 6.6, we will also show the impact of changing
these hyper-parameters in our experiments.

5 Experimental Setup

5.1 Benchmarks

Table 1 lists the benchmarks and the problem dimensions used in the experiments. These include synthetic
functions and three tasks from the robot planning and control domains.

Synthetic functions We first apply AIBO and the baselines to four common synthetic functions: Ack-
ley, Rosenbrock, Rastrigin and Griewank. All these functions allow flexible dimensions and have a global
minimum 0. We select 20, 100 and 300 dimensions in our study to show how higher dimensions of the same
problem influence the BO performance.

Robot pushing The task is used in TurBO Eriksson et al. (2019) and Wang et al. (2018) to validate
high-dimensional BOs. The goal is to tune a controller for two robot hands to push two objects to given
target locations. Despite having only 14 dimensions, this task is particularly challenging as the reward is
sparse in its search space.

Rover trajectory planning The task, also considered in Eriksson et al. (2019); Wang et al. (2018), is to
maximize the trajectory of a rover over rough terrain. The trajectory is determined by fitting a B-spline to
30 points in a 2D plane (thus, the state vector consists of 60 variables). This task’s best reward is 5.

Half-cheetah robot locomotion We consider the 102D half-cheetah robot locomotion task simulated
in MuJoCo (Todorov et al., 2012) and use the linear policy a = Ws introduced in (Mania et al., 2018) to
control the robot walking. Herein, s is the state vector, a is the action vector, and W is the linear policy to
be searched for to maximize the reward. Each component of W is continuous and within [-1,1].

5.2 Evaluation Methodology

We design various experiments to validate the significance of the initialization of AF maximization process.
All experiments are run 50 times for evaluation. In Section 6.1, we evaluate AIBO’s end-to-end BO per-
formance by comparing it to various baselines including standard BO implementations with AF maximizer
random initialization, heuristic algorithms and representative HDBO methods. In Section 6.2, We evalu-
ate the robustness of AIBO under different AFs. In Section 6.3, we evaluate AIBO’s three initialization
strategies in terms of AF values, GP posterior mean, and GP posterior variance under different AF settings.
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This will show whether AIBO’s heuristic initialization strategies lead to better AF maximization. In Sec-
tion 6.4 , we use ablation experiments to examine the impact of the three individual initialization strategies
in AIBO. In Section 6.5, we compare AIBO to BO implementations with alternative AF maximizer initial-
ization strategies rather than selecting initial points with highest AF values from a set of random points.
In Section 6.6, we show the impact of hyper-parameters on the performance of AIBO. In Section 6.7, we
provide the algorithmic runtime of our method.

6 Experimental Results

Highlights of our evaluation results are:

• AIBO significantly improves standard BO and outperforms heuristic algorithms and representative HDBO
methods in most test cases (Sec. 6.1 and Sec. 6.2);

• By investigating AIBO’s three initialization strategies in terms of AF maximization, we show that random
initialization limits AFs’ power by yielding lower AF values and larger posterior variances, leading to over-
exploration, empirically confirming our hypothesis (Sec. 6.3);

• We provide a detailed ablation study and hyper-parameters analysis to understand the working mecha-
nisms of AIBO (Sec. 6.4 and Sec. 6.6).

6.1 Comparison with Baselines

6.1.1 Setup

We first compare AIBO to eight baselines: BO-grad, BO-es, BO-random, TuRBO, HeSBO, CMA-ES, GA
and AIBO-none. We describe the baselines as follows.

BO-grad, BO-es and BO-random respectively refer to the standard BO implementations using three AF
maximizers: multi-start gradient-based, CMA-ES and random sampling. These standard BO implementa-
tions use the same base settings as AIBO but with a random initialization scheme for AF maximization.
Especially, to show the effectiveness of AIBO, BO-grad is allowed to perform more costly AF maximization;
we set k = 2000 and n = 10.

TuRBO (Eriksson et al., 2019), HeSBO (Nayebi et al., 2019) and Elastic BO (Rana et al., 2017) are rep-
resentive HDBO methods. We use N = 50 samples to obtain the initial dataset D0 for all three HDBO
methods. For HeSBO, we use a target dimension of 8 for 14D robot pushing task, a target dimension of
20 for 102D robot locomotion task and 100D or 300D synthetic functions, and a target dimension of 10 for
other tasks. Other settings are default in the reference implementations.

CMA-ES and GA are used to demonstrate the effectiveness of AF itself. Given that AIBO employs AF
to further search the query point from the initial candidates generated by CMA-ES and GA black-box
optimizers, if the AF is not sufficiently robust, the performance of AIBO might be inferior to CMA-ES/GA.
For CMA-ES, the initial standard deviation is set to 0.2, and the rest of the parameters are defaulted in
pycma (Hansen et al., 2022). For GA, the population size is set to 50, and the rest of the parameters are
default in pymoo (Blank & Deb, 2020).

AIBO-none is a variant of AIBO. In each BO iteration, following the initialization of AF maximization
process, AIBO-none directly selects the point with the highest AF value while AIBO uses a gradient-based
AF maximizer to further search points with higher AF values. This comparison aims to assess whether
better AF maximization can improve performance.

6.1.2 Results

Fig.2 reports the full comparison results about the black-box function performance of our method AIBO
with various baselines on all the benchmarks. We use UCB1.96 (UCB with βt = 1.96) as the default AF.
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Figure 2: Results on both synthetic functions (lower is better) and real-world problems (higher is better).
AIBO consistently improves BO-grad on all test cases and outperforms other competing baselines in most
cases.

AIBO versus BO-grad While the performance varies across target functions, AIBO consistently im-
proves BO-grad on all test cases. Especially for synthetic functions which allow flexible dimensions, AIBO
shows clear advantages in higher dimensions (100D and 300D). We also observe that BO-grad exhibits a
similar convergence rate to AIBO at the early search stage. This is because AF maximization is relatively
easy to fulfil when the number of samples is small. However, as the search progresses, more samples can
bring more local optimums to the AF, making the AF maximization process increasingly harder.

AIBO versus CMA-ES/GA As AIBO introduces CMA-ES and GA black-box optimizers to provide
initial points for AF maximization, comparing AIBO with CMA-ES and GA will show whether the AF is
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good enough to make the AF maximization process find better points than the initial points provided by
CMA-ES/GA initialization. Results show AIBO outperforms CMA-ES and GA in most cases except for 20D
Rastrigin function, where GA shows superior performance. However, in the next section, we will demonstrate
that adjusting UCB’s beta from 1.96 to 1 will enable AIBO to maintain its performance advantage over
GA. This suggests that with the appropriate choice of the AF, BO’s model-based AF can offer a better
mechanism for trading off exploration and exploitation compared to heuristic GA/CMA-ES algorithms.

AIBO versus other HDBO methods When compared to representative HDBO methods including
TuRBO, Elastic BO and HeSBO, AIBO performs the best in most cases except for the 20D Rastrigin
function, for which TuRBO shows the fastest convergence. However, for higher dimensions (100D and
300D), AIBO performs better than TuRBO on this function.

AIBO versus AIBO-none Without the gradient-based AF optimizer, AIBO-none still shows worse
performance than AIBO. This indicates that better AF maximization can improve the BO performance.
This trend can also be observed in the results of standard BO with different AF maximizers, where BO-grad
and BO-es outperform BO-random.

Overall, these comparison results highlight the importance of the AF maximization process for HDBO, as
simply changing the initialization of the AF maximization process brings significant improvement.

6.2 Evaluation under Different AFs

We also evaluate the performance of AIBO and BO-grad under different AFs. Besides the default AF setting
UCB1.96 (UCB with βt = 1.96), we also select UCB1 (βt = 1), UCB4 (βt = 4) and EI as the AF, respectively.
This aims to provide insights into how well AIBO enhances BO-grad across different AF settings, shedding
light on its robustness and effectiveness across diverse contexts.

Fig. 3 shows a comprehensive evaluation of the effectiveness of our AIBO method across various AFs.
Changing the AF clearly has a noticeable impact on performance, highlighting the importance of AF selection.
If an inappropriate AF is used, such as using UCB4 in Rastrigin20, the improvements in performance
achieved through the use of AIBO remain highly limited. Despite of that, the results we obtained are highly
encouraging. While different AFs exhibite varying convergence rates, we consistently observe a noteworthy
enhancement in the performance of our method when compared to the standard BO-grad approach. The
advantage is more clear in higher dimensions (100D and 300D) than lower dimension (20D). These findings
highlight the robustness and effectiveness of our initialization method across different AFs.

6.3 Over-exploration of Random Initialization

The aforementioned experimental results have demonstrated that heuristic AF maximizer initialization in
AIBO leads to significant end-to-end BO performance improvements compared to random initialization. In
this subsection, we evaluate AIBO’s three initialization strategies in terms of AF values, GP posterior mean,
and GP posterior variance under different AF settings.

In each iteration of AIBO, each initialization oi yields a candidate xi
t after AF maximization (Line 11 in

Algorithm 1). For each initialization, we count the number of times xi
t achieves the highest AF value among

{x0
t , x1

t , x2
t } until the current iteration. This number will show what initialization dominates the search

process by yielding the highest AF value. Similarly, we also count the number of times xi
t achieves lowest

GP posterior mean (exploitation) and highest GP posterior variance exploration), respectively. This will
examine how different initializations trade off between exploration and exploitation.

The left column in Fig. 4 shows the number of times each initialization achieves the highest AF value among
all the three strategies throughout the search process when using UCB1.96 (βt = 1.96) as the AF. The
middle column and right column indicate instances of achieving the lowest posterior mean (exploitation) and
the highest posterior variance (exploration), respectively. Compared to CMA-ES/GA initialization, random
initialization always yields lower AF values and higher posterior variance, leading to over-exploration.
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Figure 3: Evaluating the performance of AIBO and BO-grad under different AFs on both synthetic functions
(lower is better) and real-world problems (higher is better).

This over-exploration caused by random initialization is not exclusive to the UCB1.96 AF. As shown in
Figs. 5 and 6, when decreasing βt from 1.96 to 1, or using EI as the AF, random initialization still yields
lower AF values and higher posterior variance. This is due to the curse of the dimensionality. Since the search
space size grows much faster than sampling budgets as the dimensionality increases, most regions are likely
to have a high posterior variance. Given that more samples can bring more local optimums to AFs as the
search progresses, random initialization tends to guide the AF maximizer to find local optimums in regions
of high posterior variance. Even if the AF is designed to prioritize regions with lower GP posterior mean for
exploitation (e.g. UCB with a lower βt), these regions are sparse and may be inaccessible through random
initialization. AIBO is designed to mitigate the drawback of random initialization, and the results presented
here validate AIBO indeed achieves better AF maximization by optimizing the initialization phase.
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Figure 4: Evaluating AIBO’s three initialization strategies in terms of AF values, GP posterior mean, and
GP posterior variance when using UCB1.96 as the AF. The left column shows the number of times each
initialization achieves the highest AF value among all the three strategies throughout the search process.
Similarly, the middle column and right column indicate instances of achieving the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively.

12



Under review as submission to TMLR

ga initialization cmaes initialization random initialization

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F 

va
lu

e 100D Ackley: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Ackley: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Ackley: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F 

va
lu

e 100D Rosenbrock: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rosenbrock: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rosenbrock: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F 

va
lu

e 100D Rastrigin: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rastrigin: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rastrigin: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F 

va
lu

e 100D Griewank: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Griewank: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Griewank: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F 

va
lu

e 14D Robotpush: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

14D Robotpush: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 14D Robotpush: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F 

va
lu

e 60D Rover: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

60D Rover: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 60D Rover: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F 

va
lu

e 102D HalfCheetah: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

102D HalfCheetah: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 102D HalfCheetah: #highest variance

Figure 5: Evaluating AIBO’s three initialization strategies in terms of AF values, GP posterior mean, and
GP posterior variance when using UCB1 as the AF. The left column shows the number of times each
initialization achieves the highest AF value among all the three strategies throughout the search process.
Similarly, the middle column and right column indicate instances of achieving the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively.
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Figure 6: Evaluating AIBO’s three initialization strategies in terms of AF values, GP posterior mean,
and GP posterior variance when using EI as the AF. The left column shows the number of times each
initialization achieves the highest AF value among all the three strategies throughout the search process.
Similarly, the middle column and right column indicate instances of achieving the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively.
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Figure 7: Comparing AIBO to its variants with three individual initialization strategies AIBO_ga,
AIBO_cmaes, AIBO_random (BO-grad). While a single advanced heuristic heuristic strategy CMA-
ES/GA already performs well in most cases, using the ensemble strategy improve the robustness.

6.4 Ablation Study

To better understand the role played by each initialization strategy in AIBO, we evaluate the three indi-
vidual initialization strategies in AIBO, leading to three variants of AIBO: AIBO_ga, AIBO_cmaes and
AIBO_random. We note that AIBO_random is equivalent to BO-grad discussed earlier.

As shown in Fig. 7, advanced heuristic initialization strategies like GA and CMA-ES show better perfor-
mance than random initialization in most cases, showing the advantage of a heuristic algorithm over random
initialization. Using a single advanced heuristic initialization, AIBO_ga and AIBO_cmaes achieve simi-
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Figure 8: Comparing AIBO to standard BO with other AF initialization methods that do not use random
search on both synthetic functions (lower is better) and real-world problems (higher is better).

lar performance to AIBO in most cases. This suggests that CMA-ES and GA can be the main source of
performance improvement for AIBO.

Besides, although AIBO_cmaes is competitive in most problems, it is ineffective for the 14D robot pushing
problem, suggesting there is no “one-fits-for-all" heuristic across tasks. By incorporating multiple heuristics,
the ensemble strategy used by AIBO gives a more robust performance than the individual components.
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Figure 9: The impact of hyper-parameters on AIBO. (a) GA population size and CMA-ES initial standard
deviation σ. (b) The number of raw candidates generated from heuristics k and the number of selected initial
points n. (c) The batch size.

6.5 Comparison with Other Initialization Strategies

In previous experiments, we implement random initialization by selecting the top-n points with the highest
AF values as the initial points from a large set of random points. Some existing BO implementations have
employed alternative initialization strategies. The impact of these methods has not been systematically
evaluated. We conduct a comparison of the following methods alongside AIBO: BO-cmaes_grad, BO-
boltzmann_grad and BO-Gaussian_grad.

6.5.1 Setup

BO-cmaes_grad uses CMA-ES to optimize the AF to provide better initial points for the further gradient-
based AF maximization. We note that in this case, CMA-ES is used directly for AF optimization. In
contrast, the "CMA-ES" in AIBO is used to provide initial points by leveraging the history of black-box
optimization. Comparing these two methods will reveal the importance of the black-box optimization history
in the AF maximization process.

BO-boltzmann_grad refers the default implementation in BoTorch, which uses boltzmann sampling to gen-
erate initial points for the gradient-based AF maximization. In each BO iteration, it evaluates the AF on a
large set of points and then uses an annealing heuristic (rather than top-n) to select the restart points.

BO-Gaussian_grad uses a Gaussian spray around the incumbent best to generate initial points for the
gradient-based AF maximizer. This initialization strategy has been used in Spearmint (Snoek et al., 2012),
and we replace the AF maximizer with the advanced gradient-based method for a fair comparison.

6.5.2 Results

Fig. 8 presents the comparison result between AIBO and other initialization strategies. BO-cmaes_grad
and BO-boltzmann_grad exhibit significantly inferior performance compared to AIBO. Both approaches do
not leverage prior black-box optimization history and instead attempt to optimize the AF in the global space
directly to provide initial points for further gradient-based AF optimization. This underscores the challenges
of AF optimization in high-dimensional problems and the importance of utilizing the black-box optimization
history. BO-Gaussian_grad takes into account the best points from the past black-box optimization history
as a basis for maximizing the AF. This approach performs well in some cases (e.g., Rastrigin100) but may lead
to a significant performance drop in other situations (e.g., Robotpush14) due to over-exploitation. Overall,
AIBO exhibits significantly better performance compared to these non-random initialization strategies.

6.6 Evaluation under Different Hyper-Parameters

Multiple hyper-parameters in AIBO, including GA population size, CMA-ES initial standard deviation σ,
the number of raw candidates generated from heuristics k, the number of selected initial points n, and the
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Table 2: Algorithmic runtime

Synthetic RobotPush Rover HalfCheetah
Dimensions 20 100 300 14 60 102
#Samples 1000 5000 5000 5000 5000 5000
AIBO 8 min 2.5 h 3.6 h 1.8 h 2 h 2.5 h
BO-grad 12 min 3.3 h 5 h 2.5 h 3 h 4 h

batch size could impact its performance. Here studies on 100D Ackley function are provided for practical
guidance.

GA popsize and CMA-ES σ As AIBO employ heuristics to initialize the AF maximization process, these
heuristics’ hyper-parameters control the quality of initial points of AF maximization process. As shown in
the Fig. 9(a), Due to the inherent robustness of GA and CMA-ES algorithms, varying their hyperparameters
within an appropriate range results in commendable performance of AIBO. We recommend opting for GA
population size between 20 and 100, and selecting CMA-ES σ value within the range of 0.2 to 0.5.

k and n Based on Algorithm 1, increasing the number of raw candidates generated from heuristics k and
the number of selected initial points n might help AF maximization but requires more calculation. However,
as shown in the Fig. 9(b), increasing k and n does not yield significant performance improvement. We
recommend setting k to 100 ∼ 1000 and setting n to 1 ∼ 10.

Batch size As shown in the Fig. 9(c), AIBO performs well across different batch sizes, and reducing the
batch size can slightly enhance convergence speed.

6.7 Algorithmic Runtime

In Table 2, we provide the algorithmic runtime (excluding the time spent evaluating the objective function)
for our method with a batch size of 10. For comparison, we also show the algorithmic runtime of BO-grad.
The experiments are run on an NVIDIA RTX 3090 GPU equipped with a 20-core Intel Xeon Gold 5218R
CPU Processor. AIBO uses less algorithmic runtime because it costs less AF maximization time than
standard BO-grad method. AIBO’s algorithmic runtime is also acceptable for actual expensive black-box
optimization tasks (only several hours for a few thousand evaluations).

7 Conclusion

We have presented a large-scale empirical study to understand the impact of the acquisition function (AF)
maximizer initialization process when applying Bayesian optimization (BO) for high-dimensional problems.
Our extensive experiments show that the AF maximizer initialization can greatly impact the realization of
the AF, and the widely random initialization strategy may fail to unlock the potential of an AF.

We then propose AIBO, a framework to optimize the initialization phase of AF maximization BO. AIBO is
designed to overcome the limitation of the random initialization technique for high-dimensional BO. AIBO
employs a simple yet effective optimization strategy. It employs multiple heuristic optimizers to generate
the raw samples for the acquisition function maximizer to better trade-off exploration and exploitation.

We evaluate AIBO by applying it to synthetic test functions, robot control, and planning tasks. Experimental
results show that AIBO can significantly boost the standard BO’s performance in high-dimensional problems
and outperform prior high-dimensional BO techniques.
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