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Abstract

We show that deep neural networks (DNNs) can efficiently learn any composition1

of functions with bounded F1-norm, which allows DNNs to break the curse of2

dimensionality in ways that shallow networks cannot. More specifically, we3

derive a generalization bound that combines a covering number argument for4

compositionality, and the F1-norm (or the related Barron norm) for large width5

adaptivity. We show that the global minimizer of the regularized loss of DNNs can6

fit for example the composition of two functions f∗ = h ◦ g from a small number7

of observations, assuming g is smooth/regular and reduces the dimensionality (e.g.8

g could be the modulo map of the symmetries of f∗), so that h can be learned in9

spite of its low regularity. The measures of regularity we consider is the Sobolev10

norm with different levels of differentiability, which is well adapted to the F1 norm.11

We compute scaling laws empirically and observe phase transitions depending on12

whether g or h is harder to learn, as predicted by our theory.13

1 Introduction14

One of the fundamental features of DNNs is their ability to generalize even when the number of15

neurons (and of parameters) is so large that the network could fit almost any function [46]. Actually16

DNNs have been observed to generalize best when the number of neurons is infinite [8, 21, 20].17

The now quite generally accepted explanation to this phenomenon is that DNNs have an implicit18

bias coming from the training dynamic where properties of the training algorithm lead to networks19

that generalize well. This implicit bias is quite well understood in shallow networks [11, 36], in20

linear networks [24, 30], or in the NTK regime [28], but it remains ill-understood in the general deep21

nonlinear case.22

In both shallow networks and linear networks, one observes a bias towards small parameter norm23

(either implicit [12] or explicit in the presence of weight decay [42]). Thanks to tools such as the24

F1-norm [5], or the related Barron norm [44], or more generally the representation cost [14], it is25

possible to describe the family of functions that can be represented by shallow networks or linear26

networks with a finite parameter norm. This was then leveraged to prove uniform generalization27

bounds (based on Rademacher complexity) over these sets [5], which depend only on the parameter28

norm, but not on the number of neurons or parameters.29

Similar bounds have been proposed for DNNs [7, 6, 39, 33, 25, 40], relying on different types of30

norms on the parameters of the network. But it seems pretty clear that we have not yet identified31

the ‘right’ complexity measure for deep networks, as there remains many issues: these bounds are32

typically orders of magnitude too large [29, 23], and they tend to explode as the depth L grows [40].33

Two families of bounds are particularly relevant to our analysis: bounds based on covering numbers34

which rely on the fact that one can obtain a covering of the composition of two function classes from35
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covering of the individual classes [7, 25], and path-norm bounds which extend the techniques behind36

the F1-norm bound from shallow networks to the deep case [32, 6, 23].37

Another issue is the lack of approximation results to accompany these generalization bounds: many38

different complexity measures R(θ) on the parameters θ of DNNs have been proposed along with39

guarantees that the generalization gap will be small as long as R(θ) is bounded, but there are often40

little to no result describing families of functions that can be approximated with a bounded R(θ)41

norm. The situation is much clearer in shallow networks, where we know that certain Sobolev spaces42

can be approximated with bounded F1-norm [5].43

We will focus on approximating composition of Sobolev functions, and obtaining close to optimal44

rates. This is quite similar to the family of tasks considered [39], though the complexity measure we45

consider is quite different, and does not require sparsity of the parameters.46

1.1 Contribution47

We consider Accordion Networks (AccNets), which are the composition of multiple shallow48

networks fL:1 = fL ◦ · · · ◦ f1, we prove a uniform generalization bound L(fL:1) − L̃N (fL:1) ≲49

R(f1, . . . , fL)
logN√

N
, for a complexity measure50

R(f1, . . . , fL) =

L∏
ℓ=1

Lip(fℓ)

L∑
ℓ=1

∥fℓ∥F1

Lip(fℓ)

√
dℓ + dℓ−1

that depends on the F1-norms ∥fℓ∥F1
and Lipschitz constanst Lip(fℓ) of the subnetworks, and the51

intermediate dimensions d0, . . . , dL. This use of the F1-norms makes this bound independent of the52

widths w1, . . . , wL of the subnetworks, though it does depend on the depth L (it typically grows53

linearly in L which is still better than the exponential growth often observed).54

Any traditional DNN can be mapped to an AccNet (and vice versa), by spliting the middle weight55

matrices Wℓ with SVD USV T into two matrices U
√
S and

√
SV T to obtain an AccNet with56

dimensions dℓ = RankWℓ, so that the bound can be applied to traditional DNNs with bounded rank.57

We then show an approximation result: any composition of Sobolev functions f∗ = f∗
L∗ ◦ · · · ◦ f∗
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can be approximated with a network with either a bounded complexity R(θ) or a slowly growing one.59

Thus under certain assumptions one can show that DNNs can learn general compositions of Sobolev60

functions. This ability can be interpreted as DNNs being able to learn symmetries, allowing them to61

avoid the curse of dimensionality in settings where kernel methods or even shallow networks suffer62

heavily from it.63

Empirically, we observe a good match between the scaling laws of learning and our theory, as well as64

qualitative features such as transitions between regimes depending on whether it is harder to learn the65

symmetries of a task, or to learn the task given its symmetries.66

2 Accordion Neural Networks and ResNets67

Our analysis is most natural for a slight variation on the traditional fully-connected neural networks68

(FCNNs), which we call Accordion Networks, which we define here. Nevertheless, all of our results69

can easily be adapted to FCNNs.70

Accordion Networks (AccNets) are simply the composition of L shallow networks, that is fL:1 =71

fL ◦ · · · ◦ f1 where fℓ(z) = Wℓσ(Vℓz + bℓ) for the nonlinearity σ : R → R, the dℓ × wℓ matrix72

Wℓ , wℓ × dℓ−1 matrix Vℓ, and wℓ-dim. vector bℓ, and for the widths w1, . . . , wL and dimensions73

d0, . . . , dL. We will focus on the ReLU σ(x) = max{0, x} for the nonlinearity. The parameters θ are74

made up of the concatenation of all (Wℓ, Vℓ, bℓ). More generally, we denote fℓ2:ℓ1 = fℓ2 ◦ · · · ◦ fℓ175

for any 1 ≤ ℓ1 ≤ ℓ2 ≤ L.76

We will typically be interested in settings where the widths wℓ is large (or even infinitely large), while77

the dimensions dℓ remain finite or much smaller in comparison, hence the name accordion.78

If we add residual connections, i.e. fres
1:L = (fL + id) ◦ · · · ◦ (f1 + id) for the same shallow nets79

f1, . . . , fL we recover the typical ResNets.80
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Remark. The only difference between AccNets and FCNNs is that each weight matrix Mℓ of the81

FCNN is replaced by a product of two matrices Mℓ = VℓWℓ−1 in the middle of the network (such a82

structure has already been proposed [34]). Given an AccNet one can recover an equivalent FCNN by83

choosing Mℓ = VℓWℓ−1, M0 = V0 and ML+1 = WL. In the other direction there could be multiple84

ways to split Mℓ into the product of two matrices, but we will focus on taking Vℓ = U
√
S and85

Wℓ−1 =
√
SV T for the SVD decomposition Mℓ = USV T , along with the choice dℓ = RankMℓ.86

2.1 Learning Setup87

We consider a traditional learning setup, where we want to find a function f : Ω ⊂ Rdin → Rdout88

that minimizes the population loss L(f) = Ex∼π [ℓ(x, f(x))] for an input distribution π and a89

ρ-Lipschitz and ρ-bounded loss function ℓ(x, y) ∈ [0, B]. Given a training set x1, . . . , xN of size N90

we approximate the population loss by the empirical loss L̃N (f) = 1
N

∑N
i=1 ℓ(xi, f(xi)) that can be91

minimized.92

To ensure that the empirical loss remains representative of the population loss, we will prove high93

probability bounds on the generalization gap L̃N (f)−L(f) uniformly over certain functions families94

f ∈ F .95

For regression tasks, we assume the existence of a true function f∗ and try to minimize the distance96

ℓ(x, y) = ∥f∗(x)− y∥p for p ≥ 1. If we assume that f∗(x) and y are uniformly bounded then one97

can easily show that ℓ(x, y) is bounded and Lipschitz. We are particularly interested in the cases98

p ∈ {1, 2}, with p = 2 representing the classical MSE, and p = 1 representing a L1 distance. The99

p = 2 case is amenable to ‘fast rates’ which take advantage of the fact that the loss increases very100

slowly around the optimal solution f∗, We do not prove such fast rates (even though it might be101

possible) so we focus on the p = 1 case.102

For classification tasks on k classes, we assume the existence of a ‘true class’ function f∗ : Ω →103

{1, . . . , k} and want to learn a function f : Ω → Rk such that the largest entry of f(x) is the f∗(k)-th104

entry. One can consider the hinge cost ℓ(x, y) = max{0, 1− (yf∗(k) −maxi̸=f∗(x) yi)}, which is105

zero whenever the margin yf∗(k) −maxi ̸=f∗(x) yi is larger than 1 and otherwise equals 1 minus the106

margin. The hinge loss is Lipschitz and bounded if we assume bounded outputs y = f(x). The107

cross-entropy loss also fits our setup.108

3 Generalization Bound for DNNs109

The reason we focus on accordion networks is that there exists generalization bounds for shallow110

networks [5, 44], that are (to our knowledge) widely considered to be tight, which is in contrast to the111

deep case, where many bounds exist but no clear optimal bound has been identified. Our strategy112

is to extend the results for shallow nets to the composition of multiple shallow nets, i.e. AccNets.113

Roughly speaking, we will show that the complexity of an AccNet fθ is bounded by the sum of the114

complexities of the shallow nets f1, . . . , fL it is made of.115

We will therefore first review (and slightly adapt) the existing generalization bounds for shallow116

networks in terms of their so-called F1-norm [5], and then prove a generalization bound for deep117

AccNets.118

3.1 Shallow Networks119

The complexity of a shallow net f(x) = Wσ(V x + b), with weights W ∈ Rw×dout and120

V ∈ Rdin×w, can be bounded in terms of the quantity C =
∑w

i=1 ∥W·i∥
√

∥Vi·∥2 + b2i .121

First note that the rescaled function 1
C f can be written as a convex combination 1

C f(x) =122 ∑w
i=1

∥W·i∥
√

∥Vi·∥2+b2i
C W̄·iσ(V̄i·x+ b̄i) for W̄·i =

W·i
∥W·i∥ , V̄i· =

Vi·√
∥Vi·∥2+b2i

, and b̄i =
bi√

∥Vi·∥2+b2i
,123

since the coefficients ∥W·i∥
√

∥Vi·∥2+b2i
C are positive and sum up to 1. Thus f belongs to C times the124

convex hull125

BF1
= Conv

{
x 7→ wσ(vTx+ b) : ∥w∥2 = ∥v∥2 + b2 = 1

}
.
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We call this the F1-ball since it can be thought of as the unit ball w.r.t. the F1-norm ∥f∥F1
which we126

define as the smallest positive scalar s such that1 1
sf ∈ BF1 . For more details in the single output127

case, see [5].128

The generalization gap over any F1-ball can be uniformly bounded with high probability:129

Theorem 1. For any input distribution π supported on the L2 ball B(0, b) with radius b, we have130

with probability 1− δ, over the training samples x1, . . . , xN , that for all f ∈ BF1
(0, R) = R ·BF1

131

L(f)− L̃N (f) ≤ ρbR
√

din + dout
logN√

N
+ c0

√
2 log 2/δ

N

This theorem is a slight variation of the one found in [5]: we simply generalize it to multiple outputs,132

and also prove it using a covering number argument instead of a direct computation of the Rademacher133

complexity, which will be key to obtaining a generalization bound for the deep case. But due to this134

change of strategy we pay a logN cost here and in our later results. We know that the logN term135

can be removed in Theorem 1 by switching to a Rademacher argument, but we do not know whether136

it can be removed in deep nets.137

Notice how this bound does not depend on the width w, because the F1-norm (and the F1-ball)138

themselves do not depend on the width. This matches with empirical evidence that shows that139

increasing the width does not hurt generalization [8, 21, 20].140

To use Theorem 1 effectively we need to be able to guarantee that the learned function will have a141

small enough F1-norm. The F1-norm is hard to compute exactly, but it is bounded by the parameter142

norm: if f(x) = Wσ(V x+ b), then ∥f∥F1
≤ 1

2

(
∥W∥2F + ∥V ∥2F + ∥b∥2

)
, and this bound is tight143

if the width w is large enough and the parameters are chosen optimally. Adding weight decay/L2-144

regularization to the cost then leads to bias towards learning with small F1 norm.145

3.2 Deep Networks146

Since an AccNet is simply the composition of multiple shallow nets, the functions represented by an147

AccNet is included in the set of composition of F1 balls. More precisely, if ∥Wℓ∥2+∥Vℓ∥2+∥bℓ∥2 ≤148

2Rℓ then fL:1 belongs to the set {gL ◦ · · · ◦ g1 : gℓ ∈ BF1(0, Rℓ)} for some Rℓ, which is width149

agnostic.150

As already noticed in [7], the covering number number is well-behaved under composition, this151

allows us to bound the complexity of AccNets in terms of the individual shallow nets it is made up of:152

Theorem 2. Consider an accordion net of depth L and widths dL, . . . , d0, with corresponding set of153

functions F = {fL:1 : ∥fℓ∥F1
≤ Rℓ,Lip(fℓ) ≤ ρℓ}. With probability 1− δ over the sampling of the154

training set X from the distribution π supported in B(0, b), we have for all f ∈ F155

L(f)− L̃N (f) ≤ CρbρL:1

L∑
ℓ=1

Rℓ

ρℓ

√
dℓ + dℓ−1

logN√
N

(1 + o(1)) + c0

√
2 log 2/δ

N
.

Theorem 2 can be extended to ResNets (fL + id) ◦ · · · ◦ (f1 + id) by simply replacing the Lipschitz156

constant Lip(fℓ) by Lip(fℓ + id).157

The Lipschitz constants Lip(fℓ) are difficult to compute exactly, so it is easiest to simply bound it158

by the product of the operator norms Lip(fℓ) ≤ ∥Wℓ∥op ∥Vℓ∥op, but this bound can often be quite159

loose. The fact that our bound depends on the Lipschitz constants rather than the operator norms160

∥Wℓ∥op , ∥Vℓ∥op is thus a significant advantage.161

This bound can be applied to a FCNNs with weight matrices M1, . . . ,ML+1, by replacing the middle162

Mℓ with SVD decomposition USV T in the middle by two matrices Wℓ−1 =
√
SV T and Vℓ = U

√
S,163

so that the dimensions can be chosen as the rank dℓ = RankMℓ+1. The Frobenius norm of the new164

matrices equal the nuclear norm of the original one ∥Wℓ−1∥2F = ∥Vℓ∥2F = ∥Mℓ∥∗. Some bounds165

1This construction can be used for any convex set B that is symmetric around zero (B = −B) to define a
norm whose unit ball is B. This correspondence between symmetric convex sets and norms is well known.
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Figure 1: Visualization of scaling laws. We observe that deep networks (either AccNets or DNNs)
achieve better scaling laws than kernel methods or shallow networks on certain compositional tasks,
in agreement with our theory. We also see that our new generalization bounds approximately recover
the right saling laws (even though they are orders of magnitude too large overall). We consider
a compositional true function f∗ = h ◦ g where g maps from dimension 15 to 3 while h maps
from 3 to 20, and we denote νg, νh for the number of times g, h are differentiable. In the first plot
νg = 8, νh = 1 so that g is easy to learn while h is hard, whereas in the second plot νg = 9, νh = 9,
so both g and h are relatively easier. The third plot presents the decay in test error and generalization
bounds for networks evaluated using the real-world dataset, WESAD [37].

assuming rank sparsity of the weight matrices also appear in [41]. And several recent results have166

shown that weight-decay leads to a low-rank bias on the weight matrices of the network [27, 26, 19]167

and replacing the Frobenius norm regularization with a nuclear norm regularization (according to the168

above mentioned equivalence) will only increase this low-rank bias.169

We compute in Figure 1 the upper bound of Theorem 2 for both AccNets and DNNs, and even though170

we observe a very large gap (roughly of order 103), we do observe that it captures rate/scaling of the171

test error (the log-log slope) well. So this generalization bound could be well adapted to predicting172

rates, which is what we will do in the next section.173

Remark. Note that if one wants to compute this upper bound in practical setting, it is important to174

train with L2 regularization until the parameter norm also converges (this often happens after the175

train and test loss have converged). The intuition is that at initialization, the weights are initialized176

randomly, and they contribute a lot to the parameter norm, and thus lead to a larger generalization177

bound. During training with weight decay, these random initial weights slowly vanish, thus leading178

to a smaller parameter norm and better generalization bound. It might be possible to improve our179

generalization bounds to take into account the randomness at initialization to obtain better bounds180

throughout training, but we leave this to future work.181

4 Breaking the Curse of Dimensionality with Compositionality182

In this section we study a large family of functions spaces, obtained by taking compositions of183

Sobolev balls. We focus on this family of tasks because they are well adapted to the complexity184

measure we have identified, and because kernel methods and even shallow networks do suffer from185

the curse of dimensionality on such tasks, whereas deep networks avoid it (e.g. Figure 1).186

More precisely, we will show that these sets of functions can be approximated by a AccNets with187

bounded (or in some cases slowly growing) complexity measure188

R(f1, . . . , fL) =

L∏
ℓ=1

Lip(fℓ)

L∑
ℓ=1

∥fℓ∥F1

Lip(fℓ)

√
dℓ + dℓ−1.

This will then allow us show that AccNets can (assuming global convergence) avoid the curse of189

dimensionality, even in settings that should suffer from the curse of dimensionality, when the input190

dimension is large and the function is not very smooth (only a few times differentiable).191
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Figure 2: A comparison of empirical and theoretical error rates. The first plot illustrates the log
decay rate of the test error with respect to the dataset size N based on our empirical simulations.
The second plot depicts the theoretical decay rate of the test error as discussed in Section 4.1,
−min{ 1

2 ,
νg

din
, νh

dmid
}. The final plot on the right displays the difference between the two. The lower

left region represents the area where g is easier to learn than h, the upper right where h is easier to
learn than g, and the lower right region where both f and g are easy.

.

4.1 Composition of Sobolev Balls192

The family of Sobolev norms capture some notion of regularity of a function, as it measures the size193

of its derivatives. The Sobolev norm of a function f : Rdin → R is defined in terms of its derivatives194

∂α
x f for some din-multi-index α, namely the W ν,p(π)-Sobolev norm with integer ν and p ≥ 1 is195

defined as196

∥f∥pW ν,p(π) =
∑
|α|≤ν

∥∂α
x f∥

p
Lp(π)

.

Note that the derivative ∂α
x f only needs to be defined in the ‘weak’ sense, which means that even197

non-differentiable functions such as the ReLU functions can actually have finite Sobolev norm.198

The Sobolev balls BW ν,p(π)(0, R) = {f : ∥f∥W ν,p(π) ≤ R} are a family of function spaces with a199

range of regularity (the larger ν, the more regular). This regularity makes these spaces of functions200

learnable purely from the fact that they enforce the function f to vary slowly as the input changes.201

Indeed we can prove the following generalization bound:202

Proposition 3. Given a distribution π with support the L2 ball with radius b, we have that with203

probability 1− δ for all functions f ∈ F = {f : ∥f∥W ν,2 ≤ R, ∥f∥∞ ≤ R}204

L(f)− L̃N (f) ≤ 2ρC1REν/d(N) + c0

√
2 log 2/δ

N
.

where Er(N) = N− 1
2 if r > 1

2 , Er(N) = N− 1
2 logN if r = 1

2 , and Er(N) = N−r if r < 1
2 .205

But this result also illustrates the curse of dimensionality: the differentiability ν needs to scale with206

the input dimension din to obtain a reasonable rate. If instead ν is constant and din grows, then the207

number of datapoints N needed to guarantee a generalization gap of at most ϵ scales exponentially in208

din, i.e. N ∼ ϵ−
din
ν . One way to interpret this issue is that regularity becomes less and less useful the209

larger the dimension: knowing that similar inputs have similar outputs is useless in high dimension210

where the closest training point xi to a test point x is typically very far away.211

4.1.1 Breaking the Curse of Dimensionality with Compositionality212

To break the curse of dimensionality, we need to assume some additional structure on the data or task213

which introduces an ‘intrinsic dimension’ that can be much lower than the input dimension din:214

Manifold hypothesis: If the input distribution lies on a dsurf -dimensional manifold, the error rates215

typically depends on dsurf instead of din [38, 10].216
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Figure 3: Comparing error rates for shallow and AccNets: shallow nets vs. AccNets, and kernel
methods vs. AccNets. The left two graphs shows the empirical decay rate of test error with respect to
dataset size (N) for both shallow nets and kernel methods. In contrast to our earlier empirical findings
for AccNets, both shallow nets and kernel methods exhibit a slower decay rate in test error. The right
two graphs present the differences in log decay rates between shallow nets and AccNets, as well as
between kernel methods and AccNets. AccNets almost always obtain better rates, with a particularly
large advantage at the bottom and middle-left.

.

Known Symmetries: If f∗(g · x) = f∗(x) for a group action · w.r.t. a group G, then f∗ can be217

written as the composition of a modulo map g∗ : Rdin → Rdin/G which maps pairs of inputs which218

are equivalent up to symmetries to the same value (pairs x, y s.t. y = g · x for some g ∈ G), and then219

a second function h∗ : R
din/G → Rdout , then the complexity of the task will depend on the dimension220

of the modulo space Rdin/G which can be much lower. If the symmetry is known, then one can for221

example fix g∗ and only learn h∗ (though other techniques exist, such as designing kernels or features222

that respect the same symmetries) [31].223

Symmetry Learning: However if the symmetry is not known then both g∗ and h∗ have to be learned,224

and this is where we require feature learning and/or compositionality. Shallow networks are able225

to learn translation symmetries, since they can learn so-called low-index functions which satisfy226

f∗(x) = f∗(Px) for some projection P (with a statistical complexity that depends on the dimension227

of the space one projects into, not the full dimension [5, 2]). Low-index functions correspond exactly228

to the set of functions that are invariant under translation along the kernel kerP . To learn general229

symmetries, one needs to learn both h∗ and the modulo map g∗ simultaneously, hence the importance230

of feature learning.231

For g∗ to be learnable efficiently, it needs to be regular enough to not suffer from the curse of232

dimensionality, but many traditional symmetries actually have smooth modulo maps, for example233

the modulo map g∗(x) = ∥x∥2 for rotation invariance. This can be understood as a special case of234

composition of Sobolev functions, whose generalization gap can be bounded:235

Theorem 4. Consider the function set F = FL ◦ · · · ◦ F1 where Fℓ =236 {
fℓ : Rdℓ−1 → Rdℓ s.t. ∥fℓ∥W νℓ,2 ≤ Rℓ, ∥fℓ∥∞ ≤ bℓ, Lip(fℓ) ≤ ρℓ

}
, and let rmin = minℓ rℓ for237

rℓ =
νℓ

dℓ−1
, then with probability 1− δ we have for all f ∈ F238

L(f)− L̃N (f) ≤ ρC0

(
L∑

ℓ=1

(CℓρL:ℓ+1Rℓ)
1

rmin+1

)rmin+1

Ermin
(N) + c0

√
2 log 2/δ

N
,

where Cℓ depends only on dℓ−1, dℓ, νℓ, bℓ−1.239

We see that only the smallest ratio rmin matters when it comes to the rate of learning. And actually240

the above result could be slightly improved to show that the sum over all layers could be replaced by241

a sum over only the layers where the ratio rℓ leads to the worst rate Erℓ(N) = Ermin
(N) (and the242

other layers contribute an asymptotically subdominant amount).243

Coming back to the symmetry learning example, we see that the hardness of learning a function of244

the type f∗ = h ◦ g with inner dimension dmid and regularities νg and νh, the error rate will be (up245

to log terms) N−min{ 1
2 ,

νg
din

,
νh

dmid
}. This suggests the existence of three regimes depending on which246

term attains the minimum: a regime where both g and h are easy to learn and we have N− 1
2 learning,247

a regime g is hard, and a regime where h is hard. The last two regimes differentiate between tasks248
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where learning the symmetry is hard and those where learning the function knowing its symmetries is249

hard.250

In contrast, without taking advantage of the compositional structure, we expect f∗ to be only251

min{νg, νh} times differentiable, so trying to learn it as a single Sobolev function would lead to an252

error rate of N−min{ 1
2 ,

min{νg,νh}
din

}
= N

−min{ 1
2 ,

νg
din

,
νh
din

} which is no better than the compositional253

rate, and is strictly worse whenever νh < νg and νh

din
< 1

2 (we can always assume dmid ≤ din since254

one could always choose d = id).255

Furthermore, since multiple compositions are possible, one can imagine a hierarchy of symmetries256

that slowly reduce the dimensionality with less and less regular modulo maps. For example one could257

imagine a composition fL ◦ · · · ◦ f1 with dimensions dℓ = d02
−ℓ and regularities νℓ = d02

−ℓ so that258

the ratios remain constant rℓ = d02
−ℓ

d02−ℓ+1 = 1
2 , leading to an almost parametric rate of N− 1

2 logN259

even though the function may only be d02−L times differentiable. Without compositionality, the rate260

would only be N−2−L

.261

Remark. In the case of a single Sobolev function, one can show that the rate Eν/d(N) is in some262

sense optimal, by giving an information theoretic lower bound with matching rate. A naive argument263

suggests that the rate of Emin{r1,...,rL}(N) should similarly be optimal: assume that the minimum264

rℓ is attained at a layer ℓ, then one can consider the subset of functions such that the image265

fℓ−1:1(B(0, r)) contains a ball B(z, r′) ⊂ Rdℓ−1 and that the function fL:ℓ+1 is β-non-contracting266

∥fL:ℓ+1(x)− fL:ℓ+1(y)∥ ≥ β ∥x− y∥, then learning fL:1 should be as hard as learning fℓ over the267

ball B(z, r′) (more rigorously this could be argued from the fact that any ϵ-covering of fL:1 can be268

mapped to an ϵ/β-covering of fℓ), thus forcing a rate of at least Erℓ(N) = Emin{r1,...,rL}(N).269

An analysis of minimax rates in a similar setting has been done in [22].270

4.2 Breaking the Curse of Dimensionality with AccNets271

Now that we know that composition of Sobolev functions can be easily learnable, even in settings272

where the curse of dimensionality should make it hard to learn them, we need to find a model that can273

achieve those rates. Though many models are possible 2, we focus on DNNs, in particular AccNets.274

Assuming convergence to a global minimum of the loss of sufficiently wide AccNets with two types275

of regularization, one can guarantee close to optimal rates:276

Theorem 5. Given a true function f∗
L∗:1 = f∗

L∗ ◦ · · · ◦ f∗
1 going through the dimensions d∗0, . . . , d

∗
L∗ ,277

along with a continuous input distribution π0 supported in B(0, b0), such that the distributions πℓ278

of f∗
ℓ (x) (for x ∼ π0) are continuous too and supported inside B(0, bℓ) ⊂ Rd∗

ℓ . Further assume279

that there are differentiabilities νℓ and radii Rℓ such that ∥f∗
ℓ ∥W νℓ,2(B(0,bℓ))

≤ Rℓ, and ρℓ such that280

Lip(f∗
ℓ ) ≤ ρℓ. For an infinite width AccNet with L ≥ L∗ and dimensions dℓ ≥ d∗1, . . . , d

∗
L∗−1, we281

have for the ratios r̃ℓ = νℓ

d∗
ℓ+3 :282

• At a global minimizer f̂L:1 of the regularized loss f1, . . . , fL 7→ L̃N (fL:1) +283

λ
∏L

ℓ=1 Lip(fℓ)
∑L

ℓ=1

∥fℓ∥F1

Lip(fℓ)

√
dℓ−1 + dℓ, we have L(f̂L:1) = Õ(N−min{ 1

2 ,r̃1,...,r̃L∗}).284

• At a global minimizer f̂L:1 of the regularized loss f1, . . . , fL 7→ L̃N (fL:1)+λ
∏L

ℓ=1 ∥fℓ∥F1
,285

we have L(f̂L:1) = Õ(N− 1
2+

∑L∗
ℓ=1 max{0,r̃ℓ− 1

2}).286

There are a number of limitations to this result. First we assume that one is able to recover the global287

minimizer of the regularized loss, which should be hard in general3 (we already know from [5] that288

this is NP-hard for shallow networks and a simple F1-regularization). Note that it is sufficient to289

recover a network fL:1 whose regularized loss is within a constant of the global minimum, which290

2One could argue that it would be more natural to consider compositions of kernel method models, for
example a composition of random feature models. But this would lead to a very similar model: this would
be equivalent to a AccNet where only the Wℓ weights are learned, while the Vℓ, bℓ weights remain constant.
Another family of models that should have similar properties is Deep Gaussian Processes [15].

3Note that the unregularized loss can be optimized polynomially, e.g. in the NTK regime [28, 3, 16], but this
is an easier task than findinig the global minimum of the regularized loss where one needs to both fit the data,
and do it with an minimal regularization term.
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might be easier to guarantee, but should still be hard in general. The typical method of training with291

GD on the regularized loss is a greedy approach, which might fail in general but could recover almost292

optimal parameters under the right conditions (some results suggest that training relies on first order293

correlations to guide the network in the right direction [2, 1, 35]).294

We propose two regularizations because they offer a tradeoff:295

First regularization: The first regularization term leads to almost optimal rates, up to the change296

from rℓ =
νℓ

d∗
ℓ

to rℓ =
νℓ

d∗
ℓ+3 which is negligible for large dimensions dℓ and differentiabilities νℓ. The297

first problem is that it requires an infinite width at the moment, because we were not able to prove298

that a function with bounded F1-norm and Lipschitz constant can be approximated by a sufficiently299

wide shallow networks with the same (or close) F1-norm and Lipschitz constant (we know from [5]300

that it is possible without preserving the Lipschitzness). We are quite hopeful that this condition301

might be removed in future work.302

The second and more significant problem is that the Lipschitz constants Lip(fℓ) are difficult to303

optimize over. For finite width networks it is in theory possible to take the max over all linear regions,304

but the complexity might be unreasonable. It might be more reasonable to leverage an implicit bias305

instead, such as a large learning rate, because a large Lipschitz constant implies that the nework is306

sensible to small changes in its parameters, so GD with a large learning rate should only converge to307

minima with a small Lipschitz constant (such a bias is described in [26]). It might also be possible to308

replace the Lipschitz constant in our generalization bounds, possibly along the lines of [43].309

Second regularization: The second regularization term actually does not require an infinite width,310

only a sufficiently large one. Also its regularization term is equivalent to
∏
(∥Wℓ∥2+ ∥Vℓ∥2+ ∥bℓ∥2)311

which is much closer to the traditional L2-regularization (and actually one could prove the same312

or very similar rates for L2-regularization). The issue is that it lead to rates that could be far from313

optimal depending on the ratios r̃ℓ: it recovers the same rate as the first regularization term if no314

more than one ratio r̃ℓ is smaller than 1
2 , but if many of these ratios are above 1

2 , it can be arbitrarily315

smaller.316

In Figure 2, we compare the empirical rates (by doing a linear fit on a log-log plot of test error as a317

function of N ) and the predicted optimal rates min{ 1
2 ,

νg

din
, νh

dmid
} and observe a pretty good match.318

Though surprisingly, it appears the the empirical rates tend to be slightly better than the theoretical319

ones.320

Remark. As can be seen in the proof of Theorem5, when the depth L is strictly larger than the true321

depth L∗, one needs to add identity layers, leading to a so-called Bottleneck structure, which was322

proven to be optimal and observed empirically in [27, 26, 45]. These identity layers add a term323

that scales linearly in the additional depth (L−L∗)d∗
min√

N
to the first regularization, and an exponential324

prefactor (2d∗min)
L−L∗

to the second. It might be possible to remove these factors by leveraging the325

bottleneck structure, or simply by switching to ResNets.326

5 Conclusion327

We have given a generalization bound for Accordion Networks and as an extension Fully-Connected328

networks. It depends on F1-norms and Lipschitz constants of its shallow subnetworks. This allows us329

to prove under certain assumptions that AccNets can learn general compositions of Sobolev functions330

efficiently, making them able to break the curse of dimensionality in certain settings, such as in the331

presence of unknown symmetries.332
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The Appendix is structured as follows:455

1. In Section A, we describe the experimental setup and provide a few additional experiments.456

2. In Section B, we prove Theorems 1 and 2 from the main.457

3. In Section C, we prove Proposition 3 and Theorem 4.458

4. In Section D, we prove Theorem 5 and other approximation results concerning Sobolev459

functions.460

5. In Section E, we prove a few technical results on the covering number.461

A Experimental Setup4
462

In this section, we review our numerical experiments and their setup both on synthetic and real-world463

datasets in order to address theoretical results more clearly and intuitively.464

A.1 Dataset465

A.1.1 Emperical Dataset466

The Matérn kernel is considered a generalization of the radial basis function (RBF) kernel. It467

controls the differentiability, or smoothness, of the kernel through the parameter ν. As ν → ∞, the468

Matérn kernel converges to the RBF kernel, and as ν → 0, it converges to the Laplacian kernel, a469

0-differentiable kernel. In this study, we utilized the Matérn kernel to generate Gaussian Process (GP)470

samples based on the composition of two Matérn kernels, Kg and Kh, with varying differentiability471

in the range [0.5,10]×[0.5,10]. The input dimension (din) of the kernel, the bottleneck mid-dimension472

(dmid), and the output dimension (dout) are 15, 3, and 20, respectively.473

This outlines the general procedure of our sampling method for synthetic data:474

1. Sample the training dataset X ∈ RD×din475

2. From X, compute the D ×D kernel Kg with given νg476

3. From Kg , sample Z ∈ RD×dmid with columns sampled from the Gaussian N (0,Kg).477

4. From Z, compute Kg with given νh478

5. From Kh, sample the test dataset Y ∈ RD×dout with columns sampled from the Gaussian479

N (0,Kh).480

We utilized four AMD Opteron 6136 processors (2.4 GHz, 32 cores) and 128 GB of RAM to generate481

our synthetic dataset. The maximum possible dataset size for 128 GB of RAM is approximately482

52,500; however, we opted for a synthetic dataset size of 22,000 due to the computational expense483

associated with sampling the Matérn kernel. This decision was made considering the time complexity484

of O(n3)and the space complexity of O(n2) involved. Out of the 22,000 dataset points, 20,000 were485

allocated for training data, and 2,000 were used for the test dataset486

A.1.2 Real-world dataset: WESAD487

In our study, we utilized the Wearable Stress and Affect Detection (WESAD) dataset to train our488

AccNets for binary classification. The WESAD dataset, which is publicly accessible, provides489

multimodal physiological and motion data collected from 15 subjects using devices worn on the wrist490

and chest. For the purpose of our experiment, we specifically employed the Empatica E4 wrist device491

to distinguish between non-stress (baseline) and stress conditions, simplifying the classification task492

to these two categories.493

After preprocessing, the dataset comprised a total of 136,482 instances. We implemented a train-test494

split ratio of approximately 75:25, resulting in 100,000 instances for the training set and 36,482495

instances for the test set. The overall hyperparameters and architecture of the AccNets model applied496

to the WESAD dataset were largely consistent with those used for our synthetic data. The primary497

differences were the use of 100 epochs for each iteration of Ni from Ns, and a learning rate set to498

1e-5.499

4The code used for experiments are publicly available here
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Figure 4: A comparison: singular values of the weight matrices for DNN and AccNets models.
The first two plots represent cases where N = 10000 while the right two plots correspond to N =
200.The number of outliers at the top of each plot signifies the rank of each network. The plots with
N = 10000 datasets demonstrate a clearer capture of the true rank compared to those with N = 200
indicating that a higher dataset count provides more accurate rank determination

.

A.2 Model setups500

To investigate the scaling law of test error for our synthetic data, we trained models using Ni501

datapoints from our training data, where N = [100, 200, 500, 1000, 2000, 5000, 10000, 20000]. The502

models employed for this analysis included the kernel method, shallow networks, fully connected503

deep neural networks (FC DNN), and AccNets. For FC DNN and AccNets, we configured the504

network depth to 12 layers, with the layer widths set as [din, 500, 500, ..., 500, dout] for DNNs, and505

[din, 900, 100, 900, ..., 100, 900, dout] for AccNets.506

To ensure a comparable number of neurons, the width for the shallow networks was set to 50,000,507

resulting in dimensions of [din, 50000, dout].508

We utilized ReLU as the activation function and L1-norm as the cost function, with the Adam509

optimizer. The total number of batch was set to 5, and the training process was conducted over 3600510

epochs, divided into three phases. The detailed optimizer parameters are as follows:511

1. For the first 1200 epochs: learning rate (lr) = 1.5 ∗ 0.001, weight decay = 0512

2. For the second 1200 epochs: lr = 0.4 ∗ 0.001, weight decay = 0.002513

3. For the final 1200 epochs: lr = 0.1 ∗ 0.001, weight decay = 0.005514

We conducted experiments utilizing 12 NVIDIA V100 GPUs (each with 32GB of memory) over a515

period of 6.3 days to train the synthetic dataset. In contrast, training the WESAD dataset required516

only one hour on a single V100 GPU.517

A.3 Additional experiments518

B AccNet Generalization Bounds519

The proof of generalization for shallow networks (Theorem 1) is the special case L = 1 of the proof520

of Theorem 2, so we only prove the second:521

Theorem 6. Consider an accordion net of depth L and widths dL, . . . , d0, with corresponding set522

of functions F = {fL:1 : ∥fℓ∥F1
≤ Rℓ,Lip(fℓ) ≤ ρℓ} with input space Ω = B(0, r). For any523

ρ-Lipschitz loss function ℓ(x, f(x)) with |ℓ(x, y)| ≤ c0, we know that with probability 1− δ over the524

sampling of the training set X from the distribution π, we have for all f ∈ F525

L(f)− L̃N (f) ≤ CρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

logN√
N

(1 + o(1)) + c0

√
2 log 2/δ

N
.

Proof. The strategy is: (1) prove a covering number bound on F (2) use it to obtain a Rademacher526

complexity bound, (3) use the Rademacher complexity to bound the generalization error.527
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(1) We define fℓ = Vℓ ◦ σ ◦Wℓ so that fθ = fL:1 = fL ◦ · · · ◦ f1. First notice that we can write each528

fℓ as convex combination of its neurons:529

fℓ(x) =

wℓ∑
i=1

vℓ,iσ(w
T
ℓ,ix) = Rℓ

wℓ∑
i=1

cℓ,iv̄ℓ,iσ(w̄
T
ℓ,ix)

for w̄ℓ,i =
wℓ,i

∥wℓ,i∥ , v̄ℓ,i =
vℓ,i

∥vℓ,i∥ , Rℓ =
∑ℓ

i=1 ∥vℓ,i∥ ∥wℓ,i∥ and cℓ,i =
1
Rℓ

∥vℓ,i∥ ∥wℓ,i∥.530

Let us now consider a sequence ϵk = 2−k for k = 0, . . . ,K and define ṽ(k)ℓ,i , w̃
(k)
ℓ,i to be the ϵk-covers531

of v̄ℓ,i, w̄ℓ,i, furthermore we may choose ṽ
(0)
ℓ,i = w̃

(0)
ℓ,i = 0 since every unit vector is within a ϵ0 = 1532

distance of the origin. We will now show that on can approximate fθ by approximating each of the fℓ533

by functions of the form534

f̃ℓ(x) = Rℓ

Kℓ∑
k=1

1

Mk,ℓ

Mk,ℓ∑
m=1

ṽ
(k)

ℓ,i
(k)
ℓ,m

σ(w̃
(k)T

ℓ,i
(k)
ℓ,m

x)− ṽ
(k−1)

ℓ,i
(k)
ℓ,m

σ(w̃
(k−1)T

ℓ,i
(k)
ℓ,m

x)

for indices i(k)ℓ,m = 1, . . . , wℓ choosen adequately. Notice that the number of functions of this type535

equals the number of Mk,ℓ quadruples (ṽ(k)
ℓ,i

(k)
ℓ,m

, w̃
(k)T

ℓ,i
(k)
ℓ,m

, ṽ
(k−1)

ℓ,i
(k)
ℓ,m

, w̃
(k−1)T

ℓ,i
(k)
ℓ,m

) where these vectors belong536

to the ϵk- resp. ϵk−1-coverings of the din- resp. dout-dimensional unit sphere. Thus the number of537

such functions is bounded by538

Kℓ∏
k=1

(
N2(Sdin−1, ϵk)N2(Sdout−1, ϵk)N2(Sdin−1, ϵk−1)N2(Sdout−1, ϵk−1)

)Mk,ℓ
,

and we have this choice for all ℓ = 1, . . . , L. We will show that with sufficiently large Mk,ℓ this set539

of functions ϵ-covers F which then implies that540

logN2(F , ϵ) ≤ 2

L∑
ℓ=1

Kℓ∑
k=1

Mk,ℓ

(
logN2(Sdin−1, ϵk−1) + logN2(Sdin−1, ϵk−1)

)
.

We will use the probabilistic method to find the right indices i(k)ℓ,m to approximate a function fℓ =541

Rℓ

∑wℓ

i=1 cℓ,iv̄ℓ,iσ(w̄
T
ℓ,ix) with a function f̃ℓ. We take all i(k)ℓ,m to be i.i.d. equal to the index i =542

1, · · · , wℓ with probability cℓ,i, so that in expectation543

Ef̃ℓ(x) = Rℓ

Kℓ∑
k=1

wℓ∑
i=1

cℓ,i

(
ṽ
(k)
ℓ,i σ(w̃

(k)T
ℓ,i x)− ṽ

(k−1)
ℓ,i σ(w̃

(k−1)T
ℓ,i x)

)
= Rℓ

wℓ∑
i=1

cℓ,iṽ
(K)
ℓ,i σ(w̃

(K)T
ℓ,i x).

We will show that this expectation is O(ϵKℓ
)-close to fℓ and that the variance of f̃ℓ goes to zero as544

the Mℓ,ks grow, allowing us to bound the expected error E
∥∥∥fL:1 − f̃L:1

∥∥∥2
π
≤ ϵ2 which then implies545

that there must be at least one choice of indices i(k)ℓ,m such that
∥∥∥fL:1 − f̃L:1

∥∥∥
π
≤ ϵ.546
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Let us first bound the distance547

∥∥∥fℓ(x)− Ef̃ℓ(x)
∥∥∥ = Rℓ

∥∥∥∥∥
wℓ∑
i=1

cℓ,i

(
v̄ℓ,iσ(w̄

T
ℓ,ix)− ṽ

(K)
ℓ,i σ(w̃

(K)T
ℓ,i x)

)∥∥∥∥∥
≤ Rℓ

wℓ∑
i=1

cℓ,i

(∥∥∥(v̄ℓ,i − ṽ
(K)
ℓ,i

)
σ(w̄T

ℓ,ix)
∥∥∥+ ∥∥∥ṽ(K)

ℓ,i

(
σ(w̄T

ℓ,ix)− σ(w̃
(K)T
ℓ,i x)

)∥∥∥)
≤ Rℓ

wℓ∑
i=1

cℓ,i

(∥∥∥v̄ℓ,i − ṽ
(K)
ℓ,i

∥∥∥∥∥w̄T
ℓ,ix
∥∥+ ∥∥∥ṽ(K)

ℓ,i

∥∥∥ ∥∥∥w̄T
ℓ,ix− w̃

(K)T
ℓ,i x

∥∥∥)
≤ 2Rℓ

wℓ∑
i=1

cℓ,iϵKℓ
∥x∥

= 2RℓϵKℓ
∥x∥ .

Then we bound the trace of the covariance of f̃ℓ which equals the expected square distance between548

f̃ℓ and its expectation:549

E
∥∥∥f̃ℓ(x)− Ef̃ℓ(x)

∥∥∥2
=

Kℓ∑
k=1

R2
ℓ

M2
k,ℓ

Mk,ℓ∑
m=1

E
∥∥∥∥ṽ(k)ℓ,i

(k)
ℓ,m

σ(w̃
(k)T

ℓ,i
(k)
ℓ,m

x)− ṽ
(k−1)

ℓ,i
(k)
ℓ,m

σ(w̃
(k−1)T

ℓ,i
(k)
ℓ,m

x)− E
[
ṽ
(k)

ℓ,i
(k)
ℓ,m

σ(w̃
(k)T

ℓ,i
(k)
ℓ,m

x)− ṽ
(k−1)

ℓ,i
(k)
ℓ,m

σ(w̃
(k−1)T

ℓ,i
(k)
ℓ,m

x)

]∥∥∥∥2

≤
Kℓ∑
k=1

R2
ℓ

M2
k,ℓ

Mk,ℓ∑
m=1

E
∥∥∥ṽ(k)ℓ,mσ(w̃

(k)T
ℓ,m x)− ṽ

(k−1)
ℓ,m σ(w̃

(k−1)T
ℓ,m x)

∥∥∥2
=

Kℓ∑
k=1

R2
ℓ

Mk,ℓ

wℓ∑
i=1

ci

∥∥∥ṽ(k)ℓ,i σ
(
w̃

(k)T
ℓ,i x

)
− ṽ

(k−1)
ℓ,i σ

(
w̃

(k−1)T
ℓ,i x

)∥∥∥2
≤

Kℓ∑
k=1

2R2
ℓ ∥x∥

2

Mk,ℓ

wℓ∑
i=1

ci

∥∥∥ṽ(k)ℓ,i

∥∥∥2 ∥∥∥w̃(k)
ℓ,i − w̃

(k−1)
ℓ,i

∥∥∥2 + ci

∥∥∥ṽ(k)ℓ,i − ṽ
(k−1)
ℓ,i

∥∥∥2 ∥∥∥w̃(k−1)
ℓ,i

∥∥∥2
≤

Kℓ∑
k=1

4R2
ℓ ∥x∥

2

Mk,ℓ
(ϵk + ϵk−1)

2

≤
Kℓ∑
k=1

36R2
ℓ ∥x∥

2

Mk,ℓ
ϵ2k.

Putting both together, we obtain550

E
∥∥∥fℓ(x)− f̃ℓ(x)

∥∥∥2 ≤ 4R2
ℓϵ

2
Kℓ

∥x∥2 +
Kℓ∑
k=1

36R2
ℓ ∥x∥

2

Mk,ℓ
ϵ2k

= 4R2
ℓ ∥x∥

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

We will now use this bound, together with the Lipschitzness of fℓ to bound the error551

E
∥∥∥fL:1(x)− f̃L:1(x)

∥∥∥2. We will do this by induction on the distances E
∥∥∥fℓ:1(x)− f̃ℓ:1(x)

∥∥∥2.552

We start by553

E
∥∥∥f1(x)− f̃1(x)

∥∥∥2 ≤ 4R2
1 ∥x∥

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,1

)
.
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And for the induction step, we condition on the layers fℓ−1:1554

E
∥∥∥fℓ:1(x)− f̃ℓ:1(x)

∥∥∥2 = E
[
E
[∥∥∥fℓ:1(x)− f̃ℓ:1(x)

∥∥∥2 |f̃ℓ−1:1

]]
= E

∥∥∥fℓ:1(x)− E
[
f̃ℓ:1(x)|f̃ℓ−1:1

]∥∥∥2 + EE
[∥∥∥f̃ℓ:1(x)− E

[
f̃ℓ:1(x)|f̃ℓ−1:1

]∥∥∥2 |f̃ℓ−1:1

]
= E

∥∥∥fℓ:1(x)− fℓ(f̃ℓ−1:1(x))
∥∥∥2 + EE

[∥∥∥f̃ℓ:1(x)− fℓ(f̃ℓ−1:1(x))
∥∥∥2 |f̃ℓ−1:1

]
≤ ρ2ℓE

∥∥∥fℓ−1:1(x)− f̃ℓ−1:1(x)
∥∥∥2 + 4R2

ℓE
∥∥∥f̃ℓ−1:1(x)

∥∥∥2(ϵ2Kℓ
+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

Now since555

E
∥∥∥f̃ℓ−1:1(x)

∥∥∥2 ≤ ∥fℓ−1:1(x)∥2 + E
∥∥∥fℓ−1:1(x)− f̃ℓ−1:1(x)

∥∥∥2
≤ ρ2ℓ−1 · · · ρ21 ∥x∥

2
+ E

∥∥∥fℓ−1:1(x)− f̃ℓ−1:1(x)
∥∥∥2

we obtain that556

E
∥∥∥fℓ:1(x)− f̃ℓ:1(x)

∥∥∥2 ≤

(
ρ2ℓ + 4R2

ℓ

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

))
E
∥∥∥fℓ−1:1(x)− f̃ℓ−1:1(x)

∥∥∥2
+ 4R2

ℓρ
2
ℓ−1 · · · ρ21 ∥x∥

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

We define ρ̃2ℓ = ρ2ℓ

[
1 + 4

R2
ℓ

ρ2
ℓ

(
ϵ2Kℓ

+ 9
∑Kℓ

k=1
ϵ2k

Mk,ℓ

)]
and obtain557

E
∥∥∥fL:1(x)− f̃L:1(x)

∥∥∥2 ≤ 4

L∑
ℓ=1

ρ̃2L:ℓ+1R
2
ℓρ

2
ℓ−1:1 ∥x∥

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

Thus for any distribution π over the ball B(0, r), there is a choice of indices i(k)ℓ,m such that558

∥∥∥fL:1 − f̃L:1

∥∥∥2
π
≤ 4

L∑
ℓ=1

ρ̃2L:ℓ+1R
2
ℓρ

2
ℓ−1:1r

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
.

We now simply need to choose Kℓ and Mk,ℓ adequately. To reach an error of 2ϵ, we choose559

Kℓ =

⌈
− log ϵ+

1

2
log

[
4ρ2L:1r

2

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)
Rℓ

ρℓ
√
dℓ + dℓ−1

]⌉

where ρL:1 =
∏L

ℓ=1 ρℓ. Notice that that ϵ2Kℓ
≤ 1

4ρ2
L:1r

2
(∑L

ℓ′=1

R
ℓ′

ρ
ℓ′

√
dℓ′+dℓ′−1

) ρℓ

√
dℓ+dℓ−1

Rℓ
ϵ2.560

Given s0 =
∑∞

k=1

√
k2−k ≈ 1.3473 < ∞, we define561

Mk,ℓ =

⌈
36ρ2L:1r

2s0

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)
Rℓ

ρℓ
√
dℓ + dℓ−1

2−k

√
k

1

ϵ2

⌉
.
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So that for all ℓ562

4
R2

ℓ

ρ2ℓ

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)
≤

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2
+

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2∑Kℓ

k′=1

√
k′2−k′

s0

≤ 2

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2.
Now this also implies that563

ρ̃ℓ ≤ ρℓ exp

2

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2


and thus564

ρ̃L:ℓ+1 ≤ ρL:ℓ+1 exp

2

∑L
ℓ′=ℓ+1

Rℓ

ρℓ

√
dℓ + dℓ−1

ρ2L:1r
2
(∑L

ℓ′=1
Rℓ

ρℓ

√
dℓ + dℓ−1

)ϵ2
 ≤ ρL:ℓ+1 exp

(
2

ρ2L:1r
2
ϵ2
)
.

Putting it all together, we obtain that565 ∥∥∥fL:1 − f̃L:1

∥∥∥2
π
≤ 4

L∑
ℓ=1

ρ̃2L:ℓ+1R
2
ℓρ

2
ℓ−1:1r

2

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)

≤ exp

(
2

ρ2L:1r
2
ϵ2
)
ρ2L:1r

2
L∑

ℓ=1

4
R2

ℓ

ρ2ℓ

(
ϵ2Kℓ

+ 9

Kℓ∑
k=1

ϵ2k
Mk,ℓ

)

≤ 2 exp

(
2

ρ2L:1r
2
ϵ2
)
ϵ2

= 2ϵ2 +O(ϵ4).

Now since logN2(Sdℓ−1, ϵ) = dℓ log
(
1
ϵ + 1

)
and566

Mk,ℓ ≤ 36ρ2L:1r
2s0

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)
Rℓ

ρℓ
√
dℓ + dℓ−1

2−k

√
k

1

ϵ2
+ 1,

we have567

logN2(F ,
√
2 exp

(
ϵ2

ρ2L:1r
2

)
ϵ) ≤ 2

L∑
ℓ=1

Kℓ∑
k=1

Mk,ℓ

(
logN2(Sdℓ−1, ϵk−1) + logN2(Sdℓ−1−1, ϵk−1)

)
≤ 2

L∑
ℓ=1

Kℓ∑
k=1

Mk,ℓ (dℓ + dℓ−1) log(
1

ϵk−1
+ 1)

≤ 72s0ρ
2
L:1r

2

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)
L∑

ℓ=1

Rℓ

ρℓ

√
dℓ + dℓ−1

Kℓ∑
k=1

2−k log( 1
ϵk−1

+ 1)
√
k

1

ϵ2

+ 2

L∑
ℓ=1

(dℓ + dℓ−1)

Kℓ∑
k=1

log(
1

ϵk−1
+ 1)

≤ 72s20ρ
2
L:1r

2

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)2

1

ϵ2
+ o(ϵ−2).
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The diameter of F is smaller than ρL:1r, so for all δ ≥ ρL:1r, logN2(F , δ) = 0. For all δ ≤ ρL:1r568

we choose ϵ = δ√
2e

so that
√
2 exp

(
ϵ2

ρ2
L:1r

2

)
ϵ ≤ δ and therefore569

logN2(F , δ) ≤ 144s20eρ
2
L:1r

2

(
L∑

ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)2

1

δ2
+ o(δ−2).

(2) Our goal now is to use chaining / Dudley’s theorem to bound the Rademacher complexity570

R(F(X)) evaluated on a set X of size N (e.g. Lemma 27.4 in [Understanding Machine Learning])571

of our set:572

Lemma 7. Let c = maxf∈F
1√
N
∥f(X)∥, then for any integer M > 0,573

R(F(X)) ≤ c2−M +
6c√
N

M∑
k=1

2−k
√
logN (F , c2−k).

To apply it to our setting, first note that for all x ∈ B(0, r), ∥fL:1(x)∥ ≤ ρL:1r so that c =574

maxf∈F
1√
N
∥f(X)∥ ≤ ρL:1r, we then have575

R(F(X)) ≤ c2−M +
6c√
N

M∑
k=1

2−k12s0
√
eρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1c

−12k(1 + o(1))

= c2−M +
72√
N

Ms0
√
eρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1(1 + o(1)).

Taking M =
⌈
− log2

(
72√
N
s0
√
e
∑L

ℓ′=1
Rℓ′
ρℓ′

√
dℓ′ + dℓ′−1

)⌉
, we obtain576

R(F(X)) ≤ 72√
N

Ms0
√
eρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1(1 +M(1 + o(1)))

≤ 144√
N

Ms0
√
eρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

⌈
− log2

(
72√
N

s0
√
e

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

)⌉
(1 + o(1))

≤ CρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

logN√
N

(1 + o(1)).

(3) For any ρ-Lipschitz loss function ℓ(x, f(x)) with |ℓ(x, y)| ≤ c0, we know that with probability577

1− δ over the sampling of the training set X from the distribution π, we have for all f ∈ F578

Ex∼π [ℓ(x, f(x))]−
1

N

N∑
i=1

ℓ(xi, f(xi)) ≤ 2EX′ [R(ℓ ◦ F(X ′))] + c0

√
2 log 2/δ

N

≤ 2CρL:1r

L∑
ℓ′=1

Rℓ′

ρℓ′

√
dℓ′ + dℓ′−1

logN√
N

(1 + o(1)) + c0

√
2 log 2/δ

N
.

579

C Composition of Sobolev Balls580

Proposition 8 (Proposition 3 from the main.). Given a distribution π with support in B(0, r), we581

have that with probability 1− δ for all functions f ∈ F = {f : ∥f∥W ν,2 ≤ R, ∥f∥∞ ≤ R}582

L(f)− L̃N (f) ≤ 2C1REν/d(N) + c0

√
2 log 2/δ

N
.

where Er(N) = N− 1
2 if r > 1

2 , Er(N) = N− 1
2 logN if r = 1

2 , and Er(N) = N−r if r < 1
2 .583
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Proof. (1) We know from Theorem 5.2 of [9] that the Sobolev ball BW ν,2(0, R) over any d-584

dimensional hypercube Ω satisfies585

logN2(BW ν,2(0, R), π, ϵ) ≤ C0

(
R

ϵ

) d
ν

for a constant c and any measure π supported in the hypercube.586

(2) By Dudley’s theorem we can bound the Rademacher complexity of our function class B(X)587

evaluated on any training set X:588

R(B(X)) ≤ R2−M +
6R√
N

M∑
k=1

2−k

√
C0

(
R

R2−k

) d
ν

= R2−M +
6R√
N

√
C0

M∑
k=1

2k(
d
2ν −1).

If 2ν = d, we take M = 1
2 logN and obtain the bound589

R√
N

+
6R√
N

√
C0

1

2
logN ≤ C1R

logN√
N

.

If 2ν > d, we take M = ∞ and obtain the bound590

6R√
N

√
C0

(
2

d
2ν −1

1− 2
d
2ν −1

)
≤ C1R

1√
N

.

If 2ν < d, we take M = ν
d logN and obtain the bound591

R2−M +
6R√
N

√
C02

d
2ν −1

(
2M( d

2ν −1) − 1

2
d
2ν −1 − 1

)
≤ C1RN− ν

d .

Putting it all together, we obtain that R(B(X)) ≤ C1Eν/d(N).592

(3) For any ρ-Lipschitz loss function ℓ(x, f(x)) with |ℓ(x, y)| ≤ c0, we know that with probability593

1− δ over the sampling of the training set X from the distribution π, we have for all f ∈ F594

Ex∼π [ℓ(x, f(x))]−
1

N

N∑
i=1

ℓ(xi, f(xi)) ≤ 2EX′ [R(ℓ ◦ F(X ′))] + c0

√
2 log 2/δ

N

≤ 2C1Eν/d(N) + c0

√
2 log 2/δ

N
.

595

Proposition 9. Let F1, . . . ,FL be set of functions mapping through the sets Ω0, . . . ,ΩL, then if all596

functions in Fℓ are ρℓ-Lipschitz, we have597

logN2(FL ◦ · · · ◦ F1,

L∑
ℓ=1

ρL:ℓ+1ϵℓ) ≤
L∑

ℓ=1

logN2(Fℓ, ϵℓ).

Proof. For any distribution π0 on Ω there is a ϵ1-covering F̃1 of F1 with
∣∣∣F̃1

∣∣∣ ≤ N2(F1, ϵ1) then598

for any f̃1 ∈ F̃1 we choose a ϵ2-covering F̃2 w.r.t. the measure π1 which is the measure of f1(x) if599

x ∼ π0 of F2 with
∣∣∣F̃2

∣∣∣ ≤ N2(F2, ϵ), and so on until we obtain coverings for all ℓ. Then the set600

F̃ =
{
f̃L ◦ · · · ◦ f̃1 : f̃1 ∈ F̃1, . . . , f̃L ∈ F̃L

}
is a

∑L
ℓ=1 ρL:ℓ+1ϵℓ-covering of F = FL ◦ · · · ◦ F1,601
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indeed for any f = fL:1 we choose f̃1 ∈ F̃1, . . . , f̃L ∈ F̃L that cover f1, . . . , fL, then f̃L:1 covers602

fL:1:603 ∥∥∥fL:1 − f̃L:1

∥∥∥
π
≤

L∑
ℓ=1

∥∥∥fL:ℓ ◦ f̃ℓ−1:1 − fL:ℓ+1 ◦ f̃ℓ:1
∥∥∥
π

≤
L∑

ℓ=1

∥∥∥fL:ℓ − fL:ℓ+1 ◦ f̃ℓ
∥∥∥
πℓ−1

≤
L∑

ℓ=1

ρL:ℓ+1ϵℓ,

and log cardinality of the set F̃ is bounded
∑L

ℓ=1 logN2(Fℓ, ϵℓ).604

Theorem 10. Let F = FL ◦ · · · ◦ F1 where Fℓ =605 {
fℓ : Rdℓ−1 → Rdℓ s.t. ∥fℓ∥W νℓ,2 ≤ Rℓ, ∥fℓ∥∞ ≤ bℓ, Lip(fℓ) ≤ ρℓ

}
, and let r∗ = minℓ rℓ606

for rℓ = νℓ

dℓ−1
, then with probability 1− δ we have for all f ∈ F607

L(f)− L̃N (f) ≤ ρC0

(
L∑

ℓ=1

(CℓρL:ℓ+1Rℓ)
1

r∗+1

)r∗+1

Er∗(N) + c0

√
2 log 2/δ

N
,

where Cℓ depends only on dℓ−1, dℓ, νℓ, bℓ−1.608

Proof. (1) We know from Theorem 5.2 of [9] that the Sobolev ball BW νℓ,2(0, Rℓ) over any dℓ-609

dimensional hypercube Ω satisfies610

logN2(BW ν,2(0, Rℓ), πℓ−1, ϵℓ) ≤
(
Cℓ

Rℓ

ϵℓ

) 1
rℓ

for a constant Cℓ that depends on the size of hypercube and the dimension dℓ and the regularity νℓ611

and any measure πℓ−1 supported in the hypercube.612

Thus Proposition 9 tells us that the composition of the Sobolev balls satisfies613

logN2(FL ◦ · · · ◦ F1,

L∑
ℓ=1

ρL:ℓ+1ϵℓ) ≤
L∑

ℓ=1

(
Cℓ

Rℓ

ϵℓ

) 1
rℓ

.

Given r∗ = minℓ rℓ, we can bound it by
∑L

ℓ=1

(
Cℓ

Rℓ

ϵℓ

) 1
r∗

and by then choosing ϵℓ =614

ρ−1
L:ℓ+1(ρL:ℓ+1CℓRℓ)

1
r∗+1∑

ℓ(ρL:ℓ+1CℓRℓ)
1

r∗+1
ϵ, we obtain that615

logN2(FL ◦ · · · ◦ F1, ϵ) ≤

(
L∑

ℓ=1

(ρL:ℓ+1CℓRℓ)
1

r∗+1

)r∗+1

ϵ−
1
r∗ .

(2,3) It the follows by a similar argument as in points (2, 3) of the proof of Proposition 8 that there is616

a constant C0 such that with probability 1− δ for all f ∈ F617

L(f)− L̃N (f) ≤ C0

(
L∑

ℓ=1

(ρL:ℓ+1CℓRℓ)
1

r∗+1

)r∗+1

Er∗(N) + c0

√
2 log 2/δ

N

618

D Generalization at the Regularized Global Minimum619

In this section, we first give the proof of Theorem 5 and then present detailed proofs of lemmas used620

in the proof. The lemmas are largely inspired by [5] and may be of independent interest.621
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D.1 Theorem 5 in Section 4.2622

Theorem 11 (Theorem 5 in the main). Given a true function f∗
L∗:1 = f∗

L∗ ◦ · · · ◦f∗
1 going through the623

dimensions d∗0, . . . , d
∗
L∗ , along with a continuous input distribution π0 supported in B(0, b0), such624

that the distributions πℓ of f∗
ℓ (x) (for x ∼ π0) are continuous too and supported inside B(0, bℓ) ⊂625

Rd∗
ℓ . Further assume that there are differentiabilities νℓ and radii Rℓ such that ∥f∗

ℓ ∥W νℓ,2(B(0,bℓ))
≤626

Rℓ, and ρℓ such that Lip(f∗
ℓ ) ≤ ρℓ. For a infinite width AccNet with L ≥ L∗ and constant width627

d ≥ d∗1, . . . , d
∗
L∗−1, we have for the ratios r̃ℓ = νℓ

d∗
ℓ+3 :628

• At a global minimizer f̂L:1 of the regularized loss f1, . . . , fL 7→ L̃N (fL:1)+λR(f1, . . . , fL),629

we have L(f̂L:1) = Õ(N−min{ 1
2 ,r̃1,...,r̃L∗}).630

• At a global minimizer f̂L:1 of the regularized loss f1, . . . , fL 7→ L̃N (fL:1)+λ
∏L

ℓ=1 ∥fℓ∥F1
,631

we have L(f̂L:1) = Õ(N− 1
2+

∑L∗
ℓ=1 max{0,r̃ℓ− 1

2}).632

Proof. If f∗ = f∗
L∗ ◦ · · · ◦ f∗

1 with L∗ ≤ L, intermediate dimensions d∗0, . . . , d
∗
L∗ , along with a633

continuous input distribution π0 supported in B(0, b0), such that the distributions πℓ of f∗
ℓ (x) (for634

x ∼ π0) are continuous too and supported inside B(0, bℓ) ⊂ Rd∗
ℓ . Further assume that there are635

differentiabilities ν∗ℓ and radii Rℓ such that ∥f∗
ℓ ∥W ν∗

ℓ
,2(B(0,bℓ))

≤ Rℓ.636

We first focus on the L = L∗ case and then extend to the L > L∗ case.637

Each f∗
ℓ can be approximated by another function f̃ℓ with bounded F1-norm and Lipschitz constant.638

Actually if 2ν∗ℓ ≥ d∗ℓ−1 + 3 one can choose f̃ℓ = f∗
ℓ since ∥f∗

ℓ ∥F1
≤ CℓRℓ by Lemma 14, and by639

assumption Lip(f̃ℓ) ≤ ρℓ. If 2ν∗ℓ < d∗ℓ−1 + 3, then by Lemma 13 we know that there is a f̃ℓ with640 ∥∥∥f̃ℓ∥∥∥
F1

≤ CℓRℓϵ
− 1

2r̃ℓ
+1

ℓ and Lip(f̃ℓ) ≤ CℓLip(f
∗
ℓ ) ≤ Cℓρℓ and error641 ∥∥∥f∗

ℓ − f̃ℓ

∥∥∥
L2(πℓ−1)

≤ cℓ

∥∥∥f∗ − f̃ℓ

∥∥∥
L2(B(0,bℓ))

≤ cℓϵℓ.

Therefore the composition f̃L:1 satisfies642 ∥∥∥f∗
L:1 − f̂L:1

∥∥∥
L2(πℓ−1)

≤
L∑

ℓ=1

∥∥∥f̃L:ℓ+1 ◦ f∗
ℓ:1 − f̃L:ℓ ◦ f∗

ℓ−1:1

∥∥∥
L2(π)

≤
L∑

ℓ=1

Lip(f̃L:ℓ+1)cℓϵℓ

≤
L∑

ℓ=1

ρL:ℓ+1CL:ℓ+1cℓϵℓ.

For any L ≥ L∗, dimensions dℓ ≥ d∗ℓ and widths wℓ ≥ N , we can build an AccNet that fits eactly643

f̃L:1, by simply adding zero weights along the additional dimensions and widths, and by adding644

identity layers if L > L∗, since it is possible to represent the identity on Rd with a shallow network645

with 2d neurons and F1-norm 2d (by having two neurons eiσ(eTi ·) and −eiσ(−eTi ·) for each basis646

ei). Since the cost in parameter norm of representing the identity scales with the dimension, it is647

best to add those identity layers at the minimal dimension min{d∗0, . . . , d∗L∗}. We therefore end up648

with a AccNet with L− L∗ identity layers (with F1 norm 2min{d∗0, . . . , d∗L∗}) and L∗ layers that649

approximate each of the f∗
ℓ with a bounded F1-norm function f̃ℓ.650

Since f∗
L:1 has zero population loss, the population loss of the AccNet f̃L:1 is bounded by651

ρ
∑L

ℓ=1 ρL:ℓ+1CL:ℓ+1cℓϵℓ. By McDiarmid’s inequality, we know that with probability 1− δ over the652

sampling of the training set, the training loss is bounded by ρ
∑L

ℓ=1 ρL:ℓ+1CL:ℓ+1cℓϵℓ +B
√

2 log 2/δ
N .653

(1) The global minimizer f̂L:1 = f̂L ◦ · · · ◦ f̂1 of the regularized loss (with the first regularization654
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term) is therefore bounded by655

ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓϵℓ +B

√
2 log 2/δ

N

+ λ
√
2d

[
L∗∏
ℓ=1

Cℓρℓ

L∗∑
ℓ=1

1

Cℓρℓ

{
CℓRℓ 2ν∗ℓ ≥ d∗ℓ−1 + 3

CℓRℓϵ
− 1

2r̃ℓ
+1

ℓ 2ν∗ℓ < d∗ℓ−1 + 3
+ 2(L− L∗)min{d∗0, . . . , d∗L∗}

]
.

Taking ϵℓ = Er̃min
(N) and λ = N− 1

2 logN , this is upper bounded by656 [
ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓ + C
√
2dr

L∗∏
ℓ=1

Cℓρℓ

L∗∑
ℓ=1

Rℓ

ρℓ
+ 2(L− L∗)min{d∗0, . . . , d∗L∗}

]
Er̃min

(N)+B

√
2 log 2/δ

N
.

which implies that at the globla minimizer of the regularized loss, the (unregularized) train loss is of657

order Er̃min(N) and the complexity measure R(f̂1, . . . , f̂L) is of order 1
NEr̃min(N) which implies658

that the test error will be of order659

L(f) ≤

[
2ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓ + 2C
√
2dr

L∗∏
ℓ=1

Cℓρℓ

L∗∑
ℓ=1

Rℓ

ρℓ
+ 2(L− L∗)min{d∗0, . . . , d∗L∗}

]
Er̃min

(N)

+ (2B + c0)

√
2 log 2/δ

N
.

(2) Let us now consider adding the closer to traditional L2-regularization Lλ(fL:1) = L(fL:1) +660

λ
∏L

ℓ=1 ∥fℓ∥F1
. ,We see that the global minimizer f̂L:1 of the L2-regularized loss is upper bounded661

by662

ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓϵℓ+B

√
2 log 2/δ

N
+λ

[
L∗∏
ℓ=1

{
CℓRℓ 2ν∗ℓ ≥ d∗ℓ−1 + 3

CℓRℓϵ
− 1

2r̃ℓ
+1

ℓ 2ν∗ℓ < d∗ℓ−1 + 3

]
(2min{d∗0, . . . , d∗L∗})(L−L∗).

Which for ϵℓ = Er̃min(N) and λ = N− 1
N is upper bounded by663

ρ

L∑
ℓ=1

ρL:ℓ+1CL:ℓ+1cℓEr̃min
(N)+B

√
2 log 2/δ

N
+N− 1

2

[
L∗∏
ℓ=1

CℓRℓ

√
NEr̃min

(N)

]
(2min{d∗0, . . . , d∗L∗})(L−L∗).

Which implies that both the train error is of order N− 1
2

∏L∗

ℓ=1

√
NEr̃min

(N) and the product of the664

F1-norms is of order
∏L∗

ℓ=1

√
NEr̃min

(N).665

Now note that the product of the F1-norms bounds the complexity measure up to a constant since666

Lip(f) ≤ ∥f∥F1
667

R(f1, . . . , fL) = r

L∏
ℓ=1

Lip(fℓ)

L∑
ℓ=1

∥fℓ∥F1

Lip(fℓ)

√
dℓ−1 + dℓ ≤ L

√
2d

L∏
ℓ=1

∥f∥F1
.

And since at the global minimum the product of the F1-norms is of order
∏L∗

ℓ=1

√
NEr̃min

(N) the668

test error will of order
(∏L∗

ℓ=1

√
NEr̃ℓ(N)

)
logN√

N
.669

Note that if there is at a most one ℓ where r̃ℓ > 1
2 then the rate is up to log term the same as670

Er̃min(N).671

D.2 Lemmas on approximating Sobolev functions672

Now we present the lemmas used in this proof above that concern the approximation errors and673

Lipschitz constants of Sobolev functions and compositions of them. We will bound the F2-norm and674

note that the F2-norm is larger than the F1-norm, cf. [5, Section 3.1].675
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Lemma 12 (Approximation for Sobolev function with bounded error and Lipschitz constant).676

Suppose g : Sd → R is an even function with bounded Sobolev norm ∥g∥2W ν,2 ≤ R with 2ν ≤ d+ 2,677

with inputs on the unit d-dimensional sphere. Then for every ϵ > 0, there is ĝ ∈ G2 with small678

approximation error ∥g − ĝ∥L2(Sd) = C(d, ν,R)ϵ, bounded Lipschitzness Lip(ĝ) ≤ C ′(d)Lip(g),679

and bounded norm680

∥ĝ∥F2
≤ C ′′(d, ν,R)ϵ−

d+3−2ν
2ν .

Proof. Given our assumptions on the target function g, we may decompose g(x) =
∑∞

k=0 gk(x)681

along the basis of spherical harmonics with g0(x) =
∫
Sd g(y)dτd(y) being the mean of g(x) over the682

uniform distribution τd over Sd. The k-th component can be written as683

gk(x) = N(d, k)

∫
Sd

g(y)Pk(x
T y)dτd(y)

with N(d, k) = 2k+d−1
k

(
k+d−2
d−1

)
and a Gegenbauer polynomial of degree k and dimension d+ 1:684

Pk(t) = (−1/2)k
Γ(d/2)

Γ(k + d/2)
(1− t2)(2−d)/2 dk

dtk
(1− t2)k+(d−2)/2,

known as Rodrigues’ formula. Given the assumption that the Sobolev norm ∥g∥2W ν,2 is upper685

bounded, we have ∥f∥2L2(Sd) ≤ C0(d, ν)R for f = ∆ν/2g where ∆ is the Laplacian on Sd [18, 5].686

Note that gk are eigenfunctions of the Laplacian with eigenvalues k(k + d− 1) [4], thus687

∥gk∥2L2(Sd) = ∥fk∥2L2(Sd)(k(k + d− 1))−ν ≤ ∥fk∥2L2(Sd)k
−2ν ≤ C1(d, ν,R)k−2ν−1 (1)

where the last inequality holds because ∥f∥2L2(Sd) =
∑

k≥0 ∥fk∥2L2(Sd) converges. Note using the688

Hecke-Funk formula, we can also write gk as scaled pk for the underlying density p of the F1 and689

F2-norms:690

gk(x) = λkpk(x)

where λk = ωd−1

ωd

∫ 1

−1
σ(t)Pk(t)(1 − t2)(d−2)/2dt = Ω(k−(d+3)/2) [5, Appendix D.2] and ωd691

denotes the surface area of Sd. Then by definition of ∥ · ∥F2
, for some probability density p,692

∥g∥2F2
=

∫
Sd

|p|2dτ(v) = ∥p∥2L2(Sd) =
∑
0≤k

∥pk∥2L2(Sd) =
∑
0≤k

λ−2
k ∥gk∥2L2(Sd).

Now to approximate g, consider function ĝ defined by truncating the “high frequencies” of g, i.e.693

setting ĝk = 1[k ≤ m]gk for some m > 0 we specify later. Then we can bound the norm with694

∥ĝ∥2F2
=

∑
0≤k:λk ̸=0

λ−2
k ∥ĝk∥2L2(Sd) =

∑
0≤k≤m
λk ̸=0

λ−2
k ∥gk∥2L2(Sd)

(a)

≤ C2(d, ν,R)
∑

0≤k≤m

kd+2−2ν

(b)

≤ C3(d, ν,R)md+3−2ν

where (a) uses Eq 1 and λk = Ω(k−(d+3)/2); (b) approximates by integral.695

To bound the approximation error,696

∥g − ĝ∥2L2(Sd) =

∥∥∥∥∥∑
k>m

gk

∥∥∥∥∥
2

L2(Sd)

≤
∑
k>m

∥gk∥2L2(Sd)

≤ C4(d, ν,R)
∑
k>m

k−2ν−1

≤ C5(d, ν,R)m−2ν by integral approximation.

Finally, choosing m = ϵ−
1
ν , we obtain ∥g − ĝ∥L2(Sd) ≤ C(d, ν,R)ϵ and697

∥ĝ∥F2
≤ C ′(d, ν,R)ϵ−

d+3−2ν
2ν .
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Then it remains to bound Lip(ĝ) for our constructed approximation. By construction and by [13,698

Theorem 2.1.3], we have ĝ = g ∗ h with now699

h(t) =

m∑
k=0

hkPk(t), t ∈ [−1, 1]

by orthogonality of the Gegenbauer polynomial Pk’s and the convolution is defined as700

(g ∗ h)(x) := 1

ωd

∫
Sd

g(y)h(⟨x, y⟩)dy.

The coefficients for 0 ≤ k ≤ m given by [13, Theorem 2.1.3] are701

hk
(a)
=

ωd+1

ωd

Γ(d− 1)

Γ(d− 1 + k)
Pk(1)

k!(k + (d− 1)/2)Γ((d− 1)/2)2

π22−dΓ(d− 1 + k)

(b)
= O

(
k

Γ(d− 1 + k)

)
where (a) follows from the (inverse of) weighted L2 norm of Pk; (b) plugs in the unit constant702

Pk(1) = Γ(k+d−1)
Γ(d−1)k! and suppresses the dependence on d. Note that the constant factor Γ(d−1)

Γ(d−1+k)703

comes from the difference in the definitions of the Gegenbauer polynomials here and in [13]. Then704

we can bound705

∥∇ĝ(x)∥op ≤
∫
Sd

∥∇g(y)∥op|h(⟨x, y⟩)|dy

≤ Lip(g)

∫
Sd

|h(⟨x, y⟩)|dy

≤
√
ωdLip(g)

(∫
Sd

h(⟨x, y⟩)2dy
)1/2

by Cauchy-Schwartz

=
√
ωdLip(g)

 m∑
k,j=0

∫
Sd

hkhjPk(⟨x, y⟩)Pj(⟨x, y⟩)dy

1/2

=
√
ωdLip(g)

 m∑
k,j=0

∫ 1

−1

hkhjPk(t)Pj(t)(1− t2)
d−2
2 dt

1/2

by [13, Eq A.5.1]

=
√
ωdLip(g)

(
m∑

k=0

h2
k

∫ 1

−1

Pk(t)
2(1− t2)

d−2
2 dt

)1/2

by orthogonality of Pk’s w.r.t. this measure

=
√
ωdLip(g)

(
m∑

k=0

h2
k

π22−dΓ(d− 1 + k)

k!(k + (d− 1)/2)Γ((d− 1)/2)2

)1/2

=
√
ωdLip(g)

(
O(1) +

m∑
k=1

O

(
k

Γ(d− 1 + k)k!

))1/2

=
√
ωdLip(g)C(d)

for some constant C(d) that only depends on d. Hence Lip(ĝ) = C ′(d)Lip(g).706

The next lemma adapts Lemma 12 to inputs on balls instead of spheres following the construction in707

[5, Proposition 5].708

Lemma 13. Suppose f : B(0, b) → R has bounded Sobolev norm ∥f∥2W ν,2 ≤ R with ν ≤ (d+2)/2709

even, where B(0, b) = {x ∈ Rd : ∥x∥2 ≤ b} is the radius-b ball. Then for every ϵ > 0 there exists710

fϵ ∈ F2 such that ∥f − fϵ∥L2(B(0,b)) = C(d, ν, b, R)ϵ, Lip(fϵ) ≤ C ′(b, d)Lip(f), and711

∥fϵ∥F2
≤ C ′′(d, ν, b, R)ϵ−

d+3−2ν
2ν

Proof. Define g(z, a) = f
(
2bz
a

)
a on (z, a) ∈ Sd with z ∈ Rd and 1√

2
≤ a ∈ R. One may712

verify that unit-norm (z, a) with a ≥ 1√
2

is sufficient to cover B(0, b) by setting x = bz
a and713
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solve for (z, a). Then we have bounded ∥g∥2W ν,2 ≤ bνR and may apply Lemma 12 to get ĝ with714

∥g − ĝ∥L2(Sd) ≤ C(d, ν, b, R)ϵ. Letting fϵ(x) = ĝ
(
ax
b , a

)
a−1 for the corresponding

(
ax
b , a

)
∈ Sd715

gives the desired upper bounds.716

Lemma 14. Suppose f : B(0, b) → R has bounded Sobolev norm ∥f∥2W ν,2 ≤ R with ν ≥ (d+3)/2717

even. Then f ∈ F2 and ∥f∥F2 ≤ C(d, ν)bνR.718

In particular, W ν,2 ⊆ F2 for ν ≥ (d+ 3)/2 even.719

Proof. This lemma reproduces [5, Proposition 5] to functions with bounded Sobolev L2 norm instead720

of L∞ norm. The proof follows that of Lemma 12 and Lemma 13 and noticing that by Eq 1,721

∥g∥2F2
=

∑
0≤k:λk ̸=0

λ−2
k ∥gk∥2L2(Sd)

≤
∑
0≤k

kd+3−2ν∥(∆ν/2g)k∥2L2(Sd)

≤ ∥∆ν/2g∥2L2(Sd)

≤ C1(d, ν)∥g∥2W ν,2

≤ C1(d, ν)R.

722

Finally, we remark that the above lemmas extend straightforward to functions f : B(0, b) → Rd′
723

with multi-dimensional outputs, where the constants then depend on the output dimension d′ too.724

D.3 Lemma on approximating compositions of Sobolev functions725

With the lemmas given above and the fact that the F2-norm upper bounds the F1-norm, we can find726

infinite-width DNN approximations for compositions of Sobolev functions, which is also pointed out727

in the proof of Theorem 5.728

Lemma 15. Assume the target function f : Ω → Rdout , with Ω ⊆ B(0, b) ⊆ Rdin , satisfies:729

• f = gk ◦ · · · ◦ g1 a composition of k Sobolev functions gi : Rdi → Rdi+1 with bounded730

norms ∥gi∥2W νi,2
≤ R for i = 1, . . . , k, with d1 = din;731

• f is Lipschitz, i.e. Lip(gi) < ∞ for i = 1, . . . , k.732

If νi ≤ (di + 2)/2 for any i, i.e. less smooth than needed, for depth L ≥ k and any ϵ > 0, there is an733

infinite-width DNN f̃ such that734

• Lip(f̃) ≤ C1

∏k
i=1 Lip(gi);735

• ∥f̃ − f∥L2 ≤ C2ϵ;736

the constants C1 depends on all of the input dimensions di (to gi) and dout, and C2 depends on737

di, dout, νi, b, R, k, and Lip(gi) for all i.738

If otherwise νi ≥ (di + 3)/2 for all i, we can have f̃ = f where each layer has a parameter norm739

bounded by C3R, with C3 depending on di, dout, νi, and b.740

Proof. Note that by Lipschitzness,741

(gi ◦ · · · ◦ g1)(Ω) ⊆ B

0, b

i∏
j=1

Lip(gj)

 ,

i.e. the pre-image of each component lies in a ball. By Lemma 12, for each gi, if νi ≤ (di + 2)/2,742

we have an approximation ĝi on a slightly larger ball b′i = b
∏i−1

j=1 C
′′(dj , dj+1)Lip(gj) such that743
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• ∥gi − ĝi∥L2 ≤ C(di, di+1, νi, b
′
i, R)ϵ;744

• ∥ĝi∥F2
≤ C ′(di, di+1, νi, b

′
i, R)ϵ

di+3−2νi
2νi ;745

• Lip(ĝi) ≤ C ′′(di, di+1)Lip(gi);746

where di is the input dimension of gi. Write the constants as Ci, C ′
i, and C ′′

i for notation simplicity.747

Note that the Lipschitzness of the approximations ĝi’s guarantees that, when they are composed,748

(ĝi−1 ◦ · · · ◦ ĝ1)(Ω) lies in a ball of radius b′i = b
∏i−1

j=1 C
′′
j Lip(gj), hence the approximation error749

remains bounded while propagating. While each ĝi is a (infinite-width) layer, for the other L − k750

layers, we may have identity layers5.751

Let f̃ be the composed DNN of these layers. Then we have752

Lip(f̃) ≤
k∏

i=1

C ′′
i Lip(gi) = C ′′(d1, . . . , dk, dout)

k∏
i=1

Lip(gi)

and approximation error753

∥f̃ − f∥L2
≤

k∑
i=1

Ciϵ
∏
j>i

C ′′
j Lip(gj) = O(ϵ)

where the last equality suppresses the dependence on di, dout, νi, b, R, k, and Lip(gi) for i =754

1, . . . , k.755

In particular, by Lemma 14, if νi ≥ (di + 3)/2 for any i = 1, . . . , k, we can take ĝi = gi. If this756

holds for all i, then we can have f̃ = f while each layer has a F2-norm bounded by O(R).757

E Technical results758

Here we show a number of technical results regarding the covering number.759

First, here is a bound for the covering number of Ellipsoids, which is a simple reformulation of760

Theorem 2 of [17]:761

Theorem 16. The d-dimensional ellipsoid E = {x : xTK−1x ≤ 1} with radii
√
λi for λi the i-th762

eigenvalue of K satisfies logN2 (E, ϵ) = Mϵ (1 + o(1)) for763

Mϵ =
∑

i:
√
λi≥ϵ

log

√
λi

ϵ

if one has log
√
λ1

ϵ = o
(

M2
ϵ

kϵ log d

)
for kϵ =

∣∣{i : √λi ≥ ϵ
}∣∣764

For our purpose, we will want to cover a unit ball B = {w : ∥w∥ ≤ 1} w.r.t. to a non-isotropic norm765

∥w∥2K = wTKw, but this is equivalent to covering E with an isotropic norm:766

Corollary 17. The covering number of the ball B = {w : ∥w∥ ≤ 1} w.r.t. the norm ∥w∥2K = wTKw767

satisfies logN (B, ∥·∥K , ϵ) = Mϵ (1 + o(1)) for the same Mϵ as in Theorem 16 and under the same768

condition.769

Furthermore, logN (B, ∥·∥K , ϵ) ≤ TrK
2ϵ2 (1 + o(1)) as long as log d = o

(√
TrK
ϵ

(
log

√
TrK
ϵ

)−1
)

.770

Proof. If Ẽ is an ϵ-covering of E w.r.t. to the L2-norm, then B̃ = K− 1
2 Ẽ is an ϵ-covering of B771

w.r.t. the norm ∥·∥K , because if w ∈ B, then
√
Kw ∈ E and so there is an x̃ ∈ Ẽ such that772 ∥∥∥x−

√
Kw

∥∥∥ ≤ ϵ, but then w̃ =
√
K

−1
x covers w since ∥w̃ − w∥K =

∥∥∥x−
√
Kw

∥∥∥
K

≤ ϵ.773

5Since the domain is always bounded here, one can let the bias translate the domain to the first quadrant and
let the weight be the identity matrix, cf. the construction in [45, Proposition B.1.3].
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Since λi ≤ TrK
i , we have K ≤ K̄ for K̄ the matrix obtained by replacing the i-th eigenvalue λi of774

K by TrK
i , and therefore N (B, ∥·∥K , ϵ) ≤ N (B, ∥·∥K̄ , ϵ) since ∥·∥K ≤ ∥·∥K̄ . We now have the775

a[proximation logN (B, ∥·∥K̄ , ϵ) = M̄ϵ (1 + o(1)) for776

M̄ϵ =

k̄ϵ∑
i=1

log

√
TrK√
iϵ

k̄ϵ =

⌊
TrK

ϵ2

⌋
.

We now have the simplification777

M̄ϵ =

kϵ∑
i=1

log

√
TrK√
iϵ

=
1

2

k̄ϵ∑
i=1

log
k̄ϵ
i

=
k̄ϵ
2
(

∫ 1

0

log
1

x
dx+ o(1)) =

k̄ϵ
2
(1 + o(1))

where the o(1) term vanishes as ϵ ↘ 0. Furthermore, this allows us to check that as long as778

log d = o

( √
TrK

4ϵ log
√

TrK
ϵ

)
, the condition is satisfied779

log

√
TrK

ϵ
= o

(
k̄ϵ

4 log d

)
= o

(
M̄2

ϵ

k̄ϵ log d

)
.

780

Second we prove how to obtain the covering number of the convex hull of a function set F :781

Theorem 18. Let F be a set of B-uniformly bounded functions, then for all ϵK = B2−K782

√
logN2(ConvF , 2ϵK) ≤

√
18

K∑
k=1

2K−k
√
logN2(F , B2−k).

Proof. Define ϵk = B2−k and the corresponding ϵk-coverings F̃k (w.r.t. some measure π). For any783

f , we write f̃k[f ] for the function f̃k[f ] ∈ F̃k that covers f . Then for any functions f in ConvF , we784

have785

f =

m∑
i=1

βifi =

m∑
i=1

βi

(
fi − f̃K [fi]

)
+

K∑
k=1

m∑
i=1

βi

(
f̃k[fi]− f̃k−1[fi]

)
+ f̃0[fi].

We may assume that f̃0[fi] = 0 since the zero function ϵ0-covers the whole F since ϵ0 = B.786

We will now use the probabilistic method to show that the sums
∑m

i=1 βi

(
f̃k[fi]− f̃k−1[fi]

)
787

can be approximated by finite averages. Consider the random functions g̃
(k)
1 , . . . , g̃

(k)
mk788

sampled iid with P
[
g̃
(k)
j

]
=
(
f̃k[fi]− f̃k−1[fi]

)
with probability βi. We have E[g̃(k)j ] =789 ∑m

i=1 βi

(
f̃k[fi]− f̃k−1[fi]

)
and790

E

∥∥∥∥∥∥
K∑

k=1

1

mk

mk∑
j=1

g̃
(k)
j −

K∑
k=1

m∑
i=1

βi

(
f̃k[fi]− f̃k−1[fi]

)∥∥∥∥∥∥
p

Lp(π)

≤
K∑

k=1

1

mp
k

mk∑
j=1

E
∥∥∥g̃(k)j

∥∥∥p
Lp(π)

=

K∑
k=1

1

mk

m∑
i=1

βi

∥∥∥f̃k[fi]− f̃k−1[fi]
∥∥∥p
Lp(π)

≤
K∑

k=1

32ϵ2k
mk

.
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Thus if we take mk = 1
ak
( 3ϵkϵK

)2 with
∑

ak = 1 we know that there must exist a choice of g̃(k)j s such791

that792 ∥∥∥∥∥∥
K∑

k=1

1

mk

mk∑
j=1

g̃
(k)
j −

K∑
k=1

m∑
i=1

βi

(
f̃k[fi]− f̃k−1[fi]

)∥∥∥∥∥∥
Lp(π)

≤ ϵK .

This implies that finite the set C̃ =
{∑K

k=1
1

mk

∑mk

j=1 g̃
(k)
j : g̃

(k)
j ∈ F̃k − F̃k−1

}
is an 2ϵK covering793

of C = ConvF , since we know that for all f =
∑m

i=1 βifi there are g̃
(k)
j such that794 ∥∥∥∥∥∥

K∑
k=1

1

mk

mk∑
j=1

g̃
(k)
j −

m∑
i=1

βifi

∥∥∥∥∥∥
Lp(π)

≤

∥∥∥∥∥
m∑
i=1

βi

(
fi − f̃K [fi]

)∥∥∥∥∥
Lp(π)

+

K∑
k=1

∥∥∥∥∥∥ 1

mk

mk∑
j=1

g̃
(k)
j −

m∑
i=1

βi

(
f̃k[fi]− f̃k−1[fi]

)∥∥∥∥∥∥
Lp(π)

≤ 2ϵK .

Since
∣∣∣C̃∣∣∣ =∏K

k=1

∣∣∣F̃k

∣∣∣mk
∣∣∣F̃k−1

∣∣∣mk

, we have795

logNp(C, 2ϵK) ≤
K∑

k=1

1

ak
(
3ϵk
ϵK

)2 (logNp(F , ϵk) + logNp(F , ϵk−1))

≤ 18

K∑
k=1

1

ak
22(K−k) logN2(F , ϵk).

This is minimized for the choice796

ak =
2(K−k)

√
logN2(F , ϵk)∑

2(K−k)
√

logN2(F , ϵk)
,

which yields the bound797 √
logNp(C, 2ϵK) ≤

√
18

K∑
k=1

2K−k
√
logN2(F , ϵk)
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well as details about compensation (if any)?1080

Answer: [NA]1081

Justification: Not relevant to this paper.1082

Guidelines:1083

• The answer NA means that the paper does not involve crowdsourcing nor research with1084

human subjects.1085

• Including this information in the supplemental material is fine, but if the main1086

contribution of the paper involves human subjects, then as much detail as possible1087

should be included in the main paper.1088

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1089

or other labor should be paid at least the minimum wage in the country of the data1090

collector.1091

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1092

Subjects1093

Question: Does the paper describe potential risks incurred by study participants, whether1094

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1095

approvals (or an equivalent approval/review based on the requirements of your country or1096

institution) were obtained?1097

Answer: [NA]1098

Justification: Not relevant to this paper.1099

Guidelines:1100

• The answer NA means that the paper does not involve crowdsourcing nor research with1101

human subjects.1102

• Depending on the country in which research is conducted, IRB approval (or equivalent)1103

may be required for any human subjects research. If you obtained IRB approval, you1104

should clearly state this in the paper.1105

• We recognize that the procedures for this may vary significantly between institutions1106

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1107

guidelines for their institution.1108

• For initial submissions, do not include any information that would break anonymity (if1109

applicable), such as the institution conducting the review.1110
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