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Abstract

Detailed image captioning is essential for tasks
like data generation and aiding visually impaired
individuals. High-quality captions require a bal-
ance between precision and recall, which remains
challenging for current multimodal large lan-
guage models (MLLMs). In this work, we hy-
pothesize that this limitation stems from weak-
ening and increasingly noisy visual attention as
responses lengthen. To address this issue, we pro-
pose SPARC (Selective Progressive Attention Re-
Calibration), a training-free method that enhances
the contribution of visual tokens during decod-
ing. SPARC is founded on three key observations:
(1) increasing the influence of all visual tokens re-
duces recall; thus, SPARC selectively amplifies vi-
sual tokens; (2) as captions lengthen, visual atten-
tion becomes noisier, so SPARC identifies critical
visual tokens by leveraging attention differences
across time steps; (3) as visual attention gradu-
ally weakens, SPARC reinforces it to preserve its
influence. Our experiments, incorporating both
automated and human evaluations, demonstrate
that existing methods improve the precision of
MLLMs at the cost of recall. In contrast, our pro-
posed method enhances both precision and re-
call with minimal computational overhead. code:
https://github.com/mingi000508/SPARC

1. Introduction
Multimodal Large Language Models (MLLMs) have re-
cently gained traction as a transformative approach in artifi-
cial intelligence by integrating visual and linguistic modal-
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Figure 1. Percentage change in precision, recall, and F1-score
compared to the results before applying each method.

ities (Li et al., 2023a; Liu et al., 2024c; Lin et al., 2024).
These models leverage the powerful language capabilities of
Large Language Models (LLMs) to generate textual descrip-
tions from visual inputs (Bai et al., 2023; Touvron et al.,
2023; Abdin et al., 2024; Peng et al., 2023). This capabil-
ity enables MLLMs to effectively perform a wide range of
tasks, including Visual Question Answering (VQA), multi-
modal reasoning, and image captioning (Chen et al., 2024;
Wang et al., 2024; Li et al., 2024a; Liu et al., 2024e).

Among these tasks, detailed image captioning aims to pro-
duce comprehensive yet accurate textual descriptions that
capture both key elements and subtle nuances of an im-
age. This capability is particularly important in applications
such as content creation (Belyaeva et al., 2023; Han et al.,
2023) or assistive technology for visually impaired individu-
als (Hao et al., 2024). However, a major challenge in current
approaches is hallucination—where models introduce in-
correct or irrelevant details—compromising the reliability
of the generated captions and limiting their practical util-
ity (Bai et al., 2024; Liu et al., 2024d; Cui et al., 2023).

Although many methods have been proposed to reduce hal-
lucinations (Huang et al., 2024; Leng et al., 2024; Lee et al.,
2023; Liu et al., 2025), we demonstrate that existing meth-
ods primarily enhance precision—the extent to which a cap-
tion accurately reflects an image—at the expense of recall—
the extent to which a caption comprehensively describes the
image—often resulting in captions that, while more precise,
omit essential details. To highlight this trade-off, we use the
CHAIR benchmark (Rohrbach et al., 2018) to assess the
effectiveness of existing hallucination mitigation methods in
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Baseline

Please describe this image in detail. Prompt:

Ours

AttentionGenerated Text

The image features a bed with two cats lying on it. 
One cat is located on the left side of the bed, while 
the other cat is on the right side. Both cats are 
resting comfortably on pillows, with one cat lying on a 
pillow near the center of the bed and the other cat 
lying on a pillow closer to the right side. In addition to 
the cats, there are two laptops on the bed. One 
laptop is placed on the left side of the bed, and the 
other laptop is on the right side. A remote control can 
also be seen on the left side of the bed.

The image features a bed with two cats lying on top 
of it. One cat is on the left side of the bed, while the 
other cat is on the right side. Both cats are sleeping 
comfortably, with one of them wearing a blue pillow 
on its head. In addition to the cats, there are several 
pillows on the bed, including a laptop computer placed 
on the left side of the bed. The bed is covered with  
a green blanket, and the colorful pillows add a cozy 
and inviting atmosphere to the bed.

Figure 2. Visualization of image token attention at different context
lengths. As the generation context length increases, image atten-
tion diminishes, reducing reliance on visual inputs. Our approach
mitigates this by preserving image attention, reducing hallucina-
tions and enabling more detailed captions.

terms of recall and precision. Notably, our analysis reveals
a previously overlooked limitation: these methods signif-
icantly reduce model recall (Figure 1). Our work aims to
introduce a new approach that balances precision and recall.

In this work, we hypothesize that MLLMs do not fully re-
alize their potential in terms of precision and recall. We
attribute this limitation to the model’s focus on visual to-
kens gradually weakening as it generates longer text and
its increasing sensitivity to irrelevant noise, as illustrated in
Figure 2. To address these issues, we propose SPARC (Se-
lective Progressive Attention ReCalibration), a training-free
method designed to enhance the contribution of key visual
tokens during the decoding process of MLLMs. Specifically,
SPARC is built upon the following three principles: (1)
naively increasing the influence of all visual tokens reduces
recall; therefore, SPARC selectively amplifies the influence
of visual tokens; (2) despite noisy visual attention patterns,
SPARC identifies key visual tokens by leveraging attention
differences across time steps; (3) to compensate for the
weakening influence of visual tokens, SPARC accumulates
reinforcement effects to sustain their impact

Our experiments demonstrate that SPARC significantly im-

proves caption quality, outperforming existing methods. Un-
like conventional methods that struggle to balance precision
and recall, SPARC effectively enhances both. Furthermore,
human evaluations validate the superiority of SPARC in
producing more precise and comprehensive captions.

Our contributions are summarized as follows:

• We empirically show that existing MLLM hallucina-
tion mitigation methods overlook recall.

• We propose SPARC, a novel attention-based method
that improves MLLM image captioning in both pre-
cision and recall. We provide empirical evidence sup-
porting the design choices of the proposed method.

• Through automated and human evaluations, we show
that SPARC, while training-free and computationally
efficient, effectively enhances both precision and recall.

2. Related Work
2.1. Mitigating Hallucinations in MLLMs

MLLMs often generate hallucinations, where text is incon-
sistent with visual input, and numerous studies have aimed
to address this issue through various methods (Li et al.,
2023b; Liu et al., 2024d; Gunjal et al., 2024). Decoding-
based methods tackle hallucination by penalizing uncertain
token generations through techniques like text aggregation
analysis (Huang et al., 2024), corrupted visual inputs (Leng
et al., 2024; Gong et al., 2024). Self-refinement strategies are
also employed to iteratively align generated captions with
visual content (Zhou et al., 2023; Lee et al., 2023). In addi-
tion, research indicates that hallucinations often arise from
an over-reliance on textual context while neglecting visual
information (Zhu et al., 2024; Liu et al., 2025). To address
this imbalance, decoding strategies and attention calibration
techniques have been developed to enhance the utilization
of relevant visual elements based on their importance (Huo
et al., 2024; Liu et al., 2025; Li et al., 2025). Hallucination
issues intensify with long-form text generation, as models
rely more on text and less on image content (Favero et al.,
2024; Lee et al., 2024; Zhong et al., 2024). Methods such as
shortening text length (Yue et al., 2024), segmenting refine-
ment (Lee et al., 2024), and leveraging image-only logits
and contrastive decoding (Zhong et al., 2024; Favero et al.,
2024) have been explored. Existing solutions have not effec-
tively addressed the challenge of enhancing context-relevant
visual information, as vision-related signals tend to weaken
over longer contexts.

2.2. Visual Attention in MLLMs

MLLMs utilize transformer-based architectures with atten-
tion mechanisms to integrate visual and textual modali-
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ties (Vaswani, 2017; Basu et al., 2024; Osman et al., 2023).
During text generation, attention weights do not always fo-
cus on the most relevant visual tokens (Zhang et al., 2024;
Woo et al., 2024; Jiang et al., 2024). Prior studies have
shown that enhancing image attention can help mitigate hal-
lucinations by improving the model’s ability to better align
with relevant visual content (Li et al., 2024b; Xing et al.,
2024). Efforts to achieve this include increasing image at-
tention, adjusting positional embeddings (Xing et al., 2024;
Li et al., 2025), and correcting biases that direct attention
to irrelevant regions. (Jiang et al., 2024; Gong et al., 2024;
Kang et al., 2025). Several approaches have been proposed,
such as boosting overall image attention (Liu et al., 2025;
Jiang et al., 2024) and reweighting key tokens (Xing et al.,
2024) to better focus on meaningful visual regions. Our
findings show that as the model generates longer text, its
focus on key visual tokens weakens, while sensitivity to ir-
relevant noise increases. Existing methods struggle to retain
key visual tokens in such cases, making it difficult to pre-
serve their relevance. In contrast, our approach reinforces
key visual tokens during decoding, ensuring their continued
importance. This improves caption detail and accuracy with
minimal computational cost.

3. Why More Attention Doesn’t Always Help
Intuitively, enhancing the influence of visual tokens during
MLLM decoding could lead to higher-quality captions. A
recent study (Liu et al., 2025) has shown that amplifying
visual attention can indeed improve MLLMs’ precision.
However, Figure 1 reveals that this improvement comes at
the cost of a significant decline in recall. In this section,
we explore this issue in depth, analyzing why the naive
amplification of visual attention—increasing all attention
weights assigned to visual tokens—can lead to captions with
lower recall. We identify key factors contributing to these
limitations and discuss potential strategies to mitigate them.

3.1. Does More Attention Reduce Diversity?

When generating a detailed and comprehensive caption for
an image, a person’s gaze naturally moves across differ-
ent regions of the image. Similarly, we hypothesize that
MLLMs producing high-recall captions attend to diverse
locations within the image during decoding. Based on this
hypothesis, we analyze the impact of naive attention am-
plification on visual attention dynamics. Specifically, we
examine the pairwise distances between visual attention
patterns obtained during decoding. If an MLLM shifts its at-
tention across various regions of an image while generating
a caption, the distances between its visual attention patterns
should be large. To investigate this, we generate 3,000 cap-
tions using LLaVA-1.5 (Liu et al., 2024a) and a subset of
DOCCI (Onoe et al., 2025). During generation, we store the
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Figure 3. Visual attention diversity comparison between (a) the
baseline model and (b) the naive attention enhancement approach.
The naive approach reduces visual attention diversity, indicating
ineffective adaptation to important visual tokens

normalized visual attention weights for the first 100 tokens
of each caption. We then compute a pairwise distance ma-
trix (100× 100) of visual attention patterns. The distance is
calculated using the Wasserstein distance (Vallender, 1974;
Shen et al., 2018).

Figure 3 illustrates visual attention diversity during caption-
ing, comparing the baseline model with a naive attention
enhancement method (Liu et al., 2025). The results show
that naive attention enhancement (right) yields lower dis-
tance values compared to the baseline (left) , indicating a
reduction in visual attention diversity. Notably, naive at-
tention enhancement causes the model’s visual attention
pattern to remain static throughout caption generation. Con-
sequently, we consider this a key factor contributing to recall
degradation, as it reduces the diversity of objects mentioned
in the captions and limits their descriptiveness.

These findings highlight the need for a carefully designed
approach to visual attention enhancement. Properly identi-
fying and emphasizing the most relevant visual tokens is
crucial for generating captions that are both contextually
rich and informative.

3.2. Longer Context, More Noise?

We analyzed how the model’s attention to visual tokens
evolves throughout the caption generation process to inves-
tigate why directly amplifying attention based on its mag-
nitude can reduce attention diversity. For this analysis, we
extracted attention weights from one of the middle-to-late
transformer layers, averaged them across attention heads,
and normalized the values across all visual tokens. Figure 4
provides a visualization that reveals several notable patterns.

In the early stages of caption generation, attention is primar-
ily directed toward image regions corresponding to salient
visual elements, thereby ensuring that the visual attention
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The image features a person wearing a green jacket and skiing across a 
snow-covered field. The skier is holding ski poles in their hands, and they 
appear to be enjoying the winter activity. The person is the main focus 
of the scene, with the skis clearly visible beneath them.
The snowy landscape extends beyond the skier, creating a serene and 
picturesque winter scene. The skier's presence in the middle of the field 
adds a sense of adventure and excitement to the image.

Weaken
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skiing skier skis skier

Prompt: Please describe this image in detail.

Figure 4. Visualization of the temporal dynamics of image atten-
tion during caption generation. Early in the process, attention is
focused on contextually relevant regions, but as the caption grows
longer, it increasingly shifts toward noise or consistently high-
attention tokens.

mechanism itself remains aligned with key parts of the im-
age. However, as the caption progresses, this alignment
weakens. The intensity of attention on relevant regions di-
minishes, while attention increasingly concentrates on noise
or on specific visual tokens that consistently attract high
attention weights. These noisy attention patterns are often
unrelated to the context of generation and tend to recur at
the same visual token positions throughout the generation
process. These visual tokens, often located in background re-
gion, may capture global context (Darcet et al., 2024; Kang
et al., 2025). However their excessive attention dominance
can overwhelm local, task-relevant signals. Consequently,
commonly used strategies that amplify tokens according to
their current attention values may inadvertently exacerbate
this problem: as the caption becomes longer, boosting al-
ready high-attention tokens can reinforce irrelevant or noisy
regions, ultimately impairing the model’s ability to focus
on truly important parts of the image.

These findings underscore the need for an adaptive visual
attention mechanism that can effectively identify and prior-
itize contextually meaningful visual tokens while filtering
out noise.

3.3. Does Longer Context Weaken Visual Focus?

We analyzed the model’s focus on visual information, con-
sidering how it changes with caption length from an atten-
tion perspective. Specifically, we generated 3,000 captions
using LLaVA-1.5 with the DOCCI subset and then analyze

Figure 5. Average attention weight trends for text and image tokens
as a function of context length during caption generation. As the
context length increases, the proportion of attention allocated to
image tokens gradually decreases compared to text tokens. This
indicates a significant shift in focus from visual to textual elements
during the later stages of caption generation.

the total attention weight allocated to image tokens and text
tokens for each output token during the caption generation
process and plot their distribution with respect to the context
length. Figure 5 presents the results of this analysis, illus-
trating that as the context length increases, the proportion
of attention allocated to image tokens gradually decreases
compared to text tokens. This finding aligns with previous
studies (Favero et al., 2024; Lee et al., 2024), which reported
that longer captions often lead to increased hallucinations
due to a decline in the model’s focus on relevant visual
information.

To address the diminishing focus on visual information,
which can weaken the image’s influence and potentially
lead to hallucination, it is essential to ensure sustained vi-
sual attention throughout the caption generation process.
A gradual increase in the emphasis on visual tokens, par-
ticularly in the later stages, helps counteract this declining
trend. By progressively reinforcing the model’s visual focus
over time, it can better retain and utilize the image con-
text, ultimately enhancing the accuracy and relevance of the
generated captions.

The detailed implementation details of the above experi-
ments can be found in Appendix B.1 .

4. Method
In Section 3, we observed that as the context length gener-
ated by the MLLM increases, the attention to visual tokens
becomes noisier and its proportion decreases. To address
this issue, we propose Selective Progressive Attention Re-
Calibration (SPARC), a training-free approach that incurs
minimal additional computational cost. SPARC consists of
two key mechanisms: 1) Token selection using the Rela-
tive Activation Score, which robustly selects visual tokens
relevant to the actual context and resists the increasing noise
as the context length grows, and 2) Selective Progressive
Attention Re-Calibration, which progressively reinforces
the attention to important visual tokens during each genera-
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tion step, thereby alleviating the decline in visual attention
as the context length increases.

4.1. Preliminaries: Attention Mechanisms in MLLMs

MLLMs are designed to process both image and text inputs,
generating text outputs in an autoregressive manner (Li et al.,
2024a; Lin et al., 2024). When generating the i-th text token,
the models attend to an input sequence of length

Ni = Nimage + Ninst + (i− 1),

consisting of Nimage image embeddings, Ninst instruction
tokens, and the i− 1 tokens generated so far.

At the l-th layer and h-th attention head, let the query, key,
and value vectors be Q

(l,h)
i , K

(l,h)
j , V

(l,h)
j ∈ Rd, where

i indicates the current token being generated and j ranges
over all Ni tokens in the input (i.e., j ∈ {1, 2, . . . , Ni}).
The attention weight α(l,h)

i,j , denoting how much the i-th
token attends to the j-th, is given by

α
(l,h)
i,j = softmaxj

(
A

(l,h)
i,j

)
, A

(l,h)
i,j =

(
Q

(l,h)
i

)⊤
K

(l,h)
j√

d
.

(1)
Here, d is the scaling factor. Using these attention weights,
the output representation o

(l,h)
i for the i-th token at the l-th

layer and h-th attention head is

o
(l,h)
i =

Ni∑
j=1

α
(l,h)
i,j V

(l,h)
j . (2)

The outputs from all H attention heads at the l-th layer are
concatenated and projected back to the original dimension.

A key challenge in MLLMs is their limited ability to effec-
tively utilize image information during text generation (Zhu
et al., 2024; Zhong et al., 2024). To address this issue,
several methods have been proposed to explicitly enhance
attention to image tokens during the text generation pro-
cess (Jiang et al., 2024; Zhang et al., 2024). A simple way to
boost attention to image tokens is to modify as follows (Liu
et al., 2025):

A
(l,h)
i,j ←− A

(l,h)
i,j + α · |A(l,h)

i,j |, (3)

where α is a scaling factor that amplifies the attention given
to image tokens.

These approaches leverage the premise that attention mech-
anisms capture critical visual information, reinforcing at-
tention to important visual tokens in proportion to their
significance.

4.2. Token Selection: Relative Activation Score

To effectively identify contextually relevant visual tokens
as the generated context expands, we propose a Relative

activation score, a dynamic metric that prioritizes tokens
with significant relative increases in attention. This score
is designed to compare the current attention value with a
smoothed historical trend, emphasizing relative changes
rather than absolute magnitudes. By normalizing these
changes with respect to the smoothed values, our method
ensures that meaningful variations remain detectable, even
as attention scales evolve.

Instead of relying solely on instantaneous attention values,
our approach focuses on temporal variations in attention. By
comparing the current attention value against its historical
trend, we minimize the influence of static biases or localized
noise, effectively highlighting tokens with sharp increases
in relevance—even if their raw attention values are not the
highest. To stabilize the process, we apply an Exponential
Moving Average (EMA), which smooths out transient fluc-
tuations and prevents brief spikes or dips in attention from
disproportionately influencing the selection process. As the
context length grows, attention values may diminish overall,
which can obscure important variations. By dynamically
adapting to these scale changes through normalization, our
method remains sensitive to significant shifts in attention,
regardless of the overall reduction in attention magnitude
over time.

Concretely, we employ an Exponential Moving Average
(EMA) to track the historical trend of attention weights,
allowing us to dynamically compare the current attention
weight to its smoothed past values. This enables our method
to detect relative increases in attention with high precision,
while filtering out transient noise. we first maintain an EMA
of the attention weights up to the (i− 1)-th step:

ãli−1,j = βãli−2,j + (1− β)ali−1,j , (4)

where β ∈ [0, 1] isis the smoothing factor that determines
the relative weighting of past and current attention values.
ali−1,j represents the attention weights for the j-th token at
the (i− 1)-th step, averaged across all attention heads h.

Using this smoothed trend, we define the Relative Activa-
tion Score for the j-th image token as:

rli,j =
ali,j − ãli−1,j

ãli−1,j

, for j ∈ {1, 2, . . . , Nimage}. (5)

Here, ãli−1,j represents the EMA-smoothed attention weight
for token j at layer l. This scoring mechanism emphasizes
tokens with substantial relative increases in attention, effec-
tively prioritizing those that become more salient over time
while minimizing the impact of static or irrelevant tokens.

Based on these relative activation scores, we apply a thresh-
olding mechanism to select the most relevant image tokens.
The set of selected tokens Si is defined as:

Si = {j | rli,j > τ}, (6)
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where τ is a predefined threshold. Tokens exceeding this
threshold are treated as the significant visual elements for
generating the i-th text token. By dynamically adjusting to
shifts in attention patterns, this method focuses on visually
relevant tokens while mitigating noise and static biases.

4.3. Selective Progressive Attention Re-Calibration

As text generation progresses, attention to important image
regions often diminishes, leading to a misalignment between
visual and textual contexts. To address this issue, we propose
Selective Progressive Attention Re-Calibration (SPARC),
a mechanism that dynamically reinforces attention on rele-
vant image tokens at each step of text generation. SPARC
ensures that contextually significant visual tokens main-
tain their importance throughout the captioning process,
enabling the model to produce richer and more accurate
descriptions.

The core idea of SPARC is to compute a cumulative rele-
vance measure for each image token and adjust attention
weights dynamically based on this measure. To achieve
this, we introduce the Selection Count, which quantifies
the evolving importance of each image token during text
generation. The Selection Count is formally defined as:

ci,j =

i−1∑
k=1

1(j ∈ Sk), (7)

where 1(·) is an indicator function that returns 1 if j is
selected at step k, and 0 otherwise. This metric accumulates
the number of times each token has been deemed relevant
in prior steps, reflecting its sustained importance in the
evolving context.

At each text generation step i, we first identify the set of
contextually relevant tokens Si using our Token Selection
method and update the Selection Count ci,j for each token
j. Based on the updated count, we recalibrate the attention
weights by amplifying those of frequently selected tokens:

ali,j ← ali,j · αci,j , (8)

where α > 1 is a scaling parameter controlling the ampli-
fication of tokens with higher cumulative relevance. This
exponential scaling prioritizes consistently relevant tokens
while maintaining adaptability to new contexts, mitigating
the decline in attention weights observed in longer text gen-
eration.

To further enhance computational efficiency, we implement
this recalibration by directly adjusting the token’s value
vectors. Specifically, for each j ∈ Si, we update:

V
(l,h)
j ← V

(l,h)
j · α. (9)

This is possible because key-value caching in large language
models stores value vectors for each token (Wan et al., 2023).

Leveraging this cached information, SPARC efficiently up-
dates value vectors without additional memory overhead,
ensuring seamless recalibration through weighted sums of
value vectors (e.g., Equation (2)).

In summary, SPARC addresses attention decay by progres-
sively reinforcing the significance of contextually relevant
image tokens. This method prevents attention sinks and
noise while preserving alignment between visual and textual
contexts, resulting in more accurate, diverse, and visually
grounded captions.

5. Experiments
We evaluate captioning quality by comparing baseline model
performance using existing approaches versus our method.
We also assess models with and without the proposed
method, conduct human evaluations against conventional
techniques, and analyze the methods introduced in Section 4.
Qualitative results are provided in Appendix A.

5.1. Experimental Setup

Models We conduct experiments on three widely used
multi-modal language models (MLLMs): LLaVA-1.5 (Liu
et al., 2024a), LLaVA-Next (Liu et al., 2024b), and Qwen2-
VL (Wang et al., 2024), each with 7B parameters. For each
model, we generat captions for given images using the
prompt: “Please describe this image in detail.” The maxi-
mum token length for caption generation is set to 512 across
all models.

Metrics We use two evaluation metrics in our experiments.
The first metric, CLAIR (Chan et al., 2023), measures over-
all caption quality by assessing alignment with reference
captions. It determines whether the generated and reference
captions effectively describe the same image, with higher
scores indicating better quality. CLAIR leverages GPT-
4o (Hurst et al., 2024) for reliable evaluation of detailed and
accurate captions. The second metric, CHAIR (Rohrbach
et al., 2018), assesses hallucination by comparing objects
mentioned in generated captions with those in reference
captions. It provides precision-recall metrics to evaluate
the trade-off between correctly identified and erroneously
included objects.

Datasets For CLAIR evaluation, we use the IIW-
400 (Garg et al., 2024) and DOCCI (Onoe et al., 2025)
datasets. IIW-400 consists of 400 image-caption pairs, while
DOCCI contains 15K pairs. Both datasets provide highly de-
tailed, hallucination-free captions, making them well-suited
for evaluating caption quality. For CHAIR evaluation, we
utilize the MS-COCO 2014 validation dataset (Lin et al.,
2014). This dataset includes ground-truth object annotations,
which enable the calculation of CHAIR metrics by compar-
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Table 1. Comparison of CLAIR scores on the IIW-400 and DOCCI
datasets for the baseline model with existing methods and our pro-
posed approach. The results highlight the performance improve-
ments achieved by our method.

METHOD IIW-400 DOCCI

BASELINE 56.36 59.26
OPERA 51.02 (-5.34) 56.81 (-2.45)

VCD 52.16 (-4.20) 55.60 (-3.66)

VOLCANO 55.84 (-0.52) 61.09 (+1.83)

PAI 56.86 (+0.50) 60.09 (+0.83)

OURS 61.49 (+5.13) 62.70 (+3.44)

ing the objects mentioned in the generated captions with the
reference objects.

Implementation Details To compare our method with
existing approaches, we conduct experiments on the base-
line model, LLaVA-1.5. The hyperparameters for existing
methods are implemented as specified in prior research. For
our method, the following parameters are applied across
all models: the scaling factor α is set to 1.1, the smooth-
ing factor β is set to 0.1, and the selection threshold τ is
adjusted for each model. Specifically, τ is set to 1.5 for
LLaVA-1.5, 4.0 for LLaVA-Next, and 3.0 for Qwen2-VL.
For token selection, we extract visual attention from layer
20 for LLaVA-1.5 and LLaVA-Next, while layer 18 is used
for Qwen2-VL. On the other hand, attention recalibration is
applied across all layers’ attention.

5.2. Results

Comparison with Existing Approaches We compar our
method with the existing approaches on LLaVA-1.5, using
CLAIR scores on the IIW-400 and DOCCI datasets. Table 1
summarizes the results, showing that our method achieves
the highest scores across both datasets, significantly outper-
forming prior approaches. This improvement demonstrates
that our method enhances caption generation by produc-
ing captions that are more detailed and better aligned with
reference captions.

Precision-Recall Tradeoff Analysis Generating high-
quality captions requires a balanced improvement in both
precision and recall. In the CHAIR metric, precision mea-
sures the proportion of objects in generated captions that do
not appear in the reference captions, indicating hallucina-
tion. Recall quantifies the proportion of reference objects
correctly identified in the generated captions. The F1 score
combines these metrics to provide a holistic assessment of
the trade-off between precision and recall.

We compar our method against existing approaches in terms
of precision, recall, and F1 score using CHAIR, as shown

Table 2. Performance of various methods on detailed image cap-
tioning using the CHAIR benchmark. The table reports precision,
recall, and F1-score for objects in generated captions. The best
scores are bolded, while the second-best scores are underlined.

METHODS PRECISION RECALL F1

BASELINE 84.70 79.46 81.99
OPERA 84.54 78.82 81.58
VCD 83.22 77.50 80.26
VOLCANO 87.64 77.82 82.39
PAI 90.64 72.44 80.52
OURS 87.72 79.98 83.67

Table 3. Comparison of CLAIR scores on the IIW-400 dataset
between the baseline and our method applied to various models.
The results demonstrate a consistent performance improvement
with our approach.

MODEL BASELINE OURS

LLAVA-1.5 56.36 61.49 (+5.13)

LLAVA-NEXT 58.86 64.94 (+6.08)

QWEN2-VL 78.34 79.70 (+1.36)

in Table 2. To ensure a robust evaluation, we randomly sam-
ple 500 instances and repeated the evaluation five times.
OPERA (Huang et al., 2024) and VCD (Leng et al., 2024),
which rely on decoding-based strategies fail to improve pre-
cision or recall. VOCANO (Lee et al., 2023), which incor-
porates feedback to self-revise its initial response, enhances
precision but slightly reduces recall. PAI (Liu et al., 2025),
which increases attention to the image while incorporating
additional decoding techniques, achieves the largest preci-
sion gain but suffers the lowest recall, resulting in a lower
F1 score than our method.

In contrast, our method successfully improves both precision
and recall, achieving the highest F1 score. Specifically, it
increases precision by 3.02%p, recall by 0.52%p, and F1
score by 1.68%p. Notably, our approach is the only one that
improves recall compared to the baseline, whereas all other
methods sacrifice recall to boost precision.

These results demonstrate that our method minimizes incor-
rect object inclusions while enhancing the model’s ability to
identify relevant objects. This improved balance is crucial
for generating captions that are both accurate and compre-
hensive, setting a new benchmark for high-quality caption
generation. The detailed CHAIR metric scores are provided
in Appendix F.

Performance Across Different Models To demonstrate
the effectiveness of our method across diverse models,
we evaluate it on three widely used MLLMs: LLaVA-1.5,
LLaVA-Next, and Qwen2-VL. Tables 3 and 4 present the
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Table 4. Comparison of CLAIR scores on the DOCCI dataset be-
tween the baseline and our method applied to various models. The
results demonstrate a consistent performance improvement with
our approach.

MODEL BASELINE OURS

LLAVA-1.5 59.26 62.70 (+3.44)

LLAVA-NEXT 62.49 66.99 (+4.50)

QWEN2-VL 79.22 80.64 (+1.42)

(a) (b)
Figure 6. Human evaluation results showing the winning ratio (%)
of our method compared to (a) the baseline and (b) naive approach
in terms of precision and recall.

CLAIR scores for the IIW-400 and DOCCI datasets, re-
spectively. For DOCCI, we randomly select 500 samples
for evaluation. Across both datasets, our approach consis-
tently improves caption quality, demonstrating its robustness
across diverse model architectures. These findings confirm
that our approach not only refines precision and recall but
also generalizes well across different datasets and model
configurations. The consistent performance gains further
underscore the adaptability of our method in aligning gener-
ated captions more effectively with reference captions, as
measured by the CLAIR metric.

Human Evaluation Results To further assess the
precision-recall tradeoff, we conduct a human evaluation.
Specifically, we sample 100 captions generated by the
LLaVA-1.5 model on images from the IIW-400 dataset.
These captions are evaluated for precision and recall by
human annotators, who compare different methods and se-
lected the better one. The results are then aggregated into a
winning ratio, showing how often our method is preferred
over the baseline and naive attention enhancement approach.

As shown in Figure 6, our method achieves a higher recall
compared to the baseline while also improving precision.
Then compared to naive approach, our approach demon-
strates superior recall with a slight decrease in precision.
These results indicate that our method effectively balances
recall and precision, reducing hallucinations while ensuring
comprehensive caption generation.

(a) (b)

Figure 7. Visual Attention Analysis. (a) Change in visual attention
with increasing context length. SPARC mitigates the decline com-
pared to the baseline. (b) Ratio of attention scales between sink
and non-sink visual tokens during captioning. SPARC maintains
baseline-level proportions, unlike the naive approach.

5.3. Analyses

Quantitative Evaluation for Visual Attention To ana-
lyze the change in visual token attention, we compare it
against a naive approach and the baseline model. Figure
7(a) illustrates how visual attention changes with increasing
context length for each method. It shows that SPARC effec-
tively mitigates the decline in visual attention, preserving
focus on visual tokens even in longer contexts.

We also quantify how much visual attention is assigned to
semantically relevant image regions during the decoding
process, using 5,000 randomly sampled images from the
MSCOCO 2014 validation set processed by the LLaVA-1.5
model. Specifically, we calculated the total attention score
allocated to image tokens within the region of that object
for each generated token corresponding to a ground truth
object in the caption. To identify these regions, we employed
an open-vocabulary segmentation model(Ren et al., 2024;
Ravi et al., 2024) to generate binary masks for all ground
truth objects. During caption generation, we measured the
proportion of visual attention focused on the corresponding
object region relative to the total attention across all image
tokens for each object-related token.

As shown in Table 5, our method assigns a higher proportion
of visual attention to image-relevant regions compared to the
baseline. In contrast, naive attention scaling allocates less
attention to relevant image regions than the baseline. These
results indicate that our method achieves better alignment
between generated text and semantically relevant visual re-
gions, suggesting that the visual attention in our model is
less noisy and more accurately focused during the caption-
ing process.

Additionally, we analyze the attention distribution over
sink tokens—tokens identified as unrelated or uninforma-
tive—during the caption generation process. Following
(Kang et al., 2025), which identifies sink tokens based on
hidden state dimensions with exceptionally high values, we
compute the ratio of attention scales between sink and non-
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Table 5. Comparison of the proportion of visual attention focused
on semantically relevant image regions between the baseline, naive
attention scaling and our method.

METHOD ATTENTION ON RELEVANT REGIONS (%)

BASELINE 17.85
NAIVE 15.50 (-2.35)

OURS 19.17 (+1.32)

sink tokens and plotted the results for the three approaches,
as shown in Figure 7(b). The naive approach significantly
increases the attention to sink tokens, which can detract
from meaningful visual token focus. In contrast, SPARC
maintains a sink token attention proportion comparable to
the baseline, effectively avoiding unintended amplification
of irrelevant tokens.

These results highlight the robustness of SPARC in pre-
serving meaningful visual attention dynamics, even in chal-
lenging contexts with extended lengths, while avoiding the
pitfalls observed in naive attention reinforcement methods.
The detailed implementation details of the above experi-
ments can be found in Appendix B.2.

Efficiency Comparisons To demonstrate that our method
incurs minimal computational overhead, we conducted an
efficiency comparison against existing approaches. Specif-
ically, we generated image captions using the LLaVA-1.5
model on the IIW-400 dataset with an RTX8000 GPU. For
each caption, we measured the generation time per output
token and then computed the average token generation time
across all captions.

As shown in Table 6, our method achieves a token generation
time comparable to the baseline, whereas other methods are
significantly slower-by a factor of 2× to 10×. This clearly
demonstrates that our approach enables efficient caption
generation with minimal computational cost. Although our
method incorporates attention amplification mechanisms,
these introduce only negligible overhead relative to the orig-
inal decoding process. In contrast, many prior methods rely
on additional decoding passes, which substantially increase
computational burden.

In terms of memory usage, our method only requires storing
the head-wise averaged attention scores for image tokens
at each layer from the previous decoding step. For instance,
with LLaVA-1.5, this storage amounts to 32 layers × 576 im-
age tokens × 2 bytes (float16), totaling less than 40 KB—an
overhead that is trivial on modern hardware.

Ablations Further ablation studies on the specific param-
eters or setting choices used in our approach are provided
in Appendix C for a comprehensive analysis of their im-

Table 6. Comparison of token generation time (ms/token) between
our method and existing approaches. Our method achieves effi-
ciency comparable to the baseline, whereas other methods exhibit
substantially higher computational overhead.

MODEL GENERATION TIME (MS/TOKEN) ∆ (%)

BASELINE 30.37 ± 0.73

OPERA 322.28 ± 118.26 +961.3
VCD 59.44 ± 0.84 +95.7
VOLCANO 109.98 ± 17.71 +262.2
PAI 57.75 ± 0.86 +90.2
OURS 31.21 ± 0.61 +2.8

pact on model performance. Briefly, we conducted ablation
experiments focusing on two key design components: the
token selection strategy and the progressive attention calibra-
tion mechanism. Specifically, we evaluated the performance
when (1) bypassing the token selection process and applying
progressive attention calibration to all image tokens, and
(2) modifying the token selection strategy to use only the
previous step instead of EMA. These variations highlight
the individual contributions of both the token selection strat-
egy and the progressive attention calibration in enhancing
model performance.

Additionally, we conducted ablation studies on four crit-
ical parameters: the token selection layer l, token selec-
tion threshold τ , EMA smoothing factor β, and scaling
parameter α, evaluating their impact on performance across
LLaVA-1.5, LLaVA-NeXT, and Qwen2-VL. We observe
consistent trends across models, with optimal performance
typically achieved using mid-to-late layers for token selec-
tion and mildly scaled parameter values. While some tuning
is required to achieve the best results for each model, our
training-free, low computational overhead method makes
hyperparameter tuning both efficient and practical, requiring
minimal effort to identify optimal settings.

6. Conclusion
In this work, we address the challenge of balancing preci-
sion and recall in detailed image captioning for multimodal
large language models. To mitigate this issue, we propose
SPARC, a training-free method that enhances the contri-
bution of visual tokens during decoding. SPARC identifies
critical visual tokens by leveraging attention differences
across generation steps and progressively reinforces visual
attention to counteract its natural decline. Our experimen-
tal results, validated through both automated metrics and
human evaluations, reveal that conventional methods often
improve precision at the cost of recall. In contrast, SPARC
effectively enhances both precision and recall with minimal
computational overhead, offering a simple yet powerful so-
lution for improving detailed image captioning in MLLMs.
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Impact Statement
As AI models evolve beyond simple object recognition to
generating captions that incorporate contextual and seman-
tic understanding, the length and complexity of generated
descriptions are increasing. This trend makes the challenge
of balancing precision and recall in image captioning even
more critical. Our research addresses this issue by improv-
ing multimodal large language models (MLLMs), which can
contribute to advancements in AI for accessibility and multi-
modal contextual understanding. More accurate and context-
aware captions can greatly benefit visually impaired individ-
uals by providing richer and more informative descriptions.
Additionally, applications in education, automated docu-
mentation, and creative content generation can be enhanced
through improved captioning capabilities.

However, the societal impact of advanced image captioning
must be carefully considered. While our method enhances
caption quality, AI-generated descriptions can still suffer
from hallucinations—incorrect details that seem plausible.
As AI-generated captions become more refined and detailed,
users may develop a stronger trust in their accuracy, even
when the content is incorrect or misleading. This could lead
to unintended consequences, such as misinterpretations of
visual content or overreliance on AI-generated descriptions
without verification. Ensuring that users remain aware of
these limitations is crucial as AI-generated content becomes
more prevalent in real-world applications.
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A. Qualitative Results: Enhanced Caption Quality
A.1. LLaVA-1.5

Baseline

The image features two women standing on a snow-covered slope, each wearing skis and 
holding ski poles. They are both smiling and enjoying their time on the snowy hill. The women 
are positioned close to each other, with one woman slightly to the left and the other slightly to 
the right. Their skis are visible, with one pair of skis on the left side of the image and the other 
pair on the right side. The women are also wearing backpacks, with one backpack on the left 
side and the other on the right side of the image. The scene captures a fun and active winter 
day spent skiing together.

Ours

The image features two women standing on a snow-covered slope, each wearing skis and 
holding ski poles. They are both smiling and enjoying their time on the snowy hill. The women 
are positioned close to each other, with one woman on the left and the other on the right. In 
addition to the skis and poles, the women are also wearing sunglasses, which can be seen on 
their faces. One of the women is wearing a hat, adding to the wintery atmosphere. The scene is 
set against a cloudy sky, creating a picturesque winter landscape.

Baseline

The image features a bowl filled with a delicious and hearty meal, consisting of a combination 
of meat and broccoli. The broccoli pieces are scattered throughout the bowl, with some pieces 
placed closer to the top and others near the bottom. The meat, which appears to be chicken, is 
also present in the bowl, adding to the overall flavor and texture of the dish. The bowl is placed 
on a dining table, ready to be enjoyed by someone. 

Ours

The image features a bowl filled with a delicious and hearty meal, consisting of a combination 
of meat and broccoli. The bowl is filled with a rich and flavorful soup, containing a generous 
amount of broccoli pieces. The broccoli pieces are scattered throughout the bowl, with some 
pieces being larger and others smaller. The soup is garnished with a variety of onions, which are 
also distributed throughout the bowl. The dish is served in a bowl, making it an appealing and 
comforting meal. 

Baseline

The image captures a group of young boys playing soccer on a grassy field. There are at least 
nine players visible in the scene, with some of them actively engaged in the game, while others 
are standing or running around the field. A soccer ball is located in the center of the field, with 
one player attempting to kick it. The players are spread out across the field, with some closer to 
the ball and others further away. The scene is lively and full of energy, showcasing the 
excitement and camaraderie of the young players.

Ours

The image captures a group of young boys playing soccer on a grassy field. There are at least 
nine players visible in the scene, with some of them actively engaged in the game, while others 
are standing or running around the field. A soccer ball is located in the center of the field, with 
one boy lying on the ground, possibly after falling or being tackled. The other players are 
scattered across the field, with some closer to the fence and others further away

Baseline

The image features a close-up of a colorful fish with a long, thin tail and a large, pointy fin. The 
fish is swimming in a body of water, possibly an aquarium, with its head and body prominently 
visible. The fish appears to be a unique and eye-catching species, possibly a clownfish, given its 
distinctive appearance.

Ours

The image features a close-up of a colorful fish with a long, spiky tail, swimming in a tank. The 
fish has a vibrant orange and red color, with a distinctive orange and white striped pattern on its 
body. The fish's tail is long and spiky, adding to its unique appearance.

The tank is filled with various rocks, providing a natural and interesting environment for the fish. 
The rocks are scattered throughout the tank, with some located near the top, middle, and 
bottom of the image. The fish is positioned in the middle of the tank, surrounded by the rocks.

Figure 8. Comparison of captions generated by applying our method to LLaVA-1.5 and the baseline. Red text highlights incorrect
references in the captions, while blue text indicates additional details provided by our method compared to the baseline.
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A.2. LLaVA-NeXT

Baseline

The image captures a scene from a theatrical production, featuring a large, intricately 
designed rock formation as the centerpiece. The rock formation, which is the main focus of the 
image, is crafted from a combination of red and brown materials, giving it a rugged and natural 
appearance. It has a large opening in the center, inviting the viewer to explore what lies within. 
The rock formation is situated on a stage, which is bathed in a warm, orange light that enhances 
the dramatic effect of the scene. The stage is set against a black curtain, providing a stark 
contrast that further emphasizes the rock formation. In the foreground of the image, there are 
two wooden crates. Their presence suggests that they might be part of the set design or props 
for the production. The image does not contain any text or depict any actions. The relative 
positions of the objects are such that the rock formation is centrally located on the stage, with 
the wooden crates positioned in the foreground. The overall composition of the image suggests 
a scene from a theatrical performance, with the rock formation serving as a significant element 
in the narrative.

Ours

The image captures a scene from a theatrical production, featuring a large, rock-like prop that 
dominates the foreground. The prop, which appears to be made of a textured material 
resembling stone or wood, has a rough, uneven surface with a reddish-brown hue. It has two 
prominent, glowing eyes that are red and black, giving it a menacing appearance. The prop's 
mouth is open, revealing a dark interior, and there is a small, dark opening on the right side, 
possibly a door or entrance. In the background, there is a hint of a stage setting with a black 
curtain on the left side and a white structure that could be part of the set design. On the right 
side of the image, there is a red crate stacked on the floor, and a yellow light source is visible, 
illuminating the scene from the right side. The lighting casts shadows on the floor, enhancing the 
dramatic effect of the prop. The overall style of the image suggests a staged performance, 
possibly a play or a musical, with the prop serving as a significant element in the scene. 

Baseline

The image captures a scene of a vintage car parked on a street, facing towards the right side 
of the frame. The car, painted in a shade of gray, is adorned with a flame design on its side, 
adding a touch of vintage charm. It's parked in front of a wooden telephone pole, which stands 
tall against the backdrop of a clear blue sky. The street on which the car is parked is lined with 
trees, their green leaves contrasting with the gray of the car. In the distance, power lines stretch 
across the sky, leading the eye towards the horizon. The image exudes a sense of nostalgia, 
reminiscent of a bygone era. 

Ours

The image captures a scene of a vintage car parked on a gravel lot. The car, painted in a 
striking shade of black, is adorned with flames painted on its side, adding a touch of fiery spirit to 
its appearance. The car's design is reminiscent of the 1950s, with a rounded body and a curved 
roof, giving it a classic and timeless appeal. The car is parked on a gravel lot, which is scattered 
with small rocks and pebbles, adding texture to the scene. In the background, a telephone pole 
stands tall, its presence subtly reminding us of the era when such structures were more common. 
Above the car, a red toy tractor is suspended from power lines, adding an element of whimsy to 
the scene. The tractor, with its vibrant red color and playful design, contrasts with the 
seriousness of the vintage car below. The sky above is a clear blue, dotted with fluffy white 
clouds that add depth to the image. The power lines stretching across the sky create a sense of 
openness and freedom. Overall, this image paints a picture of a moment frozen in time, where 
vintage meets whimsy, and the past meets the present.

Baseline

The image depicts a beige Volkswagen van parked on a street at night. The van has a visible 
front grille with the Volkswagen logo, and the headlights are off. The vehicle is positioned on the 
side of the road, with the front facing towards the left side of the image. The van's side windows 
are tinted, and the rear window is clear. There is a visible dent on the driver's side door. The van 
is parked next to a curb, and there is a small orange traffic cone placed in front of it. The 
background shows a residential area with houses and trees, and the sky is dark, suggesting it is 
nighttime. There are no visible texts or distinctive markings on the van that provide additional 
information. The style of the image is a standard, unfiltered photograph with no artistic 
manipulation. 

Ours

The image depicts a beige Volkswagen Type 2 van parked on a street at night. The 
van has a distinctive rounded front and a flat roof, which is typical of the Volkswagen 
Bus design. It features a black grille with the Volkswagen logo at the center, and the 
headlights are visible. The van has a white stripe running along the side, and the side 
windows are tinted. The vehicle is parked next to a curb, and there is a small orange 
traffic cone placed in front of the van. The background shows a residential area with 
houses and trees, and there is a street lamp visible in the distance. The lighting 
suggests it is nighttime, and the overall atmosphere is calm and quiet. There are no 
visible texts or distinctive markings on the van that provide additional information. The 
style of the image is a standard, unembellished photograph with no filters or artistic 
manipulations. 

Figure 9. Comparison of captions generated by applying our method to LLaVA-NeXT and the baseline. Red text highlights incorrect
references in the captions, while blue text indicates additional details provided by our method compared to the baseline.
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Baseline

The image shows a sculpture of a fantasy character, which appears to be a humanoid figure 
with a stylized, cartoonish design. The character has a large, exaggerated head with a 
prominent nose and a wide, cheerful smile. The figure is wearing a tunic with a belt and a pair of 
pants, and it has a large, round belly. The character's arms are raised, and it is holding what 
seems to be a small object in its right hand. The sculpture is standing on a base that resembles 
a log, with a large, curved piece of wood serving as the base. The background is out of focus, 
but it appears to be an outdoor setting with a green wall and a framed picture hanging on it. The 
ground is covered with dirt and scattered debris. There are no visible texts or distinguishing 
marks that provide additional context about the character or the setting. The style of the image is 
a straightforward, unembellished photograph with no filters or artistic effects applied. 

Ours

The image shows a sculpture of a fantasy character, which appears to be a goblin or a similar 
creature, standing on a wooden platform. The sculpture is made of a light-colored material, 
possibly stone or concrete, and is detailed with textures and patterns that suggest a rugged, 
weathered appearance. The character has a large, pointed ear, a prominent nose, and a wide, 
grinning mouth. It is wearing a tunic with a belt and a pair of boots, and it is holding a small 
object in its right hand. The character is standing on a log that has been carved to resemble a 
stump, with a large knot visible on the surface. 
The sculpture is placed outdoors, as indicated by the natural surroundings and the green wall in 
the background. There are two framed posters hanging on the wall, but the content of the 
posters is not visible in the image. The ground is covered with dirt and scattered debris, 
suggesting a natural or semi-natural setting. The lighting in the image is bright, and the 
photograph is taken from a slightly elevated angle, giving a clear view of the sculpture and its 
surroundings. There are no visible texts or brands in the image. The style of the image is a 
straightforward, unembellished photograph with no filters or artistic manipulations. 

Baseline

The image shows a model of a blue and white boat with a red stripe on the hull, displayed on a 
stand. The boat has a prominent white superstructure with a cabin and a wheelhouse. There are 
several windows visible on the cabin and wheelhouse, and the boat is equipped with a lifeboat 
on the aft deck. The model is detailed with a flag flying from the mast and a lifebuoy hanging 
from the side. The background is a plain, light color, providing a neutral backdrop that highlights 
the model. There are no visible texts or brands on the model. The style of the image is a 
straightforward product photograph with a focus on the model boat, intended to showcase its 
design and features. 

Ours

The image shows a model of a blue and white boat with a red stripe on the hull, displayed on a 
stand. The boat has a prominent white superstructure with a cabin and a wheelhouse, and a 
blue and white hull with a red stripe running along the side. On the bow, there is a red lifeboat 
with a white interior. The model is mounted on a white stand with two vertical poles supporting it. 
The background is a plain, light gray surface, and there is a small, circular object with a flag on 
top of the model, suggesting it might be a decorative element or a part of the model's display. 
The text "RV Coral Reef II" is visible on the side of the model, indicating the name of the boat. 
The style of the image is a straightforward, clear photograph with no additional context or 
embellishments. 

Baseline

The image shows a garden scene with a focus on a statue of a person wearing a straw hat, 
positioned in the center. The statue is partially obscured by lush greenery, including a variety of 
flowers and plants. The statue appears to be made of a light-colored material, possibly stone or 
concrete, and is set against a backdrop of a brick wall. The wall is constructed of rectangular 
bricks and has a rough texture. The garden is bordered by a neatly trimmed lawn on the left side, 
and there are trees and shrubs in the background, adding to the natural setting. The overall 
style of the image is a realistic photograph with a focus on the garden and the statue. There are 
no visible texts or distinctive brands in the image. 

Ours

The image shows a garden scene with a focus on a statue of a young girl with a straw hat, 
positioned in the center. The statue is made of a light-colored material, possibly stone or 
concrete, and is partially obscured by lush green foliage. The girl is depicted with a serene 
expression, looking towards the viewer. Surrounding the statue are various yellow flowers, 
including daisies and possibly other types of flowers, which add a vibrant splash of color to the 
scene. The flowers are in full bloom, suggesting a warm, possibly spring or summer season. 

The garden bed is bordered by a low stone wall, which appears to be made of stacked stones, 
giving it a rustic and natural look. The wall is partially covered by the green foliage, blending the 
garden's elements together. In the background, there is a brick wall, which provides a 
contrasting texture to the softness of the garden bed. The overall impression is one of a tranquil 
and well-maintained garden space. There are no visible texts or distinctive branding in the 
image. The style of the image is a realistic photograph with a focus on the garden and its 
decorative elements. 

Figure 10. Comparison of captions generated by applying our method to LLaVA-NeXT and the baseline. Red text highlights incorrect
references in the captions, while blue text indicates additional details provided by our method compared to the baseline.
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B. Details for Analyses
B.1. Why More Attention Doesn’t Always Mean Better Descriptions

Enhanced Attention: A Path to Less Diversity? To analyze the diversity of visual attention during caption generation,
we used the baseline model (LLaVA-1.5 7B) to generate captions for 3,000 image samples from the DOCCI dataset. During
the caption generation process, we measured the attention weights assigned to visual tokens when generating output tokens.
Specifically, we extracted visual attention weights from layer 20 and averaged them across attention heads.

For each image sample, we analyzed the visual attention corresponding to the first 100 output tokens. To quantify the
variation in visual attention throughout the generation process, we computed the distance between the visual attention
distributions of consecutive output tokens within each sample. The distance was calculated using the Wasserstein distance,
where each visual attention distribution was first normalized so that the sum of attention weights across all tokens equaled 1.

The results of this analysis are presented in Figure 3, which compares the baseline model with a naive attention enhancement
method that proportionally increases visual attention weights. The plot illustrates that the naive enhancement method reduces
the variation in visual attention patterns throughout the caption generation process. This finding aligns with our observations
that the naive method decreases the diversity of objects mentioned in the generated captions.
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Figure 11. Visual attention diversity comparison between (a) the baseline model, (b) the naive attention enhancement approach, and (c)
our method. The naive approach reduces visual attention diversity, indicating ineffective adaptation to important visual tokens. Instead,
our proposed method does not severely degrade visual attention diversity

In contrast, the results shown in Figure 11 demonstrate that our proposed method does not severely degrade visual attention
diversity. Instead, our approach dynamically reinforces attention to relevant regions of an image based on the evolving
context during caption generation. This confirms that our method effectively maintains a balance between enhancing visual
attention and preserving diversity, leading to more contextually appropriate and varied caption outputs.

In addition to its impact on visual attention, our method also preserves diversity in the content of generated captions.
Appendix D presents an analysis of caption diversity, introducing metrics that assess the variation in generated sentences.
Using these metrics, we evaluate caption diversity across different methods, including those discussed earlier in this
appendix.

Longer Contexts Amplify Noisy Attention To analyze how longer contexts influence attention noise, we conducted
an experiment using the baseline model (LLaVA-1.5 7B). During the caption generation process for a single image, we
measured the attention weights assigned to visual tokens when generating output tokens. Specifically, visual attention
weights were extracted from layer 20 and averaged across attention heads.

Next, we normalized the visual attention weights such that the sum of all attention weights for visual tokens equaled 1.
Finally, as shown in Figure 4, we plotted the normalized attention distribution along with the corresponding image to
visualize how attention shifts across different tokens in the presence of longer contexts.
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Additionally, To address the concern that raw attention scores—especially in deeper layers—may not directly correspond to
the original image patches, we conducted additional analyses using saliency maps computed with respect to the attention
scores. Specifically, we implemented a gradient-weighted attention method inspired by (Zhang et al., 2025), where attention
scores are weighted by their gradients with respect to the model’s output.

As show in Figure 12, we compare the original attention-based results (Figure 4) with those obtained using the saliency
maps. The saliency maps reveal similar overall trends: as the context length increases during caption generation, the resulting
maps become progressively noisier. This observation supports our original interpretation. Furthermore, recent work (Zhang
et al., 2025) has demonstrated that the visual attention pattern of MLLMs do indeed align with semantically relevant image
regions, particularly in tasks like visual question answering, further validating the use of this method in our analysis.

Gradient-weighted Attention Score

Attention Score

skiing skis

skiing skis

Figure 12. Comparison between visualizations of attention scores and gradient-weighted attention scores for different context lengths
during caption generation. Both methods exhibit similar trends, with increasing noise as the context length grows.

Longer Context, Less Visual Focus To analyze the effect of longer contexts on visual focus, we conducted an experiment
using the baseline model (LLaVA-1.5 7B). Caption generation was performed on 3,000 image samples from the DOCCI
dataset, and we measured the attention weights assigned to visual tokens during the generation of output tokens.

Specifically, visual attention weights were extracted from layer 20 and averaged across attention heads. For each output
token, we computed the total attention weights allocated to visual tokens and the total attention weights allocated to text
tokens (including instruction tokens and generated tokens). These values were averaged across all samples and plotted
against different context lengths to examine how visual focus changes as context length increases. The results of this analysis
are presented in Figure 5, which illustrates the diminishing visual focus as context length grows.

Figure 5 does not normalize for the total number of tokens, which may obscure the disproportionate decline in attention to
visual information as the caption length increases—especially since the number of text tokens naturally grows with longer
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captions. To address this, we additionally analyze the average attention per token by dividing the total attention to image and
text tokens by their respective token counts. As shown in Figure 13, this normalized analysis reveals that attention to image
tokens decreases disproportionately faster than to text tokens as the context length increases.
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Figure 13. Average attention weight trends for text and image tokens as a function of context length during caption generation, computed
by dividing attention by the number of respective tokens. This normalized view reveals that attention to image tokens decreases more
sharply than to text tokens as context length increases.

B.2. Analyses in Section 5.3

Visual Attention Analysis To analyze visual attention during caption generation, we conducted an experiment using the
baseline model (LLaVA-1.5 7B) on 3,000 image samples from the DOCCI dataset. During the caption generation process,
we measured the attention weights assigned to visual tokens when generating output tokens.

Specifically, visual attention weights were extracted from layer 20 and averaged across attention heads. We computed the
total attention weights allocated to visual tokens for each output token and compared the results between the baseline model
and the SPARC-enhanced model. These values were plotted to illustrate the differences in visual attention between the two
approaches, as shown in Figure 7(a).

Impact on attention sinks To evaluate whether each method strengthens visual attention to contextually relevant regions
or amplifies unrelated areas, we analyzed how different approaches affect attention sinks—tokens that receive large attention
values despite being unrelated to the actual context.

Specifically, we measured the ratio of attention scales by computing the average attention weight of sink tokens divided by
the average attention weight of non-sink tokens. This ratio was used to assess the extent to which each method influences
attention sinks, as illustrated in Figure 7(b).

For this experiment, we used the baseline model (LLaVA-1.5 7B) to generate captions for 3,000 image samples from the
DOCCI dataset. During caption generation, we measured the attention weights assigned to visual tokens at layer 20 and
averaged them across attention heads.

To identify visual attention sinks, we followed the approach described in previous work (Kang et al., 2025). Specifically,
attention sinks were determined based on high-dimensional hidden states (self-attention layer inputs), where certain
dimensions exhibited significantly large values. Tokens with high values in these specific dimensions were classified as sink
tokens.

During generation, for each output token, we computed the ratio of average attention weights between sink tokens and
non-sink tokens. These values were then averaged across all image samples and plotted for comparison across the baseline
model, a naive attention enhancement approach, and SPARC.

Results indicate that the naive approach significantly increases the proportion of attention allocated to sink tokens, while
SPARC maintains the sink attention ratio at similar levels to the baseline. Additionally, prior results (Figure 7(a)) demon-
strated that SPARC counteracts the decrease in attention values caused by longer context lengths. Taken together, these
findings suggest that SPARC selectively reinforces attention to important visual tokens as context length increases, rather
than indiscriminately amplifying all attention values.
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C. Ablation Study on the Effectiveness of Hyperparameter and Setting Varitions
Ablation Study on Setting Choices To demonstrate the effectiveness of the proposed components in our method, we
conducted a series of ablation experiments. Specifically, we evaluated the impact of our token selection strategy and the
progressive attention calibration mechanism, as presented in Table 7. For these experiments, we used LLaVA-1.5 as the
baseline model and measured performance using the CLAIR metric on the IIW-400 dataset.

First, we examined the effect of omitting the token selection process and applying the progressive attention calibration to all
image tokens. To ensure a fair comparison, we set the attention scaling factor α to 1.007, following the same scaling strategy
as when token selection is employed, as shown in Figure 7(a). While this approach led to performance improvements
compared to the baseline, demonstrating the effectiveness of the progressive attention calibration mechanism, the results
fell short of the performance achieved by our complete method. This indicates that while progressive attention calibration
contributes to performance gains, the token selection strategy further enhances the model’s ability to focus on the most
informative tokens, leading to superior overall performance.

Next, we analyzed the effect of modifying the token selection approach by comparing the tokens to those from only the
immediately preceding step, rather than leveraging the exponential moving average (EMA) across previous steps. This
simplified selection mechanism yielded better performance than the baseline but did not match the effectiveness of our
proposed method.

These ablation results underscore the contributions of both the token selection strategy and the progressive attention
calibration in enhancing model performance. Our full method effectively mitigates attention dilution and ensures the
consistent integration of salient visual information throughout the caption generation process.

Table 7. CLAIR scores under different setting choices.

SETTING CLAIR

BASELINE 56.35
OURS 61.49

W/O SELECTION 59.10
W/O EMA 60.28

Ablation Study on Hyperparameter Impact To further analyze the effectiveness of the hyperparameters in our method,
we conducted a series of experiments by systematically varying key parameters and evaluating their impact on performance.
Specifically, we assessed how changes to individual hyperparameters influenced the model’s performance, using LLaVA-1.5
as the baseline model and measuring the CLAIR score on the IIW-400 dataset. The parameters examined in this study were
those introduced in Section 5.1.

First, we evaluated the impact of the layer l at which token selection is applied. Regardless of the layer at which token
selection was performed and subsequent attention recalibration was applied, we observed an improvement in CLAIR scores
compared to the baseline. Notably, selecting tokens in mid-to-late layers resulted in the most significant performance gains,
with the highest CLAIR score observed at layer 20 (Table 8). This finding aligns with prior research, which has shown
that the visual token attention patterns in MLLMs tend to align more closely with semantically meaningful features in
mid-to-late transformer layers (Jiang et al., 2024).

Next, we investigated the impact of the token selection threshold τ , which determines the relative activation score used for
token selection (Equation (5)). This score quantifies how much the attention on a given visual token jumps compared to the
previous output token during caption generation. The results, presented in Table 8, reveal that excessively low threshold
values degrade captioning performance. However, for appropriately chosen values, reinforcing attention on the selected
tokens consistently led to improvements over the baseline. The best performance was observed at τ = 1.5, where the model
achieved the highest CLAIR score.

Then, we evaluated the impact of the EMA (exponential moving average) smoothing factor β, which controls the degree to
which historical attention patterns influence token selection. The results, shown in Table 8, indicate that when β = 0, the
model relies solely on the difference between the current step’s attention and that of the immediately preceding step. In
contrast, applying EMA smoothing enables a more stable token selection process. We found that using a small value of
β = 0.1 was particularly effective, as it allowed token selection to be influenced primarily by the most recent step while still
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incorporating a degree of historical information.

Finally, we conducted additional ablation experiments on the scaling parameter α. We investigated how increasing α affects
CLAIR scores and shown in Table 8, found that performance improved up to a certain threshold, with the highest CLAIR
score observed at α = 1.1. However, increasing α beyond this point degraded the model’s captioning performance.

Table 8. CLAIR scores according to different hyperparameters for LLaVA.

PARAMETER

LAYER 5 10 15 20 25 30
CLAIR 57.34 58.18 58.30 61.49 60.85 58.29

τ 0.5 1.0 1.5 2.0 2.5
CLAIR 52.03 58.56 61.49 60.24 59.50

β 0.3 0.2 0.15 0.1 0.05 0
CLAIR 60.00 60.10 61.20 61.49 60.41 60.28

α 1.05 1.075 1.1 1.125 1.15
CLAIR 58.60 60.06 61.49 60.90 57.93

Furthermore, we extended the ablation studies to additional models and datasets beyond LLaVA-1.5. Specifically, we applied
the same parameter variation framework to LLaVA-NeXT and Qwen2-VL, using the DOCCI dataset for evaluation. We
randomly sampled 500 images and generated captions for each model, and subsequently evaluating the outputs using the
CLAIR score.

Following the same protocol as in the LLaVA-1.5 ablation, we systematically varied four key parameters—token selection
layer l, token selection threshold τ , EMA smoothing factor β, and scaling parameter α—and measured their respective
impact on performance. Table 9 presents the results for LLaVA-NeXT, while Table 10 shows the results for Qwen2-VL. As
reported in Table 4, the configuration used for LLaVA-NeXT was l = 20, τ = 4, α = 1.1, β = 0.1 with a CLAIR score of
66.99, and for Qwen2-VL was l = 18, τ = 3, α = 1.1, β = 0.1 with a CLAIR score of 80.64.

Table 9. CLAIR scores according to different hyperparameters for LLaVA-NeXT.

PARAMETER

LAYER 10 15 20 25 30
CLAIR SCORE 63.97 65.25 66.99 64.61 63.58

τ 2.5 3.0 3.5 4.0
CLAIR SCORE 68.10 68.60 67.81 66.99

β 0.2 0.15 0.1 0.05 0.0
CLAIR SCORE 65.93 66.34 66.99 66.57 67.80

α 1.05 1.075 1.1 1.125
CLAIR SCORE 64.20 65.10 66.99 67.26

Across all models (LLaVA-1.5, LLaVA-NeXT, Qwen2-VL), we observe similar trends regarding the optimal range for the
layer, α, β and τ parameters—typically favoring mid-to-late transformer layers and slightly scaled values. Importantly, our
method is training-free and incurs minimal additional computational overhead, making it both practical and efficient for
lightweight hyperparameter tuning in real-world scenarios. While some degree of tuning is required to achieve optimal
performance for each model, we highlight that effective settings can be identified with relative ease due to the simplicity and
efficiency of our approach.

To further analyze the effect of α, we conducted additional ablation experiments using the CHAIR benchmark, measuring
Precision, Recall, and F1 score at the object level based on the caption content as α varied. The results are presented in
Figure 14, where we evaluated both LLaVA-1.5 and LLaVA-NeXT models. Figure 14(a) shows the results for LLaVA-1.5,
where performance improved across Precision, Recall, and F1 scores as α increased up to 1.1. At α = 1.12, Recall slightly
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Table 10. CLAIR scores according to different hyperparameters for Qwen2-VL

PARAMETER

LAYER 10 18 20 28
CLAIR SCORE 79.62 80.64 79.36 79.54

τ 2.0 2.5 3.0 3.5
CLAIR SCORE 77.99 78.98 80.64 79.77

β 0.2 0.15 0.1 0.05 0.0
CLAIR SCORE 80.36 79.52 80.64 79.76 79.61

α 1.05 1.075 1.1 1.125
CLAIR SCORE 80.31 80.14 80.64 78.85

decreased compared to the baseline, but Precision improved significantly. Interestingly, at this setting, the Precision level was
similar to that of the naive attention enhancement approach (Liu et al., 2025) in Table 2, while maintaining a higher Recall,
suggesting that our method provides a better balance in the Precision-Recall trade-off. Figure 14(b) presents the results
for LLaVA-NeXT, where Precision remained close to the baseline, while Recall increased, indicating that our approach
enhances caption quality by improving recall without sacrificing precision.

1.02 1.04 1.06 1.08 1.1 1.12
Alpha

60

65

70

75

80

85

90

Pr
ec

isi
on

 a
nd

 R
ec

al
l

Baseline Precision
Baseline Recall
Precision
Recall
F1 Score
Baseline F1 Score

82.00

82.25

82.50

82.75

83.00

83.25

83.50

83.75

F1
 S

co
re

(a)

1.02 1.04 1.06 1.08 1.1 1.12
Alpha

60

65

70

75

80

85

90

95

Pr
ec

isi
on

 a
nd

 R
ec

al
l

Baseline Precision
Baseline Recall
Precision
Recall
F1 Score
Baseline F1 Score

75.8

76.0

76.2

76.4

76.6

76.8

77.0

77.2

F1
 S

co
re

(b)

Figure 14. Object-level Precision, Recall, and F1 scores for LLaVA-1.5 (a) and LLaVA-NeXT (b) with scaling parameter α

D. Detailed Caption Similarity Analysis
In the previous sections, we observed that naively enhancing the attention on visual tokens leads to a reduction in the number
of objects mentioned in the generated captions and decreases the diversity of attention patterns across visual tokens during
the captioning process. To further investigate the relationship between the diversity of attention patterns and the variety of
objects mentioned in the generated captions, we propose a metric that quantifies the similarity between sentences within
the generated captions. Using this metric, we evaluate the caption diversity of different methods and analyze their effects.
Our experimental results demonstrate that naive attention amplification strategies increase the similarity between sentences
within captions, thereby reducing overall caption diversity. Furthermore, we show that our proposed token selection method
directly enhances the diversity of objects mentioned in captions, supporting the significance of our approach.

Caption Similarity Anlaysis To quantify this effect, we introduce the Caption Similarity Score Csim, which measures
the similarity between pairs of sentences within a generated caption. It is defined as:

Csim :
1

|P |
∑

(si,sj)∈P

Ssim(si, sj) (10)

where P denotes the set of all possible sentence pairs within a given caption. Each pair (si, sj) ∈ P consists of two
sentences si, sj , and Ssim(si, sj) represents their similarity score. Specifically, Ssim is calculated using a large language
model (LLM), which evaluates the degree of overlap in visual content described by the paired sentences. A higher Csim

score indicates greater similarity between sentences, suggesting lower diversity in the generated caption.
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For our experiments, we generated captions for images sampled from the IIW-400 dataset and computed the caption
similarity scores using LLaMA-3.2-11B-Vision (Dubey et al., 2024). The prompt used for measuring similarity is as follows:

You are trying to tell if two sentences are describing the same visual contents.
Sentence1: {sentence1} Sentence2: {sentence2} On a precise scale from 0 to 100,
how likely is it that the two sentences are describing the same visual contents?

This prompt is similar to the one used in CLAIR to compare the generated caption and the reference caption.

To validate the impact of our approach, we measured Csim for captions generated by the baseline model, the naive
attention-enhanced method, and our proposed method. As illustrated in Figure 15(a), our results indicate that naive attention
amplification strategies, while intended to enhance focus across the entire image, inadvertently lead to higher caption
similarity scores. This suggests that the generated captions tend to repeat descriptions of the same visual elements, thereby
reducing the diversity of objects and features mentioned, limiting the informativeness and variety of the captions. In contrast,
our method increases the diversity of captions by reducing Csim, demonstrating its effectiveness in improving caption
variability.
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Figure 15. (a) Comparison of caption similarity scores and number of selected tokens. (a) Caption similarity score across different methods.
(b) Number of dynamically selected tokens during caption generation. Methods that identify more tokens as important tend to yield lower
similarity scores, indicating that focusing on a broader range of tokens increases diversity in the generated descriptions.

Impact of Token Selection on Caption Similarity We further investigate whether the visual tokens selected by our
method dynamically align with the most relevant visual content for the generated text. Specifically, we examine how
frequently each image token is selected during the captioning process to assess its contextual significance. For each caption
in the dataset, visual tokens are chosen at each generation step using the Relative Activation Score ( Section 4.2). To
quantify the selection dynamics, we used a cumulative Selection Count in Equation (7), which represents the total number
of times each token has been selected throughout the caption generation process.

UWith this metric, we assess the extent of dynamic token selection by categorizing tokens according to their total selection
count throughout the caption-generation process. We classify tokens into two groups: frequently selected tokens (high
selection count) and infrequently selected tokens (low selection count). By comparing the number of tokens in the high-
selection group across different methods, we evaluate how different approaches influence the degree of dynamic visual token
activation during captioning.

We analyze the selection dynamics across 3,000 image samples from the DOCCI dataset by measuring the number of
tokens in the high-selection group during the captioning process and computing the average. The results are presented in
Figure 15(b).

Interestingly, methods that dynamically select a larger number of tokens throughout the process tend to produce captions
with lower similarity scores. This suggests that a higher degree of dynamic visual token selection contributes to greater
variability in generated captions. This aligns with the intuition that focusing on a broader range of tokens increases diversity
in the generated descriptions. The naive approach may restrict the model to a narrow set of tokens, thereby limiting caption
diversity. In contrast, our proposed selection mechanism remains flexible, emphasizing contextually important tokens
without over-constraining the attention space. This flexibility enables richer and more coherent visual grounding in the final
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captions, overcoming the limitations of earlier approaches.

In summary, our findings demonstrate that naive attention-enhancement strategies inadvertently reduce caption diversity by
increasing similarity between sentences. In contrast, our proposed token selection method enhances diversity by dynamically
selecting a broader set of visually relevant tokens. These results highlight the importance of effective token selection in
generating informative and diverse captions.

E. Evaluation on Other Hallucination Benchmark
While our primary focus is on enhancing detailed image captioning, we also performed additional experiments on the
POPE hallucination benchmark (Li et al., 2023b). Inspired by the evaluation setup proposed in (Mitra et al., 2024), where
caption-based reasoning improves MLLM performance on general multimodal tasks, we adopt a similar strategy. Specifically,
we prompted the model to first generate a caption for the image and then use it as part of the input to answer the question.

We evaluated Qwen2-VL (7B) using three approaches: the baseline model, our proposed method, and naive attention scaling
(PAI) (Liu et al., 2025). For the naive method, we identified the optimal hyperparameter (α = 0.2) before evaluation.

The table below summarizes the accuracy on the POPE benchmark, considering only those responses that adhered to the
instruction by including both a caption and an answer.

Table 11. Accuracy on the POPE hallucination benchmark.

Method Accuracy (%)

Baseline 82.01
Naive Attn. Scaling 81.45
Ours 83.13

Our method shows an improvement over the baseline, while the naive attention scaling slightly reduces accuracy. Additionally,
we evaluated the instruction-following behavior, measured as the proportion of responses in which the model correctly
generates an output that includes both a caption and an answer.

Table 12. Instruction-following behavior on the POPE benchmark.

Method Instruction Following (%)

Naive Attn. Scaling 76.84
Ours 92.72

These results indicate that naive attention scaling may reduce the model’s sensitivity to the input prompt, whereas our
method retains alignment with instruction while improving grounding accuracy.
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F. CHAIR Metric Results and Precision-Recall Analysis
To provide a more detailed analysis of hallucination and precision-recall tradeoff, we present the CHAIR metric results
along with recall, and F1 score. The CHAIR metric consists of two components:

Instance-level hallucination rate (CHAIRi)

CHAIRi =
|{hallucinated objects}|
|{all objects mentioned}|

(11)

This metric measures the proportion of hallucinated objects among all mentioned objects in generated captions. Since
precision in our primary evaluation is defined as 1−CHAIRi, a lower CHAIRi value directly translates to a higher precision,
indicating fewer hallucinated objects in the generated captions.

Caption-level hallucination rate (CHAIRs)

CHAIRs =
|{captions with hallucinated object}|

|{all sentences}|
(12)

This metric captures the proportion of captions containing at least one hallucinated object. A lower CHAIRs value suggests
that hallucinations are less frequent across generated captions at the caption level.

Table Table 13 summarizes the evaluation scores, where each value represents the average over five repeated experiments on
randomly sampled 500 instances.

Our method adopts a progressive reinforcement mechanism that enhances attention to visual tokens as the caption generation
progresses. This strategy helps mitigate hallucinations in the latter part of the caption, leading to a noticeable improvement
over baseline methods in later-token precision. However, since this approach primarily addresses hallucinations that occur
later in the caption, it is inherently less effective in handling hallucinations that appear early in the sequence. As a result,
our method may still exhibit limitations when evaluated under metrics such as CHAIRs, which assess hallucination at the
overall caption level.

Nevertheless, despite this inherent challenge, our approach demonstrates superior performance in F1 score by achieving a
better balance between reducing hallucination (increasing precision) and improving recall. These results indicate that our
method successfully enhances the model’s ability to generate captions that are both accurate and comprehensive, establishing
a new standard for high-quality captioning.

Table 13. Comparison of CHAIR metric results on the MS COCO validation dataset for existing methods and our proposed approach.
Our method achieves a higher F1 score by effectively mitigating hallucination while maintaining recall, demonstrating a better balance
compared to other approaches.

METHODS CHAIRs CHAIRi RECALL F1

BASELINE 53.96 15.30 79.46 81.99
OPERA 55.68 15.46 78.82 81.58
VCD 57.92 16.78 77.50 80.26
VOLCANO 46.16 12.46 77.82 82.39
PAI 34.92 9.36 72.44 80.52
OURS 51.52 12.28 79.98 83.67
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