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Abstract

Adversarial contrastive learning (ACL) is a technique that enhances standard
contrastive learning (SCL) by incorporating adversarial data to learn a robust repre-
sentation that can withstand adversarial attacks and common corruptions without
requiring costly annotations. To improve transferability, the existing work intro-
duced the standard invariant regularization (SIR) to impose style-independence
property to SCL, which can exempt the impact of nuisance style factors in the stan-
dard representation. However, it is unclear how the style-independence property
benefits ACL-learned robust representations. In this paper, we leverage the tech-
nique of causal reasoning to interpret the ACL and propose adversarial invariant
regularization (AIR) to enforce independence from style factors. We regulate the
ACL using both SIR and AIR to output the robust representation. Theoretically, we
show that AIR implicitly encourages the representational distance between differ-
ent views of natural data and their adversarial variants to be independent of style
factors. Empirically, our experimental results show that invariant regularization
significantly improves the performance of state-of-the-art ACL methods in terms
of both standard generalization and robustness on downstream tasks. To the best
of our knowledge, we are the first to apply causal reasoning to interpret ACL and
develop AIR for enhancing ACL-learned robust representations. Our source code
is at https://github.com/GodXuxilie/Enhancing_ACL_via_AIR.

1 Introduction

The attention towards pre-trained models that can be easily finetuned for various downstream
applications has significantly increased recently [17, 18, 19, 41]. Notably, foundation models [4] via
self-supervision on large-scale unlabeled data, such as GPT [5] and CLAP [20], can be adapted to a
wide range of downstream tasks. Due to the high cost of annotating large-scale data, unsupervised
learning techniques [21, 34, 49, 16] are commonly used to obtain generalizable representations, in
which standard contrastive learning (SCL) has been shown as the most effective way [9, 38, 10].

Adversarial contrastive learning (ACL) [30, 29], that incorporates adversarial data [37] with SCL [9],
can yield robust representations that are both generalizable and robust against adversarial attacks [23]
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Figure 1: Causal graph of data generation procedure in SCL [38] (left panel) and ACL (right panel).
s is style variable, c is content variable, x is unlabeled data, x̃ is the generated adversarial data, and θ
is the parameter of representation. The solid arrows are causal, but the dash arrows are not causal.
The proxy label yR ∈ YR is a refinement of the target labels yt ∈ Y = {yi}Ti=1 that represents an
unknown downstream task. In the causal view, each augmented view of a data point has its own
proxy label, where both SCL and ACL aim to minimize the differences between the representation
outputs of different views of the same data.

and common corruptions [26]. ACL is attracting increasing popularity since the adversarial robustness
of the pre-trained models is essential to safety-critical applications [6, 33]. Many studies have tried to
improve ACL from various perspectives including increasing contrastive views and leveraging pseudo
labels [22], leveraging hard negative sampling [42, 50], and dynamically scheduling the strength of
data augmentations [36].

The style-independence property of learned representations, which eliminates the effects of nuisance
style factors in SCL, has been shown to improve the transferability of representations [38]. To achieve
style-independence property in learned representations, Mitrovic et al. [38] proposed a standard
invariant regularization (SIR) that uses causal reasoning [39, 40] to enforce the representations of
natural data to be invariant to style factors. SIR has been shown effective in enhancing representation’
transferability. However, it remains unclear in the literature how to achieve style independence in
robust representations learned via ACL, especially when adversarial data is used during pre-training.

Therefore, we leverage the technique of causal reasoning to enforce robust representations learned
via ACL to be style-independent. As shown in the right panel of Figure 1, we construct the causal
graph of ACL (details refer to Section 3.1). Different from the causal graph of SCL [38], ACL has
an extra path x→ x̃ since ACL will generate the adversarial data x̃ given the unlabeled data x (i.e.,
x → x̃). Then, ACL learns representations by maximizing both the probability of the proxy label
yR given the natural data and that given the adversarial data (i.e., x→ yR and x̃→ yR). Theorem 1
shows that maximizing the aforementioned probability in the causal view is equivalent to the learning
objective of ACL [29], which justifies the rationality of our constructed causal graph of ACL.

To enforce robust representations to be style-independent, we propose an adversarial invariant regu-
larization (AIR). Specifically, AIR (see Eq. (7)) aims to penalize the Kullback–Leibler divergence
between the robust representations of the unlabeled data augmented via two different data augmenta-
tion functions during the learning procedure of x→ x̃→ yR. Note that SIR [38] is a special case
of AIR in the standard context where x = x̃. Then, we propose to learn robust representations by
minimizing the adversarial contrastive loss [29, 22, 50, 36] together with a weighted sum of SIR and
AIR and show the learning algorithm in Algorithm 1.

Furthermore, we give a theoretical understanding of the proposed AIR and show that AIR is beneficial
to the robustness against corruptions on downstream tasks. Based on the decomposition of AIR
shown in Lemma 2, we propose Proposition 3 which explains that AIR implicitly enforces the
representational distance between original as well as augmented views of natural data and their
adversarial variants to be independent of the style factors. In addition, we theoretically show that
the style-independence property of robust representations learned via ACL will still hold on the
downstream classification tasks in Proposition 4, which could be helpful to improve robustness
against input perturbations on downstream tasks [3, 45, 28, 38].
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Empirically, we conducted comprehensive experiments on various datasets including CIFAR-10 [31],
CIFAR-100 [31], STL-10 [12], CIFAR-10-C [26], and CIFAR-100-C [26] to show the effectiveness of
our proposed method in improving ACL methods [29, 22, 50, 36]. We demonstrate that our proposed
method can achieve the new state-of-the-art (SOTA) performance on various downstream tasks by
significantly enhancing standard generalization and robustness against adversarial attacks [13, 14, 2]
and common corruptions [26]. Notably, compared with the prior SOTA method DynACL [36], AIR
improves the standard and robust test accuracy by 2.71% (from 69.59±0.08% to 72.30±0.10%) and
1.17% (from 46.49±0.05% to 47.66±0.06%) on the STL-10 task and increases the test accuracy
under common corruptions by 1.15% (from 65.60±0.18% to 66.75±0.10%) on CIFAR-10-C.

2 Related Works and Preliminaries
Here, we introduce the related works in ACL and causal reasoning and provide the preliminaries.

2.1 Related Works
Adversarial contrastive learning (ACL). Contrastive learning (CL) is frequently used to leverage
large unlabeled datasets for learning useful representations. Chen et al. [9] presented SimCLR that
leverages contrastive loss for learning useful representations and achieved significantly improved
standard test accuracy on downstream tasks. Recently, adversarial contrastive learning (ACL) [30,
29, 27, 22, 50, 52, 36] has become the most effective unsupervised approaches to learn robust
representations. Jiang et al. [29], which is the seminal work of ACL that incorporates adversarial
data [37] with contrastive loss [9], showed that ACL can exhibit better robustness against adversarial
attacks [23, 13] and common corruptions [26] on downstream tasks compared with SCL [9].

One research line focuses on improving the performance of ACL. AdvCL [22] leverages a third
contrastive view for high-frequency components and pseudo labels generated by clustering to improve
ACL. Yu et al. [50] proposed the asymmetric InfoNCE objective (A-InfoNCE) that utilizes the hard
negative sampling method [42] to further enhance AdvCL [22]. Recently, DynACL [36] dynamically
schedules the strength of data augmentations and correspondingly schedules the weight for standard
and adversarial contrastive losses, achieving the SOTA performance among existing ACL methods.
Another research line focuses on improving the efficiency of ACL since ACL requires tremendous
running time to generate the adversarial training data during pre-training. Xu et al. [48] proposed
a robustness-aware coreset selection (RCS) method to speed up ACL by decreasing the number of
training data. Our paper, belonging to the former research line, leveraged the technique of causal
reasoning to further enhance ACL and achieved new SOTA results. We treat the incorporation of our
proposed method with RCS [48] as future work.

Causal reasoning. Causal reasoning [39, 53, 40, 8, 56, 38, 7, 44, 43] has been widely applied to
machine learning to identify causal relations and ignore nuisance factors by intervention. In particular,
Zhang et al. [53, 56] investigated the causality in supervised adversarial training [37, 55] where label
information is required and proposed the regularizer to eliminate the difference between the natural
and adversarial distributions. Mitrovic et al. [38] built the causal graph of SCL in the standard context
and introduced the standard invariant regularization (SIR) which aims to enforce the representation
of unlabeled natural data to be invariant of the data augmentations. SIR can significantly improve
robustness transferability to downstream tasks in terms of common corruptions [26], which is
empirically validated by Mitrovic et al. [38].

2.2 Preliminaries

Standard contrastive learning (SCL) [9]. Let hθ : X → Z be a representation extractor param-
eterized by θ, g : Z → V be a projection head that maps representations to the space where the
contrastive loss is applied, and τi, τj : X → X be two transformation operations randomly sampled
from a pre-defined transformation set T . Given a minibatch B ∼ X β consisting of β original samples,
we denote the augmented minibatch Bu = {τu(xk) | ∀xk ∈ B} via augmentation function τu(·).
We take fθ(·) = g ◦ hθ(·) and xu

k = τu(xk) for any xk ∼ X and u ∈ {i, j}. Given a positive pair
(xi

k, x
j
k), the standard contrastive loss proposed by SimCLR [9] is formulated as follows:

ℓCL(x
i
k, x

j
k; θ) = −

∑
u∈{i,j}

log
esim(fθ(x

i
k),fθ(x

j
k))/t∑

x∈Bi∪Bj\{xu
k}

esim(fθ(x
u
k ),fθ(x))/t

, (1)
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where sim(p, q) = p⊤q/∥p∥∥q∥ is the cosine similarity function and t > 0 is a temperature parameter.

ACL [29] and DynACL [36]. Let (X , d∞) be the input space X with the infinity distance metric
d∞(x, x′) = ∥x− x′∥∞, and Bϵ[x] = {x′ ∈ X | d∞(x, x′) ≤ ϵ} be the closed ball of radius ϵ > 0
centered at x ∈ X . Given a data point xk ∈ X , the adversarial contrastive loss is as follows:

ℓACL(xk; θ) = (1 + ω) · ℓCL(x̃
i
k, x̃

j
k; θ) + (1− ω) · ℓCL(x

i
k, x

j
k; θ), (2)

where x̃i
k, x̃

j
k = argmax

x̃i
k
∈Bϵ[x

i
k
]

x̃
j
k
∈Bϵ[x

j
k
]

ℓCL(x̃
i
k, x̃

j
k; θ), (3)

in which ω ∈ [0, 1] is a hyperparameter and x̃i
k and x̃j

k are adversarial data generated via projected
gradient descent (PGD) [37, 54, 55] within the ϵ-balls centered at xi

k and xj
k. Note that ACL [29]

fixes ω = 0 while DynACL [36] dynamically schedules ω according to its dynamic augmentation
scheduler that gradually anneals from a strong augmentation to a weak one. We leave the details of
the data augmentation scheduler [36] in Appendix C due to the page limitation.

3 Methodology

In this section, we first create the causal graph for ACL which is the fundamental premise for causal
reasoning. Then, we introduce adversarial invariant regularization (AIR) according to the causal
understanding in the context of ACL and the learning algorithm of our proposed method. Lastly, we
demonstrate the theoretical understanding of AIR and theoretically show that the style-independence
property is generalizable to downstream tasks.

3.1 Adversarial Contrastive Learning (ACL) in the View of Causality

A causal graph is arguably the fundamental premise for causal reasoning [39, 40]. Previously,
Mitrovic et al. [38] constructed the causal graph of SCL as shown in the left panel of Figure 1.
However, how to build causal graphs of ACL is still unclear in the literature. Therefore, we take the
primitive step to construct the causal graph of ACL.

To begin with, we formalize the data generation procedure in the causal graph. Let x ∈ X denote an
unlabeled data point and Y = {yt}Tt=1 denote a set of labels in an unknown downstream task. Then,
similar to Mitrovic et al. [38] and Zhang et al. [56] we make the following assumptions: 1) the data
point x is generated from the content factor c and the style factor s, i.e., c→ x← s, 2) the content
is independent of the style, i.e., c ⊥⊥ s, and 3) only the content, which is the original image data, is
related to the downstream task, i.e., c→ yt.

Then, we build the learning procedure of CL. According to the above assumptions, the content serves
an essential role in downstream classification tasks. Therefore, CL can be regarded as estimating the
probability of the label given the content, i.e., p(yt|c). To learn the representations from the unlabeled
data x, CL needs to maximize the conditional probability p(yt|x).
However, in practice, the label yt is unknown. Thanks to the causal concept of refinement [8, 38],
we can construct a proxy label yR ∈ YR which is a refinement of Y . This proxy label yR should be
consistent across different views of the unlabeled data x, which enables learning the representations.
Intuitively, the proxy label yR can be viewed as a more fine-grained variant of the original label yt.
For example, a refinement for recognizing cars would be the task of classifying various types of cars.
Therefore, SCL targets maximizing the probability of the proxy label given the unlabeled natural
data, i.e., p(yR|x) [38].

Besides x → yR, ACL has an extra path x → x̃ → yR since ACL needs to first generate the
adversarial data (Eq. (3)) and then learns representations from the unlabeled natural and adversarial
data (Eq. (2)). According to Eq. (3), we observe that ACL only uses the observed unlabeled data x
for generating adversarial data, i.e., x→ x̃← θ. Then, according to the paths x→ yR and x̃→ yR,
from the causal view, ACL learns representations by maximizing both the probability of the proxy
label yR given the natural data (i.e., p(yR|x)) and that given adversarial data (i.e., p(yR|x̃)).
Lastly, we provide Theorem 1 to justify the rationality of our constructed causal graph of ACL.
Theorem 1. From the causal view, in ACL, maximizing the conditional probability both p(yR|x) and
p(yR|x̃) is equivalent to minimizing the learning objective of ACL [29] that is the sum of standard
and adversarial contrastive losses.
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The proof of Theorem 1 is in Appendix B.1.

3.2 Adversarial Invariant Regularization

According to the independence of causal mechanisms [40], performing interventions on the style
variable s should not change the probability of the proxy label given the unlabeled data, i.e., p(yR|x).
According to the path x→ x̃→ yR shown in the causal graph of ACL, we can obtain that

p(yR|x) = p(yR|x̃)p(x̃|x), (4)

under the assumption that the process of x → x̃ → yR satisfies the Markov condition. Therefore,
we should make the conditional probability p(yR|x̃)p(x̃|x) that is learned via ACL become style-
independent. It guides us to propose the following criterion that should be satisfied by ACL:

pdo(τi)(yR|x̃)pdo(τi)(x̃|x) = pdo(τj)(yR|x̃)pdo(τj)(x̃|x) ∀τi, τj ∈ T , (5)

where do(τ) as the short form of do(s = τ) denotes that we perform the intervention on s via
data augmentation function τ(·). We leverage the representational distance between various views
of natural data and their adversarial variants normalized by the softmax function to calculate the
conditional probability pdo(τu)(yR|x̃) and pdo(τu)(x̃|x) where u ∈ {i, j} as follows:

pdo(τu)(yR|x̃) = esim(fθ(x),fθ(x̃
u))/t∑

xk∈B

esim(fθ(xk),fθ(x̃u
k ))/t

, pdo(τu)(x̃|x) = esim(fθ(x̃
u),fθ(x

u))/t∑
xk∈B

esim(fθ(x̃
u
k ),fθ(x

u
k ))/t

, (6)

in which x ∈ B ∼ X β is the original view of natural data, xu is the augmented view of natural data
via augmentation τu(·), x̃u is the adversarial variant generated via Eq. (3), and t is the temperature
parameter. Note that we use x as the approximated surrogate of its true content c that incurs yR (i.e.,
c→ yR).

To achieve the above criterion in Eq. (5), we propose an adversarial invariant regularization (AIR) to
regulate robust representations as follows:

LAIR(B; θ, ϵ) = KL
(
pdo(τi)(yR|x̃)pdo(τi)(x̃|x)∥pdo(τj)(yR|x̃)pdo(τj)(x̃|x);B

)
, (7)

in which ϵ ≥ 0 is the adversarial budget and KL(p(x)∥q(x);B) =
∑

x∈B p(x) log p(x)
q(x) denotes the

Kullback–Leibler (KL) divergence. AIR can enforce the representation to satisfy the criterion in
Eq. (5), thus eliminating the effect of the style factors on the representation. Therefore, when setting
ϵ as a positive constant, LAIR(B; θ, ϵ) can effectively regulate robust representations of adversarial
data to be style-independent.

Besides, to explicitly regulate standard representations of natural data to be independent of style
factors, we can simply set ϵ = 0 of AIR. We formulate AIR with ϵ = 0 as follows:

LAIR(B; θ, 0) = KL
(
pdo(τi)(yR|x)∥pdo(τj)(yR|x);B

)
, (8)

where pdo(τu)(yR|x) = esim(fθ(x),fθ(x
u))/t∑

xk∈B

esim(fθ(xk),fθ(xu
k ))/t

∀u ∈ {i, j}.

Note that LAIR(B; θ, 0) is the same formulation as the standard invariant regularization (SIR) [38],
which can make the standard representation style-independent.

By incorporating adversarial contrastive loss with AIR, the learning objective function of our proposed
method is shown as follows:

argmin
θ

∑
x∈U

ℓACL(x; θ) + λ1 · LAIR(U ; θ, 0) + λ2 · LAIR(U ; θ, ϵ) (9)

where U ∼ XN refers to an unlabeled dataset consisting of N samples, ϵ > 0 is the adversarial
budget, and λ1 ≥ 0 and λ2 ≥ 0 are two hyperparameters. The learning algorithm of ACL with AIR
is demonstrated in Algorithm 1. Note that our proposed AIR is compatible with various learning
objectives such as ACL [29], AdvCL [22], A-InfoNCE [50], and DynACL [36].
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Algorithm 1 ACL with Adversarial Invariant Regularization (AIR)
1: Input: Unlabeled training set U , total training epochs E, learning rate η, batch size β, adversarial

budget ϵ > 0, hyperparameters λ1 and λ2

2: Output: Pre-trained representation extractor hθ

3: Initialize parameters of model fθ = g ◦ hθ

4: for e = 0 to E − 1 do
5: for batch m = 1, . . . , ⌈|U |/β⌉ do
6: Sample a minibatch Bm from U
7: Update θ ← θ− η ·∇θ

∑
xk∈Bm

ℓACL(xk; θ)+λ1 · LAIR(Bm; θ, 0)+λ2 · LAIR(Bm; θ, ϵ)
8: end for
9: end for

3.3 Theoretical Analysis

We provide a theoretical understanding of AIR in Proposition 3 based on the decomposition of AIR
shown in Lemma 2. We set ϵ > 0 of AIR by default in this section.
Lemma 2 (Decomposition of AIR). AIR in Eq. (7) can be decomposed into two terms as follows:

LAIR(B; θ, ϵ) =Ex∼pdo(τi)(x̃|x)[KL(pdo(τi)(yR|x̃)∥pdo(τj)(yR|x̃))]

+ Ex∼pdo(τi)(yR|x̃)[KL(pdo(τi)(x̃|x)∥pdo(τj)(x̃|x))],
where Ex∼Q3(x)[KL(Q1(x)∥Q2(x))] is the expectation of KL divergence over Q3 and Q1, Q2, Q3

are probability distributions.

The proof of Lemma 2 is in Appendix B.2. Based on Lemma 2, we propose Proposition 3 that
provides the theoretical understanding of AIR.

Proposition 3. AIR implicitly enforces the robust representation to satisfy the following two proxy
criteria:

(1) pdo(τi)(yR|x̃) = pdo(τj)(yR|x̃), (2) pdo(τi)(x̃|x) = pdo(τj)(x̃|x).

The proof of Proposition 3 is in Appendix B.3.

Remarks. Proposition 3 explains that AIR implicitly enforces the representational distance to
be style-independent between the original view of natural data and their adversarial variants (i.e.,
pdo(τi)(yR|x̃) = pdo(τj)(yR|x̃)), as well as between the augmented view of natural data and their
adversarial counterparts (i.e., pdo(τi)(x̃|x) = pdo(τj)(x̃|x)). Therefore, Proposition 3 explicitly
presents that AIR is different from SIR [38], where SIR only enforces the augmented views of natural
data to be style-independent.

Next, we theoretically show that on the assumption that YR is a refinement of Y , the style-
independence property of robust representations will hold on downstream classification tasks in
Proposition 4.
Proposition 4. Let Y = {yt}Tt=1 be a label set of a downstream classification task, YR be a
refinement of Y , and x̃t be the adversarial data generated on the downstream task. Assuming that
x̃ ∈ Bϵ[x] and x̃t ∈ Bϵ[x], we have the following results:

pdo(τi)(yR|x̃) = pdo(τj)(yR|x̃) =⇒ pdo(τi)(yt|x̃t) = pdo(τj)(yt|x̃t) ∀τi, τj ∈ T ,
pdo(τi)(x̃|x) = pdo(τj)(x̃|x) =⇒ pdo(τi)(x̃t|x) = pdo(τj)(x̃t|x) ∀τi, τj ∈ T .

The proof of Proposition 4 is shown in Appendix B.4.

Remarks. Proposition 4 indicates that the robust representation of data on downstream tasks is still
style-independent. Mitrovic et al. [38] empirically showed that the style-independence property of
standard representations can significantly improve the robustness against common corruptions [26] on
downstream tasks. In addition, Proposition 4 indicates that AIR helps to find the invariant correlations
that are independent of the style factors among different training distributions. It is similar to the
objective of invariant risk minimization [3] that can yield substantial improvement in the robustness
against various corruptions incurred by distribution shifts. Therefore, the style-independence property
of robust representations learned via ACL perhaps helps to enhance the robustness against input
perturbations on downstream tasks.
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Table 1: Self-task adversarial robustness transferability.

Dataset Pre-training SLF ALF AFF
AA (%) SA (%) AA (%) SA (%) AA (%) SA (%)

CIFAR-10

ACL [29] 37.39±0.06 78.27±0.09 40.61±0.07 75.56±0.09 49.42±0.07 82.14±0.18

ACL-AIR 38.89±0.06 80.03±0.07 41.39±0.08 78.29±0.10 49.84±0.04 82.42±0.06

DynACL [36] 45.05±0.04 75.39±0.05 45.65±0.05 72.90±0.08 50.52±0.05 81.86±0.11

DynACL-AIR 45.17±0.04 78.08±0.06 46.01±0.07 77.42±0.10 50.60±0.08 82.14±0.11

CIFAR-100

ACL [29] 15.78±0.05 45.70±0.10 17.36±0.16 42.69±0.13 24.16±0.29 56.68±0.14

ACL-AIR 16.14±0.07 49.75±0.10 18.68±0.11 47.07±0.15 25.27±0.10 57.79±0.18

DynACL [36] 19.31±0.06 45.67±0.09 20.30±0.08 43.58±0.12 24.70±0.23 57.22±0.28

DynACL-AIR 20.45±0.07 46.84±0.12 21.23±0.09 45.63±0.10 25.34±0.12 57.44±0.14

STL-10

ACL [29] 35.80±0.06 67.90±0.09 38.10±0.11 69.96±0.14 43.21±0.16 72.55±0.18

ACL-AIR 36.94±0.06 68.91±0.07 39.05±0.10 71.30±0.12 43.75±0.13 72.84±0.14

DynACL [36] 46.49±0.05 69.59±0.08 47.69±0.10 67.65±0.12 45.64±0.13 72.14±0.15

DynACL-AIR 47.66±0.06 72.30±0.10 48.89±0.08 71.60±0.09 48.10±0.11 73.10±0.17

Table 2: Self-task common-corruption robustness transferability. The corruption severity (CS) ranging
from {1, 3, 5} (denoted as “CS-{1,3,5}”). The standard deviation is in Table 15.

Dataset Pre-training SLF ALF AFF
CS-1 CS-3 CS-5 CS-1 CS-3 CS-5 CS-1 CS-3 CS-5

CIFAR-10

ACL [29] 76.57 71.78 62.78 74.04 69.49 61.38 79.15 72.54 65.27
ACL-AIR 78.55 73.33 64.28 76.65 71.38 63.17 79.49 72.95 65.37

DynACL [36] 73.92 69.01 62.51 71.74 66.95 60.87 79.77 72.95 65.60
DynACL-AIR 76.62 70.16 63.29 75.70 69.55 62.67 80.98 74.31 66.75

CIFAR-100

ACL [29] 43.14 38.90 32.27 39.52 35.13 29.30 53.80 45.93 37.61
ACL-AIR 47.85 41.54 34.12 44.80 40.70 35.46 55.12 47.25 39.02

DynACL [36] 44.19 38.08 31.05 39.83 35.61 30.51 54.34 46.71 38.62
DynACL-AIR 45.36 39.21 32.44 42.03 36.48 30.49 55.31 47.33 39.13

4 Experiments

In this section, we demonstrate the effectiveness of our proposed AIR in improving ACL [29] and its
variants [36, 22, 50] on various datasets including CIFAR-10 [31], CIFAR-100 [31], STL-10 [12],
CIFAR-10-C [26], and CIFAR-100-C [26]. Extensive experimental details are shown in Appendix C.

Pre-training. In the main paper, we demonstrate the results of applying our proposed AIR with
λ1 = 0.5 and λ2 = 0.5 to ACL [29] and DynACL [36] (denoted as “ACL-AIR” and “DynACL-AIR”,
respectively). We utilized ResNet-18 [25] as the representation extractor following previous self-
supervised adversarial training methods [29, 22, 36, 50]. We adopted the same training configuration
of ACL [29] using SGD for 1000 epochs with an initial learning rate of 5.0 and a cosine annealing
schedule [35]. The batch size β is fixed as 512. The adversarial budget ϵ is set as 8/255. In the
context of DynACL, we took the same data augmentation scheduler and the same scheduler of the hy-
perparameter ω as the setting in the original paper of DynACL [36]. Note that, to reproduce the results
of baseline methods, we downloaded the pre-trained weights of ACL [29] on CIFAR-10/CIFAR-100
and DynACL [36] on CIFAR-10/CIFAR-100/STL-10 from their official GitHub as the pre-trained
representation extractor. We provide the extensive ablation studies on the hyper-parameters (λ1 and
λ2) in Appendix C.2, the ACL variants (including AdvCL [22] and A-InfoNCE [50]) in Appendix C.3,
and the backbone models (including ResNet-50 and Wide ResNet [51]) in Appendix C.4.

Finetuning procedures. We adopted the following three types of finetuning procedures: standard
linear finetuning (SLF), adversarial linear finetuning (ALF), and adversarial full finetuning (AFF),
to evaluate the learned representations. The former two finetuning procedures freeze the learned
representation extractor and only train the linear classifier using natural or adversarial samples,
respectively. We took the pre-trained representation extractor as weight initialization and trained the
whole model using the adversarial data during AFF. The training configuration of finetuning (e.g.,
the finetuning epoch and optimizer) exactly follows DynACL [36]. Specifically, we used the official
code provided in DynACL [36]’s GitHub for finetuning and illustrate the experimental settings of
finetuning in Appendix C as well. For each pre-trained representation extractor, we repeated the
finetuning experiments 3 times and report the median results and the standard deviation.

Evaluation protocols. We let “AA” denote the robust test accuracy under AutoAttack (AA) [13]
and “SA” stand for the standard test accuracy. To evaluate the robustness against common corruption,
we report the mean test accuracy under 15 types of common corruptions [26] with the corruption
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Table 3: Cross-task adversarial robustness transferability. D1 → D2 denotes pre-training and
finetuning are conducted on the dataset D1 and D2( ̸= D1), respectively.

D1 → D2 Pre-training SLF ALF AFF
AA (%) SA (%) AA (%) SA (%) AA (%) SA (%)

CIFAR-10
→ CIFAR-100

ACL [29] 9.98±0.02 32.61±0.04 11.09±0.06 28.58±0.06 22.67±0.16 56.05±0.19

ACL-AIR 11.04±0.06 39.45±0.07 13.30±0.02 36.10±0.05 23.45±0.04 56.31±0.06

DynACL [36] 11.01±0.02 27.66±0.03 11.92±0.05 24.14±0.09 24.17±0.10 55.61±0.17

DynACL-AIR 12.20±0.04 31.33±0.03 12.70±0.03 28.70±0.05 24.82±0.07 57.00±0.13

CIFAR-10
→ STL-10

ACL [29] 25.41±0.08 56.53±0.10 27.17±0.09 51.71±0.17 32.66±0.07 61.41±0.13

ACL-AIR 28.00±0.12 61.91±0.13 30.06±0.10 62.03±0.11 34.26±0.09 62.58±0.10

DynACL [36] 28.52±0.09 52.45±0.10 29.13±0.13 49.53±0.17 35.25±0.15 63.29±0.18

DynACL-AIR 29.88±0.04 54.59±0.12 31.24±0.06 57.14±0.09 35.66±0.05 63.74±0.12

CIFAR-100
→ CIFAR-10

ACL [29] 18.72±0.07 60.90±0.02 26.92±0.11 57.35±0.07 44.07±0.11 75.19±0.10

ACL-AIR 19.90±0.04 64.89±0.09 27.65±0.06 60.79±0.04 44.84±0.14 75.67±0.13

DynACL [36] 25.23±0.12 59.12±0.10 28.92±0.10 56.09±0.14 47.40±0.23 77.92±0.18

DynACL-AIR 25.63±0.07 59.83±0.08 29.32±0.06 56.65±0.06 47.92±0.12 78.44±0.10

CIFAR-100
→ STL-10

ACL [29] 21.77±0.07 46.19±0.05 24.46±0.09 45.40±0.12 28.76±0.07 56.16±0.13

ACL-AIR 22.44±0.04 51.52±0.02 26.55±0.06 53.24±0.09 30.40±0.08 58.45±0.11

DynACL [36] 23.17±0.09 47.54±0.14 26.24±0.13 45.70±0.14 31.17±0.14 58.35±0.18

DynACL-AIR 23.24±0.07 48.20±0.08 26.60±0.05 48.55±0.12 31.42±0.07 58.59±0.10

Table 4: Cross-task common-corruption robustness transferability. The corruption severity (CS)
ranging from {1, 3, 5} (denoted as “CS-{1,3,5}”). The standard deviation is in Table 16.

D1 → D2 Pre-training SLF ALF AFF
CS-1 CS-3 CS-5 CS-1 CS-3 CS-5 CS-1 CS-3 CS-5

CIFAR-10
→ CIFAR-100

ACL [29] 31.39 27.76 23.27 27.80 25.09 21.09 52.07 44.22 36.31
ACL-AIR 37.82 32.83 27.06 34.67 30.09 25.07 52.81 44.95 37.01

DynACL [36] 26.74 23.97 20.87 23.70 21.43 18.84 52.87 44.87 36.76
DynACL-AIR 30.35 26.53 22.76 27.67 24.35 20.96 54.00 46.01 37.75

CIFAR-100
→ CIFAR-10

ACL [29] 59.65 55.14 49.09 56.15 51.96 47.04 72.94 66.05 59.17
ACL-AIR 63.34 58.14 51.03 59.14 54.23 48.97 73.48 66.83 60.21

DynACL [36] 57.14 52.07 47.03 56.31 52.03 47.40 75.89 69.08 62.02
DynACL-AIR 58.41 53.09 47.94 54.89 49.84 45.08 76.35 69.49 62.44

severity (CS) ranging from {1, 3, 5} (denoted as “CS-{1, 3, 5}”). Specifically, we used the official
code of AutoAttack [13] and RobustBench [15] for implementing evaluations. In Appendix C.5, we
provide robustness evaluation under more diverse attacks [13, 14, 2]. In Appendix C.6, we provide
the test accuracy under each type of common corruption [26].

4.1 Evaluation of Self-Task Robustness Transferability

Self-task adversarial robustness transferability. Table 1 reports the self-task adversarial robust-
ness transferability evaluated on three datasets where pre-training and finetuning are conducted on
the same datasets including CIFAR-10, CIFAR-100, and STL-10. In Appendix C.1, we report the
self-task robustness transferability evaluated in the semi-supervised settings. Table 1 demonstrates
that our proposed AIR can obtain new state-of-the-art (SOTA) both standard and robust test accuracy
compared with existing ACL methods [29, 36]. Therefore, It validates the effectiveness of our
proposed AIR in consistently improving the self-task adversarial robustness transferability against
adversarial attacks as well as standard generalization in downstream datasets via various finetuning
procedures. Notably, compared with the previous SOTA method DynACL [36], DynACL-AIR
increases standard test accuracy by 4.52% (from 72.90% to 77.42%) on the CIFAR-10 dataset via
ALF, 2.05% (from 43.58% to 45.63%) on the CIFAR-100 dataset via ALF, and 1.17% (from 46.49%
to 47.66%) on the STL-10 dataset via SLF.

Self-task common-corruption robustness transferability. Table 2 reports the self-task common-
corruption [26] robustness transferability. Specifically, we conducted pre-training on CIFAR-
10/CIFAR-100 and then evaluated the test accuracy on CIFAR-10-C/CIFAR-100-C with various
corruption severities after various finetuning procedures. Note that the test accuracy under each type
of common corruption is reported in Appendix C.6. Table 2 demonstrates that AIR leads to consistent
and significant improvement in the robustness against common corruption. In addition, we observe
that ACL always achieves much higher test accuracy under common corruptions than DynACL after
SLF. We conjecture the reason is that DynACL uses weak data augmentations at the later phase of
training, which makes DynACL more likely to overfit the training distribution of CIFAR-10 and thus
leads to worse performance under common corruptions via SLF.
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Table 5: Self-task adversarial robustness transferability with post-processing. “++” denotes that the
pre-trained models are post-processed via LP-AFF [32, 36]. LP-AFF [32] first generates pseudo
labels via clustering and then adversarially pre-trains the model using the pseudo labels.

Dataset Pre-training SLF ALF AFF
AA (%) SA (%) AA (%) SA (%) AA (%) SA (%)

CIFAR-10 DynACL++ [36] 46.46† 79.81† 47.95† 78.84† 50.31† 81.94†

DynACL-AIR++ 46.99 81.80 48.23 79.56 50.65 82.36

CIFAR-100 DynACL++ [36] 20.07† 52.26† 22.24 49.92 25.21 57.30
DynACL-AIR++ 20.61 53.93 22.96 52.09 25.48 57.57

STL-10 DynACL++ [36] 47.21† 70.93† 48.06 69.51 41.84 72.36
DynACL-AIR++ 47.90 71.44 48.59 71.45 44.09 72.42

Table 6: Self-task adversarial robustness transferability evaluated on the Imagenette dataset.

Pre-training ResNet-18 ResNet-50
AA (%) SA (%) AA (%) SA (%)

DynACL [36] 57.15 79.41 58.98 80.74
DynACL-AIR 58.34 80.61 60.10 81.66

4.2 Evaluation of Cross-Task Robustness Transferability

Cross-task adversarial robustness transferability. Table 3 shows the cross-task adversarial
robustness transferability where pre-training and finetuning are conducted on the different datasets.
We can observe that AIR substantially improves both ACL’s and DynACL’s robustness against
adversarial attacks [13] and standard generalization to other downstream datasets. Particularly, AIR
improves the standard and robust test accuracy of ACL via ALF by 7.52% (from 28.58% to 36.10%)
and 2.21% (from 11.09% to 13.30%), respectively.

Cross-task common-corruption robustness transferability. Table 4 reports the cross-task
common-corruption [26] robustness transferability where pre-training is conducted on CIFAR-
10/CIFAR-100 and finetuning is conducted on CIFAR-100-C/CIFAR-10-C [26]. The empirical
results show that our proposed AIR can consistently improve the accuracy under common corrup-
tions with various severity, which validates the effectiveness of AIR in enhancing the robustness
transferability against common corruptions.

4.3 Evaluation of Pre-Trained Models after Post-Processing

Here, we report the self-task adversarial robustness transferability of pre-trained models after post-
processing in Table 5. The post-processing method is linear probing and then adversarial full
finetuning (LP-AFF) [32] which first generates pseudo labels via clustering and then further adversar-
ially trains the pre-trained model using the pseudo labels. “++” denotes that the pre-trained model is
post-processed via LP-AFF. We provide the comparison between DynACL++ and DynACL-AIR++
in Table 5. Note that the superscript † denotes that the results of DynACL++ are copied from Luo et al.
[36]. The results validate that AIR is compatible with the trick of post-processing via LP-AFF [32],
which can yield improved performance on various downstream datasets.

4.4 Evaluation on High-Resolution Imagenette Dataset

To the best of our knowledge, there exists no reported result of ACL and DynACL on high-resolution
datasets in the existing papers. Therefore, we pre-trained ResNet-18 and ResNet-50 on Imagenette3

of resolution 256 × 256 which is a subset of ImageNet-1K using DynACL and DynACL-AIR,
respectively. We compare and report the performance evaluated on Imagenette via SLF in Table 6.
Our results validate that our proposed AIR is effective in enhancing the performance on high-
resolution datasets. Note that, due to the limitation of our GPU memory, we set the batch size to 256
and 128 for pre-training ResNet-18 and ResNet-50 on Imagenette, respectively. We believe using a
larger batch size during pre-training can even further improve the performance [9].

4.5 Evaluation via Automated Robust Fine-Tuning

While evaluating the transferability of a pre-trained model, we observed that the performance on
the downstream dataset is sensitive to the hyper-parameters (e.g., the learning rate) of the finetuning

3We downloaded the Imagenette dataset from https://github.com/fastai/imagenette.
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Table 7: Cross-task adversarial robustness transferability evaluated via AutoLoRa [47]. D1 → D2

denotes pre-training and finetuning are conducted on the dataset D1 and D2(̸= D1), respectively.
“Diff” refers to the gap between the performance achieved by AutoLoRa and that achieved by vanilla
finetuning (reported in Table 3).

D1 → D2
Finetuning

mode Pre-training AutoLoRa [47] Diff
AA (%) SA (%) AA (%) SA (%)

CIFAR-10
→ STL-10

SLF DynACL [36] 29.68 58.24 +0.51 +5.83
DynACL-AIR 29.75 60.53 +0.11 +4.69

ALF DynACL [36] 31.34 57.74 +1.75 +8.19
DynACL-AIR 31.65 59.44 +0.41 +2.30

AFF DynACL [36] 35.55 64.16 +0.30 +0.63
DynACL-AIR 35.81 64.28 +0.15 +0.54

CIFAR-100
→ STL-10

SLF DynACL [36] 23.31 50.93 +0.14 +3.39
DynACL-AIR 23.49 51.28 +0.25 +3.08

ALF DynACL [36] 26.53 51.74 +0.29 +6.04
DynACL-AIR 26.89 49.02 +0.29 +0.47

AFF DynACL [36] 31.25 58.44 +0.08 +0.09
DynACL-AIR 31.57 58.65 +0.15 +0.21

procedure. It would require extensive computational resources to search for appropriate hyper-
parameters to achieve a satisfactory performance. To mitigate this issue, we leverage an automated
robust finetuning framework called AutoLoRa [47], which can automatically schedule the learning
rate and set appropriate hyper-parameters during finetuning. We report the performance achieved by
AutoLoRa to further justify the SOTA performance by our proposed AIR in Table 7.

Table 7 shows that AutoLoRa can further enhance the performance of a pre-trained model on the
downstream tasks without searching for appropriate hyper-parameters since the value of “Diff” is
consistently larger than 0.0. Besides, Table 7 justifies that our proposed AIR is effective in enhancing
robustness transferability via various finetuning methods.

5 Conclusions

This paper leveraged the technique of causal reasoning to interpret ACL and proposed adversarial
invariant regularization (AIR) to enhance ACL. AIR can enforce the learned robust representations
to be invariant of the style factors. We improved ACL by incorporating the adversarial contrastive
loss with a weighted sum of AIR and SIR that is an extension of AIR in the standard context.
Theoretically, we showed that AIR implicitly encourages the representational distance between
different views of natural data and their adversarial variants to be independent of style factors.
Empirically, comprehensive results validate that our proposed method can achieve new state-of-the-
art performance in terms of standard generalization and robustness against adversarial attacks and
common corruptions on downstream tasks.
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A Mathematical Notations

Table 8: Notation Table
Notation Description
X input space

x ∈ X data point
T transformations set

τ ∈ T data augmentation fraction
xu augmented data point via the data augmentation fraction τu(·)
x̃ adversarial data

B ∼ X β a minibatch of β original image samples
Bu a minibatch of β augmented image samples via the data augmentation fraction τu(·)
B̃u a minibatch of adversarial counterparts of β augmented samples via the data augmentation fraction τu(·)

U ∼ XN an unlabeled data set of N image samples
Y label space on the downstream tasks

yt ∈ Y target label on the downstream tasks
YR the refinement of the target label space

yR ∈ YR the proxy label
yRku ∈ YR the proxy label of the data point xu

k augmented via τu(·)
Z projection space
V feature space where the contrastive loss is applied

hθ : X → Z the representation extractor parameterized by θ
g : Z → V the projector

f(·) = g ◦ hθ(·) the composition of the representation extractor and the projector
sim(·, ·) the cosine similarity function
KL(·∥·) KL divergence function

s style variable
c content variable
λ1 the weight of standard regularization
λ2 the weight of adversarial regularization

B Proof

B.1 Proof of Theorem 1

Theorem 1 (restated). From the causal view, in ACL, maximizing the conditional probability both
p(yR|x) and p(yR|x̃) is equivalent to minimizing the learning objective of ACL [29] that is the sum
of standard and adversarial contrastive losses.

Proof. To begin with, we formulate the proxy label driven yR by the data augmentation in the context
of contrastive learning. We denote the index of xi

k ∈ Bi and xj
k ∈ Bj as ki and kj, respectively. For

the augmented data xi
k ∈ Bi and xj

k ∈ Bj , we denote their corresponding proxy labels as yRki and
yRkj , which is formulated as follows:

yRki = 1kj , yRkj = 1ki, (10)

where 1ku ∈ {0, 1}2β−1 is a one-hot label where u ∈ {i, j}, the value at index ku is 1, and the values
at other indexes are 0. The one-hot label refers to the refined proxy label of the augmented view of
the data point, which directs to its peer view. In the causal view of SCL and ACL, each augmented
view of the data has its own proxy label. Therefore, (A)CL aims to minimize the differences in
representation output of different views of the same data. Specifically, the conditional probability
p(yRki|xi

k; θ) and p(yRkj |x
j
k; θ) is formulated as follows:

p(yRki|xi
k; θ) = p(1kj |xi

k; θ) =
esim(fθ(x

i
k),fθ(x

j
k))/t∑

x∈Bi∪Bj\{xi
k}

esim(fθ(x
i
k),fθ(x))/t

, (11)

p(yRkj |x
j
k; θ) = p(1ki|xj

k; θ) =
esim(fθ(x

j
k),fθ(x

i
k))/t∑

x∈Bi∪Bj\{xj
k}

esim(fθ(x
j
k),fθ(x))/t

, (12)

where sim(p, q) = p⊤q/∥p∥∥q∥ is the cosine similarity function and t > 0 is a temperature parameter.
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Then, we have the following results:

argmin
θ

∑
xk∈U

ℓCL(x
i
k, x

j
k; θ) (13)

= argmin
θ

∑
xk∈U

− log
esim(fθ(x

i
k),fθ(x

j
k))/t∑

x∈Bi∪Bj\{xi
k}

esim(fθ(x
i
k),fθ(x))/t

− log
esim(fθ(x

j
k),fθ(x

i
k))/t∑

x∈Bi∪Bj\{xj
k}

esim(fθ(x
j
k),fθ(x))/t

(14)

= argmax
θ

∑
xk∈U

log
esim(fθ(x

i
k),fθ(x

j
k))/t∑

x∈Bi∪Bj\{xi
k}

esim(fθ(x
i
k),fθ(x))/t

+ log
esim(fθ(x

j
k),fθ(x

i
k))/t∑

x∈Bi∪Bj\{xj
k}

esim(fθ(x
j
k),fθ(x))/t

(15)

= argmax
θ

∑
xk∈U

esim(fθ(x
i
k),fθ(x

j
k))/t∑

x∈Bi∪Bj\{xi
k}

esim(fθ(x
i
k),fθ(x))/t

+
esim(fθ(x

j
k),fθ(x

i
k))/t∑

x∈Bi∪Bj\{xj
k}

esim(fθ(x
j
k),fθ(x))/t

(16)

= argmax
θ

∑
xk∈U

p(1kj |xi
k; θ) +

∑
xk∈U

p(1ki|xj
k; θ) (17)

= argmax
θ

∑
xk∈U

p(yRki|xi
k; θ) + p(yRkj |x

j
k; θ). (18)

Therefore, we can conclude that SCL actually maximizes the conditional probability of the proxy
label given the unlabeled data, i.e., p(yR|x).

In the adversarial context, we only need to replace the natural data xi
k and xj

k in Eq. (13) and (18)
with the adversarial data x̃i

k and x̃j
k generated in Eq. (3). Therefore, we have the following results:

argmin
θ

∑
xk∈U

ℓCL(x
i
k, x

j
k; θ) + ℓCL(x̃

i
k, x̃

j
k; θ)

= argmax
θ

∑
xk∈U

p(yRki|xi
k; θ) + p(yRkj |x

j
k; θ) + p(yRki|x̃i

k; θ) + p(yRkj |x̃
j
k; θ), (19)

where the adversarial data x̃i
k and x̃j

k are generated in Eq. (3). Therefore, from the causal view, in
ACL [29], maximizing both the conditional probability of the proxy label given the natural data
(i.e., p(yR|x)) and that given adversarial data (i.e., p(yR|x̃)) is equivalent to minimizing the sum of
standard and adversarial contrastive losses.

B.2 Proof of Lemma 2

Lemma 2 (restated). AIR in Eq. (7) can be decomposed into two terms as follows:

LAIR(B; θ, ϵ) =Ex∼pdo(τi)(x̃|x)[KL(pdo(τi)(yR|x̃)∥pdo(τj)(yR|x̃))]

+ Ex∼pdo(τi)(yR|x̃)[KL(pdo(τi)(x̃|x)∥pdo(τj)(x̃|x))],
where Ex∼Q3(x)[KL(Q1(x)∥Q2(x))] is the expectation of KL divergence over Q3 and Q1, Q2, Q3

are probability distributions.
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Proof. We transform AIR in Eq. (7) as follows:

LAIR(B; θ, ϵ) = KL
(
pdo(τi)(yR|x̃)pdo(τi)(x̃|x)∥pdo(τj)(yR|x̃)pdo(τj)(x̃|x);B

)
(20)

=
∑
x∈B

pdo(τi)(yR|x̃)pdo(τi)(x̃|x) log pdo(τi)(yR|x̃)pdo(τi)(x̃|x)
pdo(τj)(yR|x̃)pdo(τj)(x̃|x)

(21)

=
∑
x∈B

pdo(τi)(yR|x̃)pdo(τi)(x̃|x)(log pdo(τi)(yR|x̃)
pdo(τj)(yR|x̃)

+ log
pdo(τi)(x̃|x)
pdo(τj)(x̃|x)

) (22)

=
∑
x∈B

pdo(τi)(yR|x̃) log pdo(τi)(yR|x̃)
pdo(τj)(yR|x̃)

· pdo(τi)(x̃|x)

+
∑
x∈B

pdo(τi)(x̃|x) log pdo(τi)(x̃|x)
pdo(τj)(x̃|x)

· pdo(τi)(yR|x̃) (23)

=
∑
x∈B

 ∑
x∈{x}

pdo(τi)(yR|x̃) log pdo(τi)(yR|x̃)
pdo(τj)(yR|x̃)

 · pdo(τi)(x̃|x)
+

∑
x∈B

 ∑
x∈{x}

pdo(τi)(x̃|x) log pdo(τi)(x̃|x)
pdo(τj)(x̃|x)

 · pdo(τi)(yR|x̃) (24)

=
∑
x∈B

KL(pdo(τi)(yR|x̃)∥pdo(τj)(yR|x̃; {x}) · pdo(τi)(x̃|x)

+
∑
x∈B

KL(pdo(τi)(x̃|x)∥pdo(τj)(x̃|x); {x}) · pdo(τi)(yR|x̃) (25)

= Ex∼pdo(τi)(x̃|x)[KL(pdo(τi)(yR|x̃)∥pdo(τj)(yR|x̃); {x})]

+ Ex∼pdo(τi)(yR|x̃)[KL(pdo(τi)(x̃|x)∥pdo(τj)(x̃|x); {x})] (26)

= Ex∼pdo(τi)(x̃|x)[KL(pdo(τi)(yR|x̃)∥pdo(τj)(yR|x̃))]

+ Ex∼pdo(τi)(yR|x̃)[KL(pdo(τi)(x̃|x)∥pdo(τj)(x̃|x))] (27)

Eq. (21) and (25) are obtained by using the KL divergence KL(p(x)∥q(x);B) =
∑

x∈B p(x) log p(x)
q(x) .

We obtained Eq. (27) by omiting the term {x} in Eq. (26) for simplicity and finished proving
Lemma 2.

B.3 Proof of Proposition 3

Proposition 3 (restated). AIR implicitly enforces the robust representation to satisfy the following
two proxy criteria:

(1) pdo(τi)(yR|x̃) = pdo(τj)(yR|x̃), (2) pdo(τi)(x̃|x) = pdo(τj)(x̃|x).

Proof. To enforce the robust representation to satisfy the two proxy criteria shown in Eq. (28), we
need to regulate the ACL with the following regularization

KL
(
pdo(τi)(yR|x̃)∥pdo(τj)(yR|x̃);B

)
+KL

(
pdo(τi)(x̃|x)∥pdo(τj)(x̃|x);B

)
(28)

=
∑
x∈B

pdo(τi)(yR|x̃) log pdo(τi)(yR|x̃)
pdo(τj)(yR|x̃)

+
∑
x∈B

pdo(τi)(x̃|x) log pdo(τi)(x̃|x)
pdo(τj)(x̃|x)

(29)

=
∑
x∈B

KL(pdo(τi)(yR|x̃)∥pdo(τj)(yR|x̃; {x}) +
∑
x∈B

KL(pdo(τi)(x̃|x)∥pdo(τj)(x̃|x); {x}). (30)

Compared with Eq. (25) in the proof of Lemma 2, we can find that AIR also penalizes the same two
KL divergence terms while AIR has two extra calibration terms pdo(τi)(x̃|x) and pdo(τi)(yR|x̃) that
adjust the confidence of each KL divergence term, respectively. We empirically studied the impact of
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the calibration term in Appendix C.8 and found that the calibration term is beneficial to improving the
performance of ACL. Therefore, it indicates that AIR implicitly enforces the robust representation to
satisfy the two proxy criteria shown in Eq. (28).

B.4 Proof of Proposition 4

Proposition 4 (restated). Let Y = {yt}Tt=1 be a label set of a downstream classification task, YR

be a refinement of Y , and x̃t be the adversarial data generated on the downstream task. Assuming
that x̃t ∈ Bϵ[x] and x̃ ∈ Bϵ[x], we have the following results:

pdo(τi)(yR|x̃) = pdo(τj)(yR|x̃) =⇒ pdo(τi)(yt|x̃t) = pdo(τj)(yt|x̃t) ∀τi, τj ∈ T ,
pdo(τi)(x̃|x) = pdo(τj)(x̃|x) =⇒ pdo(τi)(x̃t|x) = pdo(τj)(x̃t|x) ∀τi, τj ∈ T .

Proof. The proof is inspired by Mitrovic et al. [38].

For t ∈ {1, . . . , T}, we have

pdo(τi)(yt|x̃t) =

∫
pdo(τi)(yt|yR)pdo(τi)(yR|x̃t)dy

R (31)

=

∫
p(yt|yR)pdo(τi)(yR|x̃t)dy

R (32)

=

∫
p(yt|yR)pdo(τj)(yR|x̃t)dy

R (33)

= pdo(τj)(yt|x̃t). (34)

Eq. (31) holds due to the fact that yR is a refinement of yt according to the definition of the
refinement shown in Mitrovic et al. [38]. Eq. (32) holds since the relationship between yt and
yR is independent of the style, i.e., pdo(τi)(yt|yR) = pdo(τj)(yt|yR). Eq. (33) holds because of
the assumption that the prediction of adversarial data is independent of the style. Due to that the
condition pdo(τi)(yR|x̃) = pdo(τj)(yR|x̃) holds for any x̃ ∈ Bϵ[x], thereby, this condition also holds
for x̃t ∈ Bϵ[x]. Lastly, we obtain that the prediction of adversarial data will be still independent of
the style factors on downstream tasks.

Next, due to that the condition pdo(τi)(x̃|x) = pdo(τj)(x̃|x) holds for any x̃ ∈ Bϵ[x], this condition
will hold for x̃t ∈ Bϵ[x] as well, i.e., pdo(τi)(x̃t|x) = pdo(τj)(x̃t|x). Therefore, the consistency
between adversarial and natural data will be still invariant of the style factors on the downstream
tasks.

C Extensive Experimental Details and Results
Experimental environments. We conducted all experiments on Python 3.8.8 (PyTorch 1.13) with
NVIDIA RTX A5000 GPUs (CUDA 11.6).

Pre-training details of ACL [29]. Following Jiang et al. [29], we leveraged ResNet-18 [25] with
the dual batch normalization (BN) [46] as the representation extractor, where one BN is used for
the standard branch of the feature extractor and the other BN is used for the adversarial branch,
during conducting ACL [29] and its variant DynACL [36]. We pre-trained ResNet-18 models using
SGD for 1000 epochs with an initial learning rate 5.0 and a cosine annealing schedule [35]. During
pre-training, we set the adversarial budget ϵ as 8/255, the hyperparameter ω as 0.0, and the strength
of data augmentation as 1.0. As for the reproduction of the baseline, we used the pre-trained weights
published in the GitHub of ACL45 as the pre-trained representation extractor for finetuning.

Pre-training details of DynACL [36]. The training configurations of DynACL [36] followed
ACL [29], except for the strength of data augmentation and the hyperparameter ω. We denote the

4Link of pre-trained weights via ACL on CIFAR-10.
5Link of pre-trained weights via ACL on CIFAR-100.
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Table 9: The robust/standard test accuracy (%) achieved by ACL-AIR with different λ1 and λ2.

λ1

λ2 0.00 0.25 0.50 1.00

0.00 37.39/78.27 38.61/79.48 38.70/79.96 38.76/79.81
0.25 37.55/78.53 38.70/79.53 38.79/79.65 38.73/79.76
0.50 37.51/78.97 38.63/79.72 38.89/80.03 38.82/80.08
1.00 37.04/79.17 38.24/79.64 38.39/80.09 38.77/79.83

Table 10: Performance in semi-supervised settings evaluated on the CIFAR-10 task.
Label ACL [29] ACL-AIR DynACL [36] DynACL-AIR
ratio AA (%) SA (%) AA (%) SA (%) AA (%) SA (%) AA (%) SA (%)
1% 45.63 74.84 45.97 76.63 45.78 76.89 46.25 78.57

10% 45.68 76.30 46.17 77.52 47.08 78.22 47.41 79.94

strength of data augmentation and the hyperparameter at epoch e as µe and ωe respectively, where

µe = 1− ⌊ e
K
⌋ · K

E
, e ∈ {0, 1, . . . , E − 1} (35)

ωe = ν · (1− µe), e ∈ {0, 1, . . . , E − 1} (36)
in which the decay period K = 50, the reweighting rate ν = 2/3, the total training epoch E = 1000.
In our implementation of DynACL, we only take the dynamic strategy and do not take the trick of the
stop gradient operation and the momentum encode [24, 11]. As for the reproduction of the baseline,
we downloaded the pre-trained weights published in the GitHub of DynACL678 as the pre-trained
representation extractor for finetuning.

Details of finetuning procedures. As for SLF and ALF, we fixed the parameters of the representa-
tion extractor and only finetuned the linear classifier using the natural training data and adversarial
training data respectively. As for AFF, we finetuned all the parameters using the adversarial training
data. For all finetuning procedures, we used SGD for 25 epochs for linear finetuning and full finetun-
ing respectively and momentum is set as 2e− 4. The initial learning of linear finetuning is set as 0.01
on CIAFR-10, 0.05 on CIFAR-100, and 0.1 on STL-10. The adversarial budget is fixed as 8/255
for ALF and AFF. In practice, we used the finetuning code published in the GitHub of DynACL for
implementing finetuning procedures.

C.1 Performance in Semi-Supervised Settings [1]

Table 10 reports the performance evaluated in semi-supervised settings [1] during the finetuning
procedure. In semi-supervised settings, following ACL [29] and DynACL [36], we first standardly
finetuned the pre-trained model using the labelled data and then generated the pseudo labels using
the standardly finetuned model. Then, we finetuned the model using the data with pseudo labels as
well as the labelled data via AFF. The results validate that AIR (λ1 = 0.5, λ2 = 0.5) can consistently
enhance both robust and standard test accuracy of ACL and its variant DynACL in semi-supervised
settings.

C.2 Impact of the Hyper-Parameters λ1 and λ2

We show the performance achieved by ACL-AIR of different λ1 ∈ {0.00, 0.25, 0.50, 1.00} and
λ2 ∈ {0.00, 0.25, 0.50, 1.00} on the CIFAR-10 task in Table 9. We can notice that when only
leveraging adversarial regularization (λ1 = 0, λ2 > 0), both standard and robust test accuracy gain
significant improvement, which indicates that adversarial regularization serves an important role
in improving the standard generalization and robustness of ACL. By incorporating adversarial and
standard regularization together (when both λ1 > 0 and λ2 > 0), the standard generalization of ACL
gets further improved. Table 9 guides us to set λ1 = 0.5 and λ2 = 0.5 since it can yield the best
performance.

C.3 Incorporating AIR with Two Extra Variants of ACL

Here, we show extra results to validate that our proposed AIR can enhance two extra variants of ACL,
including AdvCL [22] and AdvCL with A-InfoNCE [50].

6Link of pre-trained weights via DynACL on CIFAR-10.
7Link of pre-trained weights via DynACL on CIFAR-100.
8Link of pre-trained weights via DynACL on STL-10.
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Table 11: Self-task adversarial robustness transferability evaluated on CIFAR-10 using various
backbone networks including ResNet-34, ResNet-50, and WRN-28-10.

Network Pre-training AA (%) SA (%)

ResNet-34 DynACL [36] 47.01 78.84
DynACL-AIR 47.56 80.67

ResNet-50 DynACL [36] 47.19 79.65
DynACL-AIR 47.82 81.27

WRN-28-10 DynACL [36] 41.13 71.23
DynACL-AIR 43.86 73.41

Table 12: Self-task adversarial robustness transferability evaluated on CIFAR-10 achieved by Ad-
vCL [22], AdvCL-AIR, A-InfoNCE [50], and A-InfoNCE-AIR.

Pre-training AdvCL [22] AdvCL-AIR A-InfoNCE [50] A-InfoNCE-AIR
AA (%) 42.58 43.24 42.68 42.84
SA (%) 80.78 81.53 83.18 83.99

Table 13: Self-task adversarial robustness transferability evaluated on the CIFAR-10 dataset via SLF
under various attacks including APGD-CE [13], APGD-DLR [13], FAB [14], and Square Attack [2].

Pre-training APGD-CE (%) APGD-DLR (%) FAB (%) Square Attack (%)
ACL [29] 39.66 41.18 39.27 48.98
ACL-AIR 40.39 40.98 41.01 49.80

DynACL [36] 46.28 46.41 45.56 50.06
DynACL-AIR 47.05 47.29 46.02 50.58

AdvCL [22] leverages an extra contrastive view of high-frequency components and the pseudo labels
generated by the clustering method. We leveraged our proposed method IR (λ1 = 0.5, λ2 = 0.5)
to further improve the performance of AdvCL. Yu et al. [50] proposed an asymmetric InfoNCE
objective (A-InfoNCE) that treats adversaries as inferior positives that induce weaker learning signals,
or as hard negatives exhibiting higher contrast to other negative samples.

We used the code provide by Yu et al. [50] in their GitHub9 to implement the pre-training of AdvCL
as well as A-InfoNCE, and the finetuning procedure. In Table 12, we show that our proposed AIR
(λ1 = 0.5, λ2 = 0.5) can consistently improve the robust and standard test accuracy of two extra
variants [22, 50].

C.4 Applicability with Different Backbone Networks

In this subsection, we demonstrate that DynACL-AIR can consistently improve the performance on
ResNet-34, ResNet-50 [25], and WRN-28-10 [51]. We followed the same training configurations of
pre-training and finetuning (SLF) in Section 4 except for the backbone network. Table 11 validates
that IR can further enhance the robust and standard test accuracy of DynACL on various backbone
networks.

We observe that WRN-28-10 yields a worse performance compared to ResNet-50. We conjecture that
it is because we set the batch size to 128 during pre-training due to the limitation of our GPU memory.
We believe using a larger batch size during pre-training can further improve the performance of
WRN-28-10 according to Chen et al. [9].

C.5 Robustness Evaluation under Various Attacks

In this subsection, we conducted the robustness self-transferability against three strong white-box
attacks (APGD-CE [13], APGD-DLR [13] and FAB [14]) and one strong black-box attack (i.e.,
Square Attack [2]). We evaluate the robustness on the CIFAR-10 dataset via SLF and report the
results in Table 13. The results validate that our proposed method can consistently improve robust
test accuracy over various adversaries.

C.6 Test Accuracy under Each Type of Common Corruption

We report the test accuracy under each type of common corruption [26] with corruption severity being
fixed as 5 in Table 14. We used pre-trained models on CIFAR-10 via DynACL and DynACL-AIR.

9GitHub provided by Yu et al. [50].
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Table 14: Test accuracy evaluated on CIFAR-10-C under each type of common corruptions with
corruption severity being fixed as 5 of CIFAR-10 pre-trained models after SLF and AFF.

Pre-training Finetuning Noise Blur Weather Digital
Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

DynACL [36] SLF 68.14 68.22 62.76 69.73 68.84 67.01 71.86 64.73 62.36 26.24 66.53 17.66 70.64 72.44 73.63
DynACL-AIR 70.10 70.47 64.40 69.79 71.18 67.90 72.10 66.72 63.94 30.16 67.27 18.21 72.43 75.17 76.80
DynACL [36] AFF 74.02 74.62 66.87 71.44 73.21 69.22 73.68 67.83 66.29 27.59 69.27 18.72 74.60 77.50 79.05
DynACL-AIR 74.54 75.13 67.06 72.63 74.78 70.39 75.66 69.07 67.47 28.74 71.24 19.02 75.85 79.09 80.64

Table 15: Standard deviation of robustness self-transferability against common corruptions reported
in Table 2.

Dataset Pre-training SLF ALF AFF
CS-1 CS-3 CS-5 CS-1 CS-3 CS-5 CS-1 CS-3 CS-5

CIFAR-10

ACL [29] 0.06 0.25 0.13 0.13 0.17 0.10 0.11 0.17 0.21
ACL-AIR 0.03 0.02 0.02 0.07 0.09 0.08 0.16 0.20 0.14

DynACL [36] 0.02 0.01 0.02 0.07 0.16 0.09 0.13 0.20 0.18
DynACL-AIR 0.01 0.03 0.03 0.07 0.11 0.14 0.16 0.11 0.10

CIFAR-100

ACL [29] 0.01 0.09 0.02 0.12 0.14 0.11 0.09 0.04 0.17
ACL-AIR 0.04 0.02 0.02 0.13 0.09 0.04 0.17 0.04 0.16

DynACL [36] 0.03 0.02 0.01 0.14 0.07 0.12 0.08 0.09 0.16
DynACL-AIR 0.08 0.05 0.02 0.08 0.12 0.05 0.16 0.16 0.10

Table 16: Standard deviation of robustness self-transferability against common corruptions reported
in Table 4.
D1 → D2 Pre-training SLF ALF AFF

CS-1 CS-3 CS-5 CS-1 CS-3 CS-5 CS-1 CS-3 CS-5

CIFAR-10
→ CIFAR-100

ACL [29] 0.05 0.02 0.03 0.07 0.09 0.05 0.15 0.10 0.31
ACL-AIR 0.01 0.04 0.04 0.09 0.12 0.10 0.11 0.16 0.15

DynACL [36] 0.04 0.04 0.05 0.11 0.07 0.07 0.19 0.18 0.10
DynACL-AIR 0.03 0.02 0.03 0.12 0.13 0.09 0.18 0.04 0.07

CIFAR-100
→ CIFAR-10

ACL [29] 0.03 0.03 0.03 0.08 0.09 0.14 0.08 0.07 0.15
ACL-AIR 0.03 0.02 0.03 0.09 0.15 0.13 0.13 0.14 0.20

DynACL [36] 0.03 0.01 0.02 0.11 0.12 0.14 0.05 0.14 0.19
DynACL-AIR 0.02 0.08 0.02 0.06 0.08 0.09 0.14 0.21 0.17

Table 17: Impact of calibration terms evaluated on the CIFAR-10 task.

Pre-training Calibration SLF ALF AFF
AA (%) SA (%) AA (%) SA (%) AA (%) SA (%)

ACL-AIR × 38.55 79.80 40.80 77.57 49.51 81.95
ACL-AIR

√
38.70 79.96 41.09 77.99 49.59 82.30

DynACL-AIR × 45.09 77.79 46.01 76.12 50.54 82.35
DynACL-AIR

√
45.23 78.01 46.12 77.01 50.66 82.62

Experimental settings are the same as Section 4. The results validate that IR can consistently improve
the test accuracy under each type of common corruption.

C.7 Standard Deviation of Test Accuracy under Common Corruptions

Here, we provide the standard deviation of the test accuracy under common corruptions in Tables 15
and 16.

C.8 Impact of Calibration Terms

In the proof of Proposition 3, we show that there exist calibration terms pdo(τi)(x̃|x) and pdo(τi)(yR|x̃)
in AIR. Here, we empirically investigate the impact of calibration on the performance in Table 17.
The results empirically validate that the calibration term is an essential component of AIR to adjust
the confidence of the KL divergence and further enhance the performance of ACL.

D Limitations

One of the limitations is that similar to previous works [29, 22, 50, 36], our proposed AIR is not
helpful in improving the efficiency and scalability of ACL methods. Therefore, robust pre-training via
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ACL-AIR is still unfriendly to the environment due to emitting much carbon dioxide and consuming
much electricity. Besides, applying ACL-AIR to large-scale datasets such as ImageNet-21K [41] is
still computationally prohibitive with limited GPU sources.

E Possible Negative Societal Impacts

Our proposed method aims to improve the performance of robust self-supervised pre-training meth-
ods [29, 22, 50, 36]. The robust self-supervised pre-training procedure is extremely time-consuming
since it needs to spend much time generating adversarial training data, which thus leads to consuming
a lot of electricity and emitting lots of carbon dioxide. Unfortunately, our proposed method is not
helpful in improving the efficiency of ACL. Consequently, our study could exacerbate the greenhouse
effect and be not conducive to environmental protection.
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