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ABSTRACT

Given a training dataset, the goal of dataset distillation is to derive a synthetic
dataset such that models trained on the latter perform as well as those trained on
the training dataset. In this work, we develop and analyze an efficient dataset
distillation algorithm for supervised learning, specifically regression in R¢, based
on matching the losses on the training and synthetic datasets with respect to a
fixed set of randomly sampled regressors without any model training. Our first key
contribution is a novel performance guarantee proving that our algorithm needs
only O(dQ) sampled regressors to derive a synthetic dataset on which the MSE
loss of any bounded linear model is approximately the same as its MSE loss on
the given training data. In particular, the model optimized on the synthetic data
has close to minimum loss on the training data, thus performing nearly as well as
the model optimized on the latter. Complementing this, we also prove a matching
lower bound of 2(d?) for the number of sampled regressors showing the tightness
of our analysis.

Our second contribution is to extend our algorithm to offline RL dataset distillation
by matching the Bellman loss, unlike previous works which used a behavioral
cloning objective. This is the first such method which leverages both, the rewards
and the next state information, available in offline RL datasets, without any policy
model optimization. We show similar guarantees: our algorithm generates a syn-
thetic dataset whose Bellman loss with respect to any linear action-value predictor
is close to the latter’s Bellman loss on the offline RL training dataset. Therefore, a
policy associated with an action-value predictor optimized on the synthetic dataset
performs nearly as well as that derived from the one optimized on the training
data. We conduct extensive experiments to validate our theoretical guarantees and
observe performance gains on real-world RL environments with offline training
datasets and supervised regression datasets.

1 INTRODUCTION

Reinforcement learning (RL) which is increasingly used to train very large machine learning models
has two training paradigms: online and offline. While in online RL a policy model is trained while
interacting with the environment, offline RL trains a model on data points collected from multiple
trajectories of interactions with the environment and external entities (e.g. humans, Al agents). In
many applications online RL is either not possible, very expensive or not scalable due the requirement
of a dedicated agent interacting with the environment for the duration of model training. A key
benefit of offline RL is its ability to ingest large amounts of diverse training data (Fu et al.| [2021]), and
consequently, offline RL has become popular for training large models for tasks in for e.g. natural
language processing, computer vision, robotics etc (Levine et al., 2020).

However, the use of large scale datasets presents challenges related to their storage, management
as well the computational expense incurred in their use for training multiple models with different
hyperparameters and architectures. One way to mitigate this issue is to create a smaller synthetic
dataset derived from the training dataset i.e., a distillation of the latter. Dataset distillation (DD) for
supervised learning has been extensively studied in previous works (e.g. Wang et al.|(2018)); [Sachdeva
& McAuley| (2023); Lei & Tao|(2024)) which have developed a variety of methods based on matching
the loss gradients or feature-embeddings between the training and synthetic datasets by optimizing
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the latter. This is done either with respect to networks being trained simultaneously using bi-level
optimization, or a fixed collection of sampled networks. Distinct from sampling, coreset or random
projection methods, DD techniques generate synthetic data via optimization with respect to networks
which may also be trained in the process. These DD techniques have been shown to perform well on
real-world supervised datasets in terms of the quality as well as the size of the generated syntheic
dataset as the latter is explicitly optimized. While some works (e.g. Nguyen et al.[(2021); |Chen et al.
(2024))) have also provided theoretical performance guarantees, most DD techniques are heuristics
albeit with empirically observed gains.

For offline RL, a few recent works have proposed methods using behavioral cloning (BC) for distilling
an offline training dataset comprising trajectories of (state, action)-pairs. In|Lei et al.|(2024), the
authors propose optimizing the synthetic dataset using policy-based BC loss leveraging action-value
weights learnt from offline RL. On the other hand, the method proposed by |[Light et al.[(2024) extends
the matching loss gradients approach to offline RL. In particular, it optimizes a synthetic dataset to
match the BC loss gradients on the offline and synthetic data, where the gradients are with respect to
the parameters of sampled action predictor networks.

As can be seen, the state of research into offline RL dataset distillation, while nascent, is also
unsatisfying. Firstly, the BC does not leverage the observed reward that is usually available in offline
RL datasets, and typically only perform well when the training dataset is generated by expert policies.
Secondly, there is a sparsity of theoretical performance guarantees for the DD techniques for offline
RL as well as supervised learning DD. For linear regression, the work of |Chen et al.| (2024)) proves
efficiency guarantees assuming however that a trained model is available, while the work of Nguyen
et al.| (2021) — while not training a model — proves convergence only of the synthetic feature-vectors
for given synthetic labels. For offline RL, the work of |Le1 et al.|(2024) provides analytical guarantees,
while requiring an trained policy model on the given training dataset. To the best of our knowledge,
there are no provably efficient DD algorithms known without model training for either supervised
learning or offline RL.

Our Contributions. In this work we make progress towards bridging the above gaps in our under-
standing through the following contributions:

Dataset Distillation in supervised regression. We propose an algorithm minimizing the squared
difference of MSE losses between the training and the synthetic datasets with respect to a fixed set
of randomly sampled models. While our algorithm is along the line of previous DD approaches
using loss, gradient loss or embedding matching techniques, our contribution is to prove that it
admits efficiency and performance guarantees for linear regression. In particular, we prove that
the optimization objective is convex and tractable, and in d-dimensions optimizing the synthetic
dataset w.r.t. O(d> )EI randomly sampled regressors suffices to guarantee that any bounded linear
regressor has approximately the same MSE loss on the training and synthetic datasets. Therefore, the
optimum linear regressor on the synthetic dataset is close to that on the training dataset. This is the
first performance and efficiency guarantee for supervised DD without model training.

We also prove a lower bound of £2(d?) on the number of randomly sampled linear regressors to obtain
a good quality synthetic dataset. This result shows the tightness of our algorithmic guarantees.

Dataset Distillation in offline RL. We extend the above approach for dataset distillation in supervised
regression to offline RL DD by matching the Bellman loss on the training and synthetic datasets w.r.t.
a collection of randomly sampled linear Q-value predictors over R%. The performance guarantees
are in a similar vein as the supervised regression case, though more involved due to the max term
in the Bellman Loss formulation. Nevertheless, we obtain a performance guarantee showing that
minimizing to a small value the difference of the Bellman Losses with respect to exp(O(dlog d))
randomly sampled Q-value predictors (without model training) generates a synthetic dataset whose
Bellman Loss w.r.t. any linear bounded )-value predictor is a close approximation to that on the
training dataset. Consequently, the Bellman Loss minimizer ()-value predictor on the synthetic
dataset is close to optimal on the training dataset.

Offline RL with decomposable feature-maps. We consider a natural setting where the state-action
feature-map is the sum of individual feature-maps of the state and action. In this scenario, we prove
that our method requires only O(d?) sampled linear Q-value predictions, instead of the exponentially

'O hides polylogarithmic factors
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many required in the general case. Additionally, we show that the finding the synthetic dataset is a
tractable convex optimization when the state and action feature-maps are linear.

Empirical Evaluations. We conduct experiments on supervised regression and offline RL datasets
to validate our proposed algorithms, showing that our techniques obtain improved performance
over standard baselines, both in terms of quality and size of the generated datasets. Notably, our
experiments demonstrate the effectiveness of our algorithms using very few sampled models in both
supervised regression and offline RL settings. Although the guarantees are proven for linear models,
we show that our algorithms work well in practice with non-linear neural networks.

2 PREVIOUS RELATED WORK

Dataset Distillation. The work of Wang et al.| (2018) introduced the problem of distilling a dataset
into a representative (and smaller) synthetic dataset, in the setting of supervised learning. This and
other works e.g. |Deng & Russakovsky|(2022) use a bi-level optimization formulation in which the
model is optimized on the training dataset while the synthetic dataset is optimized on the trained
model. A related set of methods rely on matching various properties of the synthetic dataset with
the training dataset. In particular, the work of Zhao et al.[|(2021); Zhao & Bilen|(2021) matches the
model’s loss gradients on the training and synthetic datasets as an optimization over the latter, while
the model is alternately optimized over the training dataset. In a similar vein, the work of [Wang et al.
(2022) aligns the feature distribution of the two datasets in a dynamic bi-level optimization approach,
while the works of |(Cazenavette et al.|(2022)); |Cui et al.|(2023)) match the training trajectory of an
initial model optimized on the training dataset with its training trajectory on the synthetic dataset, by
optimizing on the latter. Unlike the mentioned works optimizing a model along with the synthetic
dataset, the work ofZhao & Bilen|(2023)) instead matched the feature-distributions on the training and
synthetic datasets with respect to a fixed collection of randomly sampled networks. For linear ridge
regression, the work of [Nguyen et al.| (2021) implicitly matched the regression losses by minimizing a
surrogate objective, while proving convergence of synthetic feature-vectors given the synthetic labels.
More recently, Chen et al.|(2024) analytically gave an efficient synthetic dataset generation algorithm
for linear ridge regression, requiring however access to the optimal regression model for the training
dataset.

Closely related to DD for linear regression is matrix sketching which provides a principled way to
reduce the dimensionality (or size) of training data. By applying randomized projections (e.g., the
Johnson-Lindenstrauss transform (Johnson & Lindenstrauss} [1984} Sarlds| [2006)) or leverage-score
sampling (Drineas et al.| [2006; [Mahoney, 2011}, one can construct a much smaller sketch of the
original data while provably preserving the solution quality of least-squares regression. However,
these guarantees are largely limited to linear and convex models. In contrast, DD methods can be
applied to neural networks, albeit without comparable theoretical guarantees. Additionally, DD
techniques optimize the synthetic dataset, and have been shown to to work well in practice on real
data in terms of size compression and quality preservation.

Offline RL. A key advantage is that offline RL is adaptable to data generated by sub-optimal
policies (Levine et al., 2020; |[Fu et al., 2021), while also being scalable to large datasets (Lange
et al.|[2012). On the other hand, the lack of online exploration can lead to less generalizable policies
being trained due to distributional shifts. To address this, several techniques based on constraining
the policy (Fujimoto & Gu, [2021} [Tarasov et al.l [2023) or regularization of ()-value predictors
have been developed (Kumar et al., [2020} [Kostrikov et al.,[2022)). A major practical consideration
is the exponential growth in dataset sizes, along with which the associated challenges of storage,
transfer and training on datasets as well as maintaining privacy controls have only multiplied. Dataset
distillation has been proposed to tackle these problems, with existing works developing behavioral
cloning methods for distilling an offline training dataset comprising trajectories of (state, action)-pairs.
While [Lupu et al.| (2024)) propose behavior distillation for online RL, the work of Lei et al.| (2024))
tackles the offline RL case by first training an action-value predictor and using action-value weighted
BC to optimize the synthetic dataset. On the other hand, the method proposed by |Light et al.| (2024)
extends the matching loss gradients approach to offline RL. In particular, it optimizes a synthetic
dataset to match the behavioral cloning loss gradients on the offline and synthetic data, where the
gradients are with respect to the parameters of sampled action predictor networks.
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3  PROBLEM DEFINITION

We will use B(t,r) := {x € R" | ||x||]2 < r} to denote the ¢>-ball in R? centered at 0 of radius .

Supervised Learning Dataset Distillation. We consider regression tasks over d-dimensional real-
vectors and real-valued labels. For an n-point dataset D € (R? x R)™, and a predictor f : R? — R,
the mean squared error (MSE) of f on D is Ly (D, f) := (1/n) Z(x)y)eD(y — f(x))%. We
assume that the training datapoints are norm bounded by B and labels have magnitude at most
b for some parameters B and b, and impose the same restriction on the synthetic dataset. Let
D3P = {(xi,y;) € B(d,B) x [—b,b]}, be an n-sized training dataset, while we denote an
m-sized synthetic dataset by Doy = {(z;,9:) € B(d, B) x [—b,b]}™,. By appending a 1-valued
coordinate to feature-vectors we can omit the constant offset and restrict ourselves to linear regressors
of the form v'x as a prediction for the label . We impose ||v|2 < 1 as a bound on the norm, and
let Fo denote the class of such regressors. We define the supervised regression dataset distillation
problem as: for a parameter ¢, given D;.> . compute D5y} such that

L (DSUP DSUP, f) = (Lmse(DSUp ) - Lmse(DsuP ))2 S g, for all f c fo. (1)

mse train? ~ syn train? syn

Offline RL Dataset Distillation. Consider a Markov Decision Process (MDP) given by
(S, A, P, R,), where (i) S is the set of states, (ii) .A is the set of actions, (iii) PP is the transition prob-
ability i.e., P(s’ | s, a) denotes the probability of transitioning to state s’ from state s on action a, (iv)
R is the reward function, where R(s,a) € [0, Rmax] is the reward obtained on action « at state s, and
(v) ~y is the discount factor. A policy 7 is a mapping from states to action, and the goal is to maximize

at each state its value function: v.(s) = E, [Zi:o 'Yth’ so = s] where R; is the reward at step ¢
under the policy starting from state s. The action-value function is the expected sum of discounted
reward starting from a state and a specific action i.e., ¢ (s,a) = E, {Zﬁzo YRy | s0 = s,a0 = a} )

On the other hand, given an action value function predictor f : S x A — R, the corresponding greedy
policy 7’ given by 7’/(s) € argmax, f(s,a) always yields at least as much expected discounted
reward starting from any state as 7. In offline RL, a dataset D°" consists of a collection of state,
action, reward and next state tuples of the form (s, a,r, s"), with generated by some (non-optimal)
policies. The goal is to learn a policy from this dataset which maximizes the value function. We
cast this problem as deriving a action-value predictor from D°", and taking the greedy policy with
respect to it. Under reasonable assumptions on the MDP and D°", the performance of an action-value
predictor f is measured by the Bellman loss (see Appendix for details) given by:

2
LBell(Dor|7 f) = E(s,a,r,s’)eD“‘ [(f(87 (l) —r—= ’yg}eaﬁ f(slv a’/)> ‘| . (2)

Feature Map and linear action-value predictors. We assume that S, 4 C B(dy, By), and that
é : B(dgy, Bo)? — R% is a given feature-map s.t. ||¢(s,a)||2 < B for any (s, a) in its domain, for
some parameters By, dy and B. An action-value predictor f is given by f(s,a) := v ¢(s,a), for
(s,a) € B(dg, Bo)?, and we restrict ourselves to the class of such predictors Q satisfying || v|2 < 1.
Datasets. The training dataset is D% = {(s;, a;,7:,85)}7 1 C 8 x A X [0, Rnax] X S of state,
action, reward and next state tuples. Since S or A could either be discrete or non-convex, for
tractable optimization the synthetic dataset ny'L is allowed to consist of tuples {(8;, a;, 7, 8;) €
B(d(), B()) X B(d(), B()) X [0, Rmax] X B(d(h B()). With thiS, LBell is can defined for Dorl

oyn and any
f € Qo as:

S aeA

2
LBen(Dgera f) =Ea,,8) Do l(f(éa a) — 7 — ymax f(§, dl)) ] . 3)

Note that in the above, the maximization inside the loss is taken over the original set of actions,
consistent with the definition of the Bellman loss. With the above setup, we define the offline RL
dataset distillation problem as follows: For a parameter ¢, given D2 | compute D2 such that

train?® syn

err orl ori ori or 2
LBell(Dtralim DsyL? f) = (LBC"(Dtralim f) - LBCH(Dsy:n f)) < &, for all f € QO' (4)

4
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4 OUR RESULTS

Supervised Learning Dataset Distillation. For convenience, we shall employ a homogeneous
formulation i.e., with 0 label, using the concatenation ¢ : RY x R — R*! given by ((x,y) =
(21,...,24,y) Where x = (x1,...,24). Observe that r"((x,y) = vIx —y = f(x) — y where
r = (vi,...,v4,—1),and f € Fy s.t. f(x) = v'x. Further, if ||v|l2 < 1then 1 < ||r[|2 < 2. Let
F be the class regressors with target label 0 where each h € F is given by h(x,y) := r'((x,y)
where 1 < |r||2 < 2. One can thus extend the notion of the MSE loss Ly to F by letting
Linse(D, h) :=E(x y)ep [h(x,y)?]. We also define G to be a distribution over regressors where a
random g € G is given by sampling r ~ N(0,1/(d + 1))%*! w.ar. and letting g(x,y) := r"((x, ).
With this setup, we prove the following theorem.

Theorem 4.1. Let DP the training dataset as described above. For any A > 0 and § > 0, let

train

91, .-, gk be iid regressors sampled from G for some k = O (d?log(d(B + b)/A)log(1/6)). Then,

with probability 1 — 6 over the choice of g1, . . ., gk, if there exists D3y} s.t.
k
> Live(Diah D3P 1) < A, )
j=1

then, for all h € F, L& (Dt  Dygh, h) < A, where A" = Ak /O(d?), in particular this holds also
forall f € Fo.

It can be seen that L& (D, . Deyr, g) is a convex function over the points of Dyl (see Appendix

[G.2]for an explanation) and therefore the LHS of equation[3]is also convex and can be minimized
efficiently. Based on this we provide the corresponding Algorithm I

Algorithm 1: Supervised Regression Dataset Distillation
Input: d,k,m € Z*, D;-0 € (B(d, B) x [—b,b])"

train
1. Sample iid at random gi, ..., gg from G.

. k sup sup
2. Output  argmin pswee (5(4, By x [—b,b])™ > j=1 Linse (Dygains Dsyn'» 95)-

Lower Bound. Complementing the above algorithmic result, we prove the following matching (up to
logarithmic factors) lower bound on the number of sampled regressors.

Theorem 4.2. For any positive integer d, there exists D;,> of ¢ = (d + 1) points of the form
z = (x,y) € R? where x € R%,y € R, each of Euclidean norm ||z||o < 2 such that for any choice
of homogeneous (i.e., target label 0) regressors { fi : R? — R | fi(z) := v]z, where v, € RI}T_,

where T < q(q + 1)/2, there exists:
D3y of q points in RY each of Euclidean norm < 2, and
s a regressor fy : R — R given by fo(z) := vl z for a unit vector vy € RY,
satisfying
L (DR D3P f) =0, vVt e {1,...,T} and LT (DXP  DSUP fo) > 1/(4¢%). (6)

mse train’ ~syn mse train’ -~ syn
Informally, the above theorem constructs a training dataset such that for any set of less than ¢(¢+1)/2
linear regressors one can choose a synthetic dataset on which each of the linear regressors have the
same loss as on the training dataset, while there exists a regressor that has significantly different
losses. This implies a lower bound of 2(d?) for k in Theorem 4.1

Offline RL Dataset Distillation. For convenience, we define the following modified Bellman loss
which incorporates a scale factor A € R for the reward in the usual Bellman loss:

2
i/Bell(Dv fa A) = E(s,a,r,s’)<—D l(f(57 a) —Ar — ’Yg,lg‘ﬁ f(5l7 a,)) ‘| . (7)

To state our result, we need the pseudo-dimension Pdim (see Appendix [A.I)) of the above loss
restricted to single points. In particular, I/ be class of mappings u : B(dg, Bo) x B(dg, Bg) X
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[0, Rmax] X B(do, By) — R where each u € U is defined by u(s, a, 7, s') := Lgen({(s,a,7,5)}, f, \)
for some f € Qp and A € [—1,1]. Let p := Pdim({). Further, we assume that ¢ is L-Lipschitz.
We also define:

~ ~ ~ 2
L5y (D3, D3 £:X) = (Lsen(Dgis £.3) = Laen (D3, £: 1)) ®)

We define a distribution H (o) over (predictor, scalar) pairs in which a random (f, \) is sampled by
independently choosing r ~ N (0,0%)? and A ~ N(0,0?) and defining f(s,a) := r'¢(s,a). For
simplicity we define H := H (1) Using this, we have the following theorem.

Theorem 4.3. Let Df;;'in the offline RL training dataset as described above.  For any
A > 0and 6 > 0, let (fi,\),...,(fx, &) be iid samples from H for some k =
(1/v)Pldloe ) O (p(log(1/v) + log(BoL/(B 4 Rmax))log(1/6), where v := A/(B+ Rmax)*. Then,

with probability 1 — ¢, if there exists D s.t.

syn

k
Z L%r;ll(Dggim Dg}ﬂn fkv )\k) S Al (9)
j=1
then, for all f € Qo, LI, (D2, D;’;L, ) < A, where A" = (A/O(1)).

The following is the distillation algorithm whose guarantees follow directly from Theorem[4.3]

Algorithm 2: Offline RL Dataset Distillation
Input: d, k,m € Z*, feature-map ¢, DL € (S x A x [0, Rpax] X S)".

train

1. Sample iid at random (f1, A1) ..., (fk, Ax) from H.
rl

. k 7 |
2. Output  argmin poi ¢ (5(dy, Bo) x B(do, Bo) x [0, Ruas] x B(do, Bo))™ =1 LBen(Ditins Diyns [, A7)

Offline RL with decomposable feature-map. We consider the natural case when ¢ is decomposable
ie., ¢(s,a) := ¢1(s) + ¢2(a) € R forall s € S, a € A for some mappings ¢1, ¢o : B(do, By) —
R?. Further, we say that ¢ is linear and decomposable if ¢; and ¢ are linear maps.

Theorem 4.4. Consider the case when ¢ is decomposable as defined above and let D"\ the offline

RL training dataset. For any A > 0and § > 0, let (f1,M), -y (fies Ak) be iid tsrizllr;zples from
H(1/v/d+1) for some k = O (d?log(d(B + Rmax)/A)log(1/8)). Then, with probability 1 — 6, if

; |
there exists Dy, s.1.

k
> Lian(Dgan DS fis Ax) < A (10)
j=1
satisfying
Epa [(61(s), ¢2(a),m,¢1(s")] = Epet [(1(s), p2(a), 7, ¢1(s"))] (11)
then, for all f € Qo, L§L, (DL | D;’Y'L, ) < A, where A" = Ak/O(d?).

In particular, the above theorem shows that the optimization in Algorithm[2]constrained by equation|[IT]
in the case of decomposable feature-map ¢, requires only O(d2) sampled action-value predictors.
Further, when ¢ is linear and decomposable i.e., ¢; and ¢4 are linear maps, then equationis alinear
constraint in the points DS and it can be shown (see Appendix [F{for details) that the optimization in

Algorithm 2| constrained by equation |l 1|is convex.

Discussion of Our Results. Theorem {.T|and Algorithm [I|together provide an efficient supervised
dataset distillation algorithm (for linear regression) with performance guarantees. Specifically, we
show that with high probability over O(d?) sampled regressors, optimizing a convex objective over
DY to minimize the sum of LT, for the sampled regressors, is sufficient to obtain a high quality
synthetic dataset. While our method adapts the model-training free approach of [Zhao & Bilen
(2023) to loss matching, our theoretical guarantees are qualitatively different from those of Nguyen
et al.| (2021) which showed convergence of synthetic features assuming the synthetic labels are

given, and of (Chen et al.| (2024) who assumed the availability of the optimal trained model. We
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show that our analysis is tight (upto polylogarithmic factors) by proving a Q(d?) lower bound on
the number of sampled regressors in Theorem 4.2} In addition, we also provide a lower bound
of O(d) on the size of the synthetic dataset needed (in Appendix @]) We note that Theorem
shows that the randomness (or sample complexity) required is proportional to log(1/A) where A
is the error, which is quantitatively better than sample size proportional to 1/A achieved by matrix
sketching techniques (see (Garg et al.| (2024), Wang et al.| (2017), |Clarkson & Woodruff| (2009)). Our
theoretical analysis of the supervised regression relies on anti-concentration of LS. with respect to
random linear regressors, and can be applied to any class of non-linear regressors that admit similar
anti-concentration properties.

For offline RL, Theorem[4.3]and Algorithm 2] give the first dataset distillation algorithm with rigorous
performance bounds, without model training. Our novel approach based on matching the Bellman
loss w.r.t. sampled )-value predictors differs from the previous behavioral cloning (BC) based
methods of |Light et al.|(2024)) which matches the loss gradients of the BC objective and of [Lei et al.
(2024) which optimizes the synthetic dataset using an action-value weighted BC loss requiring a
trained action-value predictor.

However, the Bellman Loss involves a max term and thus cannot be well represented as a low degree
polynomial in the weights of the predictor. Due to this, polynomial anti-concentration (used in the
supervised regression case) cannot be applied and the proof is via a conditioning argument. In effect,
our algorithm requires sampling exp(O(d log d) predictors in the worst case where d is the output
dimension of the feature-map. We note that a brute force approach would be to choose a net over the
predictors Qy instead of sampling. However, that would necessarily require exp(d) such predictors,
while in practice a smaller number of randomly sampled predictors suffices, as demonstrated in our
experimental evaluations.

While the bound in Theorem i4.3|is indeed less efficient than O(dz) sample complexity of the super-
vised setting, in practice the features are mapped into a smaller dimension than the input mitigating
this to some extent. Further, in Theorem we prove similar O(dQ) in the case of decomposable
feature-map ¢, and show that the optimization is convex when ¢ is linear and decomposable. This
is a natural assumption and is the default feature map in applied RL for most value based deep RL
approaches. For example, the highly cited work of (Lillicrap et al., 2016) explicitly describes concate-
nating the action and state embeddings. A common trick used in practice and in our experiments is to
one-hot encode the actions and concatenate them with the state embedding to obtain the feature map.
Additive feature maps are also explicitly studied in (Zhang et al.,[2020) and (Yang & Wang, [2019)).

Organization of the Paper. The proofs of Theorems (4.1} 4.2} .3]and .4 are included in Appendices
[Cl[D.2] [E and [F respectively. In the next section however, we provide an informal description of the
proof techniques. A subset of the experimental evaluations are included in Section [p] while additional
experiments and further details are deferred to Appendix

5 OVERVIEW OF OUR TECHNIQUES

Proof Outline of Theorem [4.1, The proof proceeds by contradiction: suppose there is some h € F
and Dyt s.t. L& (DiP . Den, h) > A. Letting g be a random sample from G, we show using
algebraic manipulations and properties of the Gaussian distribution that L&t (D:P | DY, g) is a
degree-4 polynomial v2 in Gaussian variables, such that E[v?] > A/O(d?). This can be used
along with the Carbery-Wright anti-concentration bound for Gaussian polynomials to show that
Prjv? > A/O(d?)] > 1/3. Since {g; };‘?:1 are iid samples from G, using Chernoff Bound, the
probability that there exists (k) many j € [k] satisfying L& (D0 DY, g;) > A/O(d?) is at
least 1 — exp~*(®), To complete the argument, we require a union bound of this error probability
over all h € F and Dgy¥, which we do by constructing finegrained nets as follows.

Net over all h € F: Since h € F is given by some r € R%*! where 1 < ||r|2 < 2, one can take
a e-net w.r.t. to Euclidean metric over all such vectors — whose size is at most (1/¢)?(@1°89) (see

Appendix — for a small enough ¢ so that L. is essentially unaffected when h is replaced by h

mse
(or vice versa) corresponding to the nearest vector in the net. For our purpose ¢ can be Q(A).

Net over all Dgyy: For this we first observe that D5y} can always replaced by a subset of size s = d
using Lemma so that L&, remains lower bounded by A/O(d?). Thus, it suffices to consider the

mse
net (A)® over all s-sized datasets where A is a £’-net over the set of all possible datapoints, so that
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L&, is approximately preserved by the nearest dataset in (N)*.
The size of (NV)* is ((B + b)/A)9(%) and the product of the sizes of the nets constructed above is
exponential in O (d? log(d(B + b)/A)). Thus, to obtain the statement of the theorem via a union

bound, the number of sampled regressors required is k = O (d? log(d(B + b)/A) log(1/6)).

Proof Outline of Theorem The proof of the lower bound of Q(d?) on the sampled linear
regressors relies on the fact that the set of symmetric ¢ X ¢ matrices, where ¢ = d+1,isag(g+1)/2-
dimensional linear space. Thus, for a choice of less than ¢(q + 1)/2 homogeneous linear regressors,
there is a non-zero symmetric matrix A for which (vv', A) = 0 where v is any one of the chosen
regression vectors. Here, A can be scaled so that its operator norm is exactly 1/2. Thus, one can

choose (up to appropriate scaling) D;.> so that E, ¢ pie [xxT] = I which is independent of the

chosen regressors. Dy is then chosen so that E, ¢ psue [xx"] = I+ A which is psd. It can be seen

that each chosen regressor has the same MSE loss on D;" and Dgyr, while due to A # 0, there is a

regressor which has different losses on D> and Dgy.

Due to lack of space we defer the proof outlines of Theorems {.3|and [4.4]to Appendix

6 EXPERIMENTAL EVALUATIONS

We generate synthetic datasets, Dgyp, of sizes much smaller than the original training dataset using
Algorithms|[I] and [2] for supervised regression and offline RL respectively. We evaluate the models
trained on them, over the test split of the original dataset in case of supervised regression or the
derived policy in the RL environment.

Baselines. The following baseline datasets are included as part of our experiments. Full Original:
model trained on the entire original training dataset Dy, and Random: model trained on a random
sub-sample (of same size as the synthetic dataset) of the original dataset, D;,,q. In addition, for
supervised regression, Leveraged: model trained on a leverage score subsample (of same size as the
synthetic dataset) of the original dataset, Dy, (see Drineas et al.| (2006)).

Supervised Regression Datset Distillation. We evaluate Algorithm|I|along with the above mentioned
baselines on the Wine Quality (Cortez et al.|(2009) ODbL 1.0 License), specifically the included red
wine and white wine quality datasets, and the Boston Housing Dataset (Harrison & Rubinfeld, [1978)).

The sizes of the synthetic dataset Ny, we consider are {20,50,100}. The size of Dyyng and Dje, are
the same as Dgy,, and is subsampled randomly from Dy;,. We initialise the convex optimisation
of Dy, with the initial value Dy,pg. We take & = 100 random homogeneous linear regressors in
Algorithm |1 to find Dy, and then train a homogenous linear model (f(x) = r’x) on the four
datasets. The mean test loss of models trained on respective datasets (over 10 trials) are plotted in
Figure[I] Further details of the model training, hyperparameter search are included in Appendix [H.]

and Appendix [H.2]

We observe that the homogenous linear models trained on Dyy, performs almost as well as ones
trained on Dy, far better than ones trained on D.,,4, and better or on par with the models trained
on Dy,. This demonstrates the efficacy of our synthetic data generation technique for supervised
learning datasets and empirically verifies Theorem We also observe that we perform better
than the classical data-reduction technique of leverage score subsampling for homogenous linear
regressors.

Offline RL Experiments. We test Algorithm 2] for offline RL DD by evaluating a policy trained on
our synthetic dataset using Fitted-Q Iteration (Ernst et al., [2005)), a classical offline RL algorithm,
along with the Full Original and Random baselines on the Cartpole environment (Towers et al.| [2024)
(MIT License), Mountain Car MDP (Moore| (1990), Towers et al.| (2024)) MIT License), and the
the Acrobot Environment (Sutton| (1995), Towers et al.|(2024) MIT License). Refer to Appendices
[H.5] for further details on the datasets. Since linear -value predictors are known to perform
poorly with Fitted-Q iteration even when trained on Dy, we use 2-layer neural networks for training
and generating the synthetic data which are randomly sampled by sampling the model weights
independently from a standard Gaussian distribution.

We do not use Dy, as a baseline because leverage score subsampling is only defined for linear
regression and has no analog in neural network regression. To generate Dy, we sample from
transitions from random(or nearly random) policies. We sample £ = 20 random models with random
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Figure 1: MSE Test losses for Homogeneous Linear Regression on the following supervised datasets:
red wine quality, white wine quality, Boston Housing.
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Figure 2: Max Evaluation Return with two-layer neural networks on the offline RL datasets created
by the following environments: Cartpole, Mountain Car, Acrobot.

normal weights for the data distillation procedure. The size of Dyang and Dgy, is denoted by Nyy,. We
generate Dgy, once and we train all three datasets with the Fitted-Q iteration algorithm to get the
trained policies. We evaluate these trained policies in the environment 10 times and plot our results
in Figure 2] Dyyng is sampled 10 times and each sample is evaluated once. Further experiments are

conducted with more values of k and can be found in Appendices along with more
experimental details.

We observe that a model trained on Dy, is significantly better than one trained on Di,,q. We also see
that as Ny, increases, the model trained on Djy, performs even better or on par than one trained on
Dyain for the Cartpole and Acrobot environments. This demonstrates the efficacy of our synthetic
data generation technique for offline RL datasets for non-linear predictors. Additional discussions
and experimental evaluations are included in Appendix [H]

Experimental Code. We will release the code for our experiments along with the final version of
this paper.

7 CONCLUSIONS

We propose a loss matching based algorithm for supervised dataset distillation, in which given a
training dataset the synthetic dataset is optimized with respect to a fixed set of randomly sampled
models. For linear regression in R%, we prove rigorous theoretical guarantees, showing that optimizing
the convex loss matching objective for only O(dz) sampled regressors, without any model training,
suffices to obtain a high quality synthetic dataset. We prove a matching lower bound of £2(d?) many
sampled regressors, showing the tightness of our analysis. We extend our approach to offline RL to
provide an algorithm for dataset distillation matching Bellman Loss using sampled ()-value predictors,
while showing similar performance bounds, albeit requiring exp(O(d log d)) sampled predictors in
the worst case. However, under a natural decomposability assumption on d-dimensional state-action
embeddings, we improve the upper bound to O(d?). Our experiments show that our algorithms yield
performance gains on real datasets, both in terms of the size and quality of the synthetic dataset,
even with a small number of sampled predictors. An interesting yet challenging future direction in
to extend our theoretical results in the supervised setting to neural networks, and to obtain provably
efficient offline RL dataset distillation algorithms for more general classes of state-action embeddings,
perhaps leveraging specific geometric properties of the associated MDPs.
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A PRELIMINARIES FOR APPENDIX

A.1 FUNCTION CLASSES AND PSEUDO-DIMENSION

We will consider a class F of real-valued functions (regressors) mapping R% to [—1, 1]. The pseudo-
dimension of the function class Pdim(F) is defined as the minimum cardinality subset of R? which
is pseudo-shattered. It is formally defined in Definition 11.2 of (Anthony & Bartlett, [2009).

For X C R where |X| = N, set C,(&, F, X) to be a minimum sized ¢,-metric &-cover of F over
X, ie. Cp(&, F, X) is a smallest subset of F such that for any f* € F, there exists f € Cp(§, F, X)

St (Bxex [|£7(x) = FOIP)'” < € forp € [1,00), and maxe |f*(x) = f(x)| < € for p = oo,
The largest size of such a cover over all choices of X C R? s.t. |X| = N is defined to be
Np(ga -Fv N)

The pseudo-dimension of F, Pdim(F) (see Sec. 10.4 and 12.3 of [Anthony-Bartlett, 2009]) can be
used to bound the size of covers for F as follows:

Ni(§, F,N) < Noo(§, F, N) < (eN/p)” (12)

where p = Pdim(F) and N > d. By normalizing, the above bounds can be adapted to functions
which map to [-B, B] for B > 0.
The following theorem follows from Theorem 11.4 from [Anthony-Bartlett, 2009]

Theorem A.1. The class of linear regressors over R¢ given by r'x for r € R has pseudo-dimension

d.

A.2  COVER OVER B(d,r)

Let 7 (d, r,¢) be the smallest subset of the Euclidean ball of radius r in d-dimensions B(d, r') such
that for all r € B(d, r) there exists & € T (d,r,¢) s.t. ||[r — £||2 < e. The following lemma follows
from Corollary 4.2.13 of (Vershynin, [2018).

Lemma A.2. T (d,r,e) < (1+ 21)‘1.

I
A.3 CARBERY-WRIGHT ANTI-CONCENTRATION BOUND

The following non-trivial anti-concentration of polynomials over Gaussian variables was proved
by (Carbery & Wright, [2001).

Theorem A.3 (Theorem 8 from (Carbery & Wright, [2001)) ). There is an absolute constant C > 0
such that if f is any degree-d polynomial over iid N(0,1) variables, then Pr[|f| < cE[|f]] <
Cde/ for all € > 0.

A.4 LIPSCHITZNESS OF FEATURE-MAP ¢

For the our results on offline RL dataset distillation, as mentioned in Sec. {4} we assume that the feature-
map ¢ is L-Lipschitz, specifically w.r.t. the /3-metric. In other words, for any (s1,a1), (s2,a2) €
B(do, Bo) X B(dm Bo),

[6(51,a1) = ¢(s2,a2)[|2 < L[ (s1,a1) — (52, a2) |2 :L\/Hsl = s2[3 + llax — azlf3
<L(lls1 = s2ll2 + llax — az]l2)

A.5 Low RANK APPROXIMATION

A key ingredient in our lower bound is the classical Eckart—Young—Mirsky theorem (Eckart & Young|
1936} |Stewart, [1993)), which states that for any symmetric positive semidefinite matrix A € R%*¢
with eigenvalues A\ > Ao > - - - > Ay, the best rank-m approximation B in spectral norm is obtained
by truncating the eigendecomposition of A, and the approximation error is exactly

rank(B)<m

13
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This immediately implies that if \,,, . ; > ¢, then any rank-m factorization B = ZZ " with Z € R4*™
must incur spectral error at least €.

A.6 CHERNOFF BOUND

We also use the following well known concentration bound.

Theorem A.4 (Chernoff Bound). Ler X, ..., X, be iid {0, 1}-valued random variables and let
pw=E]>"" | X;]. Then for any § > 0,

Pr lZXz <(1- 6)4 <exp(—6°1/2).

B OUTLINE OF PROOFS CONTD.

Proof Outline of Theorem 4.3} The main complication as compared to the supervised regres-
sion case is the presence of the max term in the Bellman loss, which we circumvent using a
conditioning argument. Specifically, consider some action-value predictor f € Qg given by

f(s,a) := rT¢(s,a) such that Lg~, (D1 . D;’er, f,1) > ¢, for some nyrL Assume for ease of

exposition that ||r[s = 1. Now, a f ~ H corresponds to a vector i = ar 4+ Ju where a ~ N (0, 1),
u ~ N(0,1)% ! and J is a d x (d — 1) matrix with columns being a completion of r to an
orthonormal basis. It is easy to see that with probability at least exp(—O(dlogd)), |lullz < 1
and therefore ||Jull2 < 1. Conditioning on this event and the positivity of « allows us to use

maxg f(o(s',a’)) = amax, f(P(s’,a’)). This, along with a conditioning on A ~ 1 and some
algebraic manipulations yields that LT, (D D;’}[L, f) ~ a*A, which directly yields a probabilistic

train?
lower bound of Q(A) on Lg%, (D%, D, f). The rest of the net based arguments are analogous to

the supervised case but with notable differences. In particular, we observe that D;’yrl1 can always be
replaced by a subset of size s = O(d/A?log (1/A)) so that L§T, remains lower bounded by O(A).
In addition, we use a more broadly applicable generalization error bound for the the Bellman loss

using its pseudo-dimension and the Lipschitzness of ¢. However, due to the exp(—O(dlog d)) of the

conditioning, success probability for a single sample (f, A) is also exp(—O(d log d)) and therefore
the number of predictors to be sampled is exp(O(d log d)).

Proof outline of Theorem 4.4, We observe that when ¢ is decomposable, for a )-value predictor
f(s,a) = vT¢(s,a), we have that max, c 4 f(s',a') = v'¢1(s') + maxyea v ¢o(a’). Here
@ = maxye4 V' ¢2(a’) depends only on v and is independent of the dataset. This allows for

cancellations of terms between D", and ny'L in f/gern, and using the constraint in equation we
obtain a linear regression formulation in the embedding space R?. Thus, one can essentially follow
the proof of Theorem Further, it is easy to see that if ¢1 and ¢4 are linear then the constraint in

equation (1 1is linear in the points of D;’)EL resulting in a convex optimization.

C PROOF OF THEOREM [4.1]

var = {(xi,yi) € B(d, B) x [—b,b]}?_, is the given training dataset consisting of feature-vector

and real-valued label pairs for a regression task. For ease of notation in the proof of this theorem
we shall drop the concatenation operator ¢ and instead use vectors to denote the data point with the
feature-vector and label concatenated. Further, we let ¢ := d + 1 represent the dimensionality so that
the domain of F is R?. With this notation, D;.0 = {x; € B(q — 1, B) x [—b,b]}_, is the given
training dataset. We use an analogous notation for the datapoints of the synthetic datasets in the

analysis below.

C.1 BOUNDS FOR FIXED iL AND FIXED SYNTHETIC DATASET ZA)
We begin by fixing (i) h € F s.t.

h(x) := éu'x for some u € R?s.t. |uljs = 1and & € [1,2] (14)
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and, D = {z; € B(q — 1, B) x [~b,b]}5_, for some s € Z*. Using this, we have

, 2

err 1 - ~ T 2 1 - A Ta \2

Line(Dih, D, h) = (n Z;(cu x;)® — ;Zl<cu z;) (15)
1= 1=

The following lemma provides a key probabilistic lower bound.

Ler;llma C.1. Let L™ (D" ' D, h) > A. Then, for a randomly chosen g ~ G(F) s.t. g(x) :=r'x,
we have

err su » A 7
pe | (B0 D) > oz ) Nl <10)| = 5

for some absolute constant Cy > 0.

mse train’?

Proof. We first lower bound the expectation E [Lerr, (D D, g)} Sampling a random g € G

corresponds to sampling r ~ N(0,1/¢)? w.a.r. and letting g(x) := r'x for x € RY. Letting
ri := u, we can find unit vectors rg, ..., ry such thatry, ..., r, is an orthonormal basis. Writing
r:=air; + --- + aqry, we obtain that o is iid N (0, 1/q) for each j € ¢. Therefore,

2 2
LT (D2 D, g) Z Za]rlxl - fz Zajrj 7 (16)
=1 Jj=1 =1 j=1
Define 3; = > 1_, ajrix; for i € [n] and similarly v; = >9_, ayrjz; for i € [s]. Note

that both {f3; };_1, {7: }{_; are independent of a;. We now rewrite the squared loss in terms of
{61} =1 {72} _, to obtain:

2
" n 1 S .
Lo (Db, D < Z ar{%; + f;)° . = (arriz; + %')2>

i=1 i=1

( (T - 22@1202)

=1

n S n S 2
+ 204 L Zﬁir-{xi - EZ%‘I‘IZ‘ + L 2/312 - 12%2 a7
n et n = 5 =

At this point, we let £ == (L 37" | (r] xl) — Iy (r2)?),w= (230 B -1 )
and A = 2 (% Z?Zl BirIxi 1 27 1 ’ylr ) Note that x, w, A are independent of cv;. Substituting
these into equation|[T7] we obtain

T u 2
L?nse(Dfrafn7 D7g) — (a%l‘ﬁ; + al)\ + w)
=atk? + 202 + WP + 2050k + 200 dw + 202wk

Taking the expectation over «; yields,
Ea, [LE (D D, g)] =E [af] K2 + E [af] A +w® + 2E [a}] Ak + 2E [a1] Aw + 2E[a}]wk
(3/¢*)k* + N2 /g + w?® + (2/q)wrk

(2/¢°)K* + (k/q+w)? + X /q
2/

°)K*
2 (1 1< ?
TA
2<n (r{x;) _EE (1’1Zz‘)2>

i=1

1) [égu )’ 1211 ) ]
)

(G
(

v

o

L (D D7) > 2

mse train’ ) 2

(18)

%\H

15
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where we used equation|14|and equation|15|along with the fact that a; ~ N(0,1/q). Observe that
Line(Digins D, g) is a degree-4 square polynomial in {cv;}_, and hence is always positive. Observe
that the lower bound in equation [18|is independent of {c;}%_, and is thus an lower bound for the

expectation over {«; };’.:1. Applying Carbery-Wright (see Appendix ) to equation |18|we obtain

P -\ =2
g 72) 22

4
~ 1 A 1
LD D: 9) 2 ( ) ] >3 (19)

Further, since E[||r||3] = 1, by Markov’s inequality, Pr[||r||3 > 10] < 1/10. This along with the
equation [19and taking Cp = (1/2)(1/72)* completes the proof. O

The following is a straightforward implication of Lemma along with the Chernoff Bound

(Theorem[A.4).
Lemma C.2. Let L%, (D*° D, h) > A. Then, for iid random gy, . .., gi ~ G(F), s.t. g;(x) =
T

VX we have

‘ o A 7k -7k
pr||{i e s (B0 0.0 > g ) A< 10} > ] > 1- e (57)

C.2 NET OVER REGRESSORS /i AND SYNTHETIC DATASETS Dgyp

Thus, we can consider the cover T(q,2,¢)) (see Appendix [A.2) and let F = {h : It €

T(q,2,€) s.t. h(x) := ©7x}, for some parameter & € (0,1) to be chosen later. The following
is a simple approximation lemma.

First we shall construct a net over regressors h € F, where h(x) := r'x for some r € B(q,2).
i

Lemma C.3. For any D*° and D as defined in the previous subsection, for any h € F, 3h € F s.t.

train

LS (DP D, h) — LS (DP D, h)

mse train? mse train’?

< 65¢6(B +b)t. (20)

Proof. Let h(x) := r'x, where r € B(q,2). Choose ¥ € T(q,2,€) s.t. |r — ]2 < € and
define h to be h(x) := £Tx. Thus, for every x; € Db |(rTx;)? — (#7x;)?| < ((r - f‘)Txi)2 +

2[((r —2)"x;) r7x;| < (&(B+b))? + 4£(B 4 b)? < 54(B + b)? since £ < 1. Using this, along

2
with equation|15|we have that L™ (D3P ' D, h) = ( Ler (D2 D, h) + U) where v € R s.t.
[u] <56(B +b)*.

Therefore, ’nge(Dfrifn, D,h) — L&, (DX D, h)‘ < 20v|y/Ler (D "D, h) + |v]?. Itis easy to
see using the norm bounds on the regressor vectors and the data points along with equation[T5] that

\/LEr (DX D, h) < 4(B+b)2. Thus, 2|v|y/ L& (D2 D, h) +[v]? < 40¢(B+b)*+25¢2(B+
b)* < 65¢(B + b)%, which completes the proof. O

‘We now show that the synthetic data D:;,‘,’ can be approximated with a much smaller dataset D whose

points are from an appropriate Euclidean net.

Lemma C4. Fixav € (0,1). For any Dy, there exists a dataset D of size s := q whose points are
from Euclidean net T (q, \/q(B +b),v\/q(B + b)/2) such that for any h € F,

LS (D D, h) — LT (D  D%P h)| < 650¢%(B + b)* (21)

mse train? mse train? ~—syn»

Proof. Let us first take D (bounded in a ball of radius /g(B + b)) to be the dataset of size ¢ from
Lemma D2l such that

L (D D, h) = L (D3P DP ) (22)

mse train? mse train? * syn >’

16
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Then we create D by replacing each point in D with the closest point in 7 (g, V(B +0b),\/qu(B +
b)/2). Using arguments analogous to those in the proof of Lemma [C.3| we obtain,

mse train? mse train?

LT (D D, h) — L (D2 D, h)‘ < 65v¢*(B + b)® (23)

Combining the above two inequality and equation completes the proof. O

C.3 UNION BOUND OVER NET AND COMPLETING THE PROOF

To use the analysis in Sec. letus set & = A/(103Coq?(B+b)*) and v = A/(108Cyq* (B +b)%).
Applying Lemma [C.4]and followed by Lemma [C.3|directly yields the following combined net for the
regressors h and the synthetic dataset.

Lemma C.5. Forany h € F and D3¥, there exist h € F and D € T (q, Va(B+b),v\/q(B+b)/2)*
such that

e (Dsup [),il) o (Dsup Dsup h)‘ < A/(10600q2(3+b)4) (24)

mse train’? mse train? -~ syn’

where s := q for some constant Cy and F = {h : 3¢ € T(q,2,€) s.t. h(x) := #Tx}.

) lolrm(<52)

Thus, one can apply Lemma with k = O (q2 log (‘I(BT'H))) log (%)) and take a union bound

over F x T (g, V4(B +d),v\/q(B + b)/2)* to obtain the following: with probability (1 — §) over
iid random g4, . .., gi ~ G, if L& (DP /D, h) > A then there exist 7k/60 distinct j* € [k] s.t.,

mse train’

Observe that

F X T(q,/q(B +b),v\/q(B +b)/2)*

su - A
(£ 02 D.050) > o ) A (v < 10) @s)
Now, since [|v;-||3 < 10, ég;« € F for some é > 2/4/10. And since L%, (DXP D, g;-) is

mse train’
proportional to ||v - |3, applying Lemmato L (Dpb D, ¢gj«) yields that

A
s
nge(DtrL:l?m Df}lfj'g’ gj*) Z W

which implies,
TkA

k
Z Lf;;e(Dter:i?n’ D:;r?a gj) Z W
j=1

completing the proof of Theorem[4.1]

D LOWER BOUNDS FOR SUPERVISED LEARNING DATASET DISTILLATION

D = {(x;,y:) € B(d, B) x [0,b]} is the given training dataset consisting of feature-vector
and real-valued label pairs for a regression task and our goal is to find the synthetic dataset D5y =
{(zi,9:) € B(d, B) x [—b, b} ;. For ease of notation in the proof of this theorem we shall drop the
concatenation operator ¢ and instead use vectors to denote the data point with the feature-vector and
label concatenated. Further, we let ¢ := d + 1 represent the dimensionality so that the domain of F
is RY9. With this notation, D" = {x; € B(¢ — 1, B) x [—b, b}, is the given training dataset. We
use an analogous notation for the datapoints of the synthetic datasets in the analysis below.

We begin by fixing f € F s.t.
f(x) := éu'x for some u € RY s.t. ||ul|o = 1and é € [1,2]
and, DY = {z; € B(q — 1,B) x [—b,b]};_, for some s € Z*. Further, let us also define

X = [X1,X2,...,Xp] € R™*" and Z = [z, 22, ..., 2y € RT*™,

17
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Using this, we have

mse \"train’ *syn’

Lerr (DSUP Dsup ) — <

XX zzT\ \’
=ét (uT ( - > u> (26)
n m
Lemma D.1. Let Z € RY™ have columns z; = (uj,s;) with u; € R7™1, s; € R, satisfying
[ujllz < B and |s;| < bforall j. Let Z € R7*? have columns Z; = (v;,t;) and satisfy ~ZZ" =

T .
%ZZ . Then for all i, ||v||2 < \/q B and |t;| < \/qb.

Proof. Write the block decomposition LZZT = %ZZT = (?r ;) with A = L5 ujuf

and @ = LY 52 Let V. € R(4~D*4 have columns v;. Then %VVT = A, s0 ||V]3 <

m j=1°3"
gtr(A) < ¢B?, giving ||vi|2 < /g B, foralli = 1,...,q. Similarly, for t = (¢1,...,t,) we have
ézit?:agb{giving\mS\/Z]b,forallizl,...,q. O

AsZZT € R™*Yisa positive semi-definite matrix, we observe that by using the Cholesky factorization
the synthetic data Dgyh (corresponding to Z € R?*™) can always be replaced by another dataset
D (corresponding to Z € R?*9) of size ¢ such that ZZT /m = 77" /q without any change in the
loss. Together with the norm bounds on the data points of D from the lemma above, this leads to the
following lemma which we use in section [C}

Lemma D.2. For any Dy € (B(d, B) x [0,b])™ and D, € (B(d,B) x [—b,b]})", there

train

exists a dataset D € (B(d,BvVd+1) x [=byd+1,b8/d+1])? of size d + 1 such that
L (D3P Dyh, f) = LS (D> D, f) for any f € F.

train’? mse train?

D.1 LOWER BOUND ON THE SIZE OF SYNTHETIC DATA

Given a parameter ¢ and a dataset D,... (corresponding to X € R?7%™), the objective of the supervised

learning dataset distillation problem to find a synthetic dataset Dgyh (corresponding to Z € R4*™)
such that LT, (Dyh DGR, f) < e forall f € F, as stated in ().

train?

This means that in equation (26), we need to have L& (DiP Dyt f) =

mse train’?

2
T T . .. . .
&t (uT (% — %) u) < ¢ for all unit vectors u € R?. This implies that the matrix

T T
corresponding to synthetic dataset Z should satisfy H% — %”2 < (—‘/QE

Using the low rank approximation theorem stated in[I3] we can say that m needs to be at least the

.
number of eigenvalues of % larger than % or more formally the size of the synthetic dataset
4

m > #{N(XXT > g} = #{0:(X) > Elé/ }+, where # denotes the size of a set and A, o denote
the eigenvalues and singular values of a matrix.

In the worst case choice of Dy .o, (corresponding to X € R?%™), we get a lower bound of m > ¢ =
d + 1 on the size of Dgyh when all d + 1 singular values of ¢(D;.}

c1/4

) are larger than &5—.

18
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D.2 PROOF OF THEOREM [4.2]

We begin with the following lemma.

Lemma DJ3. Letd > 1, q =d+ 1. Forany vy,...,vp € RIwith T < @ there exists a
non-zero symmetric matrix A € R9*9 that satisfies
viAvi=0 fort=1,...,T. (27)

Proof. Note that v Av; = <A ViV, > Further, the set of ¢ X ¢ symmetric matrices is a g(q + 1)/2
dimensional linear subspace of R?*9. Since T' < ¢(gq + 1)/2, there exists a non-zero symmetric

. . T .
matrix in the orthogonal complement of the linear span of {vtvtT } ,—, Which can be taken to be the
required matrix A. O

To complete the proof of Theoremmwe first choose D;,° = {e1,...,e,} where e; is the vector

with 1 in the ¢th coordinate and zero otherwise i.e., it is the ith coordinate basis vector. It is easy to

see that
Luse (D32, f) = (1/q)v'Iv = (1/q)||v|}3, (28)

when f(z) := v'z for all v.€ R%. Now, let fi,..., fr be the regressors as in the statement of
Theoremd.2] Applying Lemma[D.3|we obtain the symmetric matrix A which, by scaling, can be
assumed to have largest magnitude eigenvalue i.e., its operator norm be 1/2.

We now construct Dgyfy as follows. Consider the B = (I + A). Since the operator norm of A is

1/2, B is psd with maximum eigenvalue at most 3/2 and minimum eigenvalue at least 1/2. The
eigen-decomposition of B implies that

B = Z(\/Eui)(\@uf (29)

where max;—1_ ¢ A; < 3/2, min;—q, oA > 1/2, and ||u;|ls = 1fori = 1,...,d. We take
Dy == {v/Aiu; },, so that its points have Euclidean norm at most 1/3/2 < 2. Using equation
we have that,

Linee(D3®, f1) = (1/q)v By = (1/q)(|vell5 + VT Avy) = (1/q)|[vell3, t=1,...,T. (30)

The first condition in equation [6]directly follows from equation 28]and equation[30} To see the second
condition, choose v to be the eigenvector of A corresponding to its maximum magnitude eigenvalue
which is 1/2. Then,

Lunse(D32, fo) = (1/@)(Ivoll3 + v5 Avo) (€2))
which along with equation [28]implies that

u 2
Liyte(Diah, D32, fo) = ((1/@)lIvoll3 — (1/a)([Ivoll3 +vg Avo))™ = (1/4°) (v Avo)® = 1/(4¢°).
proving the second condition of equation [6]as well.

E PROOF OF THEOREM [4.3]

For ease of notation, we will use O() notation to absorb absolute constants in the proof below.

For convenience, like in the case supervised regression case, we shall homogenize the Bellman
loss as follows. Let us define ((s,a,r) := (t1,...,tq,7) Where ¢(s,a) = (t1,...,tq). Note that
since d) : B(do,Bo) X B(do,Bo) — B(d7B), we have C : B(do,BU) X B(do,Bo) X [OaRmax] —
B(q, B+ Rmax). We also define a class of functions Q mapping B(dy, By) x B(do, Bo) x [0, Rmax]
to R where each h € Q is given by h(s,a,r) := r'((s,a,r) for some r € R4+, Let Q; be the
restricted class where ||r||s < 2

), taking r = (vy,...,vq, —A) yields that

Note that for any f € Qq given by f(s,a) := v'¢(s,a
= h(s',d’,0). Thus, we define another version

h € Qand h(s,a,r) = f(s,a) — Ar,and f(s',a’)
of the Bellman loss as:

2
EBell(Dv h) = ]E(s,a,r,s’)<—D [(h(sv a, T) -7 H}gﬁ h(slv al7 O)) ] (32)
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Using this we can see that, for f € Qg where f(s,a) := v'¢(s,a), takingr = (vq,...,v4,—1) and
h(s,a,r) :=r"((s,a,r) we obtain that h € Q; and
Lgen(D, f) = Lgen(D, h). (33)

Further, for some (f,\) € H, where f(s,a) := v'(s,a), letting r = (vy,...,vq,—A) and
h(s,a,r) :=r"((s,a,r), we obtain that h € Q and

Leen(D, f,A) = Lgen(D, h). (34)
Thus, by abuse of notation, we think of h € H being chosen randomly by sam-
pling r € N(0,1)4"1.  We shall use ¢ to denote d + 1 in the rest of this sec-

tion. We fix D% {(s4,a:,7:,8;) 1, as the given training dataset, and for D =

{(éi,ai,ri, z) S B(do,Bo) X B(do,Bo) [0 Rmax] X B(do,Bo)}l 1> We define:

- - . 2

géll(Dgzlmv D? h) = (LBEH(Dtrdm’ h) - LBell(D7 h)) (35)
It is easy to see using the norm bounds and equation equation that for any h € Qi,
Lgen(D, h), Lgen (D2 h) < 16(B + Rpax)? and Lgr;“(D“' D, h) < 256(B + Ruax)*.

train? train’

E.1 PROBABILISTIC LOWER BOUND FOR FIXED il AND ﬁ

We fix for this subsection i € Q; and D as above. First we prove the following lemma.
Lemma E.1. Ifﬂ;”{én(Dm' D, iL) > A, then over the choice of g € H, s.t. g(s,a,r) :=r'((s,a,r),

train?

P (i (D3 D.0) > 8/8) 1l < 2)] > (25 meax)4))>(C1d). 36)

where ¢y > 0 is a constant.

Proof. Let h correspond to the vector ¢ € R%! where ||#]s = 1 and ¢ < 2. Thus, a random
r € N(0,1)%*! corresponds to af + HF where a ~ N (0, 1) and ¥ ~ N(0,1)? are independently
sampled and H is a (d + 1) x d matrix of unit norm columns which are a completion of t to a

orthonormal basis. From the above upper bound, we have that L&, (D2 . D, h) < 256(B + Rpay)*
and therefore, A < 256(B + Rpax)*.

Let us condition on the event £ that ||| < (cOA/(ﬂ(B + Rmax)4))> and « € [1,3/2]. Firstly,
since (cUA /(Vd(B + Rmax)4))> = O(1), by the properties of the standard Gaussian distribution,

one obtains that
A C1d
Prl] > ——m-— 37
2 (\/&(B + Rmax)4))

for some ¢, depending on ¢y only. Now, £ implies that [|[HF |, < (coA/(B + Rmax)*) = v < 0.1
for which we choose ¢y > 0 small enough. Since o > 0 under £ this implies that

2
/ /
(g(s,aﬂ") vmaxg(s',a 70))

2
ot +HE) ¢ (s,a,7) — maﬁ(af' +H)¢(s, d, 0))
a’'e

2
atT¢(s,a,r) *ymaxarTC(s’,a',O) :I:O(U(B—FRmax)))

-(
(
(o
(

2
atT¢(s,a,r) —a'ymaﬁr T¢(s',a',0) £ O('U(B-l—Rmax)))
€

2
ot T ¢(s,a,1) — ay meaﬁrTC(s',a',O)) + O(v(B 4 Runax)?)

(3%)
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where we used the upper bound on . Thus, using analysis similar to the proof of Lemma[C.3] we
obtain that for some choice of ¢y > 0 small enough, £ implies that

Lyt (Dgan D, 9) — o* Ly (Dgiia, D, (/)| < A/64 (39)

train’ train?

and since o > 1 and and ¢ < 2, we have a4i§‘zll(D°" ﬁ, (ﬁ/é)) > A/16. Thus,

train’
L (DS, D, g) > A/32. (40)

Moreover, since ||Hr||, < 0.1 and o € [1,3/2], we obtain that ||r||s < 2, which completes the
proof. O

The following amplified version of the previous lemma is a direct implication.

Lemma E.2. Let Eggu(Dggm, D, H) > A. Then, for iid random g1, . .., g, ~ H, s.t. gj(s,a,r) =
roC(s, a,r) we have
z |7 A (crd)
err orl N> , < > 71— _
(L5 D0 = 8/8) 1l < 2)) | 211 (o)

k
Pr

.
<=
I

E.2 NET OVER PREDICTORS h AND SYNTHETIC DATASETS Do

syn

First we shall construct a net over predictors h € Q, where h(x) := r'((s,a,r) for some r €
B(g,2). Thus, we can consider the Euclidean net 7(¢,2,£)) and let Oy := {h € Q; : It €
T(q,2,€) s.t. h(s,a,r) := #7¢(s,a,r)}, for some parameter £ € (0,1) to be chosen later. The
proof of the following simple approximation lemma is exactly along the lines of the proof of Lemma
[C.3]and the analysis in the previous subsection accounting for the error in the max term of equation [32]
which is handled similarly.

Lemma E.3. For any D*". and D as defined in the previous subsection, for any h € Qy, Jhe @

train
S.1.

Terr orl 2 Terr orl A 7
Bell(Dtraim D7 h) - Bell(Dtraina Da h)

< 300€(B + Rmax)™. (41)

The argument for net over the synthetic dataset is similar - we show that the synthetic data nyrL can

be approximated with a much smaller dataset D whose points are from a discrete set.

Lemma Ed4. Fix a 7,v € (0,1). For any ny'll there exists a dataset D of size s =
O((p/72)1og(1/T)) (where p is the pseudo-dimension in Sec. |4)) whose points (3, a,, 8') are s.t.
$,a, 8 are from the Euclidean net T (dy, By, V(B + Rmax)/(10L)) and 7 € T (1, Ryax, V(B + Rimax))

such that for any h € Qy,

i’le?gll(Dlorgim ﬁ7 h) - f’%rer:ll(ch;:im D(s))tlu h)‘ S O(T(B + Rmax)4 + I/(B + Rmax)4) (42)

Proof. Since p is the pseudo-dimension is as defined in Sec. [)), it is also the pseudo-dimension
on the class of functions V given by Lgen({s,a,r,s'}, h) for h € Q;. Thus, Let us first define D
probabilistically to be a set of ¢ := O((p/72)log(1/7)) points independently and u.a.r. sampled
from Dg’y'll Using the upper bound on N (7/16, V, 2t) from Chapters 10.4 and 12.3, and Theorem
17.1 of [Anthony-Bartlett, 2009], we get that for any h € Q1,

syn’

‘iseu(b, h) — Lgen(D2"! h)’ < 167(B + Ripax)? (43)

with probability at least > 0. Thus, using the above and arguments similar to those used earlier in
this and the previous sections we obtain that there exists D of size s s.t.

Lia (D3

train?

D.h) — Lgiy (D, D B)| < O(7(B + Fr)*) (44)

train’» ~syn>»

Lastly, to get D we replace each (s,a,7,s") in D with the nearest point in the net 77 :=
T (do, Bo, V(B + Rmax)/(10L)) x T (dg, By, V(B + Rmax)/(10L)) X T (1, Rmax, V(B + Rimax))) X

21



Under review as a conference paper at ICLR 2026

T (do, Bo, ¥(B + Rmax)/(10L)). Using the Lipschitzness bound of L on ¢ and the analysis used in
the proof of Lemma|[C.4] we obtain that,

L (Diins Dy h) = Lty (Dgiis Dy h)| < O(v(B + Runa)*) (45)

train? train >’

Combining the above two inequalities completes the proof. [

E.3 UNION BOUND AND PROOF OF THEOREM [4.3]

We take &, 7 and v to be O(A/(B + Ruax)?), so that applying Lemmasandyields,

Lemma E.5. Forany h € Qy and D\ there exist h € Oy and D € (T7)! such that

syn’

Terr orl orl T err orl A 7
Bell(Dtraim Dsyn’ h) - Bell(Dtrain’ D7 h)

<C'A (46)

where C' > 0 is a small enough constant and t := p(Cy /72) log(1/7) for some constant Cy and O,
is as defined in the previous subsection.

Now, the size of the net is bounded as follows:

. . (6\7 6By L dot
o] <1mi'<(5) - (o)

=exp (qlog((B + Rmax)/A) + doplog((BoL(B + Rmax)/A)) =: £ 47)

(Vd(B+Rmax)*))

(—e1d)
Now, using the above, we take k = ($) e log(1/6) in Lemma and apply
union bound over the neﬁllong the lines of the proof in Sec. [C.3). To get back the lower bound with

D2 we apply Lemma E.4|to g; such that |r;| < 21ie. g; € Q1. This completes the proof.

syn

F PROOF OF THEOREM [4.4]

We can use elementary manipulation of Lg7, based on (IT) and the additive state-action embedding
to essentially remove the max term and the subsequent proof is along the same lines as that of
Theorem [4.11

We have f(s,a) :=v'é(s,a) = v ¢1(s) + v ¢2(a) as defined, so notice that

max f(s',a') = v 1(s') + maxvToa(a’) (48)

a’'e

In (48), max,c 4 v'¢2(a’) is a constant independent of the training and synthetic dataset and
depends only on v, so we define a(v) = maxg e V' ¢2(a’). Expanding within the outer square,
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canceling and zeroing out using mild linear condition (IT]) and equation (48)), we obtain

et (Dfains Dogns 5 A)

=(B(s.arsepg, [(f(5,0) = Ar —ymax f(s',a'))?]

= E(o,a,rs)engl(f(s,a) = Ar —ymax f(s',a))?))?
By [(VT01() £ v ba(a) — Ar — T 1 (5") — ()

— Esarsyenm (VI 61(5) + v d2(a) = Ar = vT i (s") — ya(v))?)?
By [(VT(61(8) — 161(5") + 62(@)) — M — 7a(v))]

—Esars)epg (V7 (91(5) = 791(s") + ¢2(a)) = Ar — ya(v))?])
(E(s a,r,s’ )« D [( ( (S> 'Y ( ) + ¢2( )) )2]

train

— Esamsyenpn (v (01(s) = y1(s) + ¢2(a)) — Ar)?]
+ By sy ngn, [0 (V)] = By oo pgn [17 0% (V)]
— 2B (5 4051 pon [Y(V) (VT (01(5) = 161(s") + ¢2(a)) — Ar)]
+ 2B (g q o [Ya(V) (VT (@1(s) = 791 (") + da(a)) — Ar)])?
=(E(s.arsyepo [(VI(B1(s) = v¢1(s') + ¢2(a)) — Ar)?]

train

- E(s7a7r,s’)<—D;’§L[(VT(¢1(S) - ’7¢1(Sl) + (bg(d)) - )\7") ])2 (49)

Now notice that the loss term (#9) looks exactly like the linear supervised regression loss Lirt.. We
can concatenate v and A to get a regression vector r. In addition, we take the feature vectors x to
be simply ¢1(s) — vp1(s") + ¢2(a) and the regression label y to be r. Note that x < O(B) and

Y < Rmdx

We can sample regressors r ~ N(0,1/(d + 1))4*! v.a.r. and use the concatenation trick as before.
The nets will be taken over the embeddings of states and actions instead of the states and actions
themselves. Thus, via analysis similar to the linear regression case (Theorem [4.1I)), we obtain a
O (d?1og(d(B 4 Rmax)/A)log(1/6)) upper bound on the number of sampled predictors, given that
the synthetic dataset satisfies the mild linear condition above.

F.1 CONVEXITY OF THE OBJECTIVE

As seen above, L&, reduces to the supervised regression case with ¢ (s) — v¢1(s') + ¢a(a) as
the regression point with regression label r, corresponding to (s, a, r, s"). From Appendix|G.2} the
optimization objective in the supervised regression case is convex in the synthetic data regression
points and labels.

orl
syn*
Further, the condition in equation |11|is also an affine linear constraint on the points of DSY’L, and
therefore the optimization is convex.

Therefore, if ¢ and ¢, are linear in (s, a,7, s') then the LgY, is also convex in the points of D

G USEFUL TECHNICAL DETAILS

G.1 BELLMAN LOSS RISK BOUNDS

The value gap i.e., the difference between the true and estimated value functions for a policy
corresponding to a Q-value predictor can be estimated by the latter’s empirical Bellman Loss on
offline data. This holds under under a certain concentrability assumption — informally it states that the
dataset should contain all state-action pairs which are reachable from the starting state with significant
probability, should also be present with sufficient probability in the dataset. We refer the reader to
Assumption 1 and Lemma 3.2 of (Duan et al., | 2021)) for more details.
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Table 1: Homogeneous Linear Regression MSE loss over white and red wine quality data

wine color Nsyn Dtrain Dsyn Drand Dlev
20 0.85+0.20 1.82+1.22 1.21 £0.45
red 50 0.65 £ 0.04 0.65 £ 0.07 0.97+0.22 0.80 £0.08
100 0.67 £ 0.05 0.81 £0.16 0.73 £0.07
20 1.00£0.21 1.81+0.44 1.31+0.30
white 50 0.74 +£0.04 0.82£0.17 1.04 +£0.19 0.90 £0.11
100 0.75 £ 0.02 0.83 £0.05 0.84 £ 0.05

G.2 CONVEXITY OF L™ (D3P D3P f)

mse train?

From equation [1} Ly (Dot | f) is constant w.r.t. D5y} and the dependent part is Ly (Dsyn, f)-
The latter is the mean squared error loss which is the average of squares of linear functions of the
points of Dgyp and is therefore convex in the points of Dgyi. Since L& (DpoP . Dyl f) is convex in

train?
Lunse(Dsy, f), it is also convex in the points of Dy

Now, if ¢ is linear in (s, a) (the concatenation of s and a), then Lgen (D, f, A) (from equation i
is a sum of squares of terms which are each the difference of (i) a linear function in the points o

D;’;L and, (ii) the maximum over a A of linear functions of the points of Dg’y'{]. Since max (over
a fixed number of arguments) is a convex function over its vector of arguments, this implies that

T orl : Terr orl orl :
Lpen(Dgyy, f, A) is convex and therefore Ly, (Dyli,, Dy, f5 A) is also convex.

H ADDITIONAL EXPERIMENTS

H.1 ADDITIONAL EXPERIMENTAL DETAILS FOR THE WINE QUALITY DATASET

The red wine dataset has 1599 wine samples and the white wine dataset has 4898 wine samples. For
both red and white wines, we use the feature QUALITY as the label and regress on the remaining
11 features. We pre-process the data by standardizing each feature column and label. We randomly
shuffle the samples into an 80/20 split into training and test data.

We use a linear homogeneous model (i.e. f(x) = r'x) for regression on the label. We sample
k = 100 linear regressors from the standard normal distribution as well as Ny, = 100 another
regressors from the same distribution. Using a fixed learning rate of 0.01 on the Adam optimiser
and at most 5000 steps, we optimize the randomly initialised synthetic data until the objective has
minimum value on the N, = 100 regressors. The model is then trained on the four datasets using
the Adam optimizer with a learning rate of 0.001 and the mean loss is reported in Table [T}

We observe that a model trained on Dsy,, performs better than ones trained on both D,,q and De,.
We also observe that the test loss of a model trained on Dy, decreases, as expected.

H.2 ADDITIONAL EXPERIMENTAL DETAILS FOR THE THE BOSTON HOUSING DATASET

The Boston Housing dataset has 506 samples. We use the feature MEDV (Median value of owner-
occupied homes in 1000’s) as the label and regress on the remaining 13 features. We preprocess the
data by standardising each feature column and label. We randomly shuffle the samples into an 80/20
split into training and test data. The sizes of the synthetic dataset Ny, we consider are {20, 50, 100}.

We take £ = 100 random homogeneous linear regressors in Algorithm 1. Using a fixed learning rate
of 0.01 on the Adam optimiser and at most 5000 steps, we optimise the randomly initialised synthetic
data until the objective has minimum value on the Ne,, = 100 randomly sampled regressors. The
model is then trained on the four datasets using the Adam optimiser with a learning rate of 0.001.
The mean test loss of models trained on respective datasets (over 10 trials) are included in Table@

We observe that a model trained on Dsy, performs better than one trained on D;,,q and on par with
Dey. We also observe that the test loss of a model trained on Ds,,, decreases, as expected.
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Table 2: Homogeneous Linear Regression MSE loss over Boston Housing data

Nsyn Dtrain Dsyn Drand Dlev

20 0.57 £0.23 1.77£1.71 0.57 £0.20
50 0.27 £0.05 0.40£0.14 0.44£0.16 0.38 £0.08
100 0.29 £ 0.07 0.29 £ 0.08 0.36 £ 0.09

H.3 ADDITIONAL EXPERIMENTS AND DETAILS FOR THE CARTPOLE ENVIRONMENT

In this environment, a pole is attached by an un-actuated joint to a cart, which moves along a
frictionless track. The pendulum is placed upright on the cart and the goal is to balance the pole by
applying forces in the left and right direction on the cart. The action indicates the direction of the
fixed force the cart is pushed with and can take two discrete values. The observation is an array with
shape (4, ) with the values corresponding to the positions and velocities. The episode terminates if
the pole angle or position goes beyond a certain range and is artificially truncated after 500 time-steps.
Since the goal is to keep the pole upright for as long as possible, by default, a reward of +1 is given
for every step taken, including the termination step.

We sample n = 10000 steps of completely random policies in this environment to get Dyyin, Which
contains both terminated and non-terminated states. We separate them into Dyin terminated and
Diain-nonterminated- Y€ have to do this in our implementation as the theoretical result only analyzes
infinite horizon MDP’s. In practice, the g-value function for the terminated states does not have any
max term as the trajectory ends there, i.e. for a terminated state Sierm, the g-value is simply the reward,
so we use f(Sterm, @) = 7. We use our data distillation routine to get a distilled version of each of
these datasets separately and combine them together to get Dgyn-nonterminated + Dsyn-terminated = Diyn-
Note that the ratio of the terminated and non-terminated states in Dgyy, and Dy, is artificially kept
the same and we take the total size of the synthetic dataset Dgy, to be Ngy,.

Our model architecture for this experiment is fixed to a 2-layer (10,10) ReLU based neural network.
For the synthetic data generation, we sample k& models and we use the Adam optimiser and perform a
search over the learning rate among {3e-1, le-1, 3e-2, le-2, 3e-3, 1e-3, 3e-4, 1e-4} for the distillation
processes of both the terminated and non-terminated states and report the synthetic dataset that
performs the best on evaluation.

We train the three datasets using the Fitted-Q iteration algorithm that iteratively optimises the Bellman
loss to get a g-value predictor. We test the optimal policy corresponding to the g-value predictor
on the real environment and report the returns. We report an extensive evaluation with multiple
values of k, Ngyn in Table We observe that on average, policies trained on our generated synthetic
data perform better than both real and random data. As expected, we see that as the size of Dsyn
increases (i.e. Ny, increases), the model trained on it performs better. Surprisingly, increasing the
number of randomly sampled action-value predictors k does not seem to have a discernible impact on
performace.

H.4 ADDITIONAL EXPERIMENTS AND DETAILS FOR THE MOUNTAIN CAR ENVIRONMENT

The Mountain Car MDP (Moore| (1990), [Towers et al.|(2024) MIT License) is a deterministic MDP
that consists of a car placed stochastically at the bottom of a sinusoidal valley, with the only possible
actions being the accelerations that can be applied to the car in either direction. The observation
space is continuous with two dimensions and there are three discrete actions possible. The goal is to
reach the flag placed on top of the right hill as quickly as possible, as such the agent is penalised with
areward of —1 for each timestep. The episode truncates after 200 timesteps and is also terminated if
the position of the car goes beyond a certain range.

To generate the offline data, we sample 5000 samples through a uniformly random policy and another
5000 samples through an expert policy trained using tabular g-learning on a discretized state space.

We use the same learning rate search method as mentioned in Section and optimizers to get the
synthetic data, partitioned into terminated and non-terminated samples. We use a neural network with
two hidden layers with 64 neurons and ReLU activations for the g-value predictor with the Fitted-Q
iteration algorithm for training. Policies trained on the three datasets are evaluated in the environment
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Table 3: Extended Evaluation for the Cartpole Environment with (10, 10)-layer NN.

k N@yn D train D rand D syn

5 10 339.10 £ 132.07 13.50 + 0.67 500.00 £ 0.00
10 10 332.70 £ 129.18 13.90 £+ 0.54 500.00 £ 0.00
20 10  416.30 4+ 133.73 13.50 + 0.50 455.40 £ 133.80
50 10 343.10 £ 129.38 13.40 + 0.66 181.00 £ 21.87
100 10  368.20 £ 116.77 13.30 £+ 1.19 464.00 £ 108.00
5 20 33210+ 11726 135.20 +41.38 500.00 £ 0.00
10 20  377.20 £ 12243  148.20 £43.15  240.50 £ 212.56
20 20  348.50 £+ 144.20 141.30 +70.23 500.00 £ 0.00
50 20 325.80 £ 139.27  146.60 £ 36.67 500.00 £ 0.00
100 20 324.60 £ 124.09 145.30 £48.06  450.00 £ 130.99
5 50  339.80 £ 13934  174.60 £ 11.71 500.00 £ 0.00
10 50  346.70 £ 12898  174.50 £ 12.89 500.00 £ 0.00
20 50  341.80 £ 123.77  172.40 &+ 19.69 500.00 £ 0.00
50 50  330.10 £ 12047 177.80 + 10.39 500.00 £ 0.00
100 50  326.00 £ 151.14 178.10 £ 17.01 500.00 £ 0.00
5 100 337.70 £ 11530 135.90 £+ 76.44 500.00 £ 0.00
10 100 329.00 + 122.08 148.40 £104.72  500.00 = 0.00
20 100 328.90 £+ 124.00 124.10 £ 47.61 500.00 £ 0.00
50 100 33220 £123.10 129.50 £ 61.10 500.00 £ 0.00
100 100 386.40 £ 132.20 136.30 4 93.81 500.00 £ 0.00
5 200 354.00 £ 126.69  158.40 £ 53.20 500.00 £ 0.00
10 200 331.90 +130.53  169.90 + 93.20 500.00 £ 0.00
20 200 371.20 £ 133.87 176.60 £ 81.36 500.00 £ 0.00
50 200 332.80 £ 12528 175.60 £ 62.60 500.00 £ 0.00
100 200 340.60 £ 144.32  199.20 £ 97.88 500.00 £ 0.00

and the average returns over 10 trials are reported in Table[d] We observe that the policies trained on
the random datasets are not able to reach the top of the hill and are all truncated. Policies trained on
the synthetic data are on average able to reach the top of the hill, albeit slower than ones trained on
the full offline dataset. As in the Cartpole environment, increasing Ns,, increases our performance,
but increasing k as no impact on performance.

Table 4: Evaluation for Mountain Car with (64, 64)-layer NN.

k N, syn D train D rand D syn

5 10 -111.40 £13.16 -200.00 £ 0.00  -200.00 £ 0.00
10 10 -109.80 £27.92 -200.00 £ 0.00 -200.00 & 0.00
20 10 -111.60 &= 15.10 -200.00 £ 0.00  -157.70 &= 2.28
50 10 -110.10 £22.39  -200.00 £ 0.00  -200.00 £ 0.00
100 10  -106.50 +15.23 -200.00 = 0.00 -195.90 £ 8.28
5 50  -106.30 £15.49 -200.00 £ 0.00 -183.90 £ 24.61
10 50 -104.80 £15.14 -200.00 £ 0.00  -200.00 & 0.00
20 50  -104.50 £ 13.97 -200.00 £0.00 -129.50 £ 30.31
50 50  -108.90 £16.26 -200.00 £ 0.00 -162.60 £+ 17.24
100 50  -106.90 & 14.45 -200.00 & 0.00 -159.00 & 25.60
5 200  -109.80 £ 16.02 -200.00 £0.00 -149.60 + 25.39
10 200 -108.50+18.70 -200.00+£0.00 -133.50 £3.14
20 200 -105.40+14.71 -200.00 +=0.00 -121.90 £ 37.87
50 200 -112.60+14.99 -200.00+0.00 -132.00 4 23.00
100 200 -105.30414.16 -200.004+0.00 -162.90 & 32.98
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H.5 ADDITIONAL EXPERIMENTS AND DETAILS FOR THE ACROBOT ENVIRONMENT

The Acrobot Environment (Sutton| (1995)), Towers et al.|(2024) MIT License) consists of two links
connected linearly to form a chain, with one end of the chain fixed. The joint between the two links
is actuated. The goal is to apply torques on the actuated joint to swing the free end of the linear chain
above a given height while starting from the initial state of hanging downwards. The action space is
discrete with three possible actions and the state space is continuous with 6 dimensions. The goal is
to have the free end reach a designated target height in as few steps as possible, and as such all steps
that do not reach the goal incur a reward of —1. Achieving the target height results in termination
with a reward of 0. Episodes are artificially truncated after 500 timesteps.

To generate the offline data, we sample 10000 transitions through a uniformly random policy. We
use the same learning rate search method and optimizers as mentioned in Section to get the
synthetic data, partitioned into terminated and non-terminated samples. We use a neural network with
two hidden layers with 64 neurons and ReLU activations for the ¢g-value predictor with the Fitted-Q
iteration algorithm for training. Policies trained on the three datasets are evaluated in the environment
and the average returns over 10 trials are reported in Table[5] We observe that polices trained on the
synthetic data give higher returns on average than policies trained on the full offline dataset and a
randomly subsampled smaller dataset. As in the Cartpole environment, increasing Vg, increases our
performance, but increasing & as no impact on performance.

Table 5: Evaluation for Acrobot with (64, 64)-layer NN.

k Nsyn Dtrain Drand Dsyn

5 10 -84.20 +£10.82  -500.00 £ 0.00  -74.10 £ 7.49
10 10 -82.30£12.04 -500.00 £0.00  -74.60 £ 9.65
20 10 -81.30 £4.86  -500.00 £0.00  -77.50 £ 5.39
50 10 -84.60 £11.88 -500.00 +£0.00 -72.70 £6.99
100 10 -84.20+£16.61 -500.00+0.00 -74.40+£9.97
5 50 -85.10£10.97 -479.20 £41.97 -75.00 & 10.92
10 50 -83.40=£11.24 -481.30+£38.43 -77.40+£7.42
20 50 -82.60 £8.85 -481.50£37.49 -75.80+£9.40
50 50 -85.50 £9.45  -480.90 +38.23  -78.00 + 8.80
100 50 -83.30£13.24 -484.70 £30.60 -75.00 &+ 10.24
5 200 -85.60 £7.23 -103.30 £ 13.99  -89.10 + 6.61
10 200 -83.10+11.07 -99.00+ 10.74 -86.90 &+ 20.87
20 200 -82.40+8.97 -99.20 £ 8.40 -88.20 £9.94
50 200 -8690+£526 -102.50 £4.20 -85.70 £ 11.71
100 200 -85.10£8.58  -102.30+£9.96 -84.50 + 13.40
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