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ABSTRACT

Given a training dataset, the goal of dataset distillation is to derive a synthetic
dataset such that models trained on the latter perform as well as those trained on
the training dataset. In this work, we develop and analyze an efficient dataset
distillation algorithm for supervised learning, specifically regression in Rd, based
on matching the losses on the training and synthetic datasets with respect to a
fixed set of randomly sampled regressors without any model training. Our first key
contribution is a novel performance guarantee proving that our algorithm needs
only Õ(d2) sampled regressors to derive a synthetic dataset on which the MSE
loss of any bounded linear model is approximately the same as its MSE loss on
the given training data. In particular, the model optimized on the synthetic data
has close to minimum loss on the training data, thus performing nearly as well as
the model optimized on the latter. Complementing this, we also prove a matching
lower bound of Ω(d2) for the number of sampled regressors showing the tightness
of our analysis.
Our second contribution is to extend our algorithm to offline RL dataset distillation
by matching the Bellman loss, unlike previous works which used a behavioral
cloning objective. This is the first such method which leverages both, the rewards
and the next state information, available in offline RL datasets, without any policy
model optimization. We show similar guarantees: our algorithm generates a syn-
thetic dataset whose Bellman loss with respect to any linear action-value predictor
is close to the latter’s Bellman loss on the offline RL training dataset. Therefore, a
policy associated with an action-value predictor optimized on the synthetic dataset
performs nearly as well as that derived from the one optimized on the training
data. We conduct extensive experiments to validate our theoretical guarantees and
observe performance gains on real-world RL environments with offline training
datasets and supervised regression datasets.

1 INTRODUCTION

Reinforcement learning (RL) which is increasingly used to train very large machine learning models
has two training paradigms: online and offline. While in online RL a policy model is trained while
interacting with the environment, offline RL trains a model on data points collected from multiple
trajectories of interactions with the environment and external entities (e.g. humans, AI agents). In
many applications online RL is either not possible, very expensive or not scalable due the requirement
of a dedicated agent interacting with the environment for the duration of model training. A key
benefit of offline RL is its ability to ingest large amounts of diverse training data (Fu et al., 2021), and
consequently, offline RL has become popular for training large models for tasks in for e.g. natural
language processing, computer vision, robotics etc (Levine et al., 2020).

However, the use of large scale datasets presents challenges related to their storage, management
as well the computational expense incurred in their use for training multiple models with different
hyperparameters and architectures. One way to mitigate this issue is to create a smaller synthetic
dataset derived from the training dataset i.e., a distillation of the latter. Dataset distillation (DD) for
supervised learning has been extensively studied in previous works (e.g. Wang et al. (2018); Sachdeva
& McAuley (2023); Lei & Tao (2024)) which have developed a variety of methods based on matching
the loss gradients or feature-embeddings between the training and synthetic datasets by optimizing
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the latter. This is done either with respect to networks being trained simultaneously using bi-level
optimization, or a fixed collection of sampled networks. Distinct from sampling, coreset or random
projection methods, DD techniques generate synthetic data via optimization with respect to networks
which may also be trained in the process. These DD techniques have been shown to perform well on
real-world supervised datasets in terms of the quality as well as the size of the generated syntheic
dataset as the latter is explicitly optimized. While some works (e.g. Nguyen et al. (2021); Chen et al.
(2024)) have also provided theoretical performance guarantees, most DD techniques are heuristics
albeit with empirically observed gains.

For offline RL, a few recent works have proposed methods using behavioral cloning (BC) for distilling
an offline training dataset comprising trajectories of (state, action)-pairs. In Lei et al. (2024), the
authors propose optimizing the synthetic dataset using policy-based BC loss leveraging action-value
weights learnt from offline RL. On the other hand, the method proposed by Light et al. (2024) extends
the matching loss gradients approach to offline RL. In particular, it optimizes a synthetic dataset to
match the BC loss gradients on the offline and synthetic data, where the gradients are with respect to
the parameters of sampled action predictor networks.

As can be seen, the state of research into offline RL dataset distillation, while nascent, is also
unsatisfying. Firstly, the BC does not leverage the observed reward that is usually available in offline
RL datasets, and typically only perform well when the training dataset is generated by expert policies.
Secondly, there is a sparsity of theoretical performance guarantees for the DD techniques for offline
RL as well as supervised learning DD. For linear regression, the work of Chen et al. (2024) proves
efficiency guarantees assuming however that a trained model is available, while the work of Nguyen
et al. (2021) – while not training a model – proves convergence only of the synthetic feature-vectors
for given synthetic labels. For offline RL, the work of Lei et al. (2024) provides analytical guarantees,
while requiring an trained policy model on the given training dataset. To the best of our knowledge,
there are no provably efficient DD algorithms known without model training for either supervised
learning or offline RL.

Our Contributions. In this work we make progress towards bridging the above gaps in our under-
standing through the following contributions:

Dataset Distillation in supervised regression. We propose an algorithm minimizing the squared
difference of MSE losses between the training and the synthetic datasets with respect to a fixed set
of randomly sampled models. While our algorithm is along the line of previous DD approaches
using loss, gradient loss or embedding matching techniques, our contribution is to prove that it
admits efficiency and performance guarantees for linear regression. In particular, we prove that
the optimization objective is convex and tractable, and in d-dimensions optimizing the synthetic
dataset w.r.t. Õ(d2)1 randomly sampled regressors suffices to guarantee that any bounded linear
regressor has approximately the same MSE loss on the training and synthetic datasets. Therefore, the
optimum linear regressor on the synthetic dataset is close to that on the training dataset. This is the
first performance and efficiency guarantee for supervised DD without model training.
We also prove a lower bound of Ω(d2) on the number of randomly sampled linear regressors to obtain
a good quality synthetic dataset. This result shows the tightness of our algorithmic guarantees.

Dataset Distillation in offline RL. We extend the above approach for dataset distillation in supervised
regression to offline RL DD by matching the Bellman loss on the training and synthetic datasets w.r.t.
a collection of randomly sampled linear Q-value predictors over Rd. The performance guarantees
are in a similar vein as the supervised regression case, though more involved due to the max term
in the Bellman Loss formulation. Nevertheless, we obtain a performance guarantee showing that
minimizing to a small value the difference of the Bellman Losses with respect to exp(O(d log d))
randomly sampled Q-value predictors (without model training) generates a synthetic dataset whose
Bellman Loss w.r.t. any linear bounded Q-value predictor is a close approximation to that on the
training dataset. Consequently, the Bellman Loss minimizer Q-value predictor on the synthetic
dataset is close to optimal on the training dataset.

Offline RL with decomposable feature-maps. We consider a natural setting where the state-action
feature-map is the sum of individual feature-maps of the state and action. In this scenario, we prove
that our method requires only Õ(d2) sampled linear Q-value predictions, instead of the exponentially

1Õ hides polylogarithmic factors
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many required in the general case. Additionally, we show that the finding the synthetic dataset is a
tractable convex optimization when the state and action feature-maps are linear.

Empirical Evaluations. We conduct experiments on supervised regression and offline RL datasets
to validate our proposed algorithms, showing that our techniques obtain improved performance
over standard baselines, both in terms of quality and size of the generated datasets. Notably, our
experiments demonstrate the effectiveness of our algorithms using very few sampled models in both
supervised regression and offline RL settings. Although the guarantees are proven for linear models,
we show that our algorithms work well in practice with non-linear neural networks.

2 PREVIOUS RELATED WORK

Dataset Distillation. The work of Wang et al. (2018) introduced the problem of distilling a dataset
into a representative (and smaller) synthetic dataset, in the setting of supervised learning. This and
other works e.g. Deng & Russakovsky (2022) use a bi-level optimization formulation in which the
model is optimized on the training dataset while the synthetic dataset is optimized on the trained
model. A related set of methods rely on matching various properties of the synthetic dataset with
the training dataset. In particular, the work of Zhao et al. (2021); Zhao & Bilen (2021) matches the
model’s loss gradients on the training and synthetic datasets as an optimization over the latter, while
the model is alternately optimized over the training dataset. In a similar vein, the work of Wang et al.
(2022) aligns the feature distribution of the two datasets in a dynamic bi-level optimization approach,
while the works of Cazenavette et al. (2022); Cui et al. (2023) match the training trajectory of an
initial model optimized on the training dataset with its training trajectory on the synthetic dataset, by
optimizing on the latter. Unlike the mentioned works optimizing a model along with the synthetic
dataset, the work of Zhao & Bilen (2023) instead matched the feature-distributions on the training and
synthetic datasets with respect to a fixed collection of randomly sampled networks. For linear ridge
regression, the work of Nguyen et al. (2021) implicitly matched the regression losses by minimizing a
surrogate objective, while proving convergence of synthetic feature-vectors given the synthetic labels.
More recently, Chen et al. (2024) analytically gave an efficient synthetic dataset generation algorithm
for linear ridge regression, requiring however access to the optimal regression model for the training
dataset.

Closely related to DD for linear regression is matrix sketching which provides a principled way to
reduce the dimensionality (or size) of training data. By applying randomized projections (e.g., the
Johnson–Lindenstrauss transform (Johnson & Lindenstrauss, 1984; Sarlós, 2006)) or leverage-score
sampling (Drineas et al., 2006; Mahoney, 2011), one can construct a much smaller sketch of the
original data while provably preserving the solution quality of least-squares regression. However,
these guarantees are largely limited to linear and convex models. In contrast, DD methods can be
applied to neural networks, albeit without comparable theoretical guarantees. Additionally, DD
techniques optimize the synthetic dataset, and have been shown to to work well in practice on real
data in terms of size compression and quality preservation.

Offline RL. A key advantage is that offline RL is adaptable to data generated by sub-optimal
policies (Levine et al., 2020; Fu et al., 2021), while also being scalable to large datasets (Lange
et al., 2012). On the other hand, the lack of online exploration can lead to less generalizable policies
being trained due to distributional shifts. To address this, several techniques based on constraining
the policy (Fujimoto & Gu, 2021; Tarasov et al., 2023) or regularization of Q-value predictors
have been developed (Kumar et al., 2020; Kostrikov et al., 2022). A major practical consideration
is the exponential growth in dataset sizes, along with which the associated challenges of storage,
transfer and training on datasets as well as maintaining privacy controls have only multiplied. Dataset
distillation has been proposed to tackle these problems, with existing works developing behavioral
cloning methods for distilling an offline training dataset comprising trajectories of (state, action)-pairs.
While Lupu et al. (2024) propose behavior distillation for online RL, the work of Lei et al. (2024)
tackles the offline RL case by first training an action-value predictor and using action-value weighted
BC to optimize the synthetic dataset. On the other hand, the method proposed by Light et al. (2024)
extends the matching loss gradients approach to offline RL. In particular, it optimizes a synthetic
dataset to match the behavioral cloning loss gradients on the offline and synthetic data, where the
gradients are with respect to the parameters of sampled action predictor networks.
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3 PROBLEM DEFINITION

We will use B(t, r) := {x ∈ Rt | ∥x∥2 ≤ r} to denote the ℓ2-ball in Rt centered at 0 of radius r.

Supervised Learning Dataset Distillation. We consider regression tasks over d-dimensional real-
vectors and real-valued labels. For an n-point dataset D ∈ (Rd × R)n, and a predictor f : Rd → R,
the mean squared error (MSE) of f on D is Lmse(D, f) := (1/n)

∑
(x,y)∈D(y − f(x))2. We

assume that the training datapoints are norm bounded by B and labels have magnitude at most
b for some parameters B and b, and impose the same restriction on the synthetic dataset. Let
Dsup

train = {(xi, yi) ∈ B(d,B) × [−b, b]}ni=1 be an n-sized training dataset, while we denote an
m-sized synthetic dataset by Dsup

syn = {(zi, ŷi) ∈ B(d,B) × [−b, b]}mi=1. By appending a 1-valued
coordinate to feature-vectors we can omit the constant offset and restrict ourselves to linear regressors
of the form vTx as a prediction for the label y. We impose ∥v∥2 ≤ 1 as a bound on the norm, and
let F0 denote the class of such regressors. We define the supervised regression dataset distillation
problem as: for a parameter ε, given Dsup

train, compute Dsup
syn such that

Lerr
mse(D

sup
train, D

sup
syn , f) :=

(
Lmse(D

sup
train, f)− Lmse(D

sup
syn , f)

)2 ≤ ε, for all f ∈ F0. (1)

Offline RL Dataset Distillation. Consider a Markov Decision Process (MDP) given by
⟨S,A,P,R, γ⟩, where (i) S is the set of states, (ii) A is the set of actions, (iii) P is the transition prob-
ability i.e., P(s′ | s, a) denotes the probability of transitioning to state s′ from state s on action a, (iv)
R is the reward function, where R(s, a) ∈ [0, Rmax] is the reward obtained on action a at state s, and
(v) γ is the discount factor. A policy π is a mapping from states to action, and the goal is to maximize
at each state its value function: vπ(s) = Eπ

[∑t
t=0 γ

tRt

∣∣∣ s0 = s] where Rt is the reward at step t

under the policy starting from state s. The action-value function is the expected sum of discounted
reward starting from a state and a specific action i.e., qπ(s, a) = Eπ

[∑t
t=0 γ

tRt | s0 = s, a0 = a
]
.

On the other hand, given an action value function predictor f : S×A → R, the corresponding greedy
policy π′ given by π′(s) ∈ argmaxaf(s, a) always yields at least as much expected discounted
reward starting from any state as π. In offline RL, a dataset Dorl consists of a collection of state,
action, reward and next state tuples of the form (s, a, r, s′), with generated by some (non-optimal)
policies. The goal is to learn a policy from this dataset which maximizes the value function. We
cast this problem as deriving a action-value predictor from Dorl, and taking the greedy policy with
respect to it. Under reasonable assumptions on the MDP and Dorl, the performance of an action-value
predictor f is measured by the Bellman loss (see Appendix G.1 for details) given by:

LBell(D
orl, f) = E(s,a,r,s′)←Dorl

[(
f(s, a)− r − γmax

a′∈A
f(s′, a′)

)2
]
. (2)

Feature Map and linear action-value predictors. We assume that S,A ⊆ B(d0, B0), and that
ϕ : B(d0, B0)

2 → Rd is a given feature-map s.t. ∥ϕ(s, a)∥2 ≤ B for any (s, a) in its domain, for
some parameters B0, d0 and B. An action-value predictor f is given by f(s, a) := vTϕ(s, a), for
(s, a) ∈ B(d0, B0)

2, and we restrict ourselves to the class of such predictors Q0 satisfying ∥v∥2 ≤ 1.
Datasets. The training dataset is Dorl

train = {(si, ai, ri, s′i)}ni=1 ⊆ S × A × [0, Rmax] × S of state,
action, reward and next state tuples. Since S or A could either be discrete or non-convex, for
tractable optimization the synthetic dataset Dorl

syn is allowed to consist of tuples {(ŝi, âi, r̂i, ŝ′i) ∈
B(d0, B0) × B(d0, B0) × [0, Rmax] × B(d0, B0). With this, LBell is can defined for Dorl

syn and any
f ∈ Q0 as:

LBell(D
orl
syn, f) = E(ŝ,â,r̂,ŝ′)←Dorl

syn

[(
f(ŝ, â)− r̂ − γmax

â′∈A
f(ŝ′, â′)

)2
]
. (3)

Note that in the above, the maximization inside the loss is taken over the original set of actions,
consistent with the definition of the Bellman loss. With the above setup, we define the offline RL
dataset distillation problem as follows: For a parameter ε, given Dorl

train, compute Dorl
syn such that

Lerr
Bell(D

orl
train, D

orl
syn, f) :=

(
LBell(D

orl
train, f)− LBell(D

orl
syn, f)

)2 ≤ ε, for all f ∈ Q0. (4)
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4 OUR RESULTS

Supervised Learning Dataset Distillation. For convenience, we shall employ a homogeneous
formulation i.e., with 0 label, using the concatenation ζ : Rd × R → Rd+1 given by ζ(x, y) =
(x1, . . . , xd, y) where x = (x1, . . . , xd). Observe that rTζ(x, y) = vTx − y = f(x) − y where
r = (v1, . . . , vd,−1), and f ∈ F0 s.t. f(x) = vTx. Further, if ∥v∥2 ≤ 1 then 1 ≤ ∥r∥2 ≤ 2. Let
F be the class regressors with target label 0 where each h ∈ F is given by h(x, y) := rTζ(x, y)
where 1 ≤ ∥r∥2 ≤ 2. One can thus extend the notion of the MSE loss Lmse to F by letting
Lmse(D,h) := E(x,y)∈D

[
h(x, y)2

]
. We also define G to be a distribution over regressors where a

random g ∈ G is given by sampling r ∼ N(0, 1/(d+ 1))d+1 u.a.r. and letting g(x, y) := rTζ(x, y).
With this setup, we prove the following theorem.
Theorem 4.1. Let Dsup

train the training dataset as described above. For any ∆ > 0 and δ > 0, let
g1, . . . , gk be iid regressors sampled from G for some k = O

(
d2 log(d(B + b)/∆) log(1/δ)

)
. Then,

with probability 1− δ over the choice of g1, . . . , gk, if there exists Dsup
syn s.t.

k∑
j=1

Lerr
mse(D

sup
train, D

sup
syn , gk) ≤ ∆′, (5)

then, for all h ∈ F , Lerr
mse(D

sup
train, D

sup
syn , h) ≤ ∆, where ∆′ = ∆k/O(d2), in particular this holds also

for all f ∈ F0.

It can be seen that Lerr
mse(D

sup
train, D

sup
syn , g) is a convex function over the points of Dsup

syn (see Appendix
G.2 for an explanation) and therefore the LHS of equation 5 is also convex and can be minimized
efficiently. Based on this we provide the corresponding Algorithm 1.

Algorithm 1: Supervised Regression Dataset Distillation
Input: d, k,m ∈ Z+, Dsup

train ∈ (B(d,B)× [−b, b])
n

1. Sample iid at random g1, . . . , gk from G.
2. Output argminDsup

syn∈(B(d,B)×[−b,b])m
∑k

j=1 L
err
mse(D

sup
train, D

sup
syn , gj).

Lower Bound. Complementing the above algorithmic result, we prove the following matching (up to
logarithmic factors) lower bound on the number of sampled regressors.
Theorem 4.2. For any positive integer d, there exists Dsup

train of q = (d + 1) points of the form
z = (x, y) ∈ Rq where x ∈ Rd, y ∈ R, each of Euclidean norm ∥z∥2 ≤ 2 such that for any choice
of homogeneous (i.e., target label 0) regressors {ft : Rq → R | ft(z) := vT

t z, where vt ∈ Rq}Tt=1,
where T < q(q + 1)/2, there exists:

• Dsup
syn of q points in Rq each of Euclidean norm ≤ 2, and

• a regressor f0 : Rq → R given by f0(z) := vT
0 z for a unit vector v0 ∈ Rq ,

satisfying

Lerr
mse(D

sup
train, D

sup
syn , ft) = 0, ∀t ∈ {1, . . . , T} and Lerr

mse(D
sup
train, D

sup
syn , f0) ≥ 1/(4q2). (6)

Informally, the above theorem constructs a training dataset such that for any set of less than q(q+1)/2
linear regressors one can choose a synthetic dataset on which each of the linear regressors have the
same loss as on the training dataset, while there exists a regressor that has significantly different
losses. This implies a lower bound of Ω(d2) for k in Theorem 4.1.

Offline RL Dataset Distillation. For convenience, we define the following modified Bellman loss
which incorporates a scale factor λ ∈ R for the reward in the usual Bellman loss:

L̂Bell(D, f, λ) := E(s,a,r,s′)←D

[(
f(s, a)− λr − γmax

a′∈A
f(s′, a′)

)2
]
. (7)

To state our result, we need the pseudo-dimension Pdim (see Appendix A.1) of the above loss
restricted to single points. In particular, U be class of mappings u : B(d0, B0) × B(d0, B0) ×
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[0, Rmax]×B(d0, B0) → R where each u ∈ U is defined by u(s, a, r, s′) := L̂Bell({(s, a, r, s′)}, f, λ)
for some f ∈ Q0 and λ ∈ [−1, 1]. Let p := Pdim(U). Further, we assume that ϕ is L-Lipschitz.
We also define:

L̂err
Bell(D

orl
train, D

orl
syn, f, λ) =

(
L̂Bell(D

orl
train, f, λ)− L̂Bell(D

orl
syn, f, λ)

)2
(8)

We define a distribution H̃(σ) over (predictor, scalar) pairs in which a random (f, λ) is sampled by
independently choosing r ∼ N(0, σ2)d and λ ∼ N(0, σ2) and defining f(s, a) := rTϕ(s, a). For
simplicity we define H := H̃(1) Using this, we have the following theorem.
Theorem 4.3. Let Dorl

train the offline RL training dataset as described above. For any
∆ > 0 and δ > 0, let (f1, λ1), . . . , (fk, λk) be iid samples from H for some k =
(1/ν)O(d log d)O (p(log(1/ν) + log(B0L/(B +Rmax)) log(1/δ), where ν := ∆/(B+Rmax)

4. Then,
with probability 1− δ, if there exists Dorl

syn s.t.

k∑
j=1

L̂err
Bell(D

orl
train, D

orl
syn, fk, λk) ≤ ∆′ (9)

then, for all f ∈ Q0, Lerr
Bell(D

orl
train, D

orl
syn, f) ≤ ∆, where ∆′ = (∆/O(1)).

The following is the distillation algorithm whose guarantees follow directly from Theorem 4.3.

Algorithm 2: Offline RL Dataset Distillation

Input: d, k,m ∈ Z+, feature-map ϕ, Dorl
train ∈ (S ×A× [0, Rmax]× S)n.

1. Sample iid at random (f1, λ1) . . . , (fk, λk) from H .
2. Output argminDorl

syn∈(B(d0,B0)×B(d0,B0)×[0,Rmax]×B(d0,B0))
m

∑k
j=1 L̂

err
Bell(D

orl
train, D

orl
syn, fj , λj)

Offline RL with decomposable feature-map. We consider the natural case when ϕ is decomposable
i.e., ϕ(s, a) := ϕ1(s) + ϕ2(a) ∈ Rd for all s ∈ S, a ∈ A for some mappings ϕ1, ϕ2 : B(d0, B0) →
Rd. Further, we say that ϕ is linear and decomposable if ϕ1 and ϕ2 are linear maps.
Theorem 4.4. Consider the case when ϕ is decomposable as defined above and let Dorl

train the offline
RL training dataset. For any ∆ > 0 and δ > 0, let (f1, λ1), . . . , (fk, λk) be iid samples from
H̃(1/

√
d+ 1) for some k = O

(
d2 log(d(B +Rmax)/∆) log(1/δ)

)
. Then, with probability 1− δ, if

there exists Dorl
syn s.t.

k∑
j=1

L̂err
Bell(D

orl
train, D

orl
syn, fk, λk) ≤ ∆′ (10)

satisfying
EDorl

syn
[(ϕ1(s), ϕ2(a), r, ϕ1(s

′))] = EDorl
train

[(ϕ1(s), ϕ2(a), r, ϕ1(s
′))] (11)

then, for all f ∈ Q0, Lerr
Bell(D

orl
train, D

orl
syn, f) ≤ ∆, where ∆′ = ∆k/O(d2).

In particular, the above theorem shows that the optimization in Algorithm 2 constrained by equation 11,
in the case of decomposable feature-map ϕ, requires only Õ(d2) sampled action-value predictors.
Further, when ϕ is linear and decomposable i.e., ϕ1 and ϕ2 are linear maps, then equation 11 is a linear
constraint in the points Dorl

syn and it can be shown (see Appendix F for details) that the optimization in
Algorithm 2 constrained by equation 11 is convex.

Discussion of Our Results. Theorem 4.1 and Algorithm 1 together provide an efficient supervised
dataset distillation algorithm (for linear regression) with performance guarantees. Specifically, we
show that with high probability over Õ(d2) sampled regressors, optimizing a convex objective over
Dsup

syn to minimize the sum of Lerr
mse for the sampled regressors, is sufficient to obtain a high quality

synthetic dataset. While our method adapts the model-training free approach of Zhao & Bilen
(2023) to loss matching, our theoretical guarantees are qualitatively different from those of Nguyen
et al. (2021) which showed convergence of synthetic features assuming the synthetic labels are
given, and of Chen et al. (2024) who assumed the availability of the optimal trained model. We
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show that our analysis is tight (upto polylogarithmic factors) by proving a Ω(d2) lower bound on
the number of sampled regressors in Theorem 4.2. In addition, we also provide a lower bound
of O(d) on the size of the synthetic dataset needed (in Appendix D). We note that Theorem 4.1
shows that the randomness (or sample complexity) required is proportional to log(1/∆) where ∆
is the error, which is quantitatively better than sample size proportional to 1/∆ achieved by matrix
sketching techniques (see Garg et al. (2024), Wang et al. (2017), Clarkson & Woodruff (2009)). Our
theoretical analysis of the supervised regression relies on anti-concentration of Lerr

mse with respect to
random linear regressors, and can be applied to any class of non-linear regressors that admit similar
anti-concentration properties.

For offline RL, Theorem 4.3 and Algorithm 2 give the first dataset distillation algorithm with rigorous
performance bounds, without model training. Our novel approach based on matching the Bellman
loss w.r.t. sampled Q-value predictors differs from the previous behavioral cloning (BC) based
methods of Light et al. (2024) which matches the loss gradients of the BC objective and of Lei et al.
(2024) which optimizes the synthetic dataset using an action-value weighted BC loss requiring a
trained action-value predictor.

However, the Bellman Loss involves a max term and thus cannot be well represented as a low degree
polynomial in the weights of the predictor. Due to this, polynomial anti-concentration (used in the
supervised regression case) cannot be applied and the proof is via a conditioning argument. In effect,
our algorithm requires sampling exp(O(d log d) predictors in the worst case where d is the output
dimension of the feature-map. We note that a brute force approach would be to choose a net over the
predictors Q0 instead of sampling. However, that would necessarily require exp(d) such predictors,
while in practice a smaller number of randomly sampled predictors suffices, as demonstrated in our
experimental evaluations.
While the bound in Theorem 4.3 is indeed less efficient than Õ(d2) sample complexity of the super-
vised setting, in practice the features are mapped into a smaller dimension than the input mitigating
this to some extent. Further, in Theorem 4.4, we prove similar Õ(d2) in the case of decomposable
feature-map ϕ, and show that the optimization is convex when ϕ is linear and decomposable. This
is a natural assumption and is the default feature map in applied RL for most value based deep RL
approaches. For example, the highly cited work of (Lillicrap et al., 2016) explicitly describes concate-
nating the action and state embeddings. A common trick used in practice and in our experiments is to
one-hot encode the actions and concatenate them with the state embedding to obtain the feature map.
Additive feature maps are also explicitly studied in (Zhang et al., 2020) and (Yang & Wang, 2019).

Organization of the Paper. The proofs of Theorems 4.1, 4.2, 4.3 and 4.4 are included in Appendices
C, D.2, E and F respectively. In the next section however, we provide an informal description of the
proof techniques. A subset of the experimental evaluations are included in Section 6 while additional
experiments and further details are deferred to Appendix H.

5 OVERVIEW OF OUR TECHNIQUES

Proof Outline of Theorem 4.1. The proof proceeds by contradiction: suppose there is some h ∈ F
and Dsup

syn s.t. Lerr
mse(D

sup
train, D

sup
syn , h) > ∆. Letting g be a random sample from G, we show using

algebraic manipulations and properties of the Gaussian distribution that Lerr
mse(D

sup
train, D

sup
syn , g) is a

degree-4 polynomial υ2 in Gaussian variables, such that E[υ2] > ∆/O(d2). This can be used
along with the Carbery-Wright anti-concentration bound for Gaussian polynomials to show that
Pr[υ2 > ∆/O(d2)] ≥ 1/3. Since {gj}kj=1 are iid samples from G, using Chernoff Bound, the
probability that there exists Ω(k) many j ∈ [k] satisfying Lerr

mse(D
sup
train, D

sup
syn , gj) > ∆/O(d2) is at

least 1 − exp−Ω(k). To complete the argument, we require a union bound of this error probability
over all h ∈ F and Dsup

syn , which we do by constructing finegrained nets as follows.
Net over all h ∈ F : Since h ∈ F is given by some r ∈ Rd+1 where 1 ≤ ∥r∥2 ≤ 2, one can take
a ε-net w.r.t. to Euclidean metric over all such vectors – whose size is at most (1/ε)O(d log d) (see
Appendix A.2) – for a small enough ε so that Lerr

mse is essentially unaffected when h is replaced by ĥ
(or vice versa) corresponding to the nearest vector in the net. For our purpose ε can be Ω(∆).
Net over all Dsup

syn : For this we first observe that Dsup
syn can always replaced by a subset of size s = d

using Lemma D.2 so that Lerr
mse remains lower bounded by ∆/O(d2). Thus, it suffices to consider the

net (N )s over all s-sized datasets where N is a ε′-net over the set of all possible datapoints, so that
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Lerr
mse is approximately preserved by the nearest dataset in (N )s.

The size of (N )s is ((B + b)/∆)O(sd), and the product of the sizes of the nets constructed above is
exponential in O

(
d2 log(d(B + b)/∆)

)
. Thus, to obtain the statement of the theorem via a union

bound, the number of sampled regressors required is k = O
(
d2 log(d(B + b)/∆) log(1/δ)

)
.

Proof Outline of Theorem 4.2. The proof of the lower bound of Ω(d2) on the sampled linear
regressors relies on the fact that the set of symmetric q× q matrices, where q = d+1, is a q(q+1)/2-
dimensional linear space. Thus, for a choice of less than q(q + 1)/2 homogeneous linear regressors,
there is a non-zero symmetric matrix A for which ⟨vvT,A⟩ = 0 where v is any one of the chosen
regression vectors. Here, A can be scaled so that its operator norm is exactly 1/2. Thus, one can
choose (up to appropriate scaling) Dsup

train so that Ez∈Dsup
train

[xxT] = I which is independent of the
chosen regressors. Dsup

syn is then chosen so that Ez∈Dsup
syn
[xxT] = I+A which is psd. It can be seen

that each chosen regressor has the same MSE loss on Dsup
train and Dsup

syn , while due to A ̸= 0, there is a
regressor which has different losses on Dsup

train and Dsup
syn .

Due to lack of space we defer the proof outlines of Theorems 4.3 and 4.4 to Appendix B.

6 EXPERIMENTAL EVALUATIONS

We generate synthetic datasets, Dsyn of sizes much smaller than the original training dataset using
Algorithms 1 and 2 for supervised regression and offline RL respectively. We evaluate the models
trained on them, over the test split of the original dataset in case of supervised regression or the
derived policy in the RL environment.
Baselines. The following baseline datasets are included as part of our experiments. Full Original:
model trained on the entire original training dataset Dtrain, and Random: model trained on a random
sub-sample (of same size as the synthetic dataset) of the original dataset, Drand. In addition, for
supervised regression, Leveraged: model trained on a leverage score subsample (of same size as the
synthetic dataset) of the original dataset, Dlev (see Drineas et al. (2006)).

Supervised Regression Datset Distillation. We evaluate Algorithm 1 along with the above mentioned
baselines on the Wine Quality (Cortez et al. (2009) ODbL 1.0 License), specifically the included red
wine and white wine quality datasets, and the Boston Housing Dataset (Harrison & Rubinfeld, 1978).

The sizes of the synthetic dataset Nsyn we consider are {20, 50, 100}. The size of Drand and Dlev are
the same as Dsyn, and is subsampled randomly from Dtrain. We initialise the convex optimisation
of Dsyn with the initial value Drand. We take k = 100 random homogeneous linear regressors in
Algorithm 1 to find Dsyn and then train a homogenous linear model (f(x) = rTx) on the four
datasets. The mean test loss of models trained on respective datasets (over 10 trials) are plotted in
Figure 1. Further details of the model training, hyperparameter search are included in Appendix H.1
and Appendix H.2.

We observe that the homogenous linear models trained on Dsyn performs almost as well as ones
trained on Dtrain, far better than ones trained on Drand, and better or on par with the models trained
on Dlev. This demonstrates the efficacy of our synthetic data generation technique for supervised
learning datasets and empirically verifies Theorem 4.1. We also observe that we perform better
than the classical data-reduction technique of leverage score subsampling for homogenous linear
regressors.

Offline RL Experiments. We test Algorithm 2 for offline RL DD by evaluating a policy trained on
our synthetic dataset using Fitted-Q Iteration (Ernst et al., 2005), a classical offline RL algorithm,
along with the Full Original and Random baselines on the Cartpole environment (Towers et al., 2024)
(MIT License), Mountain Car MDP (Moore (1990), Towers et al. (2024) MIT License), and the
the Acrobot Environment (Sutton (1995), Towers et al. (2024) MIT License). Refer to Appendices
H.3,H.4, H.5 for further details on the datasets. Since linear Q-value predictors are known to perform
poorly with Fitted-Q iteration even when trained on Dtrain, we use 2-layer neural networks for training
and generating the synthetic data which are randomly sampled by sampling the model weights
independently from a standard Gaussian distribution.

We do not use Dlev as a baseline because leverage score subsampling is only defined for linear
regression and has no analog in neural network regression. To generate Dtrain, we sample from
transitions from random(or nearly random) policies. We sample k = 20 random models with random
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Figure 1: MSE Test losses for Homogeneous Linear Regression on the following supervised datasets:
red wine quality, white wine quality, Boston Housing.

Figure 2: Max Evaluation Return with two-layer neural networks on the offline RL datasets created
by the following environments: Cartpole, Mountain Car, Acrobot.

normal weights for the data distillation procedure. The size of Drand and Dsyn is denoted by Nsyn. We
generate Dsyn once and we train all three datasets with the Fitted-Q iteration algorithm to get the
trained policies. We evaluate these trained policies in the environment 10 times and plot our results
in Figure 2. Drand is sampled 10 times and each sample is evaluated once. Further experiments are
conducted with more values of k and can be found in Appendices H.3, H.4, H.5 along with more
experimental details.

We observe that a model trained on Dsyn is significantly better than one trained on Drand. We also see
that as Nsyn increases, the model trained on Dsyn performs even better or on par than one trained on
Dtrain for the Cartpole and Acrobot environments. This demonstrates the efficacy of our synthetic
data generation technique for offline RL datasets for non-linear predictors. Additional discussions
and experimental evaluations are included in Appendix H.
Experimental Code. We will release the code for our experiments along with the final version of
this paper.

7 CONCLUSIONS

We propose a loss matching based algorithm for supervised dataset distillation, in which given a
training dataset the synthetic dataset is optimized with respect to a fixed set of randomly sampled
models. For linear regression in Rd, we prove rigorous theoretical guarantees, showing that optimizing
the convex loss matching objective for only Õ(d2) sampled regressors, without any model training,
suffices to obtain a high quality synthetic dataset. We prove a matching lower bound of Ω(d2) many
sampled regressors, showing the tightness of our analysis. We extend our approach to offline RL to
provide an algorithm for dataset distillation matching Bellman Loss using sampled Q-value predictors,
while showing similar performance bounds, albeit requiring exp(O(d log d)) sampled predictors in
the worst case. However, under a natural decomposability assumption on d-dimensional state-action
embeddings, we improve the upper bound to Õ(d2). Our experiments show that our algorithms yield
performance gains on real datasets, both in terms of the size and quality of the synthetic dataset,
even with a small number of sampled predictors. An interesting yet challenging future direction in
to extend our theoretical results in the supervised setting to neural networks, and to obtain provably
efficient offline RL dataset distillation algorithms for more general classes of state-action embeddings,
perhaps leveraging specific geometric properties of the associated MDPs.

9
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A PRELIMINARIES FOR APPENDIX

A.1 FUNCTION CLASSES AND PSEUDO-DIMENSION

We will consider a class F of real-valued functions (regressors) mapping Rd to [−1, 1]. The pseudo-
dimension of the function class Pdim(F) is defined as the minimum cardinality subset of Rd which
is pseudo-shattered. It is formally defined in Definition 11.2 of (Anthony & Bartlett, 2009).

For X ⊆ Rd where |X | = N , set Cp(ξ,F ,X ) to be a minimum sized ℓp-metric ξ-cover of F over
X , i.e. Cp(ξ,F ,X ) is a smallest subset of F such that for any f∗ ∈ F , there exists f ∈ Cp(ξ,F ,X )

s.t. (Ex∈X [|f∗(x)− f(x)|p])1/p ≤ ξ for p ∈ [1,∞), and maxx∈X |f∗(x)− f(x)| ≤ ξ for p = ∞.

The largest size of such a cover over all choices of X ⊆ Rd s.t. |X | = N is defined to be
Np(ξ,F , N).

The pseudo-dimension of F , Pdim(F) (see Sec. 10.4 and 12.3 of [Anthony-Bartlett, 2009]) can be
used to bound the size of covers for F as follows:

N1(ξ,F , N) ≤ N∞(ξ,F , N) ≤ (eN/ξp)p (12)

where p = Pdim(F) and N ≥ d. By normalizing, the above bounds can be adapted to functions
which map to [−B,B] for B > 0.

The following theorem follows from Theorem 11.4 from [Anthony-Bartlett, 2009]
Theorem A.1. The class of linear regressors over Rd given by rTx for r ∈ R has pseudo-dimension
d.

A.2 COVER OVER B(d, r)

Let T (d, r, ε) be the smallest subset of the Euclidean ball of radius r in d-dimensions B(d, r) such
that for all r ∈ B(d, r) there exists r̂ ∈ T (d, r, ε) s.t. ∥r− r̂∥2 ≤ ε. The following lemma follows
from Corollary 4.2.13 of (Vershynin, 2018).

Lemma A.2. T (d, r, ε) ≤
(
1 + 2r

ε

)d
.

A.3 CARBERY-WRIGHT ANTI-CONCENTRATION BOUND

The following non-trivial anti-concentration of polynomials over Gaussian variables was proved
by (Carbery & Wright, 2001).
Theorem A.3 (Theorem 8 from (Carbery & Wright, 2001) ). There is an absolute constant C > 0
such that if f is any degree-d polynomial over iid N(0, 1) variables, then Pr [|f | ≤ εE[|f |]] ≤
Cdε1/d for all ε > 0.

A.4 LIPSCHITZNESS OF FEATURE-MAP ϕ

For the our results on offline RL dataset distillation, as mentioned in Sec. 4, we assume that the feature-
map ϕ is L-Lipschitz, specifically w.r.t. the ℓ2-metric. In other words, for any (s1, a1), (s2, a2) ∈
B(d0, B0)× B(d0, B0),

∥ϕ(s1, a1)− ϕ(s2, a2)∥2 ≤ L∥(s1, a1)− (s2, a2)∥2 =L
√

∥s1 − s2∥22 + ∥a1 − a2∥22
≤L (∥s1 − s2∥2 + ∥a1 − a2∥2)

A.5 LOW RANK APPROXIMATION

A key ingredient in our lower bound is the classical Eckart–Young–Mirsky theorem (Eckart & Young,
1936; Stewart, 1993), which states that for any symmetric positive semidefinite matrix A ∈ Rd×d

with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd, the best rank-m approximation B in spectral norm is obtained
by truncating the eigendecomposition of A, and the approximation error is exactly

min
rank(B)≤m

∥A−B∥2 = λm+1. (13)

13
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This immediately implies that if λm+1 ≥ ε, then any rank-m factorization B = ZZ⊤ with Z ∈ Rd×m

must incur spectral error at least ε.

A.6 CHERNOFF BOUND

We also use the following well known concentration bound.
Theorem A.4 (Chernoff Bound). Let X1, . . . , Xn be iid {0, 1}-valued random variables and let
µ = E [

∑n
i=1 Xi]. Then for any δ > 0,

Pr

[
n∑
i

Xi ≤ (1− δ)µ

]
≤ exp

(
−δ2µ/2

)
.

B OUTLINE OF PROOFS CONTD.

Proof Outline of Theorem 4.3. The main complication as compared to the supervised regres-
sion case is the presence of the max term in the Bellman loss, which we circumvent using a
conditioning argument. Specifically, consider some action-value predictor f ∈ Q0 given by
f(s, a) := rTϕ(s, a) such that L̂err

Bell(D
orl
train, D

orl
syn, f, 1) > ε, for some Dorl

syn. Assume for ease of
exposition that ∥r∥2 = 1. Now, a f̂ ∼ H corresponds to a vector r̂ = αr+ Ju where α ∼ N(0, 1),
u ∼ N(0, 1)d−1 and J is a d × (d − 1) matrix with columns being a completion of r to an
orthonormal basis. It is easy to see that with probability at least exp(−O(d log d)), ∥u∥2 ≪ 1
and therefore ∥Ju∥2 ≪ 1. Conditioning on this event and the positivity of α allows us to use
maxa′ f̂(ϕ(s′, a′)) ≈ αmaxa′ f(ϕ(s′, a′)). This, along with a conditioning on λ ≈ 1 and some
algebraic manipulations yields that L̂err

Bell(D
orl
train, D

orl
syn, f̂) ≈ α4∆, which directly yields a probabilistic

lower bound of Ω(∆) on L̂err
Bell(D

orl
train, D

orl
syn, f̂). The rest of the net based arguments are analogous to

the supervised case but with notable differences. In particular, we observe that Dorl
syn can always be

replaced by a subset of size s = O(d/∆2 log (1/∆)) so that Lerr
Bell remains lower bounded by O(∆).

In addition, we use a more broadly applicable generalization error bound for the the Bellman loss
using its pseudo-dimension and the Lipschitzness of ϕ. However, due to the exp(−O(d log d)) of the
conditioning, success probability for a single sample (f̂ , λ) is also exp(−O(d log d)) and therefore
the number of predictors to be sampled is exp(O(d log d)).

Proof outline of Theorem 4.4. We observe that when ϕ is decomposable, for a Q-value predictor
f(s, a) := vTϕ(s, a), we have that maxa′∈A f(s′, a′) = vTϕ1(s

′) + maxa′∈A vTϕ2(a
′). Here

α := maxa′∈A vTϕ2(a
′) depends only on v and is independent of the dataset. This allows for

cancellations of terms between Dorl
train and Dorl

syn in L̂err
Bell, and using the constraint in equation 11 we

obtain a linear regression formulation in the embedding space Rd. Thus, one can essentially follow
the proof of Theorem 4.1. Further, it is easy to see that if ϕ1 and ϕ2 are linear then the constraint in
equation 11 is linear in the points of Dorl

syn resulting in a convex optimization.

C PROOF OF THEOREM 4.1

Dsup
train = {(xi, yi) ∈ B(d,B)× [−b, b]}ni=1 is the given training dataset consisting of feature-vector

and real-valued label pairs for a regression task. For ease of notation in the proof of this theorem
we shall drop the concatenation operator ζ and instead use vectors to denote the data point with the
feature-vector and label concatenated. Further, we let q := d+ 1 represent the dimensionality so that
the domain of F is Rq. With this notation, Dsup

train = {xi ∈ B(q − 1, B) × [−b, b]}ni=1 is the given
training dataset. We use an analogous notation for the datapoints of the synthetic datasets in the
analysis below.

C.1 BOUNDS FOR FIXED ĥ AND FIXED SYNTHETIC DATASET D̂

We begin by fixing (i) ĥ ∈ F s.t.

ĥ(x) := ĉuTx for some u ∈ Rq s.t. ∥u∥2 = 1 and ĉ ∈ [1, 2] (14)
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and, D̂ = {ẑi ∈ B(q − 1, B)× [−b, b]}si=1 for some s ∈ Z+. Using this, we have

Lerr
mse(D

sup
train, D̂, ĥ) =

(
1

n

n∑
i=1

(ĉuTxi)
2 − 1

s

s∑
i=1

(ĉuTẑi)
2

)2

(15)

The following lemma provides a key probabilistic lower bound.

Lemma C.1. Let Lerr
mse(D

sup
train, D̂, ĥ) ≥ ∆. Then, for a randomly chosen g ∼ G(F) s.t. g(x) := rTx,

we have

Pr

[(
Lerr
mse(D

sup
train, D̂, g) ≥ ∆

C0q2

)∧(
∥r∥22 ≤ 10

)]
≥ 7

30

for some absolute constant C0 > 0.

Proof. We first lower bound the expectation E
[
Lerr

mse(D
sup
train, D̂, g)

]
. Sampling a random g ∈ G

corresponds to sampling r ∼ N(0, 1/q)q u.a.r. and letting g(x) := rTx for x ∈ Rq. Letting
r1 := u, we can find unit vectors r2, . . . , rq such that r1, . . . , rq is an orthonormal basis. Writing
r := α1r1 + · · ·+ αqrq , we obtain that αj is iid N(0, 1/q) for each j ∈ q. Therefore,

Lerr
mse(D

sup
train, D̂, g) =

 1

n

n∑
i=1

 q∑
j=1

αjr
T
1xi

2

− 1

s

s∑
i=1

 q∑
j=1

αjr
T
j ẑi

2


2

(16)

Define βi =
∑q

j=2 αjr
T
j xi for i ∈ [n] and similarly γj =

∑q
j=2 αjr

T
j ẑi for i ∈ [s]. Note

that both {βi}ni=1, {γi}si=1 are independent of α1. We now rewrite the squared loss in terms of
{βi}ni=1, {γi}si=1 to obtain:

Lerr
mse(D

sup
train, D̂, g) =

(
1

n

n∑
i=1

(α1r
T
1 x⃗i + βi)

2 − 1

s

s∑
i=1

(α1r
T
1 ẑi + γi)

2

)2

=

[
α2
1

(
1

n

n∑
i=1

(rT1xi)
2 − 1

s

s∑
i=1

(rT1 ẑi)
2

)

+ 2α1

(
1

n

n∑
i=1

βir
T
1xi −

1

s

s∑
i=1

γir
T
1 ẑi

)
+

(
1

n

n∑
i=1

β2
i − 1

s

s∑
i=1

γ2
i

)]2
(17)

At this point, we let κ :=
(
1
n

∑n
i=1(r

T
1xi)

2 − 1
s

∑s
i=1(r

T
1 ẑi)

2
)
, ω =

(
1
n

∑n
i=1 β

2
i − 1

s

∑s
i=1 γ

2
i

)
and λ = 2

(
1
n

∑n
i=1 βir

T
1xi − 1

s

∑s
i=1 γir

T
1 ẑi
)
. Note that κ, ω, λ are independent of α1. Substituting

these into equation 17 we obtain

Lerr
mse(D

sup
train, D̂, g) =

(
α2
1κ+ α1λ+ ω

)2
=α4

1κ
2 + α2

1λ
2 + ω2 + 2α3

1λκ+ 2α1λω + 2α2
1ωκ

Taking the expectation over α1 yields,

Eα1 [L
err
mse(D

sup
train, D̂, g)] =E

[
α4
1

]
κ2 + E

[
α2
1

]
λ2 + ω2 + 2E

[
α3
1

]
λκ+ 2E [α1]λω + 2E[α2

1]ωκ

=(3/q2)κ2 + λ2/q + ω2 + (2/q)ωκ

=(2/q2)κ2 + (κ/q + ω)2 + λ2/q

≥(2/q2)κ2

=
2

q2

(
1

n

n∑
i=1

(rT1xi)
2 − 1

s

s∑
i=1

(rT1 ẑi)
2

)2

=2

(
1

qĉ

)2
[
1

n

n∑
i=1

(ĉuTxi)
2 − 1

s

s∑
i=1

(ĉuTẑi)
2

]2

=2

(
1

qĉ

)2

Lerr
mse(D

sup
train, D̂, ĥ) ≥ ∆

2q2
(18)
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where we used equation 14 and equation 15 along with the fact that α1 ∼ N(0, 1/q). Observe that
Lerr

mse(D
sup
train, D̂, g) is a degree-4 square polynomial in {αj}qj=1 and hence is always positive. Observe

that the lower bound in equation 18 is independent of {αj}qj=2 and is thus an lower bound for the
expectation over {αj}qj=1. Applying Carbery-Wright (see Appendix A.3) to equation 18 we obtain

Pr

[
Lerr

mse(D
sup
train, D̂, g) ≥

(
1

72

)4
∆

2q2

]
≥ 1

3
. (19)

Further, since E[∥r∥22] = 1, by Markov’s inequality, Pr[∥r∥22 > 10] < 1/10. This along with the
equation 19 and taking C0 = (1/2)(1/72)4 completes the proof.

The following is a straightforward implication of Lemma C.1 along with the Chernoff Bound
(Theorem A.4).

Lemma C.2. Let Lerr
mse(D

sup
train, D̂, ĥ) > ∆. Then, for iid random g1, . . . , gk ∼ G(F), s.t. gj(x) :=

vT
j x we have

Pr

[∣∣∣∣{j ∈ [k] :

(
Lerr

mse(D
sup
train, D̂, gj) ≥

∆

C0q2

)
∧
(
∥vj∥22 ≤ 10

)}∣∣∣∣ ≥ 7k

60

]
≥ 1− exp

(
−7k

240

)

C.2 NET OVER REGRESSORS h AND SYNTHETIC DATASETS Dsup
syn

First we shall construct a net over regressors h ∈ F , where h(x) := rTx for some r ∈ B(q, 2).
Thus, we can consider the cover T (q, 2, ξ)) (see Appendix A.2) and let F̂ = {ĥ : ∃r̂ ∈
T (q, 2, ξ) s.t. ĥ(x) := r̂Tx}, for some parameter ξ ∈ (0, 1) to be chosen later. The following
is a simple approximation lemma.

Lemma C.3. For any Dsup
train and D̂ as defined in the previous subsection, for any h ∈ F , ∃ĥ ∈ F̂ s.t.∣∣∣Lerr

mse(D
sup
train, D̂, h)− Lerr

mse(D
sup
train, D̂, ĥ)

∣∣∣ ≤ 65ξ(B + b)4. (20)

Proof. Let h(x) := rTx, where r ∈ B(q, 2). Choose r̂ ∈ T (q, 2, ξ) s.t. ∥r − r̂∥2 ≤ ξ and
define ĥ to be ĥ(x) := r̂Tx. Thus, for every xi ∈ Dsup

train,
∣∣(rTxi)

2 − (r̂Txi)
2
∣∣ ≤ ((r− r̂)Txi

)2
+

2
∣∣((r− r̂)Txi

)
rTxi

∣∣ ≤ (ξ(B + b))2 + 4ξ(B + b)2 ≤ 5ξ(B + b)2 since ξ ≤ 1. Using this, along

with equation 15 we have that Lerr
mse(D

sup
train, D̂, ĥ) =

(√
Lerr

mse(D
sup
train, D̂, h) + υ

)2

where υ ∈ R s.t.

|υ| ≤ 5ξ(B + b)2.

Therefore,
∣∣∣Lerr

mse(D
sup
train, D̂, ĥ)− Lerr

mse(D
sup
train, D̂, h)

∣∣∣ ≤ 2|υ|
√

Lerr
mse(D

sup
train, D̂, h) + |υ|2. It is easy to

see using the norm bounds on the regressor vectors and the data points along with equation 15 that√
Lerr

mse(D
sup
train, D̂, h) ≤ 4(B+b)2. Thus, 2|υ|

√
Lerr

mse(D
sup
train, D̂, h)+ |υ|2 ≤ 40ξ(B+b)4+25ξ2(B+

b)4 ≤ 65ξ(B + b)4, which completes the proof.

We now show that the synthetic data Dsup
syn can be approximated with a much smaller dataset D̂ whose

points are from an appropriate Euclidean net.

Lemma C.4. Fix a ν ∈ (0, 1). For any Dsup
syn , there exists a dataset D̂ of size s := q whose points are

from Euclidean net T (q,
√
q(B + b), ν

√
q(B + b)/2) such that for any h ∈ F ,∣∣∣Lerr

mse(D
sup
train, D̂, h)− Lerr

mse(D
sup
train, D

sup
syn , h)

∣∣∣ ≤ 65νq2(B + b)4 (21)

Proof. Let us first take D (bounded in a ball of radius
√
q(B + b)) to be the dataset of size q from

Lemma D.2 such that
Lerr

mse(D
sup
train, D, h) = Lerr

mse(D
sup
train, D

sup
syn , h) (22)
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Then we create D̂ by replacing each point in D with the closest point in T (q,
√
q(B + b),

√
qν(B +

b)/2). Using arguments analogous to those in the proof of Lemma C.3 we obtain,∣∣∣Lerr
mse(D

sup
train, D̂, h)− Lerr

mse(D
sup
train, D, h)

∣∣∣ ≤ 65νq2(B + b)4 (23)

Combining the above two inequality and equation completes the proof.

C.3 UNION BOUND OVER NET AND COMPLETING THE PROOF

To use the analysis in Sec. C.2, let us set ξ = ∆/(108C0q
2(B+b)4) and ν = ∆/(108C0q

4(B+b)4).
Applying Lemma C.4 and followed by Lemma C.3 directly yields the following combined net for the
regressors h and the synthetic dataset.

Lemma C.5. For any h ∈ F and Dsup
syn , there exist ĥ ∈ F̂ and D̂ ∈ T (q,

√
q(B+b), ν

√
q(B+b)/2)s

such that ∣∣∣Lerr
mse(D

sup
train, D̂, ĥ)− Lerr

mse(D
sup
train, D

sup
syn , h)

∣∣∣ ≤ ∆/(106C0q
2(B + b)4) (24)

where s := q for some constant C1 and F̂ = {ĥ : ∃r̂ ∈ T (q, 2, ξ) s.t. h(x) := r̂Tx}.

Observe that∣∣∣F̂ × T (q,
√
q(B + b), ν

√
q(B + b)/2)s

∣∣∣ ≤ (6

ξ

)q

·
(
6

ν

)qs

= exp
(
O

(
q2 log

(
q(B + b)

∆

)))
Thus, one can apply Lemma C.2 with k = O

(
q2 log

(
q(B+b)

∆

)
log
(
1
δ

))
and take a union bound

over F̂ × T (q,
√
q(B + d), ν

√
q(B + b)/2)s to obtain the following: with probability (1− δ) over

iid random g1, . . . , gk ∼ G, if Lerr
mse(D

sup
train, D̂, ĥ) > ∆ then there exist 7k/60 distinct j∗ ∈ [k] s.t.,(

Lerr
mse(D

sup
train, D̂, gj∗) ≥

∆

C0q2

)
∧
(
∥vj∗∥22 ≤ 10

)
(25)

Now, since ∥vj∗∥22 ≤ 10, c̃gj∗ ∈ F for some c̃ ≥ 2/
√
10. And since Lerr

mse(D
sup
train, D̂, gj∗) is

proportional to ∥vj∗∥42, applying Lemma C.4 to Lerr
mse(D

sup
train, D̂, c̃gj∗) yields that

Lerr
mse(D

sup
train, D

sup
syn , gj∗) ≥

∆

2C0q2

which implies,
k∑

j=1

Lerr
mse(D

sup
train, D

sup
syn , gj) ≥

7k∆

120C0q2

completing the proof of Theorem 4.1.

D LOWER BOUNDS FOR SUPERVISED LEARNING DATASET DISTILLATION

Dsup
train = {(xi, yi) ∈ B(d,B) × [0, b]}ni=1 is the given training dataset consisting of feature-vector

and real-valued label pairs for a regression task and our goal is to find the synthetic dataset Dsup
syn =

{(zi, ŷi) ∈ B(d,B)× [−b, b]}mi=1. For ease of notation in the proof of this theorem we shall drop the
concatenation operator ζ and instead use vectors to denote the data point with the feature-vector and
label concatenated. Further, we let q := d+ 1 represent the dimensionality so that the domain of F
is Rq . With this notation, Dsup

train = {xi ∈ B(q − 1, B)× [−b, b]}ni=1 is the given training dataset. We
use an analogous notation for the datapoints of the synthetic datasets in the analysis below.

We begin by fixing f ∈ F s.t.

f(x) := ĉuTx for some u ∈ Rq s.t. ∥u∥2 = 1 and ĉ ∈ [1, 2]

and, Dsup
syn = {zi ∈ B(q − 1, B) × [−b, b]}si=1 for some s ∈ Z+. Further, let us also define

X = [x1,x2, . . . ,xn] ∈ Rq×n and Z = [z1, z2, . . . , zm] ∈ Rq×m.

17
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Using this, we have

Lerr
mse(D

sup
train, D

sup
syn, f) =

(
1

n

n∑
i=1

(ĉuTxi)
2 − 1

m

m∑
i=1

(ĉuTzi)
2

)2

=ĉ4

(
1

n

n∑
i=1

uTxix
T
i u− 1

m

m∑
i=1

uTziz
T
i u

)2

=ĉ4

(
uT

(
1

n

n∑
i=1

xix
T
i

)
u− uT

(
1

m

m∑
i=1

ziz
T
i

)
u

)2

=ĉ4

(
uT

(
1

n

n∑
i=1

xix
T
i − 1

m

m∑
i=1

ziz
T
i

)
u

)2

=ĉ4
(
uT

(
XXT

n
− ZZT

m

)
u

)2

(26)

Lemma D.1. Let Z ∈ Rq×m have columns zj = (uj , sj) with uj ∈ Rq−1, sj ∈ R, satisfying
∥uj∥2 ≤ B and |sj | ≤ b for all j. Let Z ∈ Rq×q have columns zi = (vi, ti) and satisfy 1

mZZ⊤ =
1
qZZ

⊤
. Then for all i, ∥vi∥2 ≤ √

q B and |ti| ≤
√
q b.

Proof. Write the block decomposition 1
mZZ⊤ = 1

qZZ
⊤
=

(
A c
c⊤ α

)
with A = 1

m

∑m
j=1 uju

⊤
j

and α = 1
m

∑m
j=1 s

2
j . Let V ∈ R(q−1)×q have columns vi. Then 1

qVV⊤ = A, so ∥V∥22 ≤
q tr(A) ≤ qB2, giving ∥vi∥2 ≤ √

q B, for all i = 1, . . . , q. Similarly, for t = (t1, . . . , tq) we have
1
q

∑
i t

2
i = α ≤ b2, giving |ti| ≤

√
q b, for all i = 1, . . . , q.

As ZZT ∈ Rq×q is a positive semi-definite matrix, we observe that by using the Cholesky factorization
the synthetic data Dsup

syn (corresponding to Z ∈ Rq×m) can always be replaced by another dataset

D (corresponding to Z ∈ Rq×q) of size q such that ZZT/m = ZZ
T
/q without any change in the

loss. Together with the norm bounds on the data points of D from the lemma above, this leads to the
following lemma which we use in section C:

Lemma D.2. For any Dsup
syn ∈ (B(d,B) × [0, b])m and Dsup

train ∈ (B(d,B) × [−b, b]})n, there
exists a dataset D ∈ (B(d,B

√
d+ 1) × [−b

√
d+ 1, b

√
d+ 1])q of size d + 1 such that

Lerr
mse(D

sup
train, D

sup
syn, f) = Lerr

mse(D
sup
train, D, f) for any f ∈ F .

D.1 LOWER BOUND ON THE SIZE OF SYNTHETIC DATA

Given a parameter ε and a dataset Dsup
train (corresponding to X ∈ Rq×n), the objective of the supervised

learning dataset distillation problem to find a synthetic dataset Dsup
syn (corresponding to Z ∈ Rq×m)

such that Lerr
mse(D

sup
train, D

sup
syn, f) ≤ ε for all f ∈ F , as stated in (1).

This means that in equation (26), we need to have Lerr
mse(D

sup
train, D

sup
syn, f) =

ĉ4
(
uT
(

XXT

n − ZZT

s

)
u
)2

≤ ε for all unit vectors u ∈ Rq. This implies that the matrix

corresponding to synthetic dataset Z should satisfy ∥XXT

n − ZZT

s ∥2 ≤
√
ε

ĉ2 .

Using the low rank approximation theorem stated in 13, we can say that m needs to be at least the
number of eigenvalues of XXT

n larger than
√
ε

ĉ2 or more formally the size of the synthetic dataset

m ≥ #{λi(XXT >
√
ε

ĉ2 } = #{σi(X) > ε1/4

ĉ }, where # denotes the size of a set and λ, σ denote
the eigenvalues and singular values of a matrix.

In the worst case choice of Dsup
train (corresponding to X ∈ Rq×n), we get a lower bound of m ≥ q =

d+ 1 on the size of Dsup
syn when all d+ 1 singular values of ζ(Dsup

train) are larger than ε1/4

2 .
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D.2 PROOF OF THEOREM 4.2

We begin with the following lemma.

Lemma D.3. Let d ≥ 1, q = d + 1. For any v1, . . . ,vT ∈ Rq with T < q(q+1)
2 there exists a

non-zero symmetric matrix A ∈ Rq×q that satisfies

vT
t Avt = 0 for t = 1, . . . , T. (27)

Proof. Note that vT
t Avt =

〈
A,vtv

T
t

〉
. Further, the set of q × q symmetric matrices is a q(q + 1)/2

dimensional linear subspace of Rq×q. Since T < q(q + 1)/2, there exists a non-zero symmetric
matrix in the orthogonal complement of the linear span of

{
vtv

T
t

}T
t=1

which can be taken to be the
required matrix A.

To complete the proof of Theorem 4.2 we first choose Dsup
train = {e1, . . . , eq} where ei is the vector

with 1 in the ith coordinate and zero otherwise i.e., it is the ith coordinate basis vector. It is easy to
see that

Lmse(D
sup
train, f) = (1/q)vTIv = (1/q)∥v∥22, (28)

when f(z) := vTz for all v ∈ Rq. Now, let f1, . . . , fT be the regressors as in the statement of
Theorem 4.2. Applying Lemma D.3 we obtain the symmetric matrix A which, by scaling, can be
assumed to have largest magnitude eigenvalue i.e., its operator norm be 1/2.

We now construct Dsup
syn as follows. Consider the B = (I + A). Since the operator norm of A is

1/2, B is psd with maximum eigenvalue at most 3/2 and minimum eigenvalue at least 1/2. The
eigen-decomposition of B implies that

B =

q∑
i=1

(
√

λiui)(
√
λiui)

T (29)

where maxi=1,...,q λi ≤ 3/2, mini=1,...,q λi ≥ 1/2, and ∥ui∥2 = 1 for i = 1, . . . , d. We take
Dsup

syn := {
√
λiui}di=1, so that its points have Euclidean norm at most

√
3/2 ≤ 2. Using equation 27

we have that,

Lmse(D
sup
syn , ft) = (1/q)vTBvt = (1/q)(∥vt∥22 + vTAvt) = (1/q)∥vt∥22, t = 1, . . . , T. (30)

The first condition in equation 6 directly follows from equation 28 and equation 30. To see the second
condition, choose v0 to be the eigenvector of A corresponding to its maximum magnitude eigenvalue
which is 1/2. Then,

Lmse(D
sup
syn , f0) = (1/q)(∥v0∥22 + vT

0Av0) (31)
which along with equation 28 implies that

Lerr
mse(D

sup
train, D

sup
syn , f0) =

(
(1/q)∥v0∥22 − (1/q)(∥v0∥22 + vT

0Av0)
)2

= (1/q2)(vT
0Av0)

2 ≥ 1/(4q2).

proving the second condition of equation 6 as well.

E PROOF OF THEOREM 4.3

For ease of notation, we will use O() notation to absorb absolute constants in the proof below.

For convenience, like in the case supervised regression case, we shall homogenize the Bellman
loss as follows. Let us define ζ(s, a, r) := (t1, . . . , td, r) where ϕ(s, a) = (t1, . . . , td). Note that
since ϕ : B(d0, B0) × B(d0, B0) → B(d,B), we have ζ : B(d0, B0) × B(d0, B0) × [0, Rmax] →
B(q,B +Rmax). We also define a class of functions Q mapping B(d0, B0)× B(d0, B0)× [0, Rmax]
to R where each h ∈ Q is given by h(s, a, r) := rTζ(s, a, r) for some r ∈ Rd+1. Let Q1 be the
restricted class where ∥r∥2 ≤ 2

Note that for any f ∈ Q0 given by f(s, a) := vTϕ(s, a), taking r = (v1, . . . , vd,−λ) yields that
h ∈ Q and h(s, a, r) = f(s, a)− λr, and f(s′, a′) = h(s′, a′, 0). Thus, we define another version
of the Bellman loss as:

L̃Bell(D,h) := E(s,a,r,s′)←D

[(
h(s, a, r)− γmax

a′∈A
h(s′, a′, 0)

)2
]

(32)
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Using this we can see that, for f ∈ Q0 where f(s, a) := vTϕ(s, a), taking r = (v1, . . . , vd,−1) and
h(s, a, r) := rTζ(s, a, r) we obtain that h ∈ Q1 and

LBell(D, f) = L̃Bell(D,h). (33)

Further, for some (f, λ) ∈ H , where f(s, a) := vTϕ(s, a), letting r = (v1, . . . , vd,−λ) and
h(s, a, r) := rTζ(s, a, r), we obtain that h ∈ Q and

L̂Bell(D, f, λ) = L̃Bell(D,h). (34)

Thus, by abuse of notation, we think of h ∈ H being chosen randomly by sam-
pling r ∈ N(0, 1)d+1. We shall use q to denote d + 1 in the rest of this sec-
tion. We fix Dorl

train = {(si, ai, ri, s′i)}ni=1 as the given training dataset, and for D̂ =

{(ŝi, âi, r̂i, ŝ′i) ∈ B(d0, B0)× B(d0, B0)× [0, Rmax]× B(d0, B0)}ti=1, we define:

L̃err
Bell(D

orl
train, D̂, h) :=

(
L̃Bell(D

orl
train, h)− L̃Bell(D̂, h)

)2
(35)

It is easy to see using the norm bounds and equation 32, equation 35 that for any h ∈ Q1,
L̃Bell(D,h), L̃Bell(D

orl
train, h) ≤ 16(B +Rmax)

2 and L̃err
Bell(D

orl
train, D̂, h) ≤ 256(B +Rmax)

4.

E.1 PROBABILISTIC LOWER BOUND FOR FIXED ĥ AND D̂

We fix for this subsection ĥ ∈ Q1 and D̂ as above. First we prove the following lemma.

Lemma E.1. If L̃err
Bell(D

orl
train, D̂, ĥ) ≥ ∆, then over the choice of g ∈ H , s.t. g(s, a, r) := rTζ(s, a, r),

Pr
[(

L̃err
Bell(D

orl
train, D̂, g) ≥ ∆/8

)
∧ (∥r∥2 ≤ 2)

]
≥
(

∆

(
√
d(B +Rmax)4))

)(c1d)

. (36)

where c1 > 0 is a constant.

Proof. Let ĥ correspond to the vector ĉr̂ ∈ Rd+1 where ∥r̂∥2 = 1 and ĉ ≤ 2. Thus, a random
r ∈ N(0, 1)d+1 corresponds to αr̂+Hr̃ where α ∼ N(0, 1) and r̃ ∼ N(0, 1)d are independently
sampled and H is a (d + 1) × d matrix of unit norm columns which are a completion of r̂ to a
orthonormal basis. From the above upper bound, we have that L̃err

Bell(D
orl
train, D̂, ĥ) ≤ 256(B +Rmax)

4

and therefore, ∆ ≤ 256(B +Rmax)
4.

Let us condition on the event E that ∥r̃∥∞ ≤
(
c0∆/(

√
d(B +Rmax)

4))
)

and α ∈ [1, 3/2]. Firstly,

since
(
c0∆/(

√
d(B +Rmax)

4))
)
= O(1), by the properties of the standard Gaussian distribution,

one obtains that

Pr[E ] ≥
(

∆√
d(B +Rmax)4)

)c1d

(37)

for some c1 depending on c0 only. Now, E implies that ∥Hr̃∥2 ≤
(
c0∆/(B +Rmax)

4
)
= υ < 0.1

for which we choose c0 > 0 small enough. Since α > 0 under E this implies that(
g(s, a, r)− γmax

a′∈A
g(s′, a′, 0)

)2

=

(
(αr̂+Hr̃)Tζ(s, a, r)− γmax

a′∈A
(αr̂+Hr̃)Tζ(s′, a′, 0)

)2

=

(
αr̂Tζ(s, a, r)− γmax

a′∈A
αr̂Tζ(s′, a′, 0)±O(υ(B +Rmax))

)2

=

(
αr̂Tζ(s, a, r)− αγmax

a′∈A
r̂Tζ(s′, a′, 0)±O(υ(B +Rmax))

)2

=

(
αr̂Tζ(s, a, r)− αγmax

a′∈A
r̂Tζ(s′, a′, 0)

)2

±O(υ(B +Rmax)
2)

(38)
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where we used the upper bound on α. Thus, using analysis similar to the proof of Lemma C.3, we
obtain that for some choice of c0 > 0 small enough, E implies that∣∣∣L̃err

Bell(D
orl
train, D̂, g)− α4L̃err

Bell(D
orl
train, D̂, (ĥ/ĉ))

∣∣∣ ≤ ∆/64 (39)

and since α ≥ 1 and and ĉ ≤ 2, we have α4L̃err
Bell(D

orl
train, D̂, (ĥ/ĉ)) ≥ ∆/16. Thus,

L̃err
Bell(D

orl
train, D̂, g) ≥ ∆/32. (40)

Moreover, since ∥Hr̃∥2 < 0.1 and α ∈ [1, 3/2], we obtain that ∥r∥2 ≤ 2, which completes the
proof.

The following amplified version of the previous lemma is a direct implication.

Lemma E.2. Let L̃err
Bell(D

orl
train, D̂, ĥ) ≥ ∆. Then, for iid random g1, . . . , gk ∼ H , s.t. gj(s, a, r) :=

rTj ζ(s, a, r) we have

Pr

 k∨
j=1

((
L̃err

Bell(D
orl
train, D̂, gj) ≥ ∆/8

)
∧ (∥rj∥2 ≤ 2)

) ≥ 1−

(
1−

(
∆

(
√
d(B +Rmax)4))

)(c1d)
)k

E.2 NET OVER PREDICTORS h AND SYNTHETIC DATASETS Dorl
syn

First we shall construct a net over predictors h ∈ Q1, where h(x) := rTζ(s, a, r) for some r ∈
B(q, 2). Thus, we can consider the Euclidean net T (q, 2, ξ)) and let Q̂1 := {ĥ ∈ Q1 : ∃r̂ ∈
T (q, 2, ξ) s.t. ĥ(s, a, r) := r̂Tζ(s, a, r)}, for some parameter ξ ∈ (0, 1) to be chosen later. The
proof of the following simple approximation lemma is exactly along the lines of the proof of Lemma
C.3 and the analysis in the previous subsection accounting for the error in the max term of equation 32
which is handled similarly.

Lemma E.3. For any Dorl
train and D̂ as defined in the previous subsection, for any h ∈ Q1, ∃ĥ ∈ Q̂1

s.t. ∣∣∣L̃err
Bell(D

orl
train, D̂, h)− L̃err

Bell(D
orl
train, D̂, ĥ)

∣∣∣ ≤ 300ξ(B +Rmax)
4. (41)

The argument for net over the synthetic dataset is similar - we show that the synthetic data Dorl
syn can

be approximated with a much smaller dataset D̂ whose points are from a discrete set.

Lemma E.4. Fix a τ, ν ∈ (0, 1). For any Dorl
syn, there exists a dataset D̂ of size s :=

O((p/τ2) log(1/τ)) (where p is the pseudo-dimension in Sec. 4) whose points (ŝ, â, r̂, ŝ′) are s.t.
ŝ, â, ŝ′ are from the Euclidean net T (d0, B0, ν(B+Rmax)/(10L)) and r̂ ∈ T (1, Rmax, ν(B+Rmax))
such that for any h ∈ Q1,∣∣∣L̃err

Bell(D
orl
train, D̂, h)− L̃err

Bell(D
orl
train, D

orl
syn, h)

∣∣∣ ≤ O(τ(B +Rmax)
4 + ν(B +Rmax)

4) (42)

Proof. Since p is the pseudo-dimension is as defined in Sec. 4), it is also the pseudo-dimension
on the class of functions V given by L̃Bell({s, a, r, s′}, h) for h ∈ Q1. Thus, Let us first define D
probabilistically to be a set of t := O((p/τ2) log(1/τ)) points independently and u.a.r. sampled
from Dorl

syn. Using the upper bound on N (τ/16,V, 2t) from Chapters 10.4 and 12.3, and Theorem
17.1 of [Anthony-Bartlett, 2009], we get that for any h ∈ Q1,∣∣∣L̃Bell(D,h)− L̃Bell(D

orl
syn, h)

∣∣∣ ≤ 16τ(B +Rmax)
2 (43)

with probability at least > 0. Thus, using the above and arguments similar to those used earlier in
this and the previous sections we obtain that there exists D of size s s.t.∣∣∣L̃err

Bell(D
orl
train, D, h)− L̃err

Bell(D
orl
train, D

orl
syn, h)

∣∣∣ ≤ O(τ(B +Rmax)
4) (44)

Lastly, to get D̂ we replace each (s, a, r, s′) in D with the nearest point in the net T1 :=
T (d0, B0, ν(B +Rmax)/(10L))×T (d0, B0, ν(B +Rmax)/(10L))×T (1, Rmax, ν(B +Rmax)))×
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T (d0, B0, ν(B +Rmax)/(10L)). Using the Lipschitzness bound of L on ϕ and the analysis used in
the proof of Lemma C.4, we obtain that,

∣∣∣L̃err
Bell(D

orl
train, D, h)− L̃err

Bell(D
orl
train, D̂, h)

∣∣∣ ≤ O(ν(B +Rmax)
4) (45)

Combining the above two inequalities completes the proof.

E.3 UNION BOUND AND PROOF OF THEOREM 4.3

We take ξ, τ and ν to be O(∆/(B +Rmax)
4), so that applying Lemmas E.4 and E.3 yields,

Lemma E.5. For any h ∈ Q1 and Dorl
syn, there exist ĥ ∈ Q̂1 and D̂ ∈ (T1)t such that

∣∣∣L̃err
Bell(D

orl
train, D

orl
syn, h)− L̃err

Bell(D
orl
train, D̂, ĥ)

∣∣∣ ≤ C ′∆ (46)

where C ′ > 0 is a small enough constant and t := p(C1/τ
2) log(1/τ) for some constant C1 and Q̂1

is as defined in the previous subsection.

Now, the size of the net is bounded as follows:

∣∣∣Q̂1

∣∣∣× |T1|t ≤
(
6

ξ

)q

·
(

6B0L

ν(B +Rmax)

)d0t

=exp (q log((B +Rmax)/∆) + d0p log((B0L(B +Rmax)/∆)) =: ℓ (47)

Now, using the above, we take k =
(

∆
(
√
d(B+Rmax)4))

)(−c1d)
ℓ log(1/δ) in Lemma E.2 and apply

union bound over the net (along the lines of the proof in Sec. C.3). To get back the lower bound with
Dorl

syn we apply Lemma E.4 to gj such that |rj | ≤ 2 i.e. gj ∈ Q1. This completes the proof.

F PROOF OF THEOREM 4.4

We can use elementary manipulation of Lerr
Bell based on (11) and the additive state-action embedding

to essentially remove the max term and the subsequent proof is along the same lines as that of
Theorem 4.1.

We have f(s, a) := vTϕ(s, a) = vTϕ1(s) + vTϕ2(a) as defined, so notice that

max
a′∈A

f(s′, a′) = vTϕ1(s
′) + max

a′∈A
vTϕ2(a

′) (48)

In (48), maxa′∈A vTϕ2(a
′) is a constant independent of the training and synthetic dataset and

depends only on v, so we define α(v) = maxa′∈A vTϕ2(a
′). Expanding within the outer square,
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canceling and zeroing out using mild linear condition (11) and equation (48), we obtain

Lerr
Bell(D

orl
train, D

orl
syn, f, λ)

=(E(s,a,r,s′)←Dorl
train

[(f(s, a)− λr − γmax
a′∈A

f(s′, a′))2]

− E(s,a,r,s′)←Dorl
syn
[(f(s, a)− λr − γmax

a′∈A
f(s′, a′))2])2

=(E(s,a,r,s′)←Dorl
train

[(v⊤ϕ1(s) + v⊤ϕ2(a)− λr − γvTϕ1(s
′)− γα(v))2]

− E(s,a,r,s′)←Dorl
syn
[(v⊤ϕ1(s) + v⊤ϕ2(a)− λr − γvTϕ1(s

′)− γα(v))2])2

=(E(s,a,r,s′)←Dorl
train

[(v⊤(ϕ1(s)− γϕ1(s
′) + ϕ2(a))− λr − γα(v))2]

− E(s,a,r,s′)←Dorl
syn
[(v⊤(ϕ1(s)− γϕ1(s

′) + ϕ2(a))− λr − γα(v))2])2

=(E(s,a,r,s′)←Dorl
train

[(v⊤(ϕ1(s)− γϕ1(s
′) + ϕ2(a))− λr)2]

− E(s,a,r,s′)←Dsyn
train

[(v⊤(ϕ1(s)− γϕ1(s
′) + ϕ2(a))− λr)2]

+ E(s,a,r,s′)←Dorl
train

[γ2α2(v)]− E(s,a,r,s′)←Dsyn
train

[γ2α2(v)]

− 2E(s,a,r,s′)←Dorl
train

[γα(v)(v⊤(ϕ1(s)− γϕ1(s
′) + ϕ2(a))− λr)]

+ 2E(s,a,r,s′)←Dsyn
train

[γα(v)(v⊤(ϕ1(s)− γϕ1(s
′) + ϕ2(a))− λr)])2

=(E(s,a,r,s′)←Dorl
train

[(vT(ϕ1(s)− γϕ1(s
′) + ϕ2(a))− λr)2]

− E(s,a,r,s′)←Dorl
syn
[(vT(ϕ1(s)− γϕ1(s

′) + ϕ2(a))− λr)2])2 (49)

Now notice that the loss term (49) looks exactly like the linear supervised regression loss Lerr
mse. We

can concatenate v and λ to get a regression vector r. In addition, we take the feature vectors x to
be simply ϕ1(s) − γϕ1(s

′) + ϕ2(a) and the regression label y to be r. Note that x ≤ O(B) and
y ≤ Rmax.

We can sample regressors r ∼ N(0, 1/(d+ 1))d+1 u.a.r. and use the concatenation trick as before.
The nets will be taken over the embeddings of states and actions instead of the states and actions
themselves. Thus, via analysis similar to the linear regression case (Theorem 4.1), we obtain a
O
(
d2 log(d(B +Rmax)/∆) log(1/δ)

)
upper bound on the number of sampled predictors, given that

the synthetic dataset satisfies the mild linear condition above.

F.1 CONVEXITY OF THE OBJECTIVE

As seen above, L̂err
Bell reduces to the supervised regression case with ϕ1(s) − γϕ1(s

′) + ϕ2(a) as
the regression point with regression label r, corresponding to (s, a, r, s′). From Appendix G.2, the
optimization objective in the supervised regression case is convex in the synthetic data regression
points and labels.

Therefore, if ϕ1 and ϕ2 are linear in (s, a, r, s′) then the L̂err
Bell is also convex in the points of Dorl

syn.
Further, the condition in equation 11 is also an affine linear constraint on the points of Dorl

syn, and
therefore the optimization is convex.

G USEFUL TECHNICAL DETAILS

G.1 BELLMAN LOSS RISK BOUNDS

The value gap i.e., the difference between the true and estimated value functions for a policy
corresponding to a Q-value predictor can be estimated by the latter’s empirical Bellman Loss on
offline data. This holds under under a certain concentrability assumption – informally it states that the
dataset should contain all state-action pairs which are reachable from the starting state with significant
probability, should also be present with sufficient probability in the dataset. We refer the reader to
Assumption 1 and Lemma 3.2 of (Duan et al., 2021) for more details.
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Table 1: Homogeneous Linear Regression MSE loss over white and red wine quality data

wine color Nsyn Dtrain Dsyn Drand Dlev
20 0.85± 0.20 1.82± 1.22 1.21± 0.45

red 50 0.65± 0.04 0.65± 0.07 0.97± 0.22 0.80± 0.08
100 0.67± 0.05 0.81± 0.16 0.73± 0.07
20 1.00± 0.21 1.81± 0.44 1.31± 0.30

white 50 0.74± 0.04 0.82± 0.17 1.04± 0.19 0.90± 0.11
100 0.75± 0.02 0.83± 0.05 0.84± 0.05

G.2 CONVEXITY OF Lerr
mse(D

sup
train, D

sup
syn , f)

From equation 1, Lmse(D
sup
train, f) is constant w.r.t. Dsup

syn and the dependent part is Lmse(D
sup
syn , f).

The latter is the mean squared error loss which is the average of squares of linear functions of the
points of Dsup

syn and is therefore convex in the points of Dsup
syn . Since Lerr

mse(D
sup
train, D

sup
syn , f) is convex in

Lmse(D
sup
syn , f), it is also convex in the points of Dsup

syn .

Now, if ϕ is linear in (s, a) (the concatenation of s and a), then L̂Bell(D
orl
syn, f, λ) (from equation 7)

is a sum of squares of terms which are each the difference of (i) a linear function in the points of
Dorl

syn and, (ii) the maximum over a A of linear functions of the points of Dorl
syn. Since max (over

a fixed number of arguments) is a convex function over its vector of arguments, this implies that
L̂Bell(D

orl
syn, f, λ) is convex and therefore L̂err

Bell(D
orl
train, D

orl
syn, f, λ) is also convex.

H ADDITIONAL EXPERIMENTS

H.1 ADDITIONAL EXPERIMENTAL DETAILS FOR THE WINE QUALITY DATASET

The red wine dataset has 1599 wine samples and the white wine dataset has 4898 wine samples. For
both red and white wines, we use the feature QUALITY as the label and regress on the remaining
11 features. We pre-process the data by standardizing each feature column and label. We randomly
shuffle the samples into an 80/20 split into training and test data.

We use a linear homogeneous model (i.e. f(x) = rTx) for regression on the label. We sample
k = 100 linear regressors from the standard normal distribution as well as Neval = 100 another
regressors from the same distribution. Using a fixed learning rate of 0.01 on the Adam optimiser
and at most 5000 steps, we optimize the randomly initialised synthetic data until the objective has
minimum value on the Neval = 100 regressors. The model is then trained on the four datasets using
the Adam optimizer with a learning rate of 0.001 and the mean loss is reported in Table 1.

We observe that a model trained on Dsyn performs better than ones trained on both Drand and Dlev.
We also observe that the test loss of a model trained on Dsyn decreases, as expected.

H.2 ADDITIONAL EXPERIMENTAL DETAILS FOR THE THE BOSTON HOUSING DATASET

The Boston Housing dataset has 506 samples. We use the feature MEDV (Median value of owner-
occupied homes in 1000’s) as the label and regress on the remaining 13 features. We preprocess the
data by standardising each feature column and label. We randomly shuffle the samples into an 80/20
split into training and test data. The sizes of the synthetic dataset Nsyn we consider are {20, 50, 100}.

We take k = 100 random homogeneous linear regressors in Algorithm 1. Using a fixed learning rate
of 0.01 on the Adam optimiser and at most 5000 steps, we optimise the randomly initialised synthetic
data until the objective has minimum value on the Neval = 100 randomly sampled regressors. The
model is then trained on the four datasets using the Adam optimiser with a learning rate of 0.001.
The mean test loss of models trained on respective datasets (over 10 trials) are included in Table 2.

We observe that a model trained on Dsyn performs better than one trained on Drand and on par with
Dlev. We also observe that the test loss of a model trained on Dsyn decreases, as expected.
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Table 2: Homogeneous Linear Regression MSE loss over Boston Housing data

Nsyn Dtrain Dsyn Drand Dlev
20 0.57± 0.23 1.77± 1.71 0.57± 0.20
50 0.27± 0.05 0.40± 0.14 0.44± 0.16 0.38± 0.08
100 0.29± 0.07 0.29± 0.08 0.36± 0.09

H.3 ADDITIONAL EXPERIMENTS AND DETAILS FOR THE CARTPOLE ENVIRONMENT

In this environment, a pole is attached by an un-actuated joint to a cart, which moves along a
frictionless track. The pendulum is placed upright on the cart and the goal is to balance the pole by
applying forces in the left and right direction on the cart. The action indicates the direction of the
fixed force the cart is pushed with and can take two discrete values. The observation is an array with
shape (4, ) with the values corresponding to the positions and velocities. The episode terminates if
the pole angle or position goes beyond a certain range and is artificially truncated after 500 time-steps.
Since the goal is to keep the pole upright for as long as possible, by default, a reward of +1 is given
for every step taken, including the termination step.

We sample n = 10000 steps of completely random policies in this environment to get Dtrain, which
contains both terminated and non-terminated states. We separate them into Dtrain–terminated and
Dtrain-nonterminated. We have to do this in our implementation as the theoretical result only analyzes
infinite horizon MDP’s. In practice, the q-value function for the terminated states does not have any
max term as the trajectory ends there, i.e. for a terminated state sterm, the q-value is simply the reward,
so we use f(sterm, a) = r. We use our data distillation routine to get a distilled version of each of
these datasets separately and combine them together to get Dsyn-nonterminated +Dsyn-terminated = Dsyn.
Note that the ratio of the terminated and non-terminated states in Dsyn and Dtrain is artificially kept
the same and we take the total size of the synthetic dataset Dsyn to be Nsyn.

Our model architecture for this experiment is fixed to a 2-layer (10,10) ReLU based neural network.
For the synthetic data generation, we sample k models and we use the Adam optimiser and perform a
search over the learning rate among {3e-1, 1e-1, 3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4} for the distillation
processes of both the terminated and non-terminated states and report the synthetic dataset that
performs the best on evaluation.

We train the three datasets using the Fitted-Q iteration algorithm that iteratively optimises the Bellman
loss to get a q-value predictor. We test the optimal policy corresponding to the q-value predictor
on the real environment and report the returns. We report an extensive evaluation with multiple
values of k,Nsyn in Table 3. We observe that on average, policies trained on our generated synthetic
data perform better than both real and random data. As expected, we see that as the size of Dsyn

increases (i.e. Nsyn increases), the model trained on it performs better. Surprisingly, increasing the
number of randomly sampled action-value predictors k does not seem to have a discernible impact on
performace.

H.4 ADDITIONAL EXPERIMENTS AND DETAILS FOR THE MOUNTAIN CAR ENVIRONMENT

The Mountain Car MDP (Moore (1990), Towers et al. (2024) MIT License) is a deterministic MDP
that consists of a car placed stochastically at the bottom of a sinusoidal valley, with the only possible
actions being the accelerations that can be applied to the car in either direction. The observation
space is continuous with two dimensions and there are three discrete actions possible. The goal is to
reach the flag placed on top of the right hill as quickly as possible, as such the agent is penalised with
a reward of −1 for each timestep. The episode truncates after 200 timesteps and is also terminated if
the position of the car goes beyond a certain range.

To generate the offline data, we sample 5000 samples through a uniformly random policy and another
5000 samples through an expert policy trained using tabular q-learning on a discretized state space.

We use the same learning rate search method as mentioned in Section H.3 and optimizers to get the
synthetic data, partitioned into terminated and non-terminated samples. We use a neural network with
two hidden layers with 64 neurons and ReLU activations for the q-value predictor with the Fitted-Q
iteration algorithm for training. Policies trained on the three datasets are evaluated in the environment
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Table 3: Extended Evaluation for the Cartpole Environment with (10, 10)-layer NN.

k Nsyn Dtrain Drand Dsyn
5 10 339.10 ± 132.07 13.50 ± 0.67 500.00 ± 0.00

10 10 332.70 ± 129.18 13.90 ± 0.54 500.00 ± 0.00
20 10 416.30 ± 133.73 13.50 ± 0.50 455.40 ± 133.80
50 10 343.10 ± 129.38 13.40 ± 0.66 181.00 ± 21.87
100 10 368.20 ± 116.77 13.30 ± 1.19 464.00 ± 108.00
5 20 332.10 ± 117.26 135.20 ± 41.38 500.00 ± 0.00

10 20 377.20 ± 122.43 148.20 ± 43.15 240.50 ± 212.56
20 20 348.50 ± 144.20 141.30 ± 70.23 500.00 ± 0.00
50 20 325.80 ± 139.27 146.60 ± 36.67 500.00 ± 0.00
100 20 324.60 ± 124.09 145.30 ± 48.06 450.00 ± 130.99
5 50 339.80 ± 139.34 174.60 ± 11.71 500.00 ± 0.00

10 50 346.70 ± 128.98 174.50 ± 12.89 500.00 ± 0.00
20 50 341.80 ± 123.77 172.40 ± 19.69 500.00 ± 0.00
50 50 330.10 ± 120.47 177.80 ± 10.39 500.00 ± 0.00
100 50 326.00 ± 151.14 178.10 ± 17.01 500.00 ± 0.00
5 100 337.70 ± 115.30 135.90 ± 76.44 500.00 ± 0.00

10 100 329.00 ± 122.08 148.40 ± 104.72 500.00 ± 0.00
20 100 328.90 ± 124.00 124.10 ± 47.61 500.00 ± 0.00
50 100 332.20 ± 123.10 129.50 ± 61.10 500.00 ± 0.00
100 100 386.40 ± 132.20 136.30 ± 93.81 500.00 ± 0.00
5 200 354.00 ± 126.69 158.40 ± 53.20 500.00 ± 0.00

10 200 331.90 ± 130.53 169.90 ± 93.20 500.00 ± 0.00
20 200 371.20 ± 133.87 176.60 ± 81.36 500.00 ± 0.00
50 200 332.80 ± 125.28 175.60 ± 62.60 500.00 ± 0.00
100 200 340.60 ± 144.32 199.20 ± 97.88 500.00 ± 0.00

and the average returns over 10 trials are reported in Table 4. We observe that the policies trained on
the random datasets are not able to reach the top of the hill and are all truncated. Policies trained on
the synthetic data are on average able to reach the top of the hill, albeit slower than ones trained on
the full offline dataset. As in the Cartpole environment, increasing Nsyn increases our performance,
but increasing k as no impact on performance.

Table 4: Evaluation for Mountain Car with (64, 64)-layer NN.

k Nsyn Dtrain Drand Dsyn
5 10 -111.40 ± 13.16 -200.00 ± 0.00 -200.00 ± 0.00
10 10 -109.80 ± 27.92 -200.00 ± 0.00 -200.00 ± 0.00
20 10 -111.60 ± 15.10 -200.00 ± 0.00 -157.70 ± 2.28
50 10 -110.10 ± 22.39 -200.00 ± 0.00 -200.00 ± 0.00

100 10 -106.50 ± 15.23 -200.00 ± 0.00 -195.90 ± 8.28
5 50 -106.30 ± 15.49 -200.00 ± 0.00 -183.90 ± 24.61
10 50 -104.80 ± 15.14 -200.00 ± 0.00 -200.00 ± 0.00
20 50 -104.50 ± 13.97 -200.00 ± 0.00 -129.50 ± 30.31
50 50 -108.90 ± 16.26 -200.00 ± 0.00 -162.60 ± 17.24

100 50 -106.90 ± 14.45 -200.00 ± 0.00 -159.00 ± 25.60
5 200 -109.80 ± 16.02 -200.00 ± 0.00 -149.60 ± 25.39
10 200 -108.50 ± 18.70 -200.00 ± 0.00 -133.50 ± 3.14
20 200 -105.40 ± 14.71 -200.00 ± 0.00 -121.90 ± 37.87
50 200 -112.60 ± 14.99 -200.00 ± 0.00 -132.00 ± 23.00

100 200 -105.30 ± 14.16 -200.00 ± 0.00 -162.90 ± 32.98
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H.5 ADDITIONAL EXPERIMENTS AND DETAILS FOR THE ACROBOT ENVIRONMENT

The Acrobot Environment (Sutton (1995), Towers et al. (2024) MIT License) consists of two links
connected linearly to form a chain, with one end of the chain fixed. The joint between the two links
is actuated. The goal is to apply torques on the actuated joint to swing the free end of the linear chain
above a given height while starting from the initial state of hanging downwards. The action space is
discrete with three possible actions and the state space is continuous with 6 dimensions. The goal is
to have the free end reach a designated target height in as few steps as possible, and as such all steps
that do not reach the goal incur a reward of −1. Achieving the target height results in termination
with a reward of 0. Episodes are artificially truncated after 500 timesteps.

To generate the offline data, we sample 10000 transitions through a uniformly random policy. We
use the same learning rate search method and optimizers as mentioned in Section H.3 to get the
synthetic data, partitioned into terminated and non-terminated samples. We use a neural network with
two hidden layers with 64 neurons and ReLU activations for the q-value predictor with the Fitted-Q
iteration algorithm for training. Policies trained on the three datasets are evaluated in the environment
and the average returns over 10 trials are reported in Table 5. We observe that polices trained on the
synthetic data give higher returns on average than policies trained on the full offline dataset and a
randomly subsampled smaller dataset. As in the Cartpole environment, increasing Nsyn increases our
performance, but increasing k as no impact on performance.

Table 5: Evaluation for Acrobot with (64, 64)-layer NN.

k Nsyn Dtrain Drand Dsyn
5 10 -84.20 ± 10.82 -500.00 ± 0.00 -74.10 ± 7.49

10 10 -82.30 ± 12.04 -500.00 ± 0.00 -74.60 ± 9.65
20 10 -81.30 ± 4.86 -500.00 ± 0.00 -77.50 ± 5.39
50 10 -84.60 ± 11.88 -500.00 ± 0.00 -72.70 ± 6.99
100 10 -84.20 ± 16.61 -500.00 ± 0.00 -74.40 ± 9.97

5 50 -85.10 ± 10.97 -479.20 ± 41.97 -75.00 ± 10.92
10 50 -83.40 ± 11.24 -481.30 ± 38.43 -77.40 ± 7.42
20 50 -82.60 ± 8.85 -481.50 ± 37.49 -75.80 ± 9.40
50 50 -85.50 ± 9.45 -480.90 ± 38.23 -78.00 ± 8.80
100 50 -83.30 ± 13.24 -484.70 ± 30.60 -75.00 ± 10.24
5 200 -85.60 ± 7.23 -103.30 ± 13.99 -89.10 ± 6.61

10 200 -83.10 ± 11.07 -99.00 ± 10.74 -86.90 ± 20.87
20 200 -82.40 ± 8.97 -99.20 ± 8.40 -88.20 ± 9.94
50 200 -86.90 ± 5.26 -102.50 ± 4.20 -85.70 ± 11.71
100 200 -85.10 ± 8.58 -102.30 ± 9.96 -84.50 ± 13.40
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