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Abstract

Generative models have recently gained attention in recommendation systems by
directly predicting item identifiers from user interaction sequences. However, exist-
ing methods suffer from significant information loss due to the separation of stages
such as quantization and sequence modeling, hindering their ability to achieve the
modeling precision and accuracy of sequential dense retrieval techniques. Inte-
grating generative and dense retrieval methods remains a critical challenge. To
address this, we introduce the Cascaded Organized Bi-Represented generAtive
retrieval (COBRA) framework, which innovatively integrates sparse semantic IDs
and dense vectors through a cascading process. Our method alternates between
generating these representations by first generating sparse IDs, which serve as
conditions to aid in the generation of dense vectors. End-to-end training enables
dynamic refinement of dense representations, capturing both semantic insights
and collaborative signals from user-item interactions. During inference, COBRA
employs a coarse-to-fine strategy, starting with sparse ID generation and refining
them into dense vectors via the generative model. We further propose BeamFusion,
an innovative approach combining beam search with nearest neighbor scores to
enhance inference flexibility and recommendation diversity. Extensive experiments
on public datasets and offline tests validate our method’s robustness. Online A/B
tests on a real-world advertising platform with over 200 million daily users demon-
strate substantial improvements in key metrics, highlighting COBRA’s practical
advantages.

1 Introduction

Recommendation systems are vital components of modern digital ecosystems, providing personalized
item suggestions that align with user preferences across e-commerce platforms, streaming services,
and social networks [1H3]]. Recent advancements have focused on sequential recommendation
methods, which leverage the sequential nature of user interactions to enhance recommendation
performance [4H7]. Notable models like SASRec [8] and BERT4Rec [9] have demonstrated the
effectiveness of sequence models in capturing user behavior patterns.

The emergence of generative models has further expanded the capabilities of recommendation sys-
tems [[10H12]]. Unlike traditional sequential recommendation methods, generative models can directly
predict target items based on user behavior sequences [[13H15]. These models handle complex
user-item interactions and offer emerging abilities such as reasoning and few-shot learning, which
significantly improve recommendation accuracy and diversity [16-H18]. Among these, TIGER [19]]
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Figure 1: Comparison of generative recommendation paradigms. The left side illustrates traditional
generative retrieval approaches, exemplified by TIGER, which uses a sequence of sparse IDs as
input within a Transformer encoder-decoder architecture to directly predict the sparse ID of the next
item. The right side depicts the proposed COBRA(Cascaded Organized Bi-Represented generAtive
retrieval), which integrates sparse IDs for coarse semantics and dense vectors for fine details. The
cascaded representation is processed by a Transformer decoder that sequentially predicts the sparse
ID followed by the dense vector.

is a pioneering approach in generative retrieval for recommendation systems. As depicted in Fig-
ure[T(Lower Left), TIGER leverages a Residual Quantized Variational AutoEncoder (RQ-VAE) [20]
to encode item content features into hierarchical semantic IDs, allowing the model to share knowledge
across semantically similar items without the need for individual item embeddings. Beyond TIGER,
several other methods have been proposed to further explore the integration of generative models
with recommendation systems. LC-Rec [21] aligns semantic and collaborative information using
RQ-VAE with a series of alignment tasks. ColaRec [22] combines collaborative filtering signals
with content information by deriving generative identifiers from a pretrained recommendation model.
IDGenRec [23]] leverages large language models to generate unique, concise, and semantically rich
textual identifiers for recommended items, showing strong potential in zero-shot settings.

Despite these innovations, existing generative recommendation methods still face several challenges
compared to sequential dense retrieval methods [24} 25]]. Sequential dense retrieval methods, which
rely on dense embeddings for each item, offer high accuracy and robustness but require substan-
tial storage and computational resources. In contrast, generative methods, while efficient, often
struggle with fine-grained similarity modeling [26]. To effectively leverage the strengths of both
retrieval paradigms, we propose Cascaded Organized Bi-Represented generAtive retrieval(COBRA),
a framework that synergizes generative and dense retrieval. Figure [T(Right) illustrates the cascaded
sparse-dense representations in COBRA. The proposed method introduces a cascaded generative
retrieval framework alternating between generating sparse IDs and dense vectors. This approach
mitigates the information loss inherent in ID-based methods. Specifically, COBRA’s input is a
sequence of cascaded representations composed of sparse IDs and dense vectors corresponding to
items in the user’s interaction history. During training, dense representations are learned through
contrastive learning objectives in an end-to-end manner. By first generating the sparse ID and then the
dense representation, COBRA reduces the learning difficulty of dense representations and promotes
mutual learning between the two representations. During inference, COBRA employs a coarse-to-fine
generation process, starting with sparse ID that provides a high-level categorical sketch capturing the
categorical essence of the item. The generated ID is then appended to the input sequence and fed
back into the model to predict the dense vector that captures the fine-grained details, enabling more
precise and personalized recommendations. To ensure flexible inference, we introduce BeamFusion,
a sampling technique combining beam search with nearest neighbor retrieval scores, ensuring con-
trollable diversity in the retrieved items. Unlike TIGER, which relies solely on sparse IDs, COBRA
harnesses the strengths of both sparse and dense representations.

Our main contributions are as follows:



¢ Cascaded Bi-Represented Retrieval Framework: We introduce COBRA, a framework
that alternates between generating sparse semantic IDs and dense vectors. It addresses
information loss in ID-based methods and reduces the difficulty of representation learning
by using sparse IDs as conditions for generating dense vectors.

* Learnable Dense Representations via End-to-End Training: COBRA uses the original
item data as input to generate dense representations through end-to-end training. Unlike
static embeddings, COBRA’s dense vectors are dynamically learned, capturing semantic
information and fine-grained details.

* Coarse-to-Fine Generation Process: During inference, COBRA first generates sparse IDs,
which are then fed back into the model to produce refined dense representations, enhancing
the granularity of the dense vectors. We also introduce BeamFusion for more diverse
recommendations.

* Comprehensive Empirical Validation: Extensive experiments on benchmark datasets show
COBRA surpasses current methods in recommendation accuracy, proving its effectiveness
in balancing precision and diversity.

2 Related Work

Sequential Dense Recommendation. Early sequential recommendation systems leveraged RNN's
and CNNs to model user behavior sequences [27) [28]]. The introduction of Transformer-based
methods, such as SASRec [8]] and BERT4Rec [9], greatly improved the capability to capture complex
user dynamics. Recent models focus on cross-domain transferability and the integration of textual
features through contrastive learning [29-31].

Generative Recommendation. Generative approaches have shifted the field from discriminative
ranking to directly generating item identifiers 32} [19, 33]. Some models treat recommendation
as a language modeling task [33]], while others generate semantically meaningful or structured
identifiers [19} 21} 134]. Hybrid methods, such as LIGER [26], combine generative and dense retrieval
to overcome the limitations of each approach. However, how to more flexibly integrate these
paradigms remains an open problem. A more comprehensive review is provided in Appendix [A]

3 Methodology

This section introduces the Cascaded Organized Bi-Represented generAtive Retrieval (COBRA)
framework, which integrates cascaded sparse-dense representations and coarse-to-fine generation to
enhance recommendation performance. Figure 2]illustrates the overall framework of COBRA.

3.1 Sparse-Dense Representation

Sparse Representation. COBRA generates sparse IDs using a Residual Quantized Variational
Autoencoder (RQ-VAE), inspired by the approach in TIGER [19]. For each item, we extract its
attributes to generate a textual description, which is embedded into a dense vector space and quantized
to produce sparse IDs. These IDs capture the categorical essence of items, forming the basis for
subsequent processing. For the sake of brevity, the subsequent methodology descriptions will assume
that the sparse ID consists of a single level. However, it should be noted that this approach can be
easily extended to accommodate scenarios involving multiple levels.

Dense Representation. To capture nuanced attribute information, we develop an end-to-end trainable
dense encoder, encoding item textual contents. Each item’s attributes are flattened into a text
sentence, prefixed with a [CLS] token, and fed into a Transformer-based text encoder Encoder. The
dense representation v, is extracted from the output corresponding to the [CLS] token, capturing
fine-grained details of the item’s textual content. As illustrated in the lower part of Figure 2] we
incorporate position embeddings and type embeddings to model the positional and context of tokens
within the sequence. These embeddings are added to the token embeddings, enhancing the model’s
ability to distinguish between different tokens and their positions in the sequence.

Cascaded Representation. The cascaded representation integrates sparse IDs and dense vectors
within a unified generative model. Specifically, for each item, we combine its sparse ID I D, and
dense vector v, to form a cascaded representation (I Dy, v;). This approach leverages the strengths of
both representations, providing a more comprehensive characterization of items: sparse IDs provide



{ Za |0 P |
Q“ Transformer Decoder J
Item Pos Emb ‘ Py ‘ ‘ P ‘ ‘ Ps H P, ‘ | Ps H Py ‘ ‘ Py y H Py ‘ | Paeiq | ‘ Paeiz ‘

Type;p | ‘Typedeﬂse

Item Type Emb \Typem HTypeam Typen HTymem Typep HTypedm \ Typep HTypeam

S IS | R | B B S [ B [ | P I

'
A ————

-
Re;aes::ri::ion i\ D v || «—— Dense Vector

Sparse ID [ es || b [ e [ e [ e [ e ] e ]
T [ ‘h Bidirectional Transformer Encoder J
- m o gy
el g Tokentmb [Wew [[ i |[ Wi [ ws [ w [[ W [ w |
) ) Poskmb [ 2 |[ & [[ & [[ & J[ & J[ & |[# |
codebook Type Emb | Typeicis) | [Typecraae | |Typewase | | Typecue | | Typewse | Typewma| [Typesrand |
[CLS] category text: ... title text: ... brand text: ...

Pretrained Quantization Model L ,
T

item

Figure 2: The architecture of COBRA. The model employs a cascaded sparse-dense representation
approach, where sparse IDs are generated via Residual Quantization and dense vectors are produced
by a trainable Transformer Encoder. These representations serve as inputs to a Transformer Decoder,
which alternates between predicting sparse IDs and dense vectors. The predicted outputs are used
to compute the loss functions Lgparse and Lyense. For the sake of simplicity, the figure illustrates an
example with a single level of sparse ID.

a stable categorical foundation through discrete constraints, while dense vectors maintain continuous
feature resolution, ensuring that the model captures both high-level semantics and fine-grained details.

3.2 Sequential Modeling

Probabilistic Decomposition. The probability distribution modeling of the target item is factorized
into two stages, leveraging the complementary strengths of sparse and dense representations. Specifi-
cally, instead of directly predicting the next item s, based on the historical interaction sequence
S1.¢, COBRA predicts the sparse ID 1D, and the dense vector v separately:

P(IDt+17Vt+1|Slzt) = P(IDtJrl|Slzt)P(Vt+1|IDt+17Sl:t) (1)

where P(ID;1|51.+) represents the probability of generating the sparse ID 1D, based on the
historical sequence .S1.;, capturing the categorical essence of the next item. P(v;y1|IDy11,S1.¢)
represents the probability of generating the dense vector v, given the sparse ID D, and the
historical sequence S .., capturing the fine-grained details of the next item. This decomposition allows
COBRA to leverage both the categorical information provided by sparse IDs and the fine-grained
details captured by dense vectors.

Sequential Modeling with a Unified Generative Model. For sequential modeling, we utilize a
unified generative model based on the Transformer architecture to effectively capture sequential
dependencies in user-item interactions. The Transformer receives an input sequence of cascaded
representations, with each item represented by its sparse ID and dense vector.

The sparse ID, denoted as I D, is transformed into a dense vector space through an embedding layer:
e; = Embed(ID;). This embedding e; is concatenated with the dense vector v; to form the model’s
input at each time step: h; = [e;; v¢].



Our Transformer Decoder model comprises multiple layers, each featuring self-attention mechanisms
and feedforward networks. As depicted in the upper part of Figure [2] the input sequence to the
Decoder consists of cascaded representations. To enhance modeling of sequential and contextual
information, these representations are augmented with item position and type embeddings. For brevity,
mathematical formulations in the following sections focus on the cascaded sequence representation,
omitting explicit notation for position and type embeddings. The Decoder processes this enriched
input to generate contextualized representations for predicting the subsequent sparse ID and dense
vector.

Sparse ID Prediction. Given history interaction sequence S.;, to predict the sparse ID 1D, 1,
the Transformer input sequence is: S1.; = [h1, hy, ..., hy] = [e1,v1,e2,Va, ..., €, v¢]. where
each h; is a concatenation of the sparse ID embedding and the dense vector for the i-th item. The
Transformer processes this sequence to generate contextualized representations, subsequently used
to predict the next sparse ID and dense vector. Specifically, the Transformer decoder processes the
sequence Sy.;, producing a sequence of vectors y; = TransformerDecoder(S;.;). The logits for
sparse ID prediction are derived as: z;1 = SparseHead(y;). where z; 1 represents the logits for
the predicted sparse ID 1D, ;.

Dense Vector Prediction. For predicting the dense vector v, 1, the Transformer input sequence can
be represented as: Sy, = [S1.4,€141] = [€1,V1,€2,Va,. .., €, Vi, €41]. The Transformer decoder
processes Sy.; to output the predicted dense vector: V1 = TransformerDecoder(Sy.;).

3.3 End-to-End Training

In COBRA, the end-to-end training process is designed to optimize both sparse and dense representa-
tion prediction jointly. The training process is governed by a composite loss function that combines
losses for sparse ID prediction and dense vector prediction.

Sparse ID Loss. The sparse ID prediction loss, denoted as Lgparse, €nsures the model’s proficiency in
predicting the next sparse ID based on the historical sequence S1.4:

B ewGlh)
Esparse = - Z IOg — 2
t=1

e y
Zj:l eXp(zg_H)

where T is the length of the historical sequence, I D, is the sparse ID corresponding to interacted

item at time step t + 1, ztlff“ represents the predicted logit of ground truth sparse ID I D, at time

step t + 1, generated by the Transformer Decoder, and C' denotes the set of all sparse IDs.

Dense vector Loss. The dense vector prediction loss Lgense focuses on refining the dense vectors,
enabling them to discern between similar and dissimilar items. The loss is defined as:

T—1 R

Ccos

Lense = — Z log exp(Cos(V1, Yt'H)) 3)
t=1 Zitemj €Batch exp(cos(le, Vitemj ))

where v, is the predicted dense vector, v is the ground truth dense vector for the positive item, and
Vitem; tepresents the dense vectors of items within the batch. The term cos(V11 - V1) represents
the cosine similarity between the predicted and ground truth dense vectors. The dense vectors are
generated by an end-to-end trainable encoder denoted by Encoder, which is optimized during the
training process. This ensures that the dense vectors are dynamically refined and adapted to the
specific requirements of the recommendation task.

Overall Loss. The overall loss function is formulated as: £ = Lgparse + Ldense- The dual-objective
loss function enables a balanced optimization process, where the model dynamically refines dense
vectors guided by sparse IDs. This end-to-end training approach captures both high-level semantics
and feature-level information, optimizing sparse and dense representations jointly for improved
performance.

3.4 Coarse-to-Fine Generation

During the inference phase, COBRA implements the coarse-to-fine generation procedure, involving
the sequential generation of sparse IDs followed by the refinement of dense vectors in a cascaded
manner, as illustrated in Figure [3| The coarse-to-fine generation process in COBRA is designed to
capture both the categorical essence and fine-grained details of user-item interactions. This process
involves three main stages:
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Figure 3: Illustration of the Coarse-to-Fine Generation process. During inference, M sparse IDs are
generated via Beam Search, and appended to the sequence. Dense vectors are then generated and
used in ANN to obtain candidate items. BeamFusion combines beam scores and similarity scores to
rank candidates, from which the top K items are selected.

Sparse ID Generation. Given a user sequence Sp.7, we utilize the ID probability distribution

modeled by the Transformer Decoder, [ DT-H ~ P(i741|S1.7), and employ the BeamSearch
algorithm to derive the top M IDs. The formulation is as follows:

{Ii);H},]CM:l = BeamSearch(TransformerDecoder(S;.1), M) @

where k € {1,2,..., M}. Each generated ID is associated with a beam score qﬁlbk .
T+1
<k
Dense Vector Refinement. Each generated sparse ID ID7, ; is subsequently converted into an
embedding and appended to the previous cascaded sequence embedding S;.7. Then the corresponding
dense vector V% 1 18 generated:

V41 = TransformerDecoder([S1.r, Embed(Ii);H)]) 5)

After that, we employ Approximate Nearest Neighbor (ANN) search to retrieve the top NV candidate
items:

~ k ~ k
A = ANN(ID7, ,,C(ID7, ), N) (6)

~k . . . . . =~k
where C(ID ) is the set of candidate items associated with sparse ID ID-_ |, and N represents
the number of top items to be retrieved.

BeamFusion Mechanism. In order to achieve a balance between precision and diversity, we devise
a globally comparable score for items corresponding to each sparse ID. This score is capable of
reflecting both the differences among different sparse IDs and the fine-grained difference among
items under the same sparse ID. To accomplish this, we propose the BeamFusion mechanism:

~k ~k
dT41 D7 2) Softmax (¢4, x ) x Softmax (¢ cos(Vf, ;,a)) @)
T+1

where a represents the candidate item, 7 and v are coefficients, and ¢ denotes the beam

sk
D7,
score obtained during the beam search process. Finally, we rank all candidate items based on their
BeamFusion Scores and select the top K items as the final recommendations:

M

R = TopK (U Ay, ®, K) 8)
k=1

where R denotes the set of final recommendations, and TopK(+) represents the operation of selecting

the top K items with the highest BeamFusion Scores. For a detailed algorithmic description, please
refer to the pseudocode provided in Appendix [E]

3.5 Theoretical Justification

In our framework, each item is characterized by a hybrid sparse-dense representation (1D, v), where
ID denotes the sparse ID and v represents the dense vector. A critical consideration is how to model
the joint conditional distribution P(I D, v|S) given a user sequence S. This distribution can be
modeled in two primary ways:



Independent Modeling This approach assumes that I D and v are predicted independently given
S:

P(ID,v|S) = P(ID|S) - P(v]S). ©)

Cascaded Modeling (Ours) This approach, which we adopt, factorizes the joint distribution by
first predicting I D, and subsequently predicting v conditioned on both I D and S:

P(ID,v|S) = P(ID|S) - P(v|ID, S). (10)

We posit that the cascaded formulation is theoretically superior as it explicitly captures the dependency
between I D and v given S. We formalize this advantage in terms of information entropy.
Theorem 1 (Superiority of Cascaded Modeling). Let H;pqep and Heqscaded denote the total entropies
of the probability distributions defined by the independent (Eq.[9) and cascaded (Eq.[I0) formulations,
respectively. Then,

Hcascaded(ID»V|S) S Hindep(IDav‘S) (11)
with equality holding if and only if v and 1D are conditionally independent given S.

Theorem [T]demonstrates that the cascaded modeling consistently produces a joint distribution with
lower information entropy. This implies a more compact and informative representation that facilitates
model learning. The detailed proof is provided in Appendix[F

4 Experiment

This section presents a comprehensive evaluation of the COBRA framework using both public and
industrial datasets. Our experiments focus on assessing COBRA’s ability to improve recommendation
accuracy and diversity, while also validating its practical effectiveness through offline and online
evaluations.

4.1 Public Dataset Experiments

Datasets. In our experiments, we evaluate the performance of COBRA using the Amazon Product
Reviews dataset [35) 136]]. Our analysis focuses on three specific subsets: "Beauty," "Sports and
Outdoors," and "Toys and Games." For each subset, we construct item embeddings leveraging
attributes such as title, price, category, and description. To ensure data quality, we apply a 5-core
filtering process, eliminating items with fewer than five user interactions and users with fewer than
five item interactions. Detailed statistics of the datasets are presented in Appendix

Evaluation Metrics. For the evaluation of recommendation accuracy and ranking quality, we employ
Recall@K and NDCG@XK, specifically at K = 5 and K = 10. These metrics provide insights into
the system’s ability to accurately recommend relevant items and maintain a high-quality ranking
order.

Implementation Details. In our approach, we adopt a method for generating semantic IDs similar to
the one used in [19]]. However, unlike [19], which uses a different configuration, we employ a 3-level
semantic ID structure, where each level corresponds to a codebook size of 32. These semantic IDs
are generated using the T5 model. COBRA is implemented with a lightweight architecture, featuring
a 1-layer encoder and a 2-layer decoder.

Baselines. To comprehensively evaluate the performance of our proposed COBRA method, we
compare it with the following recommendation methods (which are described briefly in Appendix [B):
P5 [33], Caser [28]], HGN [37]], GRU4Rec [27], SASRec [8], FDSA [38], BERT4Rec [9], S*-Rec [39],
and TIGER [19].

Results. COBRA consistently surpasses all baseline models across various metrics, as presented
in Tablem On the "Beauty" dataset, COBRA achieves a Recall@5 of 0.0537 and a Recall@10 of
0.0725, exceeding the previous strongest baseline model (TIGER) by 18.3% and 11.9%, respectively.
For the "Sports and Outdoors" dataset, COBRA records a Recall@5 of 0.0305 and an NDCG @5 of
0.0215, outperforming TIGER by 15.5% and 18.8%, respectively. On the "Toys and Games" dataset,
COBRA attains a Recall@10 of 0.0462 and an NDCG @10 of 0.0515, surpassing TIGER by 24.5%
and 19.2%, respectively.



Table 1: Performance comparison on public datasets. The best metric for each dataset is highlighted
in bold, while the second-best is underlined.

| Method \ R@5 N@5 R@10 N@10
P5 0.0163 0.0107 0.0254 0.0136
Caser 0.0205 0.0131 0.0347 0.0176
HGN 0.0325 0.0206 0.0512 0.0266

2 | GRU4Rec 0.0164 0.0099 0.0283 0.0137
5 BERT4Rec 0.0203 0.0124 0.0347 0.0170
m | FDSA 0.0267 0.0163 0.0407 0.0208
SASRec 0.0387 0.0249 0.0605 0.0318
S%-Rec 0.0387 0.0244 0.0647 0.0327
TIGER 0.0454 0.0321 0.0648 0.0384
COBRA 0.0537 0.0395 0.0725 0.0456

P5 0.0061 0.0041 0.0095 0.0052
Caser 0.0116 0.0072 0.0194 0.0097
HGN 0.0189 0.0120 0.0313 0.0159

« | GRU4Rec 0.0129 0.0086 0.0204 0.0110
é BERT4Rec 0.0115 0.0075 0.0191 0.0099
v | FDSA 0.0182 0.0122 0.0288 0.0156
SASRec 0.0233 0.0154 0.0350 0.0192
S%-Rec 0.0251 0.0161 0.0385 0.0204
TIGER 0.0264 0.0181 0.0400 0.0225
COBRA 0.0305 0.0215 0.0434 0.0257

P5 0.0070 0.0050 0.0121 0.0066
Caser 0.0166 0.0107 0.0270 0.0141
HGN 0.0321 0.0221 0.0497 0.0277

» | GRU4Rec 0.0097 0.0059 0.0176 0.0084
2 | BERT4Rec 0.0116 0.0071 0.0203 0.0099
& | FDSA 0.0228 0.0140 0.0381 0.0189
SASRec 0.0463 0.0306 0.0675 0.0374
S%-Rec 0.0443 0.0294 0.0700 0.0376
TIGER 0.0521 0.0371 0.0712 0.0432
COBRA 0.0619 0.0462 0.0781 0.0515

Ablation Study. To validate the neces- Table 2: Ablation study on public datasets (Recall@10).
sity of COBRA’s key components and un-

derstand their individual contributions, we Method | Beauty Sports  Toys

compare the full model against three vari- COBRA 0.0725 0.0434 0.0781
ants. COBRA w/o ID removes sparse IDs,  COBRA w/o Dense 0.0656  0.0331 0.0713
relying solely on dense vectors. COBRA COBRA w/o ID 0.0681 0.0365 0.0653

w/o Dense removes dense vectors, using COBRA w/o BeamFusion | 0.0714 0.0413 0.0769
only sparse IDs. COBRA w/o BeamFusion

removes the BeamFusion module during

inference, using top-1 sparse ID and nearest-neighbor retrieval for top-k results. As shown in Table
the removal of any key component leads to a consistent performance drop. COBRA w/o Dense
shows a significant decline, highlighting the limitations of using only discrete sparse IDs, which fail
to capture fine-grained semantic nuances. COBRA w/o ID also underperforms, demonstrating the
importance of sparse IDs in offering a structural framework that supports coarse-to-fine generation.
COBRA w/o BeamFusion also exhibits a performance drop.

4.2 Industrial-scale Experiments

Dataset. To comprehensively evaluate the proposed COBRA method, we utilize a large-scale
industrial dataset from a major information feed platform, which contains 5 million users and 2
million advertisements across diverse recommendation scenarios. Advertisements are represented via
attributes such as title, industry labels, brand, and campaign text, encoded into two-level sparse IDs



Table 3: Performance comparison on industrial dataset

Method | R@50 R@100 R@200 R@500 R@800
COBRA 0.1180 0.1737 0.2470  0.3716  0.4466
COBRA w/o ID 0.0611 0.0964 0.1474 0.2466  0.3111
COBRA w/o Dense 0.0690 0.1032  0.1738  0.2709  0.3273
COBRA w/o BeamFusion 0.0856 0.1254  0.1732  0.2455  0.2855

and dense vectors to capture multi-granularity semantic information. A more detailed description of
the dataset can be found in Appendix [C.2}

Evaluation Metrics. For offline evaluation, we employ Recall@K as the evaluation metric, testing
with K € {50,100, 200,500,800}. This metric provides a measure of the model’s ability to
accurately retrieve relevant recommendations at various thresholds.

Implementation Details. COBRA is built upon a Transformer-based architecture. In this framework,
the text encoder processes advertisement text into sequences, which are then handled by the sparse
ID head to predict 2-level semantic IDs configured as 32 x 32.

Results. For further analysis on the industrial cos sim between COBRA ads
dataset, we also compare COBRA against the I
variants defined in the previous section, i.e.,
COBRA w/o ID, w/o Dense, and w/o Beam-

Fusion. Notably, the COBRA w/o Dense vari- 4000 025
ant employs finer-grained 3-level semantic IDs R oo &
(256 x 256 x 256) to ensure its sufficient fine- 6000 o8

grained modeling capacity, compensating for
its lack of dense vectors. As shown in Table 3]
COBRA consistently outperforms all its vari-
ants across all evaluated metrics. At X = 500, |
COBRA achieves a Recall@500 of 0.3716, rep- W00 G000 G000 G000 10000
resenting a 42.2% improvement over the CO-

BRA w/o Dense variant. When K = 800, CO- Figure 4: Cosine Similarity Matrix (full compari-
BRA attains a Recall@800 of 0.4466, reflecting son in Appendix@

a 43.6% improvement over the COBRA w/o ID

variant and a 36.1% enhancement compared to COBRA w/o BeamFusion. At relatively smaller
values of K, the absence of dense or ID representations results in more pronounced performance
declines, underscoring the importance of cascaded representations for achieving granularity and
precision. Conversely, as the recall size K increases, the performance advantages associated with
BeamFusion become increasingly evident, demonstrating its effectiveness in practical industrial recall
systems.The results further underscore the contributions of specific components: Excluding sparse
IDs leads to a recall reduction ranging from 26.7% to 41.5%, highlighting the critical role of semantic
categorization. The removal of dense vector results in a performance drop between 30.3% and 48.3%,
underscoring the importance of fine-grained modeling. Eliminating BeamFusion results in a recall
decrease of 27.5% to 36.1%, emphasizing the significance of fusion strategy.

8000

10000

4.3 Further Analysis

Analysis of Representation Learning. The heatmap in Figure ] demonstrates COBRA's strong intra-
ID cohesion and inter-ID separation, indicating effective capture of both item-specific features and
categorical semantics. Quantitative verification through difference analysis is provided in Appendix[D]
Further validation of COBRA’s embeddings is achieved through visualizing the distribution of
advertisement embeddings in a two-dimensional space using t-SNE. By randomly sampling 10,000
advertisements, distinct clustering centers for various categories are observed. Figure [5a]reveals that
advertisements are effectively clustered by category, indicating strong cohesion within categories.
The clusters in purple, teal, light green, and dark green correspond primarily to advertisements for
novels, games, legal services, and clothing, respectively. This demonstrates that the advertisement
representations effectively capture semantic information.
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Figure 5: (a) t-SNE visualization of 10,000 randomly sampled advertisement embeddings. (b)
Recall@2000 and diversity metrics under different 7 values.

Recall-Diversity Equilibrium. To analyze the trade-off between accuracy and diversity in COBRA,
we examine recall-diversity curves, which depict how Recall@2000 and diversity metrics evolve with
the coefficient 7 in the BeamFusion mechanism, while keeping ¢ fixed. As depicted in Figure [5b}
increasing T generally leads to a decrease in diversity. COBRA achieves an optimal balance between
recall and diversity at 7 = 0.9. At this point, the model maintains high accuracy while ensuring a
sufficiently diverse set of retrieved items. Specifically, when M = 50, compared to 7 = 1.0, setting
7 = 0.5 results in a 4.99% decrease in recall, but brings more than double the diversity. Meanwhile,
7 = 0.9 leads to a 0.12% increase in recall and an 18.80% relative improvement in diversity. This
fine-grained control over 7 and ¢ allows for adjusting the emphasis on accuracy or diversity according
to specific business objectives. Platforms prioritizing exploration can reduce 7 to enhance diversity.
This flexibility distinguishes COBRA from models with fixed retrieval strategies, making it adaptable
to various recommendation scenarios.

Online Results. To validate COBRA’s real-world effectiveness, we conducted online A/B tests on a
major information feed platform. The experiment covered 10% of user traffic, ensuring statistical
significance. The primary evaluation metrics were conversion and Average Revenue Per User
(ARPU), which directly reflect user engagement and economic value. Within the traffic segment
exposed to our proposed strategy, COBRA achieved a 3.60% increase in conversion and a 4.15%
increase in ARPU. These results demonstrate that COBRA’s hybrid architecture not only improves
recommendation quality in offline evaluations but also drives measurable business outcomes in
production environments.

5 Conclusion

In this work, we introduced COBRA, a generative recommendation framework that combines sparse
and dense representations for enhanced accuracy and diversity. COBRA employs a coarse-to-fine
generation process, starting with a sparse ID to capture the categorical essence of an item and refining
it with a dense vector. Our extensive experiments on public and industrial datasets demonstrate
that COBRA achieves superior performance over state-of-the-art methods, delivering high accuracy
with controllable diversity. These gains are further validated through online A/B tests, confirming
the method’s practical applicability. In the future, we intend to incorporate more multi-domain
and multi-modal information to further enhance our framework’s effectiveness. Additionally, we
will explore performance optimizations in the generative approach to improve its efficiency and
scalability.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper clearly demonstrates the performance improvement of the new
method on recommendation tasks, and the experimental section provides ample support
for these claims. Therefore, the main assertions in the abstract and introduction accurately
reflect the contributions and scope of the paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In our paper, we mention that our proposed method currently only handles the
text modality, which implicitly acknowledges a limitation of our current work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All relatively complex mathematical formulas are accompanied by detailed
derivations and transformations.

Guidelines:
* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed description of each stage of the experiment,
including the source and preprocessing of the dataset and the model’s parameter settings.
This information allows other researchers to replicate the experiment and achieve similar
results.

Guidelines:
* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to the submission requirements of the commercial company, we are
unable to include the code with our submission. However, we provide complete and detailed
parameter settings and pseudocode for use by other researchers.

Guidelines:
* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides a detailed description of the dataset used in the experiments,
the data preprocessing methods, and the hyperparameter settings. These details help readers
understand the process by which the experimental results were generated.
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Guidelines:
» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the significant differences observed in the experimental results of
our study, we believe that conducting statistical significance tests in this context is less
necessary. However, we will consider adding them in future work. We have ensured the
rigor of the experimental process and the reliability of the results by validating the stability
of the model’s performance through multiple experiments. Additionally, the comparison
with other methods provides valuable insights.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The focus of this study is on theoretical innovation and methodological
exploration of the algorithm, rather than specific engineering implementation and resource
optimization. We are primarily concerned with the structural design of the model and
the logical flow of the algorithm. At this stage, we believe that the innovativeness and
effectiveness of the algorithm are the more critical factors to consider.

Guidelines:
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9.

10.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The authors strictly adhered to the NeurIPS Code of Ethics throughout their
research process.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper includes detailed annotations for the code, datasets, and other assets
used.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
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14.

15.

16.

Justification: The paper provides detailed documentation for the newly created dataset and
model, including the data collection and preprocessing methods, the model architecture, and
the training process.

Guidelines:
* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our research did not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is not the central component of our method; our core contribution is a
generative framework.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Sequential Dense Recommendation. Sequential dense recommendation utilize user interaction
histories to learn representations for personalization [8 139, 29], capturing both long-term and short-
term preferences [40-H43]]. GRU4Rec [27] first applied RNNs [44] to model sequential behavior,
effectively handling temporal dependencies. Caser [28] adopted CNNs [45] to extract local sequential
patterns from behavior matrices. Transformer-based models, such as SASRec [8] and BERT4Rec [9],
leverage self-attention to model complex user behavior, with SASRec focusing on autoregressive
predictions and BERT4Rec adopting bidirectional context encoding. Advanced architectures like
PinnerFormer [46]] and FDSA [38]] further enhance user modeling by integrating multi-source fea-
tures and capturing long-range dependencies. Recent efforts (e.g., ZESRec [30]], UniSRec [31]],
RecFormer [29]]) have moved towards cross-domain recommendation and richer feature integration,
often via contrastive learning and unified language-sequence modeling.

Generative Recommendation. With the emergence of large generative models, recommendation is
increasingly framed as a generation task [32] 47551]. P5 [33] reformulates various recommendation
tasks as language generation, enabling unified modeling and prompting strategies. TIGER [19]
applies residual quantized autoencoders to produce semantic item identifiers, which transformers then
generate from user sequences. LC-Rec [21] aligns these semantic IDs with collaborative signals, while
IDGenRec [23]] leverages large language models for unique, dense textual identifiers. SEATER [34]
and ColaRec [22] focus on aligning semantic and collaborative spaces or maintaining semantic
consistency via structured indexes. Despite their advantages, generative models relying on discrete
IDs may lose fine-grained preference information [52]], and natural language generation may be
less aligned with recommendation-specific signals [53]]. Hybrid approaches like LIGER [26] jointly
generate sparse IDs and dense vectors, narrowing the gap between retrieval paradigms. Nevertheless,
challenges remain in achieving optimal flexibility and representation granularity.

B Baselines

To rigorously evaluate the effectiveness of our proposed COBRA method, we benchmark it against a
range of recommendation methods.

» P5 [33]]: This innovative approach transforms recommendation tasks into natural language se-
quences, utilizing the capabilities of language models to unify various recommendation scenarios.

 Caser [28]]: Caser employs convolutional layers to effectively capture sequential user behavior
patterns, modeling high-order Markov Chains.

* HGN [37]: The Hierarchical Gating Network(HGN) is designed to capture both long-term and
short-term user interests through a sophisticated gating architecture, facilitating personalized
recommendations.

* GRU4Rec [27]]: As a pioneering RNN-based approach, GRU4Rec leverages gated recurrent
units to model user behaviors in sequential recommendation tasks, paving the way for subsequent
developments in the field.

* SASRec [8]: As a Transformer-based model, SASRec focuses on long-term dependencies in user
interactions, employing self-attention mechanisms for precise sequential recommendations.

* FDSA [38]: By integrating item features with embeddings, the Feature-level Deeper Self-
Attention(FDSA) Network enriches the input sequence, leveraging self-attentive mechanisms to
enhance recommendation quality.

* BERT4Rec [9]: Utilizing a bidirectional self-attention framework with a cloze task objective,
BERT4Rec overcomes the limitations of traditional uni-directional models, offering robust
recommendation capabilities.

« S%-Rec [39]: S*-Rec leverages contrastive learning to bolster the recommendation process,
employing self-supervised techniques to enhance sequential recommendation performance.

* TIGER [19]]: TIGER employs RQ-VAE for encoding item content features and leverages a
Transformer for generative retrieval, showcasing a novel approach to incorporating content
features in recommendation tasks.
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These methods collectively represent the forefront of recommendation technology, embodying diverse
methodologies from sequential and dense recommendation to generative approaches.

C Dataset Statistics

C.1 Public Datasets.

Table 4: Summary of dataset statistics for three real-world benchmarks.

Dataset Users Items Avg. Length Med. Length
Beauty 22,363 12,101 8.87 6
Sports and Outdoors 35,598 18,357 8.32 6
Toys and Games 19,412 11,924 8.63 6

Our study utilizes the Amazon Product Reviews dataset [35) 36], which spans user reviews and
product information from May 1996 to July 2014. To comprehensively explore the effectiveness of
recommendation methods, we selected three categories: “Beauty,” “Sports and Outdoors,” and “Toys
and Games.” Table[d] provides a concise summary of these datasets. During data preprocessing, we
constructed users’ historical item interaction sequences based on review timestamps, excluding users
with fewer than five reviews. For evaluation, we adopted the widely-used leave-one-out strategy: the
last item in each user’s sequence served as the test sample, the second-to-last as the validation sample,
and the remaining items as training data. The "Beauty" dataset contains 22,363 users and 12,101
items, featuring an average sequence length of approximately 8.87, with a median of 6. The "Sports
and Outdoors" dataset comprises 35,598 users and 18,357 items, with an average sequence length of
8.32 and a median of 6. Similarly, the "Toys and Games" dataset includes 19,412 users and 11,924
items, with an average sequence length of about 8.63 and a median of 6.

C.2 Industrial Dataset Details.

To thoroughly evaluate the proposed COBRA method, we employ a large-scale industrial dataset
derived from user interaction logs on a major information feed platform. This dataset covers multiple
recommendation scenarios, including list-page, dual-column, and short-video recommendations, and
contains approximately 5 million users and 2 million advertisements, providing a comprehensive
reflection of real-world user behaviors and advertising content.

Advertisers and advertisements are described by attributes such as title, industry labels, brand, and
campaign text. To effectively capture both coarse-grained and fine-grained semantic information,
these attributes are encoded into two-level sparse IDs alongside dense vector representations. This
dual encoding enables COBRA to model user preferences and item characteristics more accurately.

The dataset is divided into two parts: the training set Dy, and the test set Dy.. The training
set consists of user interaction logs collected over the first 60 days, covering recommendation
content and user behaviors during this period. The test set is constructed from logs recorded on the
day immediately following the training period and serves as a benchmark for model performance
evaluation. This chronological split ensures the temporal consistency of training and testing processes,
improving the reliability of the evaluation.

D Supplementary Similarity Analysis

The COBRA model exhibits significant intra-ID cohesion and inter-ID separation, as demonstrated in
the top heatmap of Figure ] This suggests that COBRA’s dense embeddings proficiently capture
detailed item characteristics while preserving semantic consistency within categories. Conversely,
the model variant without sparse IDs (Figure [6a) shows weaker category separation, underscoring
the importance of sparse IDs in maintaining semantic structure. The difference matrix in Figure [6b]
quantitatively confirms that incorporating sparse IDs enhances both cohesion and separation.
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Figure 6: Complete similarity matrix comparison: (a) Weaker separation without ID, (b) Quantitative
improvement from sparse IDs

E Pseudocode for Coarse-to-Fine Generation

Algorithm 1 Inference with BeamFusion

1: Imput: input_seq S1.7, beam_size M, nn_num N, recall_num K, candidate items a
2: Output: Top K recommendations R

3:
4: procedure FORWARD(: - -)

5 Sparse ID Generation:

6: for each ID hierarchy do

7: Run transformer forward pass
8

<k
Compute ID logits and scores {ID.,; }7

9: Update beam scores and decoder input
10: end for
11: Dense Vector Refinement:
12: Obtain final decoder output V4.
13: Compute similarity scores cos(V5., ;,a)
14: Filter logits using generated ID
15: BeamFusion Mechanism:
16: Combine beam scores ¢ID§+1 with similarity scores cos(V% ,,a)
17: Select top K candidates based on fused scores
18: Prepare Results:
19: Collect final ID sequences, retrieved items, and scores

20: end procedure

F Proof of Theorem 1

We calculate the information entropy (for discrete variable I D) and differential entropy (for continu-
ous variable v) under both probability distributions given by Eq.[9|and Eq. |10} We denote the discrete
entropy by H (-) and the differential entropy by h(-).

Independent Modeling (Eq. [9):

Hingep = =Ep,,,,, log P(ID, v|S5)]
= —Ep,,.4., [l0g(P(IDIS) - P(v|5))]
= —Ep,,..,log P(ID|S)] — Ep,,,.,[log P(v|5)]
— H(ID|S) + h(v|S) (12)

Hence, under independent modeling, the total entropy decomposes additively over 1D and v.
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Cascaded Modeling (Eq.[10):
Hcascaded = _]EPcascaded UOg P(ID7 V‘S)]

= —Ep,..cancallog(PID|S) - P(v|ID, S))]
- 7]Epcascaded [IOg P(ID|S)] - EPcascaded UOg P(V|ID3 S)]
— H(ID|S) + h(v|ID, 5) (13)

Hence, cascaded modeling captures the full joint uncertainty between I D and v.
Comparison: By the property of conditional entropy [54]:
h(v|S) > h(v|ID,S) (14)
Equality holds if and only if v and I D are conditionally independent given S.
Substituting this inequality into Eq.[I2]and [I3]yields:
Hindep 2 Heascaded (15)

which confirms Theorem[I]

G Computational Cost Analysis

We define L as the sequence length, 7" as the number of tokens per item and D as the embedding
dimension.

Table 5: Training Complexity. (Please add citations for TIGER/SASRec)

Component COBRA TIGER [19] SASRec [8]]
Item Feature Encoder O(L-T?-D+ L-T - D?) N/A N/A
Sequential Model O(L?*-D+ L-D? O(L?>-D+L-D* O(L?*-D+L-D?

Table 6: Inference Complexity. (Please add citations for TIGER/SASRec)

Component COBRA TIGER [19] SASRec [8]
Item Feature Encoder O(1) (cached) N/A N/A
Sequential Model O(L>-D+L-D?* O(L>-D+L-D?* O(L*-D+L-D?

To ensure practical efficiency, we employ several key techniques during implementation. These
include sequence Packing and FlashAttention to minimize computational waste. Furthermore, encoder
caching is utilized to decouple the encoder computation, significantly speeding up the inference
process. Thanks to these optimizations, COBRA achieves over 30% Model FLOPs Utilization (MFU),
and has been successfully deployed, serving over 200 million daily users.
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