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Abstract

The quality of probabilistic forecasts is crucial for
decision-making under uncertainty. While proper
scoring rules incentivize truthful reporting of pre-
cise forecasts, they fall short when forecasters face
epistemic uncertainty about their beliefs, limiting
their use in safety-critical domains where decision-
makers (DMs) prioritize proper uncertainty man-
agement. To address this, we propose a framework
for scoring imprecise forecasts—forecasts given
as a set of beliefs. Despite existing impossibility
results for deterministic scoring rules, we enable
truthful elicitation by drawing connection to social
choice theory and introducing a two-way commu-
nication framework where DMs first share their ag-
gregation rules (e.g., averaging or min-max) used
in downstream decisions for resolving forecast am-
biguity. This, in turn, helps forecasters resolve in-
decision during elicitation. We further show that
truthful elicitation of imprecise forecasts is achiev-
able using proper scoring rules randomized over
the aggregation procedure. Our approach allows
DM to elicit and integrate the forecaster’s epis-
temic uncertainty into their decision-making pro-
cess, thus improving credibility.

1 INTRODUCTION

Probabilistic forecasting is a powerful tool for decision-
making under uncertainty with diverse applications ranging
from energy demand forecasting [Pinson and Girard, 2012,
Pinson, 2013] and credit risk assessment [Rindt et al., 2022,
Yanagisawa, 2023] to machine learning (ML) [Singh et al.,
2023] and large language models (LLMs) [Shao et al., 2024,
Wu and Hartline, 2024]. Proper scoring rules serve as fun-
damental tools for evaluating the quality of probabilistic
forecasts [Brier, 1950, Murphy and Winkler, 1988, Gneit-

ing and Raftery, 2007]. They also serve as a backbone for
eliciting other distributional properties such as their mo-
ments [Frongillo and Kash, 2014]. By assigning numerical
scores based on the reported forecast and the realized out-
come, these rules incentivize truthful reporting, i.e., any
deviation from the forecaster’s true beliefs would result in
suboptimal scores. Beyond applications in statistics, proper
scoring rules have a deep connection with mechanism de-
sign, a sub-field of economics. When used as a payment
mechanism, the agents have no incentive to lie, a property
known as incentive compatibility [Myerson, 1981].

Traditionally, scoring rules operate under the assumption
that forecasters possess a precise probabilistic belief about
some uncertain event. They are designed to reward the fore-
casters whose forecasts reflect their true precise beliefs [Sav-
age, 1971, Gneiting and Katzfuss, 2014]. For example, in
weather forecasting [Brier, 1950] a forecaster who believes
there is a 60% chance of rain tomorrow should ideally report
60% as their forecast. However, in many real-world scenar-
ios, forecasters face significant ambiguity due to the inherent
complexity of atmospheric systems, coupled with limited
data and model resolution, which introduce substantial im-
precision [Wilks, 2011]. It is thus plausible for forecasters
to report imprecise probability assessments in these sce-
narios; for example, the chance of rain tomorrow may be
assessed within the interval [50%, 70%]. Importantly, clas-
sical proper scoring rules built for precise forecasts cannot
account for such additional uncertainty [Konek, 2015].

Under the context of machine learning, imprecise forecast-
ing is closely related to the concept of out-of-distribution
(OOD) generalization [Muandet et al., 2013, Zhou et al.,
2023]. In standard supervised learning, where training and
test data are assumed to be independent and identically dis-
tributed (i.i.d.), the predictive model reflects the learner’s
precise belief about the data generating process. However, in
OOD generalization—where multiple training datasets are
observed, and the test data may not be i.i.d. with the training
data—Singh et al. [2024] argue that the notion of generaliza-
tion (e.g., average-case or worst-case optimization strategy)
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Figure 1: We consider scenarios where the expert holds an imprecise belief over the outcome o ∈ O, represented as
P ⊆ ∆(O). The goal is to truthfully elicit this belief, i.e., the best report Q should be P . The leftmost figure directly
extends precise scoring rules to the imprecise case, ignoring the downstream DM. Truthful elicitation in the imprecise
setting requires the DM to share their aggregation rule ρ with the expert (middle). To avoid DM’s strategic manipulation by
the forecaster, DM shares a distribution θ(ρ) over aggregation rules (right), resulting in a strictly proper scoring rule sθ.

should be determined by the model’s end user, also referred
to as the decision-maker (DM). When direct interaction be-
tween the learner and the DM is not possible, Singh et al.
[2024] propose an imprecise learning algorithm that trains
a portfolio of predictors (forecasts) in advance, which are
then provided to the DM. In contrast, for practical scenarios
where the learner and DM can communicate, eliciting pre-
cise forecasts is straightforward using classical scoring rules.
However, eliciting imprecise forecasts remains challenging
due to the lack of suitable imprecise scoring rules. This gap
motivates us to design appropriate imprecise scoring rules
that are applicable beyond machine learning contexts.

The key challenge to designing an appropriate scoring rule
arises from the forecaster’s epistemic uncertainty. This chal-
lenge has led to several impossibility theorems for strictly
proper imprecise scoring rules [Seidenfeld et al., 2012,
Mayo-Wilson and Wheeler, 2015, Schoenfield, 2017]. How-
ever, these works focus solely on eliciting imprecise fore-
casts from the forecaster, overlooking the fact that proba-
bilistic forecasts are typically used for downstream decision-
making, making elicitation rarely the sole objective. Without
input from the DM during elicitation, forecaster must rely
solely on their imprecise belief, which contains inherent
ambiguity. This often leads to indecision during elicitation—
a key factor behind prior impossibility results. Recently,
Fröhlich and Williamson [2024] explored imprecise scor-
ing rules involving DMs, but their analysis focused only on
min-max (pessimistic) decision-making and lacked formal
discussion of the DM’s role. More broadly, indecision can
be resolved through subjective choices beyond the min-max
rule. However, it cannot be resolved by forecasters alone
without eliminating their epistemic uncertainty. We argue
that the DM must actively assist forecasters in navigating
indecision by communicating their subjective preferences.

Our contributions. To address this challenge, we propose
a novel setup for scoring imprecise forecasts where we con-
sider a DM as an additional agent, who actively guides
the forecaster in resolving indecision during elicitation (see

Figure 1 for different scenarios). Our contributions are sum-
marized as follows:

• We show that prior impossibility results stem from the
lack of communication between DM and the forecaster.

• We formalise DM-forecaster communication using
aggregation rules from social choice theory [Arrow,
2012] and generalize tailored scoring rules [Johnstone
et al., 2011] to accommodate these aggregations.

• We analyze the connection between axiomatic proper-
ties of aggregation rules from the social choice perspec-
tive and their impact on both truthful elicitation from
the forecaster and the DM’s decision-making process.

• By restricting to strategic communication, specifically
by sharing only a distribution over aggregation rules,
we propose a novel randomized tailored scoring rule
that is strictly proper for imprecise forecasts.

The rest of the paper is organized as follows. Section 2 in-
troduces proper scoring rules and imprecise probabilities.
Section 3 then formalizes the notion of an imprecise fore-
caster and outlines decision-making for the forecaster and
DM. Next, Section 4 explores imprecise scoring rules, first
without communication and then with aggregation. Sec-
tion 5 presents strictly proper scoring rules for imprecise
forecasts, while Section 6 reviews prior work. Finally, Sec-
tion 7 concludes with a discussion of future directions.

2 PRELIMINARIES

This section introduces proper scoring rules, imprecise prob-
abilities (IP), and credal sets. We begin by establishing the
notation. Let (O,F) be a measurable space where O is
a finite, discrete, non-empty set of possible outcomes (or
states of nature) and F is a corresponding sigma-algebra.
Let O ∶ O → R be a random variable associated with p.m.f.
p ∶ O → [0, 1] on outcome o ∈ O. The probability sim-
plex ∆(O) denotes the set of all probability distributions on



O. Our framework involves two agents: a forecaster and a
decision-maker (DM), each with an associated utility func-
tion u ∶ X × O → R, where X represents the decision
space relevant to the agent’s utility. Since we often refer
to specific outcomes o ∈ O, we will use O and o inter-
changeability. Thus, for some x ∈ X , the agent’s expected
utility EO∼p[u(x,O)] is expressed as Eo∼p[u(x, o)]. For a
set P , co(P) corresponds to the convex hull and ext(P) to
its extreme points.

2.1 PRECISE SCORING RULES

Scoring rules incentivize a forecaster to truthfully report
their probability assessments of an uncertain event [Winkler,
1967, Brier, 1950]. Specifically, a scoring rule s ∶ ∆(O) ×
O → R assigns a score of s(q, o) to a forecaster with a
forecast q ∈ ∆(O) when an outcome o happens.

Definition 2.1. A forecaster is precise if their true belief
can be expressed as a probability distribution p ∈ ∆(O).

Since classical proper scoring rules focus on truthful report-
ing and evaluation of precise forecasts, we refer to them
as precise scoring rules. To discourage a forecaster from
making overly confident predictions, e.g., q(o) = 0. We
introduce regular precise scoring rule, i.e. s(q, o) ∈ R for
all o ∈ O and s(q, o) = −∞ only if q(o) = 0.

Definition 2.2 (Expected utility of the forecaster). Precise
scoring rules implicitly assume that the forecaster is an ex-
pected utility-maximising agent. Therefore, for a forecaster
with true belief p, the utility of reporting forecast q is

up(q) = Eo∼p[s(q, o)]. (1)

We now define a subclass of regular precise scoring rules,
known as strictly proper precise scoring rules that incen-
tivize truthful reporting of the forecaster’s belief.

Definition 2.3 (Strictly Proper Precise Scoring Rule). A
scoring rule s ∶ ∆(O)×O → R∪ {−∞} is strictly proper
if the forecaster’s true belief p ∈ ∆(O) uniquely maximizes
their expected utility, i.e., for all p, q ∈ ∆(O) s.t. q ≠ p,

Eo∼p[s(p, o)] > Eo∼p[s(q, o)]. (2)

Some examples of strictly proper precise scoring rules are,
logarithmic scoring rule s(q, o) = ao + b log(q(o)) and
quadratic scoring rule s(q, o) = ao+b(2q(o)−Eo∼q[q(o)])
with b ∈ R+ and ao ∈ R as arbitrary parameters. Proper pre-
cise scoring rules are closely related to convexity and can be
characterized using convex functions as shown in McCarthy
[1956], Savage [1971], Gneiting and Raftery [2007].

Theorem 2.4 (Gneiting and Raftery 2007). A regular
scoring rule s is (strictly) proper if and only if

s(q, o) = G(q) − ∑
o∈O

G
′(q)dq(o) +G

′(q)(o) (3)

where G ∶ ∆(O) → R is a (strictly) convex function and
G

′(q) is a subgradient of G at point q and G
′(q)(o) is the

value of gradient at outcome o.

An implication of Theorem 2.4 is that with this charac-
terisation of the scoring rule s, we can interpret G as the
corresponding maximum expected score [Frongillo and
Kash, 2014]. The derivation of G as the expected score is
included in Appendix A.1 for completeness.

2.2 IP AND CREDAL SETS

Standard probability theory assigns a unique numerical
value to each event, whereas imprecise probabilities (IP)
allows a range of plausible values to represent uncertainty in
the presence of limited or ambiguous information. One com-
mon approach to modelling such uncertainty is via credal
sets. Given a subset P ⊆ ∆(O) of the plausible proba-
bility distributions, a credal set is defined as a closed and
convex combination of P . The assumption of convexity
and closedness allows for rational decision-making [Gaj-
dos et al., 2004, Troffaes, 2007] and satisfies axioms such
as coherence [de Finetti, 1974, Walley, 1991]. While P
directly specifies the plausible beliefs about the state of na-
ture, co(P) denotes the uncertainty inferred by a rational
agent [Walley, 1991, Augustin et al., 2014].

3 A JOINT DECISION FRAMEWORK
FOR DM AND FORECASTER

In this work, we consider scenarios where an agent is tasked
with selecting an input x from a finite space of inputs
X ∶= {x1, . . . , xn}. Agent’s choice of input x ∈ X and
outcome of uncertain event o ∈ O quantify the utility
u(x, o) obtained by the agent. In the case of a precise fore-
caster, X ∶= ∆(O) and Eq. (1) shows how the precise score
u(x, o) ∶= s(p, o) acts as a utility for the forecaster, under-
lining the decision-making aspect within elicitation. From
the DM’s perspective, X ∶= A where A ∶= {a1, . . . , am}
denotes the finite space of actions which DM can choose
from. Depending upon the outcome o ∈ O, the DM obtains
u(x, o) ∶= u(a, o) as the utility.

3.1 DECISION-MAKING WITH FORECASTS

There exists a crucial difference between decision-making
with imprecise forecasts v.s. precise forecasts. In the case of
precise forecasts, the agent (forecaster or DM) has a precise
belief or report p ∈ ∆(O). Using p allows them to define
a complete preference relation ⪰p over X based on several
well-established rationality frameworks [Von Neumann and
Morgenstern, 1947, Savage, 1972]. Thereby, allowing the
agent to select the corresponding best input x∗. This x

∗

represents the best forecast to report in the case of a precise



forecaster and the best action to take in the case of DM.
However, in scenarios where the belief (or obtained report)
for an agent is a set of presice beliefs P ⊆ ∆(O), the pref-
erence relation (⪰P ) obtained on X using P is incomplete.
In this case, a natural way to define ⪰P is based on the idea
of dominance.

Definition 3.1. Consider P ⊆ ∆(O), then the corre-
sponding preference relation ⪰P over X for a VNM ra-
tional [Von Neumann and Morgenstern, 1947] agent can be
defined as follows: for all x, x′

∈ X ,

x ⪰P x
′ iff Ep[u(x, o)] ≥ Ep[u(x′

, o)] ∀p ∈ P.

Unless P is implicitly a precise forecast of type {p ∈

∆(O)}, the preference relation ⪰P is a partial order over X .
The partial order ⪰P can be incomplete, since there can be a
pair of inputs x, x′

∈ X such that x′ /⪰P x and x /⪰P x
′. In

other words, x and x
′ are incomparable. This can result in

indecision for the agent. This means that both the forecaster
and the DM face indecision when they rely on P for their
respective tasks (elicitation or decision-making).

3.2 IMPRECISE FORECASTER

Our work focuses on analyzing scoring rules in scenarios
where the forecaster may be imprecise. Specifically, we
formalise the notion of an imprecise forecaster and their
truthfulness below.

Definition 3.2. A forecaster is imprecise if their belief can
be expressed as a set of distributions P ⊆ ∆(O). A report
Q ⊆ ∆(O) is called an imprecise forecast, which implicitly
includes precise forecasts Q = {q} for some q ∈ ∆(O).

Definition 3.2 generalizes the precise setting as it allows
the forecaster to express their (partial) ignorance by report-
ing both aleatoric uncertainties (as elements in the set) and
epistemic uncertainties (as the set itself) [Hüllermeier and
Waegeman, 2021]. This subsumes both scenarios where the
forecaster’s belief is truly imprecise, e.g., the probability
that it will rain tomorrow is [0.6, 0.8], and where their belief
is calibrated with respect to multiple sources of potentially
conflicting information, e.g., the estimated probability based
on data from multiple weather stations. Moreover, this can
also be interpreted as a “collective” report obtained from
multiple (potentially conflicting) precise forecasters. Impre-
cise probability scoring rules can be defined analogously to
precise scoring rules as follows.

Definition 3.3. (Imprecise Probability Scoring Rule) An
imprecise probability (IP) scoring rule s ∶ 2∆(O) × O →

R∪{−∞} assigns a score of s(Q, o) to a report Q ⊆ ∆(O)
when the outcome o ∈ O is realized.

Analogous to precise setting, an IP scoring rule is regular if
s(Q, o) ∈ R for all o ∈ O, except if q(o) = 0 for all q ∈ Q,

then s(Q, o) = −∞. To define regularity analogous to the
precise setting we consider for all q ∈ Q, since otherwise
reporting a vacuous set ∆(O) or other imprecise sets will
have −∞ as an incentive, thereby discouraging the fore-
caster from reporting their epistemic uncertainty. The score
s(Q, o) obtained by the forecaster induces a corresponding
set of utilities V P(Q) for the forecaster with an imprecise
belief P , representing the expected utility of the imprecise
score with respect to every distribution within their belief
P . We define this utility set as follows:

V
P(Q) = {Ep[s(Q, o)]}p∈P

From the forecaster’s perspective, this collection of expected
utility functions V

P ∶ 2∆(O)
→ R∣P∣, for each report Q

result in a range of plausible expected utility, i.e.,

im(V P(Q)) = [ inf
p∈P

Ep[s(Q, o)], sup
p∈P

Ep[s(Q, o)]]

where im is the image or the range of the forecaster’s mini-
mum and maximum expected score for forecast P when its
extreme points exist; see Appendix A.2 for further details.
While the equivalence of two precise distributions p and q
is natural, i.e., p = q or not. The equivalence of two impre-
cise beliefs is not obvious as they are sets of distributions.
We now define the equivalence of two beliefs P,P ′ in the
context of elicitation as follows.

Definition 3.4. (Equivalence of Imprecise Beliefs) Two
beliefs P,P ′

⊆ ∆(O) are considered equivalent, denoted
as P ≃ P ′, if for all IP scoring rules s and forecasts Q ⊆

∆(O), we have im(V P(Q)) = im(V P ′

(Q)).

Intuitively, two imprecise forecasts are equivalent if they
yield the same range of plausible expected utilities for any
scoring rule s and reported forecast Q—that is, they induce
identical decision-making. We now show that Definition 3.4
reduces to the classic notion of equivalence between proba-
bility distributions when applied to precise forecasts.

Proposition 3.5. For all p, q ∈ ∆(O), {p} ≃ {q} iff p = q.

With Proposition 3.5, we establish that Definition 3.4 gen-
eralises from the notion of equivalence of precise forecasts,
i.e. distributions to imprecise forecasts. We can also char-
acterize the equivalence of two imprecise forecasts as the
equivalence of their corresponding credal sets.

Proposition 3.6. For imprecise beliefs P,P ′
⊆ ∆(O) with

non-empty extreme points, P ≃ P ′ iff co(P) = co(P ′).

It has previously been shown that two sets of distributions
must be credal sets to induce the same rational decision-
making behaviour [Troffaes, 2007, Huntley et al., 2014,
Troffaes and de Cooman, 2014]. Definition 3.4 defines the



equivalence of two imprecise beliefs w.r.t elicitation and
Proposition 3.6 establishes its equivalence to rational de-
cision making. This allows us to consider elicitation as a
decision-making task for the forecaster. As a consequence
of Proposition 3.6, even though a forecaster believes in a
set of probability distributions P . We restrict our focus to
evaluating a credal set of forecasts co(P). Therefore, from
now on, we will assume that P is a convex set.

Definition 3.7. (Truthfulness of Imprecise Forecaster) Let
P ⊆ ∆(O) be the true belief of an imprecise forecaster. A
report Q ⊆ ∆(O) is truthful if Q ≃ P .

Definition 3.7 generalizes the concept of truthfulness in the
precise setting. An imprecise forecaster who reports their
true belief is considered truthful. For instance, if the fore-
caster believes the probability of rain tomorrow lies within
the interval [0.6, 0.8], then they must report their actual
epistemic uncertainty by reporting the interval [0.6, 0.8].

4 PROPER IP SCORING RULES

In this section, we introduce proper imprecise scoring rules,
i.e., scores that incentivize the truthful reporting of an im-
precise forecaster according to Definition 3.7. We start by
focusing only on the elicitation of the imprecise forecaster
without any communication from the DM. The following
definition clarifies what it means for an imprecise scoring
rule to be (strictly) proper, which naturally generalises Defi-
nition 3.1 from the forecaster’s perspective.

Definition 4.1. An imprecise scoring rule is (strictly) proper
if for all credal sets P,Q ⊆ ∆(O), the forecaster with an
imprecise belief P /≃ Q (strictly) prefers P over Q, i.e.,
P ⪰P Q. The preference relation ⪰P is described by the
(strict) dominance of V P(P) over V P(Q), i.e.,

Ep[s(P, o)] ≥ Ep[s(Q, o)] for all p ∈ P,

for strict dominance, at least one ≥ has to be strictly greater.

We define strict properness of an imprecise scoring rule
in Definition 4.1 using dominance since it preserves the
main idea behind strictly proper scoring rules in the precise
setting, i.e. to incentivise the forecaster to be truthful. A
strictly proper IP scoring rule incentivises the imprecise
forecaster to be truthful according to Definition 3.7.

Theorem 4.2. There does not exist a strictly proper impre-
cise scoring rule s. In addition, for a scoring rule s to be
proper it must be constant across all forecasts.

Similar impossibility results for imprecise forecasts have
previously been reported in Seidenfeld et al. [2012], Mayo-
Wilson and Wheeler [2015], Schoenfield [2017]. The im-
plication of Theorem 4.2 is that under the current setup

of an imprecise forecaster, any imprecise scoring rule sat-
isfying properness in Definition 4.1 has a constant score
across all forecasts. We observe in Section 3.1 that agents
face possible indecision while making decision with the
credal set P . As a result, we observe in Theorem 4.2 that
it is not possible to design a scoring rule that incentivises
the imprecise forecaster to report their imprecise belief P
honestly. Unlike in the precise setting, where the forecaster
had a complete preference relation on plausible reports (see
Definition 2.3), the epistemic uncertainty of the imprecise
forecaster only allows for an incomplete preference rela-
tion ⪰P over plausible reports. Without further information,
the imprecise forecaster cannot complete this incomplete
preference relation.

4.1 AGGREGATION FUNCTIONS

To resolve indecision arising from epistemic uncertainty
in the credal set P , the DM exercises a subjective choice
through aggregation function ρ to make ⪰P complete. The
DM communicates the choice of ρ to the forecaster prior
to elicitation, and the elicited credal set then informs down-
stream decisions for the DM. The resulting utility can be
shared with the forecaster as an incentive.

Definition 4.3 (Aggregation Function). For a credal set

Q an aggregation function ρ ∶ (RX )∣Q∣
→ RX combines

multiple utilities via a positive linear combination, i.e., for
any x ∈ X :

ρ[{Eq[u(x, o)]}q∈Q] = ∫
q∈Q

w(q)Eq[u(x, o)]dq

where w(q) ∈ R∣Q∣
≥0 for all q ∈ Q depends on the expected

utilities {Eq[u(x, o)]}q∈Q.

We focus on linear aggregations because, according to
Harsanyi [1955], this class of aggregation rules uniquely sat-
isfies both VNM axioms [Von Neumann and Morgenstern,
1947] and Bayes Optimality [Brown, 1981]. Many popu-
lar aggregation functions such as utilitarian and egalitarian
rules can be expressed with linear aggregations as they char-
acterise relative utilitarianism [Dhillon and Mertens, 1999].

For the utilitarian and egalitarian rules, the decision-making
process from an agent’s perspective is picking an x ∈ X .
Either for the DM an a ∈ A or for the forecaster a
Q ⊆ ∆(O). Illustrating this from the DM’s perspective,
the utilitarian rule corresponds to the linear combination
ρ[{Eq[u(a, o)]}q∈Q] = 1/∣Q∣∑q∈Q Eq[u(a, o)], whereas
the egalitarian rule corresponds to ρ[{Eq[u(a, o)]}q∈Q] =
minq∈Q Eq[u(a, o)]. Here, the weights w can be inter-
preted as w(q) = 1/∣Q∣ and a one-hot vector, respectively.
A VNM-rational DM (see Eq. (5) for forecaster) uses ρ to
obtain the best action a

∗
Q,ρ:

a
∗
Q,ρ = argmax

a∈A
ρ[{Eq[u(a, o)]}q∈Q]. (4)



Given the incomplete preference relation from a credal set
Q, i.e., ⪰Q∶= {⪰q}q∈Q, the aggregation rule ρ allows us
to define the corresponding complete preference relation
⪰ρ[Q], representing the aggregated utility from Equation (4).
By abuse of notation, ⪰ρ[Q] represents the aggregation of
utilities rather than the credal set.

Axiomatisation of ρ: When interpreting imprecise fore-
casts as a “collective” report of precise forecasters, a social
choice perspective naturally emerges for the downstream
DM. Although non-intuitive, this perspective applies even
to a single-agent imprecise forecaster. Following Arrow
[1950], we outline three desirable properties of any aggre-
gation rule ρ: Pareto Efficiency (PE), Independence from
Irrelevant Alternatives (IIA), and Non-Dictatorship (ND).

Definition 4.4 (Pareto Efficiency). An aggregation rule ρ is
Pareto Efficient iff for all x, x′

∈ X ,

x ⪰Q x
′
⟹ x ⪰ρ[Q] x

′
.

From the DM’s perspective, X = A, and as a result, a Pareto
efficient ρ will respect the inherent partial order ⪰Q over
actions which DM could infer from the reported credal set Q.
Therefore, the DM can be assured that application of ρ only
resolves indecision and similarly for the forecaster when
choosing the best report. Additionally, from the forecaster’s
perspective, a non-PE ρ can distort recommendations of
their forecast Q of an action a over a

′. The aggregation
rule that violates PE may result in the payment/score that
misaligns with the forecaster’s report.

Definition 4.5 (IIA). An aggregation function ρ is consid-
ered IIA if preferences between x, y ∈ X , i.e., x ⪰ρ[Q] y or
y ⪰ρ[Q] x is independent of whether any other z is in X .

Although cryptic, IIA is desirable to the DM. From the DM’s
perspective, X = A. Imagine a scenario where there exists a
z ∈ A such that both x, y ∈ A dominate z w.r.t. the partial
order ⪰Q, implying that z is irrelevant to the DM under
forecasts Q. However, if ρ violates IIA, the post-aggregation
preference ⪰ρ[Q] between x and y can be influenced by the
presence or absence of z. This makes the DM vulnerable to
strategic manipulation regarding the best action to take by
adding or removing z, which in turn creates uncertainty for
the forecaster about their own incentives.

Definition 4.6 (Non-Dictatorship). An aggregation rule ρ
is said to be non-dictatorial if for a profile of preferences
⪰Q∶= {⪰q}q∈Q there does not exist q ∈ Q (dictator) such
that for all x, y ∈ X , x ⪰q y implies x ⪰ρ[Q] y.

From the downstream decision-making perspective for a
DM, non-dictatorship is optional. However, when DM wants
to communicate the aggregation rule ρ to the forecaster and
wishes to truthfully elicit their true belief, non-dictatorship
becomes crucial. Given a dictatorial ρ, the forecaster can
manipulate the DM by strategically reporting the dictator q.
We discuss this more formally in Appendix C.1.

4.2 PROPER IP SCORES WITH AGGREGATION

The DM communicates the aggregation function ρ to the
forecaster and incentivises them using an IP scoring rule.
This communication helps resolve the forecaster’s epis-
temic uncertainty, parameterizing the IP scoring rule as
sρ ∶ 2∆(O) × O → R. The forecaster reports Q ∈ 2

∆(O)

and receives a score of sρ(Q, o) when outcome o ∈ O oc-
curs. Unlike prior IP scoring rules, the forecaster can now
use ρ to resolve indecision and complete the preference re-
lation over 2∆(O). This is evident from the expected utility
of the forecaster with belief P when reporting Q ⊆ ∆(O):

V
P
ρ (Q) ∶= ρ[V P(Q)] = ρ[{Ep[sρ(Q, o)]}p∈P]. (5)

Since an imprecise decision scoring rule sρ is simply a pa-
rameterised IP scoring rule, its regularity is defined exactly
as in Section 4. We extend (strict) properness for IP scoring
rules from Definition 2.3 to aggregation as follows.

Definition 4.7. A regular IP scoring rule sρ for an aggrega-
tion function ρ is proper if, for all P ⊆ ∆(O) and all Q /≃ P ,
V

P
ρ (P) ≥ V

P
ρ (Q). The IP scoring rule sρ is strictly proper

if and only if at least one of the inequalities is strict.

Notably, strictness in Definition 4.7 adheres to the notion of
truthfulness defined in Definition 3.7. Since DM needs to
evaluate the forecaster, we employ the class of scoring rules
that accommodate a DM in evaluating a forecast, called
tailored scoring rules [Dawid, 2007, Richmond et al., 2008,
Johnstone et al., 2011], following the ideas of business shar-
ing proposed in Savage [1971]. We now define them in the
context of aggregation functions for imprecise forecasts.

Definition 4.8 (Tailored Scoring Rules). An IP scoring rule
s is tailored for a DM with utility function u and aggregation
function ρ, if for any k, c ∈ R≥0, the score is defined as

sρ(Q, o) = ku(a∗Q,ρ, o) + c.

In Definition 4.8, k can be referred to as the business share
obtained by the forecaster in the utility of the DM and c is
the fixed fee of the forecaster. Next, we show that the class
of tailored scoring rules is proper for any choice of ρ,

Proposition 4.9. A tailored scoring rule sρ is proper with
respect to Definition 4.7 for any aggregation rule ρ.

While necessary, the properness of scoring rules is easy to
satisfy (see Theorem 4.2). For example, a constant scor-
ing rule is always proper. We therefore characterise strict
properness of sρ for imprecise forecasts.

Lemma 4.10. Let sρ be a tailored scoring rule. Then, the
following holds:

1. sρ is strictly proper for precise distributions if and
only if a∗q ∶= argmaxa∈A Eq[u(a, o)] is a unique
maximiser for all q ∈ ∆(O).



2. sρ is not strictly proper, i.e., does not satisfy Defini-
tion 4.7, for any Pareto efficient ρ.

Lemma 4.10 ensures the existence of non-constant proper
IP scoring rules. Beyond this positive result, we observe that
Pareto efficiency leads to the impossibility of truthful elicita-
tion under Definition 3.7. Although sρ in Lemma 4.10 is not
strictly proper for imprecise forecasts, it remains practical to
implement while being proper for all forecasts and strictly
proper for precise ones. We speculate that the properties of
sρ are optimal for deterministic scoring rules, given the prior
impossibility of any real-valued strictly proper IP scoring
rules [Seidenfeld et al., 2012]. To explore this further, we
investigate whether allowing randomisation in the choice of
aggregation rule can enable truthful elicitation.

5 STRICTLY PROPER IP SCORES

With the randomized choice of aggregation, the DM can pick
an aggregation rule randomly post-elicitation to evaluate the
reported forecast. The forecaster then becomes unaware
of the aggregation function which can lead the forecaster
back to indecision. To resolve the forecaster’s indecision,
the DM shares a distribution θ ∈ ∆(ρ) where ρ is the class
of aggregation functions the DM will pick from, thereby
enabling the forecaster to resolve their indecision as follows:

V
P
θ (Q) ∶= Eρ∼θ[V P

ρ (Q)]. (6)

This allows the tailored scoring rule sρ to be randomized
with respect to the random variable ρ. Analogous to Defini-
tion 4.8 for tailored scoring rules, we now define randomized
tailored scoring rule sθ.

Definition 5.1. A regular IP scoring rule sθ is randomized
tailored for a DM with a class of aggregation functions ρ
and a distribution θ ∈ ∆(ρ), if for any kρ, cρ ∈ R≥0 and an
arbitrary function Π ∶ 2∆(O)

→ R, the score is defined as

sθ(Q, o)(ρ) = {kρu(a
∗
ρ,Q, o) + cρ if θ(ρ) > 0

Πo(Q) if θ(ρ) = 0
.

Given that we have now extended the tailored scoring rule
to random variables, in a similar spirit to Definition 4.7 on
properness of IP scoring rules with aggregation, we define
properness of randomized tailored scoring rules as follows.

Definition 5.2. A randomized tailored scoring rule sθ for a
distribution θ ∈ ∆(ρ) and a class of aggregation rules ρ, is
considered proper if, for all P,Q ⊆ ∆(O) and Q /≃ P ,

V
P
θ (P) ≥ V

P
θ (Q). (7)

sθ is strictly proper if the inequality in Equation (7) is strict.

Again the strictness in Definition 5.2 adheres to the notion
of truthfulness defined in Definition 3.7. We will establish
this connection later in this section. We can observe from
Equation 6 that randomized tailored scoring rules are proper
for any choice of θ ∈ ∆(ρ) as a direct consequence of
Proposition 4.9. Before we discuss how to build strictly
proper IP scoring rules, we need to identify if there exists a
unique representation of the credal set in the action space
which will let the DM identify the credal set.

Lemma 5.3. For any reported credal set Q ⊆ ∆(O)
and a DM using a utility function u such that a

∗
q ∶=

argmaxa∈A Eq[u(a, o)] is unique for all q ∈ ∆(O), the

set of actions Aext
Q ∶= {a∗q}

q∈ext(Q)
acts as a unique repre-

sentation of a credal set Q in action space A.

The implication of unique representation Aext
Q in the action

space for any credal set Q is that the DM is able to identify
the credal set from the set of actions Aext

Q . In a naive analogy,
all actions in Aext

Q together act as a fingerprint of credal set
Q which can be uniquely incentivised by the DM to elicit Q.
We now introduce a common class of linear aggregations to
operationalise scoring rules based on Lemma 5.3.

Fixed Linear Aggregations is another common class of
aggregation rules which aggregates the expected utilities of
a credal set Q for any input x ∈ X , i.e., {Eq[u(x, o)]}q∈Q,
into a convex combination of utilities with mixing coeffi-
cient λ ∈ ∆

∣Q∣ as

ρλ[{Eq[u(x, o)]}q∈Q] ∶= ∫
q∈Q

λ(q)Eq[u(x, o)]dq

= E∫ λ(q)qdq[u(x, o)].

Although the class of fixed linear aggregations is Pareto-
efficient and non-dictatorial in classic social choice theory,
in our setup, fixed linear aggregations are dictatorships as
they directly aggregate the epistemic uncertainty. Due to
Proposition 3.6, a forecaster can report Q or co(Q). We
illustrate this with an example, for any report Q ⊆ ∆(O)
and any choice of fixed linear aggregation λ, we obtain
Q ∶= λ

⊤Q. Even though Q may not be in Q, it is guaran-
teed that Q ∈ co(Q), and therefore Q acts as a dictator. This
means that although the DM uses the full credal set in the
sense of all extreme points to perform decision-making, their
preference over actions can be fully represented by a pre-
cise belief P ∈ co(P). From Section 4.1, non-dictatorship
was only desirable due to the strategic manipulation by the
forecaster. In the scenario where forecasters are unaware
of the exact aggregation rule, using a random dictatorial
ρλ allows the DM to keep PE and IIA. To this end, we
show the strict properness of these randomized dictatorships.
Since strict properness for imprecise forecasters implicitly
requires strictness for precise forecasts, which means that
the sθ must satisfy Lemma 4.10 for every λ.



Theorem 5.4. Assuming sθ to be strictly proper for precise
distributions and ρ as fixed linear aggregations, sθ is strictly
proper for imprecise forecasts, i.e. sθ is a strictly proper IP
scoring rule if θ has full support over ρ.

Theorem 5.4 allows us to build strictly proper IP scoring
rules which can be characterized as follows. A randomized
tailored scoring rule sθ made using the class of fixed linear
aggregation rules is characterized as

sθ(Q, o)(λ) = {kλu(a
∗
ρλ,Q, o) + cλ if θ(λ) > 0

Πo(Q) if θ(λ) = 0
,

where λ ∈ ∆
∣ext(Q)∣ is considered strictly proper if

supp(θ) = [0, 1] where Π ∶ 2∆(O) ×O → R is an arbitrary
regular scoring function. To verify the strict properness of
our score, we conduct a simulation (see Appendix E).

In recent years, several frameworks have been proposed for
learning that challenge the implicit assumptions made in
standard ML pipeline about loss functions [Gopalan et al.,
2021]) or preferences [Singh et al., 2024] of the users being
known to the model trainer. They focus on training models
that perform well for a class of losses or aggregation rules.
Within our setup, these frameworks translate to the DM
abstaining from sharing the exact aggregation rule with the
forecaster. However, they are not exact implementations of
the score we propose. Applying the proposed score to ML
applications is one of the future research avenues.

6 RELATED WORK
The work of Fröhlich and Williamson [2024] is most closely
related to ours. They also explore the generalization of
proper scoring rules to imprecise forecasts, with a specific
emphasis on calibration [Dawid, 1982]. While their focus is
on imprecisions arising from data models, we address more
general issues related to the elicitation of imprecise forecasts.
Their findings demonstrate that, unlike in precise settings
where proper scoring and calibration objectives align, these
goals can diverge when dealing with imprecise forecasts—a
result that parallels our own. However, their reliance on the
min-max aggregation within their scoring framework limits
their analysis to pessimistic decision-making, resulting in a
scoring rule that only satisfies properness.

Impossibility results show that no continuous scoring rule
over credal sets can satisfy strict incentive compatibility,
calibration, and non-domination simultaneously [Seidenfeld
et al., 2012, Mayo-Wilson and Wheeler, 2015, Schoenfield,
2017]. Seidenfeld et al. [2012] proved that such rules must
either weaken incentive compatibility or permit domina-
tion by precise forecasts. Mayo-Wilson and Wheeler [2015]
highlighted that these trade-offs can inadvertently reward
false precision, while Schoenfield [2017] showed that any
continuous rule is either constant or fails to calibrate in

natural decision contexts. While our approach partly miti-
gates these issues, these impossibility results still constrain
deterministic methods. Some view the lack of imprecise
scoring rules analogous to precise ones as a fundamental
trait of imprecision [Konek, 2015]. Building on this, Konek
[2019] proposes a family of IP scoring rules based on the
Hurwicz criterion, extended by Konek [2023] to formal-
ize precision–robustness trade-offs axiomatically. Since the
Hurwicz criterion yields Pareto-efficient aggregation, our re-
sults in Section 4 directly apply to their framework, offering
a social choice lens on these trade-offs.

Finally, our work is uniquely positioned at the intersection
of proper scoring rules, forecast elicitation, and machine
learning, providing novel perspectives on decision-making
under uncertainty. Credal sets have become a mainstream
approach for representing modelers’ imprecision with ap-
plications in prediction [Singh et al., 2024, Caprio et al.,
2024], uncertainty quantification [Sale et al., 2023, Wang
et al., 2024], optimal transport [Caprio, 2024], statistical
hypothesis testing [Chau et al., 2025a], and statistical dis-
tances [Chau et al., 2025b], among others. To this end, our
results concerning strictly proper scoring rules for credal
sets are directly relevant to the challenges of learning and
decision-making with credal sets, providing insights into
fundamental problems and future research directions.

7 DISCUSSION

Our investigation of strictly proper IP scoring rules reveals
that, unlike in the classical precise setting, forecasting un-
der imprecision demands careful attention to the decision-
making aspect within forecast elicitation. In traditional
frameworks with strictly proper scoring rules, forecasters
are simply expected utility maximizers, making the report-
ing decision straightforward. However, when forecasts are
imprecise—represented as sets or intervals—forecasters can-
not internally aggregate their epistemic uncertainty. Instead,
they require an external aggregation rule to reconcile their
credal set-induced preferences into a single forecast.

This need for external decision guidance naturally connects
to social choice theory. In our framework, the DM provides
a collective aggregation rule that guides forecasters in re-
solving their uncertainty. This approach not only preserves
incentive compatibility in the imprecise setting but also
highlights the importance of designing scoring rules that
balance accuracy and robustness. By explicitly integrating a
social choice–inspired aggregation function into the elicita-
tion process, our work offers new perspectives on collective
decision-making, where imprecise forecasts can be viewed
as forecasts of the “collective.” This highlights promising
directions for future research on imprecise scoring rules.

Acknowledgement We thank the anonymous reviewers for
their insightful feedback.
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A ADDITIONAL SUPPORTING LEMMAS AND PROOFS

A.1 PROOF OF REMARK A.1

Remark A.1. Scoring rule s is (strictly) proper if and only if the corresponding (strictly) convex function G(q) =

∑o∈O s(q, o)q(o)

Proof. It follows from Theorem 2.4 that regular scoring rule s is (strictly) proper if and only if there exists a corresponding
(strictly) convex function G on ∆(O) such that

s(q, o) = G(q) − ∑
o∈O

G
′(q)(o)q(o) +G

′(q)(o). (8)

(⇒) Let us assume that there exists a strictly proper scoring rule s. Then, according to Theorem 2.4 there exists a convex
function G ∶ ∆(O) → R such that

s(q, o) = G(q) − ∑
o∈O

G
′(q)(o)dq(o) +G

′(q)(o)

Eo∼p[s(q, o)] = Eo∼p[G(q) − ∑
o∈O

G
′(q)(o)dp(o) +G

′(q)(o)] (expert’s true belief p)

= G(q) − ∑
o∈O

G
′(q)(o)q(o) + ∑

o∈O
G

′(q)(o)p(o),



where q is the true belief of the forecaster. Then, we consider the maximum expected score

∑
o∈O

s(q, o)q(o) ∶= max
p∈∆(O)

uq(p) (s is strictly proper)

= max
p∈∆(O)

Eo∼q[s(p, o)]

= max
p∈∆(O)

{G(p) − ∑
o∈O

G
′(p)(o)p(o) + ∑

o∈O
G

′(p)(o)q(o)}

= G(p∗) − ∑
o∈O

G
′(p∗)(o)p∗(o) + ∑

o∈O
G

′(p∗)(o)q(o) (p∗ is the maximizer)

= G(q) − ∑
o∈O

G
′(q)(o)q(o) + ∑

o∈O
G

′(q)(o)q(o) (s is strictly proper so p
∗
= q)

= G(q).

(⇐)
We define the (strictly) convex function G using the expected score of some scoring rule s, i.e., G(p) = ∑o∈O s(p, o)p(o)
and the subgradient G′(p) = s(p, o). Then,

G(p) − ∑
o∈O

G
′(p)(o)p(o) +G

′(p)(o) ∶= ∑
o∈O

s(p, o)p(o) − ∑
o∈O

s(p, o)p(o) + s(p, o)

= s(p, o)

This implies that s is a strictly proper scoring rule as a consequence of Theorem 2.4.

A.2 ON EXISTENCE OF EXTREME POINTS OF P

If the set of probability distributions P is infinite, the extreme points may not always exist. Therefore, we need to identify
the conditions under which P has a valid set of extreme points. We argue that for extreme points to exist for P , co(P) must
equal co(P), where P is the closure of set P .

Table 1: A toy example on existence of ext(P) for P made using p1, p2 ∈ ∆(O)
P Closed? ext(P) exists? co(P) = co(P)

{p1, p2} closed yes yes
{p∣p ∶= wp1 + (1 − w)p2 ∀w ∈ [0, 1] − { 1

2
}} open yes yes

{p∣p ∶= wp1 + (1 − w)p2 ∀w ∈ (0, 1)} open no no
{p∣p ∶= wp1 + (1 − w)p2 ∀w ∈ [0, 1]} closed yes yes

To show this we precisely define the extreme points of P , independent of the convex hull of P as follows

Definition A.2. Given a set P , we define the extreme points as ext(P) as the collection of p ∈ P for which there does not
exist a set of points C ⊆ P \ {p} and a probability measure w ∶ ∆ → [0, 1] such that p = ∫

C
w(q)dq.

For extreme points of a set to exist in general spaces, its convex hull must be compact according to Choquet’s Theorem Bishop
and Leeuw [1959]. To establish compactness of P we first show that with an appropriate notion of distance ∆(O) can form
a bounded metric space.

Proposition A.3. The metric space (∆(O), dTV ) is bounded, where dTV denotes the total variational distance between
two probability distributions p, q in terms of their corresponding probability measures P,Q is defined as

dTV (p, q) ∶= sup
A⊆O

∣P (A) −Q(A)∣ = 1

2
∫ ∣p(o) − q(o)∣do



Proof. As defined above, the total variational distance is half the L1 distance Levin and Peres [2017]. This allows us
to express the total variation distance directly using densities. To show (∆(O), dTV ) is bounded, let p, q be arbitrary
distributions in ∆(O). Then

dTV (p, q) ∶=
1

2
∫ ∣p(o) − q(o)∣do

<
1

2
∫ ∣p(o)∣ + ∣ − q(o)∣do ( Triangle Inequality)

=
1

2
∫ ∣p(o)∣do + 1

2
∫ ∣q(o)∣do

=
1

2
∫ p(o)do + 1

2
∫ q(o)do (p(o) ≥ 0 and q(o) ≥ 0)

=
1

2
+

1

2
= 1

Thus (∆(O), dTV ) is a bounded metric space.

We now discuss the conditions on P such that ext(P) ⊆ P .

Proposition A.4. There exists a probability measure w ∈ ∆(ext(P)) for all p ∈ P such that

p = ∫
p∈ext(P)

w(p)dp

iff co(P) = co(P), where co(P) denotes the convex hull of the closure of P when O is finite. And for cases where O is an
infinite continuous set, co(P) must additionally be totally bounded.

Proof. The above result is a direct implication of the Heine-Borel Theorem (Theorem 2.41, [Rudin, 1976]) and Choquet’s
theorem [Bishop and Leeuw, 1959]. First we discuss the proof for the case where O is finite. Since P ⊆ ∆(O), using A.3
we can say that P is bounded. This means that co(P) is also bounded. Now, we know that the convex hull of a closed set P
is also closed. Therefore, co(P) is closed and since co(P) = co(P), co(P) is also closed. This makes co(P) compact as it
is both bounded and closed by Heine-Borel Theorem. Now we can directly apply Choquet’s theorem to obtain a probability
measure w for every p ∈ P such that p = ∫

p∈ext(P) w(p)dp. In case when O is an infinite continuous set, we are dealing
with P ⊆ ∆(O), where ∆(O) may not have Heine-Borel Property, thus co(P) being totally bounded in addition to closed
ensures that co(P) is compact and therefore Choquet’s theorem is applicable.

The proposition A.4 tries to identify what conditions should P satisfy so that we can interpret co(P), i.e., the convex hull
of P as a credal set with valid extreme points ext(P). The general condition is that co(P) = co(P) as a condition on P .
Equivalently, the condition on co(P) is that it is closed. Notice that for finite P , it is trivially satisfied. This allows us to
exclude P = (0, 1

2
) type of open sets from our discussion since they are open sets and its convex hull will violate closedness

i.e. co(P) = P = (0, 1
2
). Depending on the convention, if credal sets for P are defined as the closure of their convex hulls,

i.e., co(P), then credal sets are compact (Heine-Borel Theorem) and Proposition A.4 is applicable. Thus for our , we will
restrict our discussion to P such that co(P) = co(P).

A.3 LOWER AND UPPER PROBABILITIES ARE ALWAYS EXTREME POINTS

Lemma A.5. Let P ⊆ ∆(O) be the forecaster’s belief and ext(P) the extreme points of the convex hull generated by
P ⊆ ∆(O). Given any scoring rule s ∶ 2∆(O) ×O → R and forecasts Q ⊆ ∆(O), let

p
(s,Q)
L ∶= arg inf

p∈P
Ep[s(Q, o)], p

(s,Q)
U ∶= arg sup

p∈P
Ep[s(Q, o)].

Then, both p
(s,Q)
L and p

(s,Q)
U belong to ext(P) for all pairs of s and Q. In addition, P ≃ ext(P).



Proof. Firstly, for all p ∈ P , either p ∈ ext(P) or p /∈ ext(P). This follows trivially from the definition of extreme points
of a convex hull in section 2.2.

The proof proceeds as follows. In (i) and (ii), we show that p(s,Q)
L , p

(s,Q)
U ∈ ext(P) for all pairs of s and Q, respectively,

with a contradiction. Then, given (i) and (ii), P ≃ ext(P) follows from Definition 3.4 for the equivalence of imprecise
beliefs.

(i) Lower probability: For all s and Q, p(s,Q)
L ∈ ext(P).

We prove this by contradiction. Let us first assume there exists a pair of s,Q such that p(s,Q)
L ∈ P \ ext(P). Since we

have fixed s and Q, we drop the superscript from p
(s,Q)
L for readability and treat pL as a distribution in P . Next, given

pL ∈ P \ ext(P), it implies that there exists a second order distribution w ∈ ∆(ext(P)) such that w(p) > 0 for all
p ∈ ext(P).

pL = ∫
p∈ext(P)

w(p)dp

( ⟹ ) EpL
[s(Q, o)] = E∫

p∈ext(P) w(p)dp[s(Q, o)]

= ∫
p∈ext(P)

w(p)Ep[s(Q, o)]dp

> inf
p∈ext(P)

Ep[s(Q, o)]. (w(p) > 0 for all p ∈ ext(P))

This results in a contradiction because ext(P) ⊆ P . Therefore, pL ∈ ext(P).Since our choice of Q and s was arbitrary, the
contradiction holds for all Q ⊆ ∆(O) and s. Therefore, p(s,Q)

L ∈ ext(P) for all and s.

(ii) Upper probability: For all s and Q, p(s,Q)
U ∈ ext(P).

Similarly, we show that pU ∈ ext(P). Suppose that pU ∈ P\ext(P). This implies that there exists a second order distribution
w ∈ ∆(ext(P)) such that w(p) > 0 for all p ∈ ext(P) and

pU = ∫
p∈ext(P)

w(p)dp

( ⟹ ) EpU
[s(Q, o)] = E∫

p∈ext(P) w(p)dp[s(Q, o)]

= ∫
p∈ext(P)

w(p)Ep[s(Q, o)]dp

< sup
p∈ext(P)

Ep[s(Q, o)]. (w(p) > 0 for all p ∈ ext(P))

This also results in a contradiction since ext(P) ⊆ P . Hence, both pL and pU belong to ext(P).

Equivalence of P and ext(P): Next, we show that P and ext(P) are equivalent by applying Definition 3.4. For any
reported set of beliefs Q ⊆ ∆(O) and scoring rule s,

im(V P(Q)) = [ inf
p∈P

Ep[s(Q, o)], sup
p∈P

Ep[s(Q, o)]]

= [EpL
[s(Q, o)], EpU

[s(Q, o)]]

= [ inf
p∈ext(P)

Ep[s(Q, o)], sup
p∈ext(P)

Ep[s(Q, o)]] (pL, pU ∈ ext(P) and ext(P) ⊆ P)

= im(V ext(P)(Q)).

This completes the proof.

A.4 EQUIVALENCE OF EXTREME POINTS FOR ELICITATION

Lemma A.6. If two beliefs P,P ′
⊆ ∆(O) are equivalent, i.e., P ≃ P ′, then ext(P) = ext(P ′).



Proof. By Definition 3.4, two imprecise beliefs P,P ′
⊆ ∆(O) are equivalent if for all scoring rule s and forecast Q ⊆ ∆(O),

im(V P(Q)) = im(V P ′

(Q)). This means that,

inf
p∈P

Ep[s(Q, o)] = inf
p′
∈P ′

Ep′[s(Q, o)] and sup
p∈P

Ep[s(Q, o)] = sup
p′
∈P ′

Ep′[s(Q, o)].

(⇒) For the first part of the proof, we show that ext(P) ⊆ ext(P ′). Let q ∈ ext(P), we know that for all s,Q,

inf
p∈ext(P)

Ep[s(Q, o)] ≤ Eq[s(Q, o)] ≤ sup
p∈ext(P)

Ep[s(Q, o)]

inf
p∈P

Ep[s(Q, o)] ≤ Eq[s(Q, o)] ≤ sup
p∈P

Ep[s(Q, o)] (P ≃ ext(P) from Lemma A.5)

inf
p′
∈P ′

Ep′[s(Q, o)] ≤ Eq[s(Q, o)] ≤ sup
p′
∈P ′

Ep′[s(Q, o)] (P ≃ P ′ by definition)

inf
p′
∈ext(P ′)

Ep′[s(Q, o)] ≤ Eq[s(Q, o)] ≤ sup
p′
∈ext(P ′)

Ep′[s(Q, o)]. (P ′
≃ ext(P ′) from Lemma A.5)

The last inequalities imply that q ∈ ext(P ′). (⇐) Next, we show that ext(P ′) ⊆ ext(P). Let q′ ∈ ext(P ′). Then, we know
that for all s,Q,

inf
p′
∈ext(P ′)

Ep[s(Q, o)] ≤ Eq′[s(Q, o)] ≤ sup
p′
∈ext(P ′)

Ep′[s(Q, o)]

inf
p′
∈P ′

Ep′[s(Q, o)] ≤ Eq′[s(Q, o)] ≤ sup
p′
∈P ′

Ep[s(Q, o)] (P ′
≃ ext(P ′) from Lemma A.5)

inf
p∈P

Ep[s(Q, o)] ≤ Eq′[s(Q, o)] ≤ sup
p∈P

Ep[s(Q, o)] (P ≃ P ′ by definition)

inf
p∈ext(P)

Ep[s(Q, o)] ≤ Eq′[s(Q, o)] ≤ sup
p∈ext(P)

Ep[s(Q, o)]. (P ≃ ext(P) from Lemma A.5)

The last inequalities imply that q′ ∈ ext(P). Since both ext(P) ⊆ ext(P ′) and ext(P ′) ⊆ ext(P), we can conclude that
ext(P) = ext(P ′).

A.5 PREFERENCE RELATION IN THE SUBSET OF A CREDAL SET

The lemma argues that the dominance induced by the preference relation associated with a credal set can only be refined by
considering its subsets. Formally,

Lemma A.7. For any pair of imprecise forecasts P,Q ⊆ ∆(O) such that co(Q) ⊂ co(P)

a ⪰P a
′
⟹ a ⪰Q a

′
∀ a, a

′
∈ A

where ⪰P ,⪰Q are the partial preference relations over the space of actions induced by the corresponding expected utility
profiles {Ep[u(⋅, o)]}p∈P and {Eq[u(⋅, o)]}q∈Q.

Proof. Let us assume an arbitrary Q and P such that Q ⊂ P . Now let us consider a pair of inputs x, x
′
∈ X such that

x ⪰P x
′. This implies that

Ep[u(x, o)] ≥ Ep[u(x′
, o)] ∀p ∈ P

⟹ Ep[u(x, o)] ≥ Ep[u(x′
, o)] ∀p ∈ co(P)

⟹ Eq[u(x, o)] ≥ Eq[u(x′
, o)] ∀q ∈ co(Q) (co(Q) ⊂ co(P))

⟹ Eq[u(x, o)] ≥ Eq[u(x′
, o)] ∀q ∈ Q

⟹ x ⪰Q x
′



B PROOF OF RESULTS IN SECTION 3

B.1 PROOF OF PROPOSITION 3.5

Proof. (⇐) Let us assume that there are two identical distributions p, q ∈ ∆(O), i.e., p = q that implies Ep[s(Q, o)] =
Eq[s(Q, o)] for all Q ⊆ ∆(O) and IP scoring rule s. Therefore, {p} ≃ {q}.

(⇒) Next, let us assume that {p} ≃ {q}, which means that

Ep[s(Q, o)] = Eq[s(Q, o)], ∀s,∀Q ⊆ ∆(O).

Since the above holds for all s and Q, we choose s to be strictly proper for precise forecasts and Q ∶= {p}. Hence,

Ep[s({p}, o)] = Eq[s({p}, o)]
⟹ p = q. (s is strictly proper for precise forecasts)

This completes the proof.

B.2 PROOF OF PROPOSITION 3.6

Proposition B.1. For imprecise beliefs P,P ′
⊆ ∆(O) with non-empty extreme points, P ≃ P ′ if and only if co(P) = co(P ′).

Proof. (⇐) First, we assume that P and P ′ induce the same credal set, i.e.,

co(P) = co(P ′)
ext(P) = ext(P ′) (credal sets are convex hulls)

ext(P) ≃ P and ext(P ′) ≃ P ′ (Lemma A.5)

⟹ P ≃ P ′

Hence, P and P ′ are equivalent.

(⇒) Next, we assume that P and P ′ are equivalent. Then, it follows from Lemma A.6 that ext(P) = ext(P ′).

Let us assume that there exists a P ∈ co(P). Since credal sets are convex sets, P can be expressed as a convex combination
of the extreme points. Therefore, there exists some w ∈ ∆(ext(P)) such that

P = ∫
p∈extP

w(p)dp =
(♦)

∫
p∈extP ′

w(p)dp (♦ ∶ Lemma A.6)

Thus P ∈ co(P ′) and therefore, co(P ′) ⊆ co(P).

Similarly, let us assume that there exists a P
′
∈ co(P ′). Now P

′ can also be expressed as a convex combination of the
extreme points. Therefore, there exists some w

′
∈ ∆(ext(P ′)) such that

P
′
= ∫

p′
∈extP ′

w
′(p′)dp′ =

(♦)
∫
p′
∈extP

w(p′)dp′ (♦ ∶ Lemma A.6)

Thus P ∈ co(P) and therefore, co(P) ⊆ co(P ′). Since co(P ′) ⊆ co(P) and co(P) ⊆ co(P ′), therefore co(P) =

co(P ′)

B.3 PROOF OF THEOREM 4.2

Part I: We first show that for any IP scoring rule s, it must give a constant score to all forecasts.



Proof. Let us assume there exists a proper scoring rule s ∶ 2∆(O) ×O → R ∪ {−∞}. Then, according to the definition of
proper IP scoring rules for an imprecise forecaster with a vacuous belief ∆(O), we must have,

∆(O) ⪰∆(O) Q, ∀Q /≃ ∆(O).

This follows from the fact that for a proper score s, V ∆(O)(∆(O)) dominates V ∆(O)(Q). Consequently, it follows from
Definition 4.1 that

Ep[s(∆(O), o)] ≥ Ep[s(Q, o)], ∀Q /≃ ∆(O), ∀p ∈ ∆(O). (9)

Let Q̃ ∶= {Q ∣Q /≃ ∆(O)} be the set of all forecasts not equivalent to the forecaster’s belief (∆(O)), then we can rewrite
(9) as

Ep[s(∆(O), o)] ≥ Ep[s(Q, o)], ∀Q ∈ Q̃, ∀p ∈ ∆(O). (10)

Also, {q}q∈∆(O) ⊆ Q̃ since q /≃ ∆(O). Combining this with Equation (10) yields

Ep[s(∆(O), o)] ≥ Ep[s({q}, o)], ∀q ∈ ∆(O), ∀p ∈ ∆(O)
⟹ Ep[s(∆(O), o)] ≥ Ep[s({p}, o)], ∀p ∈ ∆(O), (11)

where the second inequalities follow by selecting the inequalities such that q = p. Similarly, let us analyse the incentives for
all precise forecasters with belief p ∈ ∆(O) given a proper IP scoring rule s. Then, for all precise forecasters we must have,

{p} ⪰{p} Q, ∀p ∈ ∆(O), ∀Q ∈ Q̃ (Q̃ ∶= 2
∆(O) \ {p})

⟹ {p} ⪰{p} ∆(O), ∀p ∈ ∆(O) (∆(O) ∈ Q̃)
⟹ Ep[s({p}, o)] ≥ Ep[s(∆(O), o)], ∀p ∈ ∆(O).

However, it follows from Equation (11) that Ep[s(∆(O), o)] ≥ Ep[s({p}, o)] and Ep[s({p}, o)] ≥ Ep[s(∆(O), o)] for
all p ∈ ∆(O). This implies that Ep[s(∆(O), o)] = Ep[s({p}, o)] for all p ∈ ∆(O).

Therefore, any IP scoring rule s that satisfies properness sets up incorrect incentives for the forecaster. For example, the
expected score for honestly reporting a precise forecast is the same as reporting the vacuous set of all distributions, i.e.,

Ep[s(∆(O), o)] = Ep[s({p}, o)], ∀p ∈ ∆(O). (12)

While the above equation is sufficient to discard any proper scoring rule, we show that the only IP scoring rule possible is a
constant function. For s to be proper for imprecise forecasts, the following must hold true for all P ⊆ ∆(O):

P ⪰P {q}, ∀q ∈ ∆(O)
Ep[s(P, o)] ≥ Ep[s({q}, o)], ∀q ∈ ∆(O), ∀p ∈ P
Ep[s(P, o)] ≥ Ep[s({q}, o)], ∀q ∈ P, ∀p ∈ P

⟹ Ep[s(P, o)] ≥ Ep[s({p}, o)], ∀p ∈ P. (13)

Similarly, for any p ∈ ∆(O), the following must hold:

{p} ⪰p P, ∀p ∈ ∆(O)
⟹ Ep[s({p}, o)] ≥ Ep[s(P, o)]. (14)

Combining Equations 12, 13 and 14 yields

Ep[s(∆(O), o)] = Ep[s({p}, o)] = Ep[s(P, o)], ∀p ∈ ∆(O) (15)

Given Equation 15 is valid for all p ∈ ∆(O), we consider the a subset of ∆(O). To be precise, the set of all Dirac
distributions associated with each outcome, i.e. p ∈ {δo}o∈O

Ep[s(∆(O), o)] = Ep[s({p}, o)] = Ep[s(P, o)], p ∈ {δo}o∈O ({δo}o∈O ⊆ ∆(O))
⟹ s(∆(O), o) = s({p}, o) = s(P, o), ∀o ∈ O.

Hence, s needs to be a constant score for it to be a proper IP scoring rule.



Part II: There exists no strictly proper IP scoring rule s.

Proof. Assume that there exists a strictly proper IP scoring rule s. Consider a precise forecaster with belief q ∈ ∆(O).
Then, we have

{q} ≻q Q, ∀Q /≃ q

⟹ Eq[s({q}, o)] > Eq[s(Q, o)]
⟹ Eq[s({q}, o)] > Eq[s(∆(O), o)]. (∆(O) is one possible Q) (16)

Since s is strictly proper, it satisfies Equation 12. However, this results in a contradiction to Equation 16. Hence, no s can
be strictly proper.

C PROOF OF RESULTS IN SECTION 4

C.1 WHY IS NON-DICTATORSHIP DESIRABLE?

Let us assume that ρ violates non-dictatorship, then ρ is dictatorial. For clarity, we also define a dictatorship.

Definition C.1. (Dictatorship) An aggregation rule ρ is a dictatorial if there exists a Pρ ∈ P (dictator), that depends on ρ,
such that for any pair of reports Q,Q′

⊆ ∆(O),

Q ⪰Pρ
Q′

⟹ Q ⪰ρ[P] Q
′
.

A dictatorial ρ not only allows the forecaster to remove indecision in their decision-making problem about which Q to
report, it also allows the forecaster to precisely resolve their epistemic uncertainty, i.e., by reducing the credal set P to only
the dictator Pρ.

Let us denote the set of best reports plausible under aggregation ρ by Q̃ρ ∶= {Q ∣Q ⪰ρ Q′
,∀Q′

⊆ ∆(O)}. Since ⪰ρ is
complete, if the set of best reports Q̃ contains more than one report, then they must be indifferent w.r.t. ⪰ρ[P]. Given ρ is a
dictatorship, there exists Pρ ∈ P such that ⪰Pρ

dictates the preference ⪰ρ[P]. That is, the set of best reports under Pρ must
be exactly the same as that under ρ. Therefore,

Q̃P
= Q̃ρ

.

This implies that the expected scores of Pρ and P with any dictatorial ρ is the same, i.e.,

V
P
ρ ({Pρ}) = V

P
ρ (P).

C.2 PROOF OF PROPOSITION 4.9

Proof. We prove this result by contradiction. Let us assume that there exists a tailored scoring rule sρ that is not proper and
analyse this scoring rule for an arbitrary forecaster with an imprecise belief P ⊆ ∆(O). Since sρ is not proper, it implies
that there exists Q ⊆ ∆(O) where Q /≃ P such that

V
P
ρ (Q) > V

P
ρ (P). (17)

In other words, the forecaster strictly prefers the forecast Q over their belief P . However, let’s analyse the scenario from
DM’s perspective when they obtain forecast P , the optimal action according to the forecast P is

a
∗
P,ρ = argmax

a∈A
ρ [{Ep[u(a, o)]}p∈P] . (18)

Since a
∗
P,ρ is the maximizer of DM’s aggregated utility, this means that for all a ∈ A,

ρ [{Ep[u(a∗P,ρ, o)]}p∈P] ≥ ρ [{Ep[u(a, o)]}p∈P] . (19)



However, we know that from Equation (17)

V
P
ρ (Q) > V

P
ρ (P)

ρ[{Ep[sρ(Q, o)]}p∈P] > ρ[{Ep[sρ(P, o)]}p∈P]
ρ[{Ep[u(a∗Q,ρ, o)]}p∈P] > ρ[{Ep[u(a∗P,ρ, o)]}p∈P].

This results in a contradiction to Equation (19). Therefore, sρ must be proper. Since this holds for any choice of ρ, we can
conclude that sρ must be proper for any aggregation rule ρ.

C.3 PROOF OF LEMMA 4.10

Part I: Strict properness of IP scoring rule for precise forecasts

Proof. (⇒) From Theorem 2.4, a regular precise scoring rule s is (strictly) proper if and only if there exists a corresponding
(strictly) convex function G on ∆(O) such that

s(p, o) = G(p) − ∑
o∈O

G
′(p)(o)p(o) +G

′(p)(o).

Moreover, it follows from Remark A.1 that the G(p) = Ep[s(p, o)]. Hence, for a tailored scoring rule sρ on precise
distribution p ∈ ∆(O) to be strictly proper, we must have

G(p) = Ep[sρ({p}, o)]
= kEp[u(a∗p , o)] + c (Tailored scoring rule; Definition 4.8)
= max

a∈A
kEp[u(a, o)] + c.

Next, for G(p) to be strictly convex in p, we must have that for all p, q ∈ ∆(O),

G(q) > G(p) + ∑
o∈O

G
′(p)(o)[q(o) − p(o)] (20)

Where G
′(p)(o) is the o

th component of the gradient G′(p) at p. Let us consider the right-hand side of Equation (20).

G(p) + ∑
o∈O

G
′(p)(o)[q(o) − p(o)] = kEp[u(a∗p , o)] + c + ∑

o∈O
ku(a∗p , o)[q(o) − p(o)] (21)

= kEp[u(a∗p , o)] + kEq[u(a∗p , o)] − kEp[u(a∗p , o)] + c (22)

= kEq[u(a∗p , o)] + c. (23)

Since G(q) ∶= kEq[u(a∗q , o)] + c, for G to be strictly convex, we use Equation (23) to rewrite Equation (20) as follows

G(q) > kEq[u(a∗p , o)] + c, ∀p, q ∈ ∆(O),
⟹ kEq[u(a∗q , o)] + c > kEq[u(a∗p , o)] + c, ∀p, q ∈ ∆(O).

Hence, a∗q must be a unique maximizer.

(⇐)

We assume that a∗p ∶= argmaxa∈A Ep[u(a, o)] is the unique maximizer for all p ∈ ∆(O). Then, for all p, q ∈ ∆(O) and
some arbitrary λ ∈ [0, 1],

G(λp + (1 − λ)q) = Eλp+(1−λ)q[sρ({λp + (1 − λ)q}, o)]
= λEp[sρ({λp + (1 − λ)q}, o)] + (1 − λ)Eq[sρ({λp + (1 − λ)q}, o)]
= λkEp[u(a∗λp+(1−λ)q, o)] + λc + (1 − λ)kEq[u(a∗λp+(1−λ)q, o)] + (1 − λ)c
< λkEp[u(a∗p , o)] + λc + (1 − λ)kEq[u(a∗q , o)] + (1 − λ)c (a∗p and a

∗
q are unique)

= λG(p) + (1 − λ)G(q).

Hence, G is strictly convex.



Part II: Impossibility of strictly proper scoring rules with Pareto efficient ρ

Proof. Suppose that there exists the aggregation rule ρ such that the tailored scoring rule sρ is strictly proper for both precise
and imprecise forecasts. This means that for all P ⊆ ∆(O), and for all Q /≃ P ,

V
P
ρ (P) > V

P
ρ (Q)

⟹ ρ({Ep[sρ(P, o)]}p∈P) > ρ({Ep[sρ(Q, o)]}p∈P)
⟹ ρ({Ep[u(a∗ρ,P , o)]}p∈P) > ρ({Ep[u(a∗ρ,Q, o)]}p∈P). (sρ is tailored scoring rule)

The aggregation rule ρ maps the set of preferences ⪰P ∶= {⪰p}p∈P into a complete preference relation ⪰ρ(P) which follows
the aggregated utility ρ({Ep[u(⋅, o)]}p∈P).

Since ρ is Pareto efficient, for all a, a′ ∈ A, a ⪰P a
′ implies a ⪰ρ[P] a

′. Only for actions that are incomparable to one
another, i.e., a /⪰P a

′ and a
′ /⪰P a, ρ decides to remove indecision by completing the preference as a ⪰ρ[P] a

′ or a′ ⪰ρ[P] a.

Without loss of generality, let us assume that ρ chooses to rank a ⪰ρ[P] a
′ for two incomparable a, a

′
∈ A with respect

to original credal set P . However, based on Lemma A.7, we can construct a Q ⊆ ∆(O) such that co(Q) ⊂ co(P) and
a
∗
ρ,P = a

∗
ρ,Q. This provides a counterexample to strictness of sρ for all Pareto efficient ρ.

We now explain the counterexample in detail. We construct Q based on its partial preference relation ⪰Q. The preference
relation ⪰Q must be well defined for any two pair of actions a, a′ ∈ A. To this end we use the preference relation ⪰P to
define all possible scenarios for a pair of actions a, a′ ∈ A. Either a, a′ ∈ A are comparable with respect to ⪰P (Case I) or
incomparable (Case II). The construction of ⪰Q is defined below

Case I

a ⪰P a
′ implies a ⪰Q a

′

(Lemma A.7)

Case II

(a /⪰P a
′) ∧ (a′ /⪰P a)

Case II.1

a ⪰Q a
′ ∶= a ⪰ρ[P] a

′

Case II.2

(a /⪰Q a
′) ∧ (a′ /⪰Q a)

Figure 2: In Case I when actions are comparable in ⪰P the Lemma A.7 dictates their order to be the same for partial
preference induced by ⪰Q. However, in Case II when the actions are incomparable w.r.t ⪰P either their order in ⪰Q must
be set to aggregated order of P i.e. ⪰ρ[P] or they are left untouched, i.e. incomparable w.r.t ⪰Q

Now we are ready to reason what happens when we aggregate the partial preference ⪰Q with ρ. We will reason for all the
cases we defined above.

Case I: For all pairs of a, a′ ∈ A that are comparable w.r.t. ⪰P (Assume w.l.o.g a ⪰P a
′).

a ⪰P a
′
⟹
(♣)

a ⪰ρ[P] a
′ and a ⪰P a

′
⟹
(♦)

a ⪰Q a
′
⟹
(♣)

a ⪰ρ[Q] a
′
. (♣ ∶ ρ is PE,♦: Lemma A.7)

Therefore, whenever the pair of actions a, a′ ∈ A are comparable w.r.t. ⪰P , the aggregated preference relation is the
same, i.e., {⪰ρ[P]} ≡ {⪰ρ[Q]}.

Case II: Consider a, a′ ∈ A that are incomparable w.r.t. ⪰P . (Assume w.l.o.g that ρ resolves this as a ⪰ρ[P] a
′)

Case II.1: The pair of a, a′ ∈ A is also comparable w.r.t. ⪰Q (Assume w.l.o.g a ⪰Q a
′)

a ⪰Q a
′
⟹
(♣)

a ⪰ρ[Q] a
′ and a ⪰Q a

′
⟹
(♦)

a ⪰ρ[P] a
′ (♣ ∶ ρ is PE,♦ ∶ by construction)

Case II.2: The pair a, a′ ∈ A is incomparable w.r.t. ⪰Q.
Since ρ is a function, it will resolve indecision for two inputs in the same way, given that ∣A∣ is fixed across both
these resolutions:

((a /⪰P a
′
∧ a

′ /⪰P a) ⟹ (a ⪰ρ[P] a
′)) ∧ (a /⪰Q a

′
∧ a

′ /⪰Q a) ⟹ a ⪰ρ[Q] a
′
.



Therefore, similar to Case 1, whenever the pair of actions a, a
′
∈ A are incomparable w.r.t. ⪰P , the aggregated

preference is the same, i.e., {⪰ρ[P]} ≡ {⪰ρ[Q]}. Hence, a∗ρ,P = a
∗
ρ,Q.

This makes sρ not strictly proper.

D PROOF FOR RESULTS IN SECTION 5

D.1 PROOF OF LEMMA 5.3

Proof. We prove this by contradiction, let us assume that, Aext is not a sufficient way to represent credal sets in the actions
space. This implies that there exists a pair of credal sets Q,Q′

⊆ O such that Q /≃ Q′ and Aext
Q′ = Aext

Q . Since Q /≃ Q′ it
implies either of the two cases

• Case 1: There exists a q
′
∈ ext(Q′) such that q′ /∈ ext(Q). This implies that

∃ a
∗
q′ ∈ Aext

Q′ and ∃ a
∗
q′ ∈ Aext

Q (a∗q′ is unique for all q′ ∈ ∆(O))

This results contradicts Aext
Q′ = Aext

Q .

• Case 2: There exists a q ∈ ext(Q) such that q /∈ ext(Q′). We follow the same reasoning as Case 1, i.e.,

∃ a
∗
q ∈ Aext

Q and ∃ a
∗
q ∈ Aext

Q′ (a∗q is unique for all q ∈ ∆(O))

resulting in a contradiction with Aext
Q′ = Aext

Q .

Hence Aext is a unique representation for all credal sets.

D.2 PROOF OF THEOREM 5.4

Proof. We know that for sθ to be strictly proper, the following must hold for all beliefs P ⊆ ∆(O)

V
P
θ (P) = V

P
θ (Q) iif P ≃ Q

(⇒) Given, θ ∈ ∆(ρ) has full support, V P
θ (P) = V

P
θ (Q) implies that,

ρ({Ep[sρ(P, o)]}p∈P) = ρ({Ep[sρ(Q, o)]}p∈P) ∀ρ ∈ ρ ∀P ⊆ ∆(O)
λ
⊤{Ep[u(a∗λ⊤P , o)]} = λ

⊤{Ep[u(a∗λ⊤Q, o)]} ∀λ ∈ ∆
∣ext(P)∣

∀P ⊆ ∆(O) (ρ: fixed linear aggregation)
λ
⊤{Ep[u(a∗λ⊤P , o)]} = λ

⊤{Ep[u(a∗λ⊤Q, o)]} ∀λ ∈ {δi}i∈∣ext(P)∣ ∀P ⊆ ∆(O) ({δi}i∈∣ext(P)∣ ⊂ ∆
∣ext(P)∣)

Ep[u(a∗p , o)] = Ep[u(a∗q , o)] ∀p ∈ P ∀P ⊆ ∆(O) (q ∶= δ
T
i Q)

a
∗
p = a

∗
q ∀p ∈ P ∀P ⊆ ∆(O)

(Using Lemma 4.10 as sθ is strictly proper for precise distributions)

⟹ Aext
P = Aext

Q (By Definition of Aext)
⟹ P ≃ Q (Lemma 5.3)

(⇐) Given that P ≃ Q we show that V P
θ (P) = V

P
θ (Q). This is trivial since two equivalent forecasts produce the same

underlying partial order on the actions A. As aggregation functions make this partial order complete, by the property of
being a function, they will result in the same complete order for the same partial order. Therefore, given P ≃ Q implies that

V
P
ρ (P) = V

P
ρ (Q) ∀ρ ∈ ρ

Eθ[V P
ρ (P)] = Eθ[V P

ρ (Q)] ∀θ ∈ ∆(ρ)
V

P
θ (P) = V

P
θ (Q) ∀θ ∈ ∆(ρ)

Therefore, the imprecise forecaster is truthful in the epistemic sense w.r.t the strictly proper IP scoring rule sθ.
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Figure 3: (Left-to-right) In the first figure we simulate the scoring rule where ρ is a dictatorship with a fixed mixing weight
of 0.5, in the middle figure we simulate the scoring rule with min-max ρ (pessimistic decision maker) and in the last figure
we simulate the scoring rule where the aggregation is a randomized dictatorship and the forecaster obtains a distribution
θ = U[0, 1] over ρ. The lower half of the figure is not plotted since that corresponds to region q1 > q2, i.e. lower probability
being greater than upper probability

E SIMULATIONS

To test the sanity of our proposed scoring rule, we simulate a scenario where an imprecise forecaster predicts a binary
outcome (e.g., chance of rain tomorrow). We assume the forecaster has an imprecise forecast [0.4, 0.6] and uses an imprecise
scoring rule sρ where ρ is a dictatorship or some other aggregation like min-max. We compare this to our randomized
imprecise scoring rule sθ. Given the binary outcome, the forecaster reports an interval Q ∶= [q1, q2] where q1 denotes
the lower probability and q2 the upper probability respectively. Figure 3 highlights that the randomized scoring rule sθ is
strictly proper for imprecise forecasts as it has the highest expected score for the forecaster only when the forecaster reports
his true belief. While in other cases of using a deterministic imprecise scoring rule sρ, if DM provides a ρ such that it is
a dictatorship, such as in the case of Figure 3(a), the scoring rule is proper; however, the forecaster can lie by reporting
the dictator. This can be inferred from the contour that the point [0.5, 0.5], which corresponds to the precise forecast 0.5,
also has the highest expected score. With ρ being a min-max rule, the scoring rule sρ is proper but not strictly as other
imprecise forecasts allow the forecaster to obtain the same expected score. For our implementation we consider A = [0, 1]
and u(a, o) ∶= (o − a)2 to satisfy Lemma 4.10.
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