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ABSTRACT

Supervised learning is a fundamental framework used to train machine learning
systems. A supervised learning problem is often formulated using an i.i.d. as-
sumption that restricts model attention to a single relevant signal at a time when
predicting. This contrasts with the human ability to actively use related samples as
reference when making decisions. We hypothesize that the restriction to a single
signal for each prediction in the standard i.i.d. framework contributes to well-
known drawbacks of supervised learning: making overconfident predictions and
vulnerability to overfitting, adversarial attacks, and out-of-distribution data. To
address these limitations, we propose a new supervised learning paradigm called
self-joint learning that generalizes the standard approach by modeling the joint
conditional distribution of two observed samples, where each sample is an im-
age and its label. Rather than assuming samples are independent, our models
explicitly learn the sample-to-sample relation of conditional independence. Our
framework can naturally incorporate auxiliary unlabeled data to further improve
the performance. Experiments on benchmark image datasets show our method
offers significant improvement over standard supervised learning in terms of ac-
curacy, robustness against adversarial attacks, out-of-distribution detection, and
overconfidence mitigation. Code: github.com/ndkn/Self-joint-Learning

1 INTRODUCTION

Neural networks lay at the heart of deep learning success. However, problems such as overfitting
(Weigend, 1994; Hawkins, 2004) and confidence miscalibration (Guo et al., 2017) persist across
the vast majority of supervised models. Model calibration requires the predictive confidence of a
classifier to be faithful to the ground truth, meaning the expected accuracy of all samples with m%
confidence should be almost m%. However, deep models tend to produce overconfident predic-
tions (Guo et al., 2017), which undermines utilization of their confidence values. Consequences of
miscalibration such as susceptibility to adversarial attacks (Szegedy et al., 2013; Goodfellow et al.,
2014; Madry et al., 2017; Akhtar & Mian, 2018; Akhtar et al., 2021; Edraki et al., 2021) and poor
performance on out-of-distribution (OOD) examples (Liang et al., 2017; Hendrycks et al., 2018)
limit the utilization of deep learning systems in real-world applications.

Existing tools to combat overfitting and miscalibration include artificially increasing training data
through data augmentation (Shorten & Khoshgoftaar, 2019), using loss penalties, utilizing stochas-
ticity to constrain a model’s ability to learn data idiosyncrasies (Larsen & Hansen, 1994; Wan
et al., 2013; Gal & Ghahramani, 2016), and smoothing labels to moderate overconfident predic-
tions (Szegedy et al., 2016; Müller et al., 2019). While increasing the number of samples during
training using data augmentation has been explored, an unexplored direction is to increase the num-
ber of samples used when making a prediction. Even a well-trained model could benefit from having
additional data available at the time of inference, similar to a human expert that can still benefit from
having a selection of reference examples when making a decision about a single test example. We
hypothesize the problems of overfitting and miscalibration could be further exacerbated by limita-
tions of the commonly used model p(Y |X; θ) for a single sample-label pair (X,Y ) and parameter θ.
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This model form only allows other training pairs (X ′, Y ′) to provide reference information for the
conditional probability p(Y |X; θ), and therefore the model prediction for X , implicitly via training
and not at all during inference.

In this paper, we propose a new paradigm called self-joint supervision to construct models that make
predictions using a given test signal and a randomly selected sample of reference signals (typically
a subset of training or validation pairs). This work focuses on image signals but the framework
applies broadly. During training, a self-joint model learns to predict the joint distribution of a pair of
labels given their associated images. By training with a pair instead of one sample, the model explic-
itly learns sample-to-sample relationships. In this work, we retain the standard i.i.d. assumption of
supervised learning and our models actively learn the relationship of pairwise conditional indepen-
dence (see Appendix A.1 for a brief review of these concepts). Learning conditional independence
is the key innovation of our work and the main difference from standard supervised learning, which
has no explicit cross-sample modeling.

We apply Maximum Likelihood to learn self-joint models in the similar framework as a standard
model. After training, the model infers individual labels by marginalization of the joint distribution
output. We propose inference procedures to produce both a stochastic and a deterministic output.
Figure 1 shows an intuitive visualization of the self-joint training and inference procedures. Ex-
periments with stochastic self-joint models provide evidence that learning conditional independence
among sample pairs can lead to models more resistant to adversarial attacks and OOD data. More-
over, our method can naturally be extended to incorporate auxiliary unannotated data during training
by using marginal prediction to generate pseudo-labels. Our experiments suggest adding partially
annotated data can further safeguard against OOD data.

Overall, our findings provide a novel approach to train more consistent and robust deep models and
an alternative strategy to utilize auxiliary data. The main contributions of our work are summarized
below.
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Figure 1: Self-joint paradigm effectively expands a c-class classification problem into a c2-class
classification problem. As a concrete example, assume we are facing a ternary cat vs. dog vs. frog
classification problem. Self-joint framework principally casts this into a new 9-way classification
problem {(cat, cat), (cat, dog), ..., (frog, dog), (frog, frog)}, which represents all possible pairs
of three labels for two inputs (in our implementation we concatenate inputs channel-wise) as shown
by the 3 × 3 matrix above. During inference, one can extract output probabilities for each input
separately through marginalization, i.e. summing up the rows or columns of the matrix. Intuitively,
if the marginal prediction for a given test sample changes when we replace the second sample in the
pair, this indicates the marginal predictions have weak confidence. However, if the model is consis-
tent with its prediction across paired samples, the overall marginal prediction has high confidence.
This property leads to increased robustness.

(1) We introduce a novel perspective of self-joint learning where the model can accommodate sample
dependency. By applying the model to pairs of i.i.d. data (pairs are i.i.d.), we learn rather than
assume conditional independence between labels given two input images. (2) We show self-joint
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learning leads to substantial improvement in classification accuracy as the network capacity scales
to sizes that were previously found to be detrimental due to overfitting. (3) We construct a new type
of stochastic models that can provide robust predictions for adversarial examples and detect OOD
data. In particular, we explore the impact of our approach on model robustness against adversarial
attacks and show it drastically improves adversarial robustness against small perturbations. (4) We
propose a novel technique to inject priors into learning models with the help of auxiliary unlabelled
data. Our experiments show that utilizing auxiliary data can improve the model’s ability to recognize
OOD data.

2 RELATED WORK

Out-of-Distribution (OOD) Detection. OOD data play a vital role in real-world applications,
where the model commonly encounters samples from novel classes. Ideally, the model should
produce low confidence predictions with high level of uncertainty for data from unknown classes.
However, several studies suggest that deep models frequently make confident predictions for OOD
data (Kardan & Stanley, 2016; 2017; DeVries & Taylor, 2018). It is now an active area of research
to mitigate this drawback (Li & Gal, 2017; DeVries & Taylor, 2018; Ren et al., 2019; Chen et al.,
2020a; Malinin & Gales, 2018; Kardan et al., 2021). In recent studies, the majority of dedicated
techniques for OOD detection assume access to part of OOD data (Liang et al., 2017), which makes
OOD detection a new binary classification problem. However, in practice, this is an unrealistic
assumption. In a different approach, outlier exposure (Hendrycks et al., 2018) advocates applying
different distributions of OOD data for train and test and achieve substantial improvement over stan-
dard baseline. In this work we apply the same setup for evaluation of our OOD experiments with
auxiliary data.
Adversarial Examples. Adversarial examples, which use a deliberate minute perturbation of input
samples that translates to significant modification of model’s prediction, are yet another shortcoming
that complicates adoption of deep models in security-critical applications such as face recognition
and autonomous driving vehicle systems. In addition, these samples point out an intrinsic differ-
ence between how inference occurs in humans and current deep models. Crafting a defense against
adversarial attacks is an active area of research that witnessed a myriad of algorithms that were sub-
sequently broken by more advanced attacks. A significant exception is adversarial training (Madry
et al., 2017; Kannan et al., 2018; Zhang et al., 2019), where the deep model is exposed to adversar-
ial examples during the course of training to induce a degree of immunity against them. However,
adversarially trained models suffer from performance degradation on clean (unperturbed) samples.
Our proposed framework preserves classification performance on clean images, in addition to im-
proving performance against adversarial examples by performing a robust prediction.
Stochastic Neural Networks. Several studies show that applying stochastic models, such as
Bayesian neural networks (MacKay, 1992; Barber & Bishop, 1998; Hinton & van Camp, 1993;
Hernández-Lobato & Adams, 2015; Gal & Ghahramani, 2016), can mitigate overfitting and im-
prove resistance against OOD and adversarial data. Yet, the main challenge with these approaches is
scaling these models up to deep models with millions of parameters. Another technique to construct
stochastic deep neural networks is Monte-Carlo dropout (MC-dropout) proposed by Gal & Ghahra-
mani (2016). This approach applies dropout (Srivastava et al., 2014) during both train and inference
time. The Monte-Carlo sampling at inference time can produce reliable uncertainty estimations,
therefore, MC-dropout has been successfully applied to detect OOD Li & Gal (2017) and adver-
sarial examples Feinman et al. (2017); Rawat et al. (2017); Li & Gal (2017). Similarly, self-joint
models produce reliable predictions by performing a Monte-Carlo sampling during inference.
Mutual Information for Representation Learning. Paired data has been widely applied for rep-
resentation learning by mutual information (Becker & Hinton, 1992; Dhillon et al., 2003; Wang
et al., 2010; Friedman et al., 2013). In particular, paired data has been previously applied for co-
clustering (Dhillon et al., 2003; Wang et al., 2010). In deep networks, IMSAT (Hu et al., 2017),
DeepINFOMAX (Hjelm et al., 2018), and ICC (Ji et al., 2019) pursue better features by maximizing
information between different forms of representation of a pair of variations of the same sample.
Although these approaches learn from a pair of images, unlike self-joint paradigm, they do not learn
a joint distribution between the two samples in the pair; They merely apply the same feature extrac-
tor to each sample. Furthermore, these approaches maximize mutual information between different
instances (augmentations) of the same sample.
Contrastive Learning for Representation Learning. There is a growing body of research, such as
CPC (Henaff, 2020) and SimCLRv2 (Chen et al., 2020b), that tries to learn representations from the
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similarity between a pair of samples based on the contrastive loss (Tian et al., 2019; Li et al., 2020;
Chen et al., 2020b). These representations are later applied to a smaller set of samples for super-
vised fine-tuning. Given the abundance of unannotated data, recent studies (Goyal et al., 2021) show
that this approach can surpass performance of supervised methods that have only access to a limited
annotated dataset. Likewise contrastive learning, our framework learns better features based on a
pair of samples. However, we learn an explicit joint distribution that can deal with both annotated
and unannotated data, simultaneously, and can lead to more robust classifiers.

3 SELF-JOINT LEARNING FRAMEWORK

This section introduces our novel approach. We focus on the task of image classification, although
our method applies broadly beyond image data and the classification task. We propose to learn a
stochastic classifier by training a model on the joint distribution of pairs of data samples. We leverage
this framework to produce both robust stochastic predictions and fast deterministic predictions, and
to incorporate auxiliary unlabelled data.

Throughout the paper, let (Xi, Yi) be a paired image random variable Xi and class (label) random
variable Yi, and {(Xi, Yi)}ni=1 be the training dataset. We consider the case where the state space
of the predictors Xi is a subset of Rm and the state space of responses Yi is a subset of Rc, where
m is the number of image pixels times the number of color channels and c is the number of classes.
At times we overload the notation of Yi and treat it as a member of the set {1, . . . , c}. Finally, we
assume there is a true but unknown density q(x, y) such that (Xi, Yi) pairs are i.i.d. samples from
q(x, y) for i = 1, . . . , n. We emphasize that in this work we always assume that the observations
{(Xi, Yi)}ni=1 are truly i.i.d. from q, even when we later introduce a model that can accommodate
sample dependency.

3.1 REVISITING SUPERVISED LEARNING

The most common approach in supervised learning is to define a conditional density p(Y |X; θ) for
a single pair (X,Y ) and use the Maximum Likelihood Estimator (MLE)

θ̂MLE({Xi, Yi}ni=1) = argmax
θ

p(Y1, ..., Yn|X1, ..., Xn; θ) (1)

=argmax
θ

n∏
i=1

p(Yi|Xi; θ) = argmax
θ

n∑
i=1

log p(Yi|Xi; θ). (2)

This framework covers the most widely-used loss functions and tasks such as classification with
cross-entropy and regression with square-error. The transition from (1) to (2) is justified not as a
mathematical consequence but as a definition

p(Y1, . . . , Yn|X1, . . . , Xn; θ) :=

n∏
i=1

p(Yi|Xi; θ) (3)

chosen by the modeler based on the i.i.d.assumption about the dataset {(Xi, Yi)}ni=1. We note that
this choice is not strictly necessary and that the modeler could use alternate factorizations. In the
extreme case, the modeler could simply not factorize. Instead, the modeler could define and attempt
learning the fully joint conditional distribution p(Y1, . . . , Yn|X1, . . . , Xn; θ) directly, which is a
valid but impractical approach even if the modeler still believes the data is i.i.d. Such a model would
be difficult to learn, difficult to use, and unlikely to generalize well. However, the possibility of
an intermediate factorization between i.i.d. and fully joint learning is an intriguing and unexplored
direction that is the main focus of this work.

The assumption (3) is motivated in part by the desire to learn the conditional distribution p(Yi|Xi; θ)
for a single pair (Xi, Yi). In this work, we instead use a conditional distribution p(Yi, Yj |Xi, Xj ; θ)
for two pairs (Xi, Yi) and (Xj , Yj) as our base model. We call this the self-joint model. Al-
though our base model could learn conditional dependency between Yi and Yj given Xi and Xj ,
we will exclusively train p(Yi, Yj |Xi, Xj ; θ) using conditionally independent samples Yi|(Xi, Xj)
and Yj |(Xj , Xj). We note that this conditional independence relation trivially holds under the i.i.d.
assumption. In the context of classification, conditional independence means that the c × c pre-
diction matrix h(Xi, Xj ; θ) defined by the ideal classifier p(Yi, Yj |Xi, Xj ; θ) should have the form
h(Xi, Xj ; θ) = qiq

⊺
j , where qi, qj ∈ Rc represent the true conditional distribution q(Yi|Xi) and
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q(Yj |Xj), respectively (see Section 3.2 for full details). An essential difference between self-joint
learning and standard supervised learning is that our model can explicitly learn the sample-to-sample
relation of pairwise conditional independence, instead of assuming this via the factorization in (3).

We can once again use Maximum Likelihood to learn our self-joint model by defining

θ̂SJ({Xi, Yi}ni=1) = argmax
θ

p(Y1, ..., Yn|X1, ..., Xn; θ) (4)

=argmax
θ

∑
S∈S

log
∏

(i,j)∈S

p(Yi, Yj |Xi, Xj ; θ) (5)

=argmax
θ

∑
S∈S

∑
(i,j)∈S

log p(Yi, Yj |Xi, Xj ; θ), (6)

where S is a set of n
2 arbitrary non-intersecting parings {i, j} for i, j ∈ {1, . . . , n} and S is the set

of all such sets. This has the mild requirement that the number of samples n is even. For a given
S, the factorization in (5) is again justified by the i.i.d. assumption across all observations, and we
simply choose to cease factoring at pairs of two samples. Since all such factorizations are valid
under the i.i.d. assumption, we choose to average the log likelihood over all possible factorizations
when defining our learning objective, which under argmax is equivalent to summing. The ideal
model will learn that

∏
(i,j)∈S p(Yi, Yj |Xi, Xj ; θ) remains constant across all S. In practice, we use

a single S sampled uniformly from S and a random subset Sb of b pairs in S to obtain a stochastic
gradient

∆̂SJ(θ) =
∑

(i,j)∈Sb

∂

∂θ
log p(Yi, Yj |Xi, Xj ; θ). (7)

This gradient is unbiased for the gradient of the objective (6) as discussed in Appendix A.2.

3.2 LEARNING AND PREDICTING WITH SELF-JOINT CLASSIFIERS

In this section we will apply the self-joint supervision method to the image classification task. Let
p(Yi, Yj |Xi, Xj ; θ) := h(Xi, Xj ; θ) be a classifier that maps two samples Xi, Xj ∈ Rm to a pre-
diction for their corresponding joint label YiY

⊺
j ∈ Rc×c, where Yi, Yj ∈ Rc are the labels of Xi

and Xj , respectively. Since Yi is a probability density, ||Yi||1 = 1 and 0 ≤ Yi,k ≤ 1 for each scalar
component Yi,k of Yi, and the same applies to Yj . It is straightforward to show that the total loss

L(θ; {Xi, Yi}ni=1) =
∑
S∈S

∑
(i,j)∈S

l(θ;Xi, Xj , Yi, Yj), (8)

where l(θ;Xi, Xj , Yi, Yj) = (YiY
⊺
j ) · log h(Xi, Xj ; θ) (9)

with the dot product taken in the sense of vectors and log taken elementwise, is equivalent to the
MLE learning objective in (6) for cross-entropy loss, and that the stochastic gradient can optimize
this loss similar to (7). See Appendix A.3 for details of this equivalence between (6) and (8).

Although we are learning a joint model p(Y, Y ′|X,X ′; θ), we still would like to make predictions
for a single test image X via p(Y |X; θ) as in the standard i.i.d. framework. Note X and X ′ denote
the first and second inputs of the model, respectively, and Y and Y ′ are their corresponding labels.
This can naturally be accomplished by marginalization and Monte Carlo approximation:

p(Y |X; θ) =

∫
Rm

c∑
k=1

p(Y, Y ′ = k|X,X ′; θ)q(X ′)dX ′ (10)

≈ 1

|B|
∑
i∈B

c∑
k=1

p(Y, Y ′ = k|X,Xi; θ) = p̂(Y |X; θ), (11)

where B denotes a random subset of {1, . . . , n} with |B| giving its cardinality, and q(x) is the
marginal of the true joint distribution q(x, y). Our model can only approximate p(Y |X; θ) instead
of having a closed form solution because different samples B yield different predictors, but this
estimate will be stable for large |B| due to the weak law of large numbers. In the case where |B| is
moderately large, we empirically observe that predictive uncertainty estimated by either the variance
of p̂(Y |X) or its entropy is more robust than the uncertainty calibration of a standard i.i.d. supervised
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model, which provides a compelling motivation for exploring the generalization properties of our
framework.

Note that (11) has a computational complexity of O(|B|) and that p̂(Y |X; θ) requires additional
samples Xi for estimation, which results in stochasticity. In our experiments, |B| is typically less
than or equal to 50, which is a reasonable but non-trivial additional cost. To address these concerns,
we note that we can use the same X for both input signals, yielding the deterministic classifier

p̃(Y |X; θ) =

c∑
k=1

p(Y, Y ′ = k|X,X; θ). (12)

This is a valid estimate for (10) with |B| = 1 provided that X is in-distribution.

Intuitively, in the Monte-Carlo inference in (11), the joint label is affected by the probabilistic label
of both input samples. Generally, the two samples produce different levels of confidence and might
belong to different classes, therefore, for a better approximation, we repeat our estimation of the
prediction for the test sample several times. However, in (12) we know that the two sample inputs
have the same label and seeing a replicate of a sample input does not add any new information about
its label. Empirically, we observed that (12) often produces similar classification accuracy to (11).

3.3 INCORPORATING AUXILIARY DATA

Interestingly, conditional independency provides a principled tool to incorporate auxiliary data in the
self-joint learning framework. Recall that semi-supervised learning (Chapelle et al., 2009; Grand-
valet et al., 2005; Lee et al., 2013), self-supervised learning (Dosovitskiy et al., 2014; Oord et al.,
2018), and OOD detection frameworks also typically take advantage of auxiliary data. Similarly,
self-joint framework can benefit from un-labelled data. To this end, we can learn models such that
the predictions on training data remain conditionally independent given an auxiliary unlabelled im-
age. Following this approach, we effectively train self-joint models that can handle OOD data.

To incorporate auxiliary unlabelled data, we still assume that all data are generated in i.i.d. pairs
(Xi, Yi), but for the auxiliary data we have unobserved labels which we denote by Yi = ∅. The
factorization in (6) still holds under this assumption, but we are unable to learn the model without a
numerical value if Yi = ∅. A straightforward estimate (similar to pseudo-labels to replace one-hot
encoding) is

Ŷi =

c∑
k=1

p(Yi, Yj = k|Xi, Xj ; θ), (13)

which is the marginalization of the predictor matrix h(Xi, Xj ; θ). The same principle applies for
missing Yj by summing over the rows. This approach can even be used when both Yi = ∅ and
Yj = ∅. When learning with auxiliary data, we replace any null Yi with the pseudo-label Ŷi in
the objective function (6). Intuitively, auxiliary samples direct a self-joint model to preserve its
predictions when it encounters such auxiliary samples. With the right choice of auxiliary data, it
can improve generalization of the model. For example, if auxiliary data share similar background as
original data, the model learns to ignore those superficial features and focus on salient foreground
characteristics of the samples.

4 EXPERIMENTS

In this section, we evaluate the proposed framework on four visual classification tasks, i.e., CIFAR-
10, CIFAR-100, SVHN, and STL-10. The generalized self-joint training procedure is summarized
in Algorithm 1 and we use this framework across all experiments. To make general conclusions,
we refrain from hyperparameter optimization for any specific dataset and apply almost the same
configuration (data augmentation, training recipe, and model architecture) for all datasets (details in
Appendix A.5). The overall results provide strong evidence that the new framework dramatically
improves classification performance, adversarial and OOD data robustness, and facilitates training
of large neural networks.

4.1 REGULARIZATION EFFECT OF SELF-JOINT FRAMEWORK

To demonstrate the regularization effect of our framework, we trained several wideResNet
(Zagoruyko & Komodakis, 2016; He et al., 2016) models with different capacities on CIFAR-10
dataset in standard and self-joint frameworks. In this experiment, we increase the capacity by fixing
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Algorithm 1 Training procedure for self-joint learning framework
Input Training set Dtrain = {(Xi, Yi)}ni=1, auxiliary set Daux = {(Xj , ∅)}naux

j=1, loss function l,
model p(Y, Y ′|X,X ′; θ) = h(X,X ′; θ), learning rate α, number of classes c,
batch size |B|

1. set D ← Dtrain ∪Daux
2. repeat
3. B ← {(Xi, Yi)} for i ∼ {1, ..., |D|} ▷ construct batch set
4. L← 0 ▷ loss
5. for i = 1 to |B| step size 2
6. j ← i+ 1
7. if Yi = ∅
8. Yi ←

∑c
k=1[h(Xi, Xj ; θ)]k,: ▷ Eq.13: marginalizing out the output space for Xi

9. if Yj = ∅
10. Yj ←

∑c
k=1[h(Xi, Xj ; θ)]:,k ▷ Eq.13: marginalizing out the output space for Xj

11. L← L+ l(h(Xi, Xj ; θ), YiY
⊺
j ) ▷ Eq.8: updating loss

12. θ ← θ + α∇θL
13. until convergence
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Figure 2: Visualization of overfitting effect for similar models trained in standard and self-joint
framework on CIFAR-10. Standard supervised models with high capacity, measured on the x-
axis using the width in standard WideResNet-34, suffer from overfitting as shown by the drop in
accuracy of the blue line around 10. Self-joint learning can successfully train larger networks due to
its regularization effect.

the depth (34 layers) and increasing the width (number of channels) of the models. All the models
utilize the same training regime (hyperparameters, augmentations, etc) for training. Figure 2 shows
the different classification accuracies for models with different levels of capacity in each framework.
In this plot, due to overfitting, increasing capacity after a certain level harms the model performance
in the standard supervised learning framework. However, self-joint framework, due to its strong
regularization effect, is able to achieve increasingly higher levels of accuracy with higher capacity
models.

4.2 MODEL ACCURACY AND CALIBRATION EXPERIMENTS

In this experiment, we compare trained models with similar architecture in the standard and self-
joint frameworks. We train the models in full and low training-sample regimes, where in the latter
we reduce training data to 1% of the total data. Table 1 depicts the classification accuracy for
different models with these two setups on CIFAR-10/100, SVHN, and STL-10. The results suggest
that proposed method can effectively train large models that are able to achieve higher accuracy
than standard supervised learning models in both experiments. This indicates strong regularization
(Goodfellow et al., 2016) effect of the proposed framework.

Following common practice in model calibration, we report (Table 1) negative log-likelihood (NLL)
as an indicator of the quality of predictive confidences. For more detail of this metric refer to (Guo
et al., 2017). Unlike common practice in model calibration literature, we do not run any post-
processing step to calibrate models, but rather measure the raw model confidence values to compare
how different techniques affect predictive confidence. In this experiment it is evident that self-joint
models outperform standard models in model calibration. Moreover, interestingly, we observe while
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Table 1: Classification accuracy (%) and model calibration measured by negative-log-likelihood
(NLL) on different datasets. Higher accuracy and lower NLL are better.

Model CIFAR-10 CIFAR-100 STL-10 SVHN

Acc. with 1% training data Standard 42.50±1.93 6.67±0.97 22.1±2.95 82.48±2.32
SJ (ours) 55.52±0.18 12.45±0.16 26.06±1.9 88.98±0.80

Acc. with full training data Standard 95.68±0.03 79.14±0.11 73.95±1.08 97.48±0.07
SJ (ours) 97.03±0.04 81.16±0.03 87.69±0.51 97.59±0.1

Model cal. on full training data Standard 0.26±0.02 1.09±0.03 1.56±0.05 0.15±0.03
SJ (ours) 0.22±0.01 0.85±0.02 0.55±0.06 0.15±0.0

Table 2: Adversarial robustness accuracy(%) of different models measured by the classification
accuracy against adversarial examples generated by PGD with different levels of perturbation (ϵ).

CIFAR-10 CIFAR-100 STL-10 SVHN CIFAR-10 CIFAR-100 STL-10 SVHN

Model ϵ = 2/256 ϵ = 4/256

Standard 33.2 9.52 21.22 63.04 22.06 5.85 14.0 46.33
Dropout 44.91 14.6 34.1 67.47 33.42 5.25 18.08 46.08
SJ (ours) 62.29 32.65 48.12 82.0 45.52 20.33 35.29 70.85

conventional supervised learning generally produce overconfident models, self-joint models tend to
produce under-confident predictions. We attribute this phenomenon to the capacity of the trained
models, where increasing model depth usually enhances predictive confidence.

4.3 ADVERSARIAL ROBUSTNESS EXPERIMENTS

This section studies the adversarial robustness of self-joint models. Some early studies have pro-
posed MC-dropout as a defense against adversarial attacks (Feinman et al., 2017; Rawat et al.,
2017; Li & Gal, 2017). Although this defense has later been broken, its positive effect on adver-
sarial robustness has been approved in (Carlini & Wagner, 2017). Therefore, we compare against
MC-dropout models as our baseline. In these experiments we apply the gold standard of first-order
attacks, PGD, in a white-box setting. To compute the gradients of stochastic model, we apply expec-
tation over transformation (Athalye et al., 2018). In this method, given a stochastic classifier f(x; ρ),
its gradient is calculated by: ∇XEρ[f(X; ρ)] = Eρ[∇Xf(X; ρ)] ≈ 1

n

∑n
i=1∇xf(X; ρi), where

ρ denotes model randomness associated with drawing a sample {Xi1 , Xi2 , . . . , Xi|B|} according to
the random indices {i1, . . . , i|B|} ⊂ {1, . . . , n} to get the estimate p̂(Y |X; θ) in (11).

Table 2 shows the average performance over several runs of different models on 500 adversarial
examples that are generated from random test samples with different levels of perturbation (more
results reported in Appendix A.5). We set the step size and the maximum number of iterations of
PGD to 1/256 and 4, respectively. The stochastic models tend to outperform the rest of models for
different levels of perturbation on every dataset. Nevertheless, it is clearly evident that the stochastic
self-joint models (average of 20 samples) are a notch above their stochastic dropout counterparts in
adversarial robustness, e.g. about 15% improvement on CIFAR-100, and consistently outperform
all the other baselines.

4.4 DETECTING OOD DATA

Detecting OOD data is another important aspect of robustness. We apply two evaluation metrics
to measure the OOD detection rate of a model. The area under the receiver operating characteristic
curve (AUROC) is widely used in OOD detection literature. The AUROC is the expected probability
that an in-distribution data will have a higher detection score than an OOD data. We also report
detection error, which is the highest detection rate possible that is achieved by choosing the optimal
threshold.

In this experiment, we include another neural network trained with outlier exposure (OE)
(Hendrycks et al., 2018), which is a dedicated OOD detection. The OE utilizes an auxiliary OOD
dataset to improve OOD robustness of the model. It specifically tries to make classifier produce a
uniform posterior on OOD samples (for more detail refer to (Hendrycks et al., 2018)). We included
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Table 3: Average AUROC (%)/Detection Error (%) for different models. The OOD datasets include
CIFAR-10/100, SVHN, STL-10, CelebA, and VOC.

Model/in-distribution CIFAR-10 CIFAR-100 STL10 SVHN

Standard 79.46/24.21 74.84/29.01 68.97/33.9 96.09/7.89
Dropout 81.99/22.06 74.69/29.55 70.29/32.53 96.6/6.96
OE 90.23/12.94 81.24/21.71 70.74/32.55 99.99/0.03
SJ (ours) 85.41/19.38 77.03/27.7 82.26/23.6 98.91/3.94
Auxiliary+SJ (ours) 91.34/12.26 81.29/21.72 84.83/20.49 99.99/0.13

OE as a representative of a strong OOD detection baseline and a method that incorporates additional
auxiliary data. We also train models with auxiliary data as explained in section (3.3), which obtain
the best performance. For more information about these auxiliary datasets refer to Appendix A.5.

The test set of SVHN, VOC-2012, CIFAR-10, CIFAR-100, CelebA, and STL-10 datasets is chosen
for OOD datasets, where 500 samples are randomly selected (five repetitions) for in- and out-of-
distribution data to compare the detection rate of each model. Note that the majority of these datasets
have little to no common classes, however STL-10 and CIFAR-10 share 80% of their classes and thus
an ideal detection rate is far below 100% AUROC. We generally use maximum softmax probability
(e.g. Hendrycks & Gimpel (2016)) as detection score, except for Monte-Carlo dropout models,
where we apply entropy instead because we found that entropy is slightly superior in this case. For
Monte-Carlo approximation we always compute average of 50 samples.

Table 3 shows the average results for all OOD datasets (detailed results are available in Ap-
pendix A.5), where model stochasticity plays a crucial role in boosting OOD detection rate. Another
important observation is the vital role of auxiliary data in improving detection rate of stochastic self-
joint models. Interestingly, self-joint with auxiliary data generally outperforms outlier exposure,
which is a dedicated state-of-the-art OOD detection technique.

4.5 IMPORTANCE OF JOINT DISTRIBUTION MODELING

We conduct a study to demonstrate the key role of joint distribution modeling in our framework.
Here we train a model that jointly classifies two samples, simultaneously, but remove the joint
output space. In particular, unlike self-joint model, this model performs the two predictions inde-
pendently, where, the model includes 2× c output units for a c-classification problem. From another
perspective, it is an ensemble of two classifiers with shared hidden units. During the test time, a
sample is fed to both inputs simultaneously and the average of the two predictions are considered as
the output. To have a fair comparison, we use the same WideResNet architecture as self-joint exper-
iment except for the last layer that has 2 × c outputs. We observe that not only this ensemble does
not help the performance, but also it causes a 2% and 3.5% decline in the classification accuracy of
CIFAR-10 and CIFAR-100 datasets, respectively; even an inferior accuracy than standard supervised
models. Moreover, these model show overconfident predictions. These findings clearly demonstrate
the superiority of self-joint models over mere ensembling of models with shared parameters (more
experiments in Appendix A.5).

5 CONCLUSION

In this study, we proposed an alternative way to train and make inference by deep supervised models.
Our framework directly learns sample-to-sample relation of conditional independence by modeling
the joint conditional distribution of two samples. Our approach has several advantages over the stan-
dard supervised learning. First, it induces a strong regularization effect that can successfully train
large deep models to the higher levels of accuracy than the standard models. Second, it can lever-
age extra set of unlabeled data, in conjunction with the training data, to improve the performance
of the resulting model. Unlike self-supervised techniques, our approach works end-to-end, and, as
a result learns features that are more suitable for the final learning task. Third, depending on the
application, the trained models can infer in two modes: (1) a fast deterministic inference similar to
standard models, and (2) a stochastic inference mode that performs more robust predictions. We
demonstrated that this stochastic inference results in more robust predictions against adversarial and
OOD samples. We hope this study will be a stepping stone towards more reliable learning models
and inspires new avenues for future research.
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A APPENDIX

A.1 INDEPENDENCE, CONDITIONAL INDEPENDENCE, AND I.I.D.

Two events, A and B, are independent, denoted by A ⊥⊥ B, if:
p(A,B) = p(A)p(B). (14)

Furthermore, assuming p(C) > 0, A and B are conditionally independent given C, denoted by
A ⊥⊥ B|C, if:

p(A|B,C) = p(A|C). (15)
Equivalently, Eq. 15 can be stated as:

p(A,B|C) = p(A|C)p(B|C). (16)
Intuitively, two events are independent if they are not related, thus occurrence of one does not affect
the other. In Eq. 15, two events A and B given C are conditionally independent if occurrence of B
does not add any information about A above what we know based on C. As a special case of this
view:

p(A,B|C,C) = p(A,B|C). (17)
Note that neither independence relationship entails conditional independence nor conditional inde-
pendence entails independence.

The assumption that the training data are independent and identically distributed, or i.i.d., is common
to most learning frameworks. A dataset {Xi, Yi}ni=1 is called i.i.d. if (Xi, Yi) ∼ q for some fixed
density q and the joint density q′ of the entire dataset satisfies

q′(X1, Y1, X2, Y2 . . . , Xn, Yn) = q(X1, Y1)q(X2, Y2) · · · q(Xn, Yn).

The relation of pairwise conditional independence Yi ⊥⊥ Yj |Xi, Xj follows from the independence
of the joint distribution of (Xi, Yi) and (Xj , Yj) for all i, j:

q(Yi, Yj |Xi, Xj) =
q(Yi, Yj , Xi, Xj)

q(Xi, Xj)
=

q(Yi, Xi)q(Yj , Xj)

q(Xi)q(Xj)
= q(Yi|Xi)q(Yj |Xj).

This justifies the use of the joint label YiY
⊺
j as the target for p(Yi, Yj |Xi, Xj ; θ) in the self-joint

framework, where we are overloading the notation and treating p(Yi, Yj |Xi, Xj ; θ) as a matrix rather
than scalar in the classification example.

A.2 UNBIASEDNESS OF SELF-JOINT STOCHASTIC GRADIENT

In this section we show that the stochastic gradient (7) is unbiased for the gradient of the objective
(6). We note

∂

∂θ

∑
S∈S

∑
(i,j)∈S

log p(Yi, Yj |Xi, Xj ; θ) ∝
1

|S |
∑
S∈S

1

|S|
∑

(i,j)∈S

∂

∂θ
log p(Yi, Yj |Xi, Xj ; θ)

= ES

[
ES

[
∂

∂θ
log p(Yi, Yj |Xi, Xj ; θ)

]]
where the summations are expectations with respect to uniform distributions on S and S respec-
tively. The unbiasedness of (7) simply follows from the fact that each sample S and (i, j) come
from the same uniform distributions, and the fact that the mean of unbiased estimators is also unbi-
ased.
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A.3 EQUIVALENCE OF MAXIMUM LIKELIHOOD AND CROSS-ENTROPY LOSS FOR
SELF-JOINT LEARNING

In this section we show that the self-joint cross-entropy loss (8) is equivalent to the Maximum
Likelihood objective (6) in the case where the model h(X,X ′; θ) represents the conditional density
p(Y, Y ′|X,X ′; θ). This simply follows from observing that

p(Y, Y ′|X,X ′; θ) =
∏
k,k′

[h(X,X ′; θ)]
1{Yk=1,Y ′

k′=1}
k,k′

which implies

log p(Y, Y ′|X,X ′; θ) = Y (Y ′)t · log h(X,X ′; θ).

A.4 RELATIONSHIP TO BAYESIAN NEURAL NETWORKS

A successful approach to estimate uncertainty is Bayesian neural network, where every parameter
of the model has a distribution (MacKay, 1992; Barber & Bishop, 1998; Hinton & van Camp, 1993;
Hernández-Lobato & Adams, 2015; Gal & Ghahramani, 2016). From a different perspective, these
models can be thought as an ensemble of neural networks with shared parameters. Using maximum a
posteriori method, these neural networks can readily produce uncertainty estimations. Furthermore,
their principled training usually improves the overall performance of the model.

Despite these desirable properties, the application of Bayesian neural networks is very limited in
real-world applications. This is mainly due to their excessive computational cost, both during in-
ference and training phases, and their inability to appropriately scale up to large amount of data.
Moreover, from a technical point of view, choice of the right prior distribution in these networks is
not always clear. An important exception is MC-dropout (Gal & Ghahramani, 2016), which applies
dropout to construct an ensemble of neural networks that approximate a Bayesian neural network
and can be readily applied to almost any conventional deep neural network.

Much like a Bayesian neural network, a self-joint neural network can be regarded as an ensemble
of neural networks with shared parameters. In this point of view, every reference sample implicitly
generates one instance of parameters of the model, i.e. a neural network. In other words,

pZ(Y |X) =

∫
h(Z,X)dY ′, (18)

where Z is drawn from the marginal data distribution q(x). By fixing the second input, X in Eq. 18,
of the self-joint model, h, and changing the first input, Z, Eq.18 is in effect generating an output
distribution for p(Y |X), as well as generating a distribution over every parameter in the neural
network.

From this perspective, self-joint framework introduces a different viable solution for producing scal-
able Bayesian neural networks.

A.5 ADDITIONAL EXPERIMENTS

This section includes the experimental setup for our experiments, the comparison between perfor-
mance of deterministic and Monte Carlo inference procedures for different models, measuring the
independence error of self-joint models, additional adversarial robustness experiments, and the OOD
detection performance for individual OOD datasets.

A.5.1 EXPERIMENTAL SETUP

We apply four common visual classification datasets—i.e. CIFAR-10, CIFAR-100, STL-10, and
SVHN— to train our models. Table 4 shows the characteristics of these datasets, along with their
corresponding auxiliary dataset in our experiments. The auxiliary set for STL-10 dataset includes
a subset of 5, 000 samples from the extra set of annotated images provided with this dataset. To
make more general conclusions, we adhere to a unified experimental setting where we try to apply
the same set of hyperparameters to all four datasets. In particular, we limit our augmentations to
padding, random-Crop, and random horizontal-Flipping (except for SVHN), where an image is first
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padded with four (12 for STL-10 to compensate for the higher image resolution of this dataset) pixels
on every side. Then it is randomly cropped to the original size, and finally randomly horizontally
flipped.

We implemented our code in Pytorch (Paszke et al., 2019). All datasets are normalized according to
the mean and standard-deviation of their training set. All experiments apply WideResNet (with no
trainable parameters for BatchNorm layers) architecture, where models trained on CIFAR-10/100
and SVHN (all datasets with 32 × 32 images) are always a 64 layer WideResNet with width=10.
The STL-10 model utilizes a deeper 124 layer WideResNet with width= 5. Moreover, due to higher
resolution of STL-10 images, we replaced the first convolutional layer in WideResNet with 5 kernels
(stride= 2), and the final average pooling was replaced with an adaptive average pooling layer. These
changes are made to make the STL-10 model as close as possible to other models. Thus, we did
not attempt to optimize the architecture for the STL-10 dataset. The networks make no distinction
between two permutations of an input pair, i.e., the input pairs Xi, Xj and Xj , Xi are assigned to
the same class. We conduct experiments with shared parameters in the first convolutional layer for
the two inputs on CIFAR-10. However, it does not lead to significant performance improvement. As
a result, in our final experiments we do not share the parameters of the first convolutional layer. The
learning rate always starts with 0.4 and it decays after every 10 epochs with a constant scale of 0.81.
Note that we define an epoch to be roughly 390, 390, 196, and 572 iterations on CIFAR-10, CIFAR-
100, STL-10, and SVHN, respectively. The batch size starts at 128 (256 for STL-10) and is doubled
every 20 epochs. Maximum number of epochs is always 180, except for the regularization experi-
ment, after which we did not observe any noticeable improvement in training loss in any experiment.
We apply early stopping, where we discontinue training if neither the validation accuracy nor its loss
is improved for more than 20 epochs. We always keep 10% of test data for validation set and report
the final test accuracy on the rest. The optimizer is always SGD with Nestrov (momentum=0.9, and
weightDecay=e−4). Finally, we apply exponential moving average normalization (Cai et al., 2021;
Tarvainen & Valpola, 2017; Izmailov et al., 2018), where momentum= 0.95 and the average model
is updated after every 100 iterations.

A.5.2 MONTE CARLO INFERENCE IN SELF-JOINT FRAMEWORK

The robust self-joint model is primarily based on the Monte Carlo inference. Table 5 reports the
performance of the trained models using the deterministic inference procedure in Eq. 12 versus the
Monte Carlo estimation in Eq. 11. Overall, the deterministic inference performs well. However,
Monte Carlo inference generally improves with increasing the sample size. Table 6 shows the effect
of the sample size on performance of self-joint and Dropout models in Monte Carlo estimation. The
results are averaged over two runs of each experiment.

A.5.3 MEASURING INDEPENDENCE EXPERIMENTS

Recall that self-joint modeling provides a flexible framework that learns sample independency in-
stead of assuming it. To investigate if self-joint models are able to successfully learn conditional
sample-independency relations we conducted an experiment. This experiment utilizes the test sam-
ples from different datasets and measure the sample-independency for one pair according to the
following independence error:

EX,X′ ||p̃(Y, Y ′|X,X ′; θ)−
c∑

k=1

p̃(Y, Y ′ = k|X,X ′; θ)[

c∑
k=1

p̃(Y = k, Y ′|X,X ′; θ)]T ||2.

Table 4: Overview of the datasets we use in our experiments. Note that we always keep the first
10% of test data from each class as validation set and report the test accuracy on the rest.

Dataset Dimensionality No. of Classes Training Set Test Set Auxiliary Set

CIFAR-10 3,072 10 50,000 10,000 CIFAR-100
CIFAR-100 3,072 100 50,000 10,000 CIFAR-10
STL-10 2,654,208 10 5,000 8,000 STL-10 extra
SVHN 3,072 10 73,257 26,032 CIFAR-100
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Table 5: Classification accuracy of different models using deterministic versus Monte Carlo infer-
ence. ’MC’ denotes the accuracy computed by Monte Carlo procedure, and ’ASJ’ is representing
the self-joint models that apply auxiliary data during training.

Model CIFAR-10 CIFAR-100 STL-10 SVHN

Dropout 95.88±0.04 79.77±0.01 78.58±0.83 97.55±0.01
MC-Dropout 95.75±0.04 79.73±0.07 78.42±0.97 97.53±0.03
SJ (ours) 97.03±0.04 81.16±0.03 87.69±0.51 97.59±0.1
MC-SJ (ours) 96.73±0.02 82.55±0.1 85.94±2.31 97.88±0.08
ASJ (ours) 97.3±0.0 81.39±0.08 87.18±0.0 97.54±0.0
MC-ASJ (ours) 95.78±0.15 81.16±0.54 82.18±2.73 97.46±0.0

Table 6: Classification accuracy of stochastic models with different sample sizes. Larger sample
size results in higher accuracy for self-joint models.

Model Sample Size CIFAR-10 CIFAR-100 STL-10 SVHN

MC-Dropout 20 95.69±0.07 79.68±0.16 78.33±1.09 97.54±0.03
MC-Dropout 40 95.79±0.07 79.63±0.01 78.33±0.96 97.53±0.05
MC-Dropout 50 95.75±0.04 79.73±0.07 78.42±0.97 97.53±0.03
MC-SJ (ours) 20 96.58±0.16 82.03±0.16 85.21±2.63 97.79±0.02
MC-SJ (ours) 40 96.66±0.04 82.32±0.03 85.51±2.38 97.87±0.02
MC-SJ (ours) 50 96.73±0.02 82.55±0.1 85.94±2.31 97.88±0.08
MC-ASJ (ours) 20 94.22±0.04 78.81±0.05 75.92±4.75 97.45±0.05
MC-ASJ (ours) 40 95.51±0.01 80.44±0.39 80.41±2.66 97.46±0.03
MC-ASJ (ours) 50 95.78±0.15 81.16±0.54 82.18±2.73 97.46±0.0

Furthermore, to limit computational cost, in this experiment we restrict sample pairs to X = X ′. The
results in Table 7 highlight that self-joint models are successfully learning conditional independency
relations. Moreover, this table provides clear evidence that the independence relations are learned
more precisely for in-distribution data than other unfamiliar datasets.

A.5.4 ADVERSARIAL ROBUSTNESS EXPERIMENTS

In the main body of the paper we reported adversarial robustness against PGD attack with two
different setups. This section shows additional adversarial robustness experiments. First, we include
an additional setup for PGD, where the maximum perturbation is limited to 3 and the maximum
iterations is set to 4. Following the same setting as the main paper, this experiment applies 20 steps
for finding the adversarial examples using expectation over transformation (Athalye et al., 2018).
Similarly, to produce robust predictions, 20 iterations of Monte-Carlo sampling is applied. We also
repeat these experiments with different perturbations (ϵ = 2, 3, 4) for 40 steps of expectation over
transformation that follows 40 iterations of Monte-Carlo sampling for defence. Finally, we include

Table 7: Independence error for different self-joint models trained on CIFAR-10/100, SVHN, and
STL-10. Low independence errors indicate that self-joint models could learn the independence re-
lation successfully. In addition, lower errors on the trained distribution than other datasets showcase
the advantage of learning independency relations over assuming it.

test dataset

Model SVHN STL10 CIFAR-10 CIFAR-100

SVHN 0.0011±0.0 0.0072±0.0003 0.0074±0.0004 0.0074±0.0004
STL-10 0.007±0.0034 0.0044±0.001 0.0083±0.0017 0.0075±0.0021
CIFAR-10 0.0076±0.0006 0.0049±0.0001 0.0023±0.0001 0.0084±0.0
CIFAR-100 0.0001±0.0 0.0001±0.0 0.0001±0.0 0.0±0.0
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Table 8: Adversarial robustness of different models measured by the classification accuracy(% ±
stdev) against adversarial examples generated by PGD for different levels of perturbation.

Model CIFAR-10 CIFAR-100 STL-10 SVHN

Standard (ϵ = 2/256) 33.2± 4.86 9.52± 1.83 21.22± 3.53 63.04± 3.43
Standard (ϵ = 3/256) 25.92± 4.77 7.23± 2.08 15.8± 2.41 50.37± 3.41
Standard (ϵ = 4/256) 22.06± 3.8 5.85± 1.76 14.0± 2.14 46.33± 2.72

ϵ = 2/256, MC sample size=20, EOT steps=20

Dropout 44.91± 1.55 14.6± 2.16 34.1± 3.68 67.47± 1.94
SJ (ours) 62.29± 4.73 32.65± 2.09 48.12± 5.98 82.0± 1.93

ϵ = 3/256, MC sample size=20, EOT steps=20

Dropout 38.04± 1.84 9.02± 0.98 24.98± 3.13 54.78± 2.76
SJ (ours) 52.23± 3.09 23.6± 2.08 38.42± 6.15 74.83± 1.54

ϵ = 4/256, MC sample size=20, EOT steps=20

Dropout 33.42± 2.28 5.25± 0.82 18.08± 1.87 46.08± 4.1
SJ (ours) 45.52± 4.17 20.33± 2.83 35.29± 6.19 70.85± 2.17

ϵ = 2/256, MC sample size=40, EOT steps=40

Dropout 45.06± 2.58 14.46± 1.48 34.63± 1.79 67.02± 2.36
SJ (ours) 58.4± 3.83 29.42± 2.04 44.27± 4.35 80.73± 2.41

ϵ = 3/256, MC sample size=40, EOT steps=40

Dropout 36.58± 1.42 7.83± 1.2 23.96± 1.55 54.69± 1.86
SJ (ours) 47.62± 4.12 22.29± 1.71 34.23± 5.69 75.12± 1.27

ϵ = 4/256, MC sample size=40, EOT steps=40

Dropout 31.58± 1.9 5.63± 1.02 18.52± 2.59 47.63± 3.77
SJ (ours) 41.85± 2.36 17.5± 1.58 32.42± 5.37 69.54± 1.3

ϵ = 2/256, MC sample size=40, EOT steps=20

Dropout 45.67± 2.02 14.98± 1.68 35.17± 3.17 66.85± 2.02
SJ (ours) 61.54± 3.4 32.79± 1.35 47.98± 6.18 83.1± 1.87

ϵ = 3/256, MC sample size=40, EOT steps=20

Dropout 38.4± 2.24 8.21± 0.98 23.98± 3.26 55.35± 2.86
SJ (ours) 49.9± 3.65 25.4± 1.95 39.37± 7.02 75.94± 2.18

ϵ = 4/256, MC sample size=40, EOT steps=20

Dropout 32.52± 3.16 6.0± 1.16 18.02± 1.82 47.19± 3.69
SJ (ours) 44.75± 2.66 22.19± 1.96 35.75± 6.2 72.83± 1.55

a setting, where adversarial examples are generated by 20 steps of expectation over transformation,
whereas the robust inference applies 40 iterations of Monte-Carlo sampling.

Table 8 shows the performance of different models (two models per method) on 500 adversarial
examples that are generated from random test samples (five repetitions per model) for these settings.
Note that the step size of PGD is always set to 1/256 in our adversarial experiments. These results
reiterate that the stochastic self-joint model outperforms the rest of models for different levels of
perturbation on every dataset. It is also evident that both MC-dropout and self-joint models gen-
erally perform better with larger (Monte-Carlo) sample sizes when attack strength is unchanged.
Nevertheless, this improvement is more remarkable for self-joint models.
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Table 9: AUROC (%) for different models trained on CIFAR-10/100, SVHN, and STL-10. Note
that each Outlier Exposure model is explicitely trained on a OOD dataset indicated by (†) as OOD
data. Each ASJ model is also utilizing the dataset highlighted by (†) as auxiliary data.

OOD dataset

Model SVHN STL10 CIFAR-10 CIFAR-100 CelebA VOC

CIFAR-10

Standard 90.29±3.13 64.35±2.15 86.79±0.92 76.82±4.48 79.05±1.44
Dropout 93.21±1.37 65.94±2.26 89.77±0.96 80.4±1.02 81.45±1.49
OE 98.78±0.57 68.59±1.71 †97.65±0.63 98.39±0.97 87.76±1.03
SJ (ours) 93.38±0.84 67.25±1.43 93.16±0.59 86.69±1.25 86.57±0.93
ASJ (ours) 98.71±0.27 70.92±1.52 †98.5±0.24 99.65±0.19 88.92±1.26

CIFAR-100

Standard 81.7±1.15 78.58±1.15 78.44±1.03 58.88±2.16 76.62±1.16
Dropout 80.95±1.86 81.65±1.11 80.23±1.4 57.95±3.42 76.97±1.42
OE 77.38±1.23 94.78±0.43 †98.01±0.43 54.54±2.99 81.48±1.04
SJ (ours) 80.76±1.22 82.64±0.47 81.24±0.91 60.86±2.32 79.67±1.47
ASJ (ours) 79.02±2.09 94.66±0.93 †96.42±0.66 53.42±2.26 82.91±1.01

STL-10

Standard 70.48±3.72 68.87±1.45 68.32±2.27 67.54±2.23 69.63±1.08
Dropout 69.37±1.59 71.31±2.08 67.96±0.63 73.3±1.28 72.41±1.77
OE 78.74±2.79 66.45±2.87 70.56±1.75 71.1±1.88 66.84±1.45
SJ (ours) 84.17±7.85 82.66±3.62 80.24±4.22 83.92±2.33 80.33±1.68
ASJ (ours) 86.16±7.51 83.25±2.32 84.62±2.92 88.73±1.71 81.4±0.97

SVHN

Standard 96.26±1.38 95.48±1.21 95.31±1.44 97.2±0.71 96.2±1.3
Dropout 96.83±0.87 96.56±0.94 96.46±0.67 97.65±0.37 96.59±0.8
OE 99.96±0.06 100.0±0.0 †100.0±0.01 99.98±0.05 100.0±0.01
SJ (ours) 99.03±0.16 98.88±0.38 98.65±0.19 99.23±0.31 98.77±0.22
ASJ (ours) 99.99±0.01 99.97±0.04 †99.98±0.06 100.0±0.0 99.99±0.01

A.5.5 DETECTING OOD DATA

Robustness against OOD data is an important aspect of stochastic self-joint models. Here, we extend
the results in the main body of the paper for each OOD dataset. The datasets that we consider for
OOD include: SVHN, STL-10, CIFAR-10, CIFAR-100, CelebA, and VOC. All these datasets con-
tain natural color images. Note that we did not remove any overlapping class from these datasets.
However, the majority of these datasets have little to no common classes, except for STL-10 and
CIFAR-10, which share 80% of their classes. We report the area under the receiver operating char-
acteristic curve, AUROC, and the detection error for each model against each OOD dataset.

We randomly select 500 samples from test set of in-distribution and OOD data to compare the
performance of each model (five repeats). Maximum softmax probability (e.g. Hendrycks & Gimpel
(2016)) is applied for detection score. However, we apply entropy for Monte-Carlo dropout models,
because we found it slightly superior for these models. Finally, the Monte-Carlo approximation
always compute average of 50 samples.

Tables 9 and 10 show the performance of different methods on OOD detection in AUROC and
detection errors metrics, respectively. The tables suggest that outlier exposure (OE) (Hendrycks
et al., 2018) and self-joint models trained with auxiliary data perform almost always better than the
rest. These results suggest learning to make predictions independent of OOD data can effectively
reduce vulnerability to unseen OOD samples.
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Table 10: Detection Error(%) for different models trained on CIFAR-10/100, SVHN, and STL-10.
Note that each Outlier Exposure model is explicitely trained on a OOD dataset indicated by (†) as
OOD data. Each ASJ model is also utilizing the dataset highlighted by (†) as auxiliary data.

OOD dataset

Model SVHN STL10 CIFAR-10 CIFAR-100 CelebA VOC

CIFAR-10

Standard 14.67±3.5 36.03±1.93 17.78±0.94 27.98±3.59 24.57±1.12
Dropout 12.75±1.38 35.54±2.21 16.01±0.86 23.5±0.8 22.52±1.4
OE 3.39±0.54 34.65±1.7 †5.87±0.76 2.85±0.55 17.93±0.98
SJ (ours) 11.91±1.15 34.92±0.92 12.54±0.77 18.54±2.12 19.01±0.77
ASJ (ours) 4.94±0.55 33.46±1.31 †5.06±0.44 2.06±0.3 15.77±1.44

CIFAR-100

Standard 24.02±0.9 26.5±0.92 26.71±1.13 39.37±1.25 28.46±1.18
Dropout 28.04±1.13 25.12±0.91 26.49±1.18 39.31±2.33 28.78±1.48
OE 24.63±0.89 11.51±0.46 †5.9±0.87 40.64±2.54 25.88±0.79
SJ (ours) 25.51±0.87 24.1±0.77 25.49±0.97 37.06±1.61 26.37±1.2
ASJ (ours) 25.59±1.27 10.9±0.8 †8.3±1.2 40.33±2.02 23.46±1.0

STL-10

Standard 32.56±3.17 34.24±1.09 33.91±1.84 35.21±1.77 33.61±0.93
Dropout 33.77±1.89 32.35±1.19 34.74±0.85 29.78±1.21 32.02±1.31
OE 24.78±3.9 36.49±2.25 33.4±0.95 32.19±0.75 35.88±0.92
SJ (ours) 22.39±7.26 23.6±3.39 25.58±3.25 20.72±1.9 25.71±1.76
ASJ (ours) 17.94±4.06 21.86±1.57 21.24±2.4 16.69±1.86 24.73±1.3

SVHN

Standard 7.86±1.35 8.6±0.98 8.82±1.5 6.41±0.78 7.77±1.68
Dropout 7.21±1.04 7.38±0.91 7.18±0.81 5.77±0.64 7.25±0.78
OE 0.06±0.05 0.0±0.0 †0.05±0.05 0.03±0.07 0.03±0.05
SJ (ours) 3.69±0.59 3.85±0.67 4.81±0.61 3.05±0.6 4.32±0.46
ASJ (ours) 0.07±0.08 0.2±0.12 †0.19±0.15 0.06±0.07 0.13±0.09
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