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ABSTRACT

Data is fundamental to the training of language models (LM). Recent research
has focused on data efficiency, aiming to reduce data scale without compromis-
ing model performance. However, data efficacy, emphasizes improving model
performance by optimizing the utilization of training data, is an area that remains
underexplored. To enhance it, we propose novel methods for both data ordering
and data scoring. For data ordering, we design Folding Ordering (FO), which ad-
dresses challenges such as data distribution bias and model forgetting introduced
by traditional curriculum learning. For data scoring, we present Learnability-
Quality Scoring (LQS), the first method specifically designed to support both data
ordering and selection. To further establish the foundation for data efficacy, a
general paradigm, DELT (Data Efficacy for LM Training), is introduced to un-
derscore the importance of training data utilization. It comprises two essential
modules: data scoring and data ordering, along with one optional module of data
selection. This primarily enables DELT to improve data efficacy as well as ef-
ficiency. Comprehensive experiments validate our approach, demonstrating that
FO and LQS significantly improve LM performance across various settings, con-
sistently surpassing existing baselines. We believe that data efficacy, which aims
to fully harness data value without altering data scale and model size to benefit
model performance, is a promising foundational area in LM training.
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Figure 1: Average result across 8 benchmarks for different methods. High performance at the same
selection ratio indicates high efficacy, while achieving similar performance with a smaller selection
ratio demonstrates high efficiency. Our method excels in both efficacy and efficiency.

1 INTRODUCTION

The significance of language models (Ouyang et al., 2022; Achiam et al., 2023; Dubey et al., 2024)
is immense in modern computational applications. From natural language processing tasks such
as translation (Hirschberg & Manning, 2015) and sentiment analysis (Gunasekaran, 2023) to more
complex applications like automated reasoning (Yu et al., 2024a) and AI agents (Kusal et al., 2022),
language models have revolutionized the way machines understand, generate, and interact with hu-
man beings using natural language. To empower language models having these abilities, data is
central to their training and serves as the foundation from which models learn knowledge based
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on linguistic patterns and structures. Consequently, meticulous data curation is essential to ensure
consistently high model performance across various applications.

In data curation, we focus on data efficacy, defined as optimizing the utilization of training data to
improve model performance. This direction stands alongside data efficiency, which aims to reduce
the scale of training data without sacrificing model performance (Albalak et al., 2024; Xie et al.,
2023; Gu et al., 2025). In standard data efficiency pipelines, once a subset is selected, the retained
samples are typically treated uniformly and presented to the model in random order. In contrast,
data efficacy explores how to exploit those samples more effectively (e.g., via informed ordering,
weighting, or scheduling). Although still nascent, its promise is illustrated by curriculum learning
(Wang et al., 2021), which presents examples from easy to hard.

In this context, we observe that the latest generation of language models (OpenAI; Dubey et al.,
2024; Team et al., 2023) are typically trained for only a few epochs, often just one, due to the
immense scale of their training datasets and the constraints of available computing power. Unlike
earlier models (Cho et al., 2014; Hochreiter & Schmidhuber, 1997), which were trained over many
epochs and often suffered from overfitting, these newer models adhere to the principles of the scaling
law (Kaplan et al., 2020). This shift is further supported by the findings of QQT (Goyal et al., 2024),
which demonstrate that the utility of high-quality data diminishes rapidly when reused extensively.
In other words, it is more beneficial to train on a vast amount of data over a few epochs than to
rely on repeated use of high-quality data across many epochs. Therefore, the optimal utilization
of training datasets becomes crucial for maximizing the performance of language models trained
within such limited epochs.

Expanding on these insights, we propose novel methods for data ordering and scoring to enhance
data efficacy. For data ordering, we introduce the Folding Ordering (FO) method, a new data
ordering approach inspired by human learning practices, where similar content is revisited multiple
times. Unlike traditional Curriculum-Learning-based methods (Campos, 2021; Wang et al., 2021)
that directly sort data and risk inner distribution biases and model forgetting in limited epochs, FO
significantly mitigates these challenges, especially in scenarios involving one or few training epochs
for language model training. For data scoring, we propose the Learnability-Quality Score (LQS),
a method that first integrates data ordering and selection into a unified metric. LQS captures sample
learnability through dynamic gradient magnitude changes and evaluates sample quality using static
gradient angle information. By combining these two aspects, LQS enables a reasonably optimized
organization of samples, which enhances both data efficacy and efficiency. Building on this foun-
dation, we also propose a general paradigm for enhancing data efficacy for LM training (DELT).
This paradigm aims to improve model performance by fully harnessing data value without modify-
ing the dataset content or model architecture, making it an almost cost-free approach. Specifically,
DELT currently incorporates data scoring and ordering, and it can be seamlessly integrated with data
selection to further improve data efficiency.

To validate the capability of the introduced paradigm, we incorporate several baseline methods into
it, along with the newly designed methods, LQS and FO, for data scoring and ordering, respectively.
The key results from Figure 1 highlight that the proposed DELT significantly improves data effi-
cacy in LM training on a set of typical benchmarks. Meanwhile, it outperforms existing methods
(Gu et al., 2025; Heafield, 2011) in data efficiency that further boosts LM performance across all
selection ratios. The main contributions are as below:

• We introduce an innovative method for data ordering, named Folding Ordering (FO), which
optimizes the utilization of training data and mitigates the issues of data distribution bias
and model forgetting brought by previous methods.

• We propose a novel method for data scoring, called Learnability-Quality Scoring (LQS),
which is the first to consider both data efficacy and efficiency by evaluating each sample
based on its learnability and quality.

• We identify the untapped potential of data efficacy in language model training and present a
general paradigm DELT. Through comprehensive experiments on mainstream benchmarks,
we validate DELT using various data scoring and ordering methods. All implementations
of DELT improved performance, with our designs FO and LQS achieving the best results.

Through these contributions, we aim to provide a general paradigm for understanding and applying
data efficacy in LM training, paving the way for more efficacious model development practices.
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2 RELATED WORK

2.1 DATA SOURCES

Data source of LM training (Anthropic; Yang, 2007; Dubey et al., 2024; Ouyang et al., 2022; Team
et al., 2023) can primarily be categorized into five types: internet data (Rana, 2010), books (Hart,
2004), synthetic data (Nikolenko et al., 2021), physical sensors (Kabadayi et al., 2006), and human
perception of the real world. Internet data is the primary source for language model training due to its
vast scale. Books and synthetic data offer high quality, but are limited in scale. Data from physical
sensors and human perception are in other modalities or still under development. Several studies
focus on extracting high-quality datasets for LM training, like C4 (Raffel et al., 2020), RefinedWeb
(Penedo et al., 2023), RedPajama (Weber et al., 2024), and RedStone (Chang et al., 2024). All of
them utilize an identical data source, CommonCrawl (Rana, 2010), which captures snapshots of web
pages from the entire internet at different periods and contains over 200 billion samples to date.

2.2 DATA EFFICIENCY

Data efficiency (Heafield, 2011; Gu et al., 2025; Xie et al., 2023; Albalak et al., 2024) focuses on
selecting the most relevant data points for inclusion in training dataset and optimizing the perfor-
mance of the language model. This area includes well-researched strategies such as data selection
(Heafield, 2011; Gu et al., 2025; Yu et al., 2024b; Dai et al.), sampling (Xie et al., 2023), denoising
(Zhao et al., 2021; Hu et al., 2021), and deduplication (Abbas et al., 2023; Tirumala et al., 2023), all
of which aim to select optimal data for efficient model training. The KenLM (Heafield, 2011) trains
a fast and small model for perplexity estimation and treats the perplexity as the data difficulty for
LM. The PDS (Gu et al., 2025) evaluates the quality of data samples by measuring the consistency
of each sample’s gradient direction with a reference direction. The DSIR (Xie et al., 2023) develops
an importance weight estimator to select a subset of raw data that mirrors the distribution of the
target in a specific feature space. The MATES (Yu et al., 2024b) presents a data influence model that
continuously adapts to the evolving data preferences of the pre-trained model, selecting the most
effective data for the current stage of pre-training. The SemDeDup (Abbas et al., 2023) utilizes
embeddings from pre-trained models to identify and remove data pairs that are semantically similar
but not exactly identical. All these methods develop strategies to decide whether a sample should
be retained or discarded. However, for retained samples, language models train on them equally,
without considering differences in criteria.

2.3 DATA EFFICACY

Data efficacy, distinct from data efficiency, aims to maximize the performance of language models by
optimizing the organization of training data. Curriculum learning, as described by Campos (2021),
involves starting with simpler examples and progressively tackling more complex ones, aiding in
smoother model convergence. Within curriculum learning, Kim & Lee (2024) presents an attention
score to determine the prompt difficulty, and Chang et al. (2021) introduces a soft edit distance to
measure sample difficulty. Similarly, annealing learning, as outlined by Dubey et al. (2024), seeks
to improve model performance by initially training on a large, noisy dataset and concluding with
a small, high-quality dataset. All these methods sort training data directly by difficulty or quality.
However, since limited research on data efficacy, there is no established paradigm for effectively
organizing training data.

To conclude, data is essential for training language models, and numerous large-scale data sources
originate from the internet. Nevertheless, obtaining incremental public data has become challenging
due to the slow growth of CommonCrawl (Rana, 2010) snapshots and the increasing presence of AI-
generated content online. As language models scale up, effectively leveraging existing data sources
becomes vital, which makes data efficacy increasingly important. Despite this, few studies focus on
data efficacy in language model training. To address this gap, we propose a general paradigm for it,
where curriculum learning and annealing learning are two specific instances.

3
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3 METHOD

3.1 DATA ORDERING

Existing methods usually utilize the random shuffling method to organize training data. Alterna-
tively, some approaches adopt curriculum learning (Campos, 2021; Kim & Lee, 2024), a sorting-
based method inspired by the human learning process, where training begins with simpler samples
and gradually progresses to more complex ones. Sorting-based methods can improve training effi-
ciency; however, they often face challenges such as data distribution bias and model forgetting, as
analyzed in the Appendix 15, which can ultimately degrade performance.

(a) Random Shuffle (b) Ascending Sorting (c) Folding (Ours)

Figure 2: Illustration of ordering methods. The right one is Folding method, an advanced multi-fold
version of the Sorting method. These results are based on 500 random samples from RedPajama.

Folding method is proposed to improve training data efficacy and address the negative influences
brought by the sorting method. The new method, named folding learning, reorganizes the dataset
by repeating the curriculum learning multiple times without duplication. The repeated times is
defined as the folding layers L. As demonstrated in Figure 2, the folding method samples sorted
data L times without replacement at a fixed interval L. The permutation function πfold is defined in
Equation 1, while πsort is described in Equation 12. Folding learning not only inherits the benefits
from curriculum learning but also mitigates issues of model forgetting, and data distribution bias.

πfold(γ;L) =

L−1⋃
ℓ=0

⟨πsort(γ)i | i ∈ {j | j ≡ ℓ (mod L), 1 ≤ j ≤ |D|}⟩ (1)

3.2 DATA SCORING

Existing methods typically focus on attributes such as quality (Gu et al., 2025), difficulty (Heafield,
2011), noisiness (Zhao et al., 2021; Hu et al., 2021), or diversity (Abbas et al., 2023; Tirumala et al.,
2023) to compute scores for data selection. However, these methods, designed primarily for data
selection, often focus solely on how good a sample is, while overlooking the question of where a
sample contributes most effectively within the context of the entire dataset.

Learnability-Quality Scoring (LQS) is introduced to address this limitation and make the scorer
more attentive to the utility of each data sample. By incorporating both learnability and quality,
LQS is not only sensitive to low-quality samples but also better weights the impact of samples
during model training. Our method dynamically evaluates how each sample contributes to reducing
the downstream loss J(θ) by considering its behavior at different training stages, where θ ∈ RN

represents the parameters of the LM and the N is the dimension of the parameter space.

The learnability of each data sample represents the difficulty change during model training, as illus-
trated in Figure 3a. For each training step t from 1 to T on the dataset D = {xn}|D|

n=1, the learnability
of a sample xn (the n-th sample in D) is defined as its contribution to reducing the loss over time
during training. The learnability is represented as:

L(xn) =

T−1∑
t=1

ln,t
ln,t+1

=

T−1∑
t=1

∥∇ℓ(xn,θt)∥
∥∇ℓ(xn,θt+1)∥

, (2)
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Figure 3: Illustration of LQS scoring method. The left part demonstrates the calculation of the
learnability score, and the right part depicts the computation of the quality score.

where ∇ℓ(xn,θt) denotes the gradient of loss function for sample xn at training step t, with model
parameters θt, and ln,t is its magnitude. A high learnability score indicates that the sample sig-
nificantly reduces the loss in training, particularly if its gradient magnitude is initially high and
decreases substantially over time. Such samples are challenging yet beneficial for training, making
them more suitable for later stages of training. Conversely, noisy samples or those with unstable
gradients yield a low learnability score, enabling their identification and efficient filtering during
data selection.

The quality of each data sample contributes to data efficacy during model training, as depicted in
Figure 3b. It is measured by the consistency of ∇ℓ(xn,θt) with a target vector λt+1 in Equation
4, which represents the average gradient of the loss function for all data at training step t + 1. The
quality score is computed as:

Q(xn) =

T−1∑
t=1

cos(αn,t) =

T−1∑
t=1

λt+1
⊤∇ℓ(xn,θt)

∥λt+1∥ · ∥∇ℓ(xn,θt)∥
, (3)

where αn,t is the angle between two vectors. A higher cosine similarity cos(αn,t) indicates that
the gradient convergence direction on xn is more aligned with the target objective λt+1, implying a
stronger contribution to reducing the loss J(θ). Following Gu et al. (2025), the target vector λt is:

λt =

{
λt+1 +∇J(θt)− η · ∇2L(θt,γ) · λt+1, if t < T

∇J(θt), if t = T
(4)

Finally, we combine learnability and quality into a unified function to score data samples. We then
provide a more detailed explanation of the Learnability-Quality Scoring (LQS). The Learnability
Score L(xn) (Equation 2) and the Quality Score Q(xn) (Equation 3) are proposed, both of which
are directly related to the training sample xn and are used as metrics to evaluate xn.

However, the reliability of these scores is directly influenced by the capability of the model check-
point. Models with stronger capabilities produce more reliable scores. This capability is linked to
the target vector, which is calculated as an average across all samples. When the structural param-
eters of the model remain unchanged, a stronger model shows greater consistency in the gradient
directions of all samples concerning the model parameters, resulting in a larger ∇J(θt) (Equation
4). This corresponds to a greater magnitude of the target vector. Therefore, we use the magni-
tude of the target vector to directly measure the model’s capability, referred to as the reliability
score R(θt+1) = ∥λt+1∥. Finally, we anticipate that a stronger model will assign more weight to
the scores. LQS is expressed as a combination of the sample’s learnability-quality score and the
model’s capabilities.

γn = R(θt+1) · Q(xn) · L(xn) (5)

=

T−1∑
t=1

∥λt+1∥ ·
λt+1

⊤∇ℓ(xn,θt)

∥λt+1∥ · ∥∇ℓ(xn,θt)∥
· ∥∇ℓ(xn,θt)∥
∥∇ℓ(xn,θt+1)∥

=

T−1∑
t=1

λt+1
⊤∇ℓ(xn,θt)

∥∇ℓ(xn,θt+1)∥
(6)
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For a detailed explanation of the formula, the score vector γ is defined as:

γ =

{
γn

∣∣∣∣∣γn =

T−1∑
t=1

λt+1
⊤∇ℓ(xn,θt)

∥∇ℓ(xn,θt+1)∥
, 1 ≤ n ≤ |D|

}
(7)

Larger γn values indicate samples with higher quality and significant contributions to reducing the
downstream loss J(θ), especially when introduced during later training stages. In contrast, lower
γn values correspond to samples that are easy and less informative, better suited for early-stage
training, or potentially noisy, which can be filtered out in data selection settings. Notably, our method
calculates LQS on only a small number of data points, using a trained small model for scoring.
Consequently, our method requires relatively low computational cost, as discussed in Appendix E.

3.3 LQS IMPLEMENTATION

Similar to (Gu et al., 2025), our data scoring method follows these steps: 1) Proxy data sampling.
A proxy dataset Dprx is first uniformly sampled from the pre-training corpus D, serving as a repre-
sentative subset of the larger corpus. 2) Proxy data annotation. We apply Eq. 7 to compute data
scores for each instance in Dprx, obtaining a set of data samples with scores as ground truth (see
Section 3.2). 3) Data scorer training. The data scorer, typically a small LM, is fine-tuned on the
automatically annotated data samples in Dprx to predict data scores effectively. (see Section 3.2) 4)
Full data scoring. The trained data scorer is then applied to infer scores for the entire pre-training
corpus D.

Proxy Data Annotation To construct the ground truth scores γ∗ for Dprx, we are inspired by
(Gu et al., 2025) and adopt a bi-level optimization framework (see Algorithm 1) that quantifies the
contribution of each data point in Dprx to the downstream performance. The goal is to determine an
optimal score vector γ∗ = [γ∗

1 , γ
∗
2 , · · · , γ∗

|D|]
⊤.

The bi-level optimization consists of two nested loops: 1) a forward loop that simulates the model
training process, and 2) a reverse loop that adjusts the scores γ based on the model parameters at
each training step. Specifically, in the forward loop, the model is trained for T steps using gradient
descent, where the training loss is weighted by the current scores γ∗. This process updates the model
parameters θt iteratively, producing a trajectory of checkpoints θt from t = 0 to t = T − 1. In the
reverse loop, the target vector λ∗

t is computed through the training trajectory from t = T−1 to t = 0
according to Eq. 4, where λ∗

t represents the backward-propagated gradient at step t, ∇l(xn,θt) is
the gradient of the loss for the n-th data point. After each update, the scores are projected onto the
probability simplex to ensure they remain valid probabilities Proj[γ∗].

Algorithm 1 Proxy Data Annotation

Require: LM learning rate η. Proxy dataDprx. Downstream loss J(θ). Training steps T . Proj[·] that projects
a point in R|D| to U . Model initialization θ0.

Ensure: Data quality scores γ∗.
γ∗ =

[
γ∗
1 , γ

∗
2 , · · · , γ∗

|D|
]
←

[
1

|Dprx| ,
1

|Dprx| , · · · ,
1

|Dprx|

]
;

for t = 0, 1, · · · , T − 1 do ▷ Forward loop
θt+1 ← θt − η∇L(θt,γ)

end for
λT ← ∇J(θT )
for t = T − 1, T − 2, · · · , 1 do ▷ Reverse loop

λ∗
t ← λ∗

t+1 +∇J(θt)− η∇2L(θt,γ
∗)λ∗

t+1 ▷ Equation 4
end for
for n = 1, 2, · · · , |D| do

γ∗
n ← γ∗

n + α
∑T−1

t=1

λ∗
t+1

⊤∇l(xn,θt)

∥∇l(xn,θt+1)∥
▷ Equation 7

end for
γ∗ ← Proj [γ∗]
return γ∗

6
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Data Scorer Training After we obtain the scores γ∗ for Dprx, we then train a small LM, initialized
from a pre-trained checkpoint, with a linear head to serve as the data scorer. The scorer is optimized
on the proxy dataset Dprx to fit the ground-truth scores γ from Section 3.2. Specifically, each
instance xprx

n ∈ Dprx is encoded by averaging the LM’s output hidden states along the sequence,
producing a feature representation h(xprx

n ,ϕ) ∈ Rd, where ϕ are the LM parameters and d is the
hidden state size. This representation is passed through a linear head, with parameters w ∈ Rd

and b ∈ R, to produce a predicted score. The parameters of the LM and linear head are optimized
together using the Mean Squared Error (MSE) loss:

LMSE =
1

|Dprx|

|Dprx|∑
n=1

(
w⊤h(xprx

n ,ϕ) + b− γ∗
n

)2
, (8)

The optimal parameters ϕ∗, w∗, and b∗ are obtained by minimizing this loss. Once trained, the data
scorer predicts scores for xn ∈ D as γ(xn) = w∗⊤h(xn,ϕ

∗) + b∗. This process enables the data
scorer to generalize from Dprx to the larger pre-training corpus D effectively.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Data. (1) General data. We utilize the Redpajama (Weber et al., 2024) sourced from Common-
Crawl as D, which offers a relatively balanced knowledge distribution (Xie et al., 2024). The down-
stream loss J(θ) for the data scoring model is computed on the LIMA (Zhou et al., 2024), which
is a high-quality dataset with 1,030 diverse instruction-response pairs spanning various downstream
scenarios. (2) Math data. We use the OpenWebMath (Paster et al., 2023) as D. The downstream
loss J(θ) is computed on the MiniF2F (Zheng et al., 2021), which is a high-quality dataset consist-
ing of 488 manually formalized mathematical problem statements, spanning multiple domains. (3)
Code data. We employ The-Stack-v2 dataset (Lozhkov et al., 2024) as D. The downstream loss
J(θ) is computed on the Epicoder-380k Wang et al. (2025), which is a synthetic dataset with 380k
diverse instruction-response pairs spanning multiple code generation scenarios.

Model. We apply the Mistral (Jiang et al., 2023) architecture for pre-training on general data, and
the Qwen1.5 (Bai et al., 2023) for post-training in the math and code domain respectively using the
official pre-trained weights.

Baselines. Based on the DELT, we compare our methods with baselines for data scoring and or-
dering, including: 1) Data scoring: Conventional (randomly shuffled data order without selection),
KenLM (Heafield, 2011), DSIR (Xie et al., 2023), PDS (Gu et al., 2025); 2) Data ordering: Shuffling
(Random), Sorting (Curriculum Learning) (Campos, 2021).

For additional details of the experimental setup, such as training and evaluation, see Appendix B.

4.2 MAIN RESULTS

Data efficacy with different model sizes and data scales (Table 1). We present the evaluation
results of the pre-trained LMs on the OLMo (Groeneveld et al., 2024) evaluation benchmarks in
Table 1. As shown, DELT consistently outperforms the baselines on most datasets, achieving the
best overall performance across models with 160M, 470M, and 1B parameters (Table 1a), as well
as across data sizes of 1B, 10B, and 50B tokens (Table 1b). We further validate the superior of our
method on a larger model size (1.7B parameters) and a larger data scale (50B tokens). These results
show that combining LQS and FO steadily enhances data efficacy in LM training across various
model sizes, data scales, and downstream tasks. For more details, see Table 9 in Appendix.

Data efficacy on different data ordering methods (Table 2). Data ordering is a key component
of the DELT and plays a significant role in improving data efficacy. To evaluate the performance
of different ordering methods and demonstrate the superiority of our proposed FO, we conduct
corresponding experiments. The results in Table 2 show that the proposed Folding method shows
the most improvement among all the ordering methods. Besides, the ascending sorting improves the
result while descending sorting leads to a decline.

Data efficacy on different data scoring methods (Table 3). Data scoring serves as the foundation
for data ordering. To evaluate the performance of different data scoring methods on FO method, we
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Table 1: Data efficacy results on different downstream benchmarks. The conventional method
presents the average result over three random seeds in this and the following tables. DELT (Ours)
means applying LQS for data scoring and FO for data ordering within the introduced paradigm.

(a) Results (%) for 1B-token data across model sizes (160M, 470M, 1B).

ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Model size = 160M

Conventional 21.27±0.30 34.32±0.83 27.85±0.15 20.25±1.70 24.40±0.19 55.19±0.16 56.93±1.06 50.72±0.84 36.37±0.19
DELT (Ours) 21.59 36.07 28.41 23.79 25.60 56.37 59.80 53.04 38.08

Model size = 470M

Conventional 21.16±0.42 34.91±0.86 28.11±0.23 21.88±0.10 23.90±1.84 56.07±0.58 58.75±0.35 50.04±1.40 36.85±0.06
DELT (Ours) 22.33 35.88 28.45 23.26 26.60 57.20 60.10 52.81 38.33

Model size = 1B

Conventional 20.58±0.36 36.12±0.03 28.32±0.29 23.56±0.77 25.00±0.71 56.49±1.19 60.05±0.69 52.07±0.17 37.77±0.07
DELT (Ours) 22.76 37.95 29.95 26.38 26.00 58.07 60.90 51.28 39.17

(b) Results (%) for 160M model across data sizes (10B, 50B).

ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Data size = 10B tokens

Conventional 22.82±0.72 38.51±0.57 30.72±0.35 30.40±0.77 25.70±0.71 57.32±0.27 64.90±0.21 51.54±0.95 40.24±0.03
DELT (Ours) 24.38 39.80 31.64 32.98 27.21 58.56 66.70 51.67 41.62

Data size = 50B tokens

Conventional 24.06±0.06 41.88±0.06 32.05±0.11 33.79±2.18 26.80±0.99 58.11±0.58 69.00±1.06 51.93±0.50 42.20±0.13
DELT (Ours) 24.65 41.07 33.00 36.07 29.30 59.10 68.40 52.67 43.03

(c) Results (%) for 50B-token data and 1.7B model (large scale).

ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Model size = 1.7B & Data size = 50B tokens

Conventional 38.16±1.09 48.02±0.18 43.62±0.47 25.83±0.38 41.00±0.14 68.41±0.38 65.70±1.27 68.93±1.15 49.96±0.21
DELT (Ours) 40.30 48.17 44.37 25.23 44.20 69.45 66.30 65.95 50.50

Table 2: Comparison of different data ordering methods on LQS-scored data. Sortingasc refers to
ascending sorting by scores (low→high), while sortingdes denotes descending sorting (high→low).

Ordering ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Conventional 21.27 34.32 27.85 20.25 24.40 55.19 56.93 50.72 36.37

Sortingdes 20.69 34.72 27.78 21.20 23.10 56.12 58.20 49.11 36.36↓
Sortingasc 22.18 35.40 28.01 23.48 23.80 55.60 56.80 51.07 37.04↑

Folding 21.59 36.07 28.41 23.79 25.60 56.37 59.80 53.04 38.08↑

Table 3: Comparison of different data scoring methods on FO-ordered data. Results are obtained on
the full dataset without using any selection strategy.

Scoring ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Conventional 21.27 34.32 27.85 20.25 24.40 55.19 56.93 50.72 36.37

Kenlm 20.98 35.00 28.02 22.55 23.90 56.54 58.30 51.36 37.08
DSIR 23.17 35.02 28.73 22.28 24.87 57.27 55.27 51.61 37.28
PDS 21.93 34.81 28.04 22.43 26.00 56.42 59.30 50.20 37.39
LQS (Ours) 21.59 36.07 28.41 23.79 25.60 56.37 59.80 53.04 38.08
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conduct experiments to verify improvement in data efficacy. As shown in the table 3, applying FO
led to consistent improvements in all scoring methods compared to the random baseline, with LQS
achieving the greatest gains. For more related experiments, see Table 10 in Appendix.

Table 4: Comparison of various data scoring and ordering methods across different selection ratios.

Scoring Ordering Selection Ratio

1.0 0.9 0.8 0.7 0.6 0.5

Kenlm Shuffle 36.37 36.43 35.72 35.31 35.51 34.78
Folding 37.08 37.22 36.55 36.38 36.16 35.44

DSIR Shuffle 36.37 36.58 36.11 36.06 35.57 35.36
Folding 37.13 37.33 36.90 36.70 36.20 36.08

PDS Shuffle 36.37 36.19 36.24 37.01 36.14 36.03
Folding 37.39 37.99 37.63 37.78 37.14 36.15

LQS Shuffle 36.37 37.14 37.03 35.96 35.95 35.36
Folding 38.08 37.20 37.54 37.58 36.60 36.47

Data efficacy on different data selection ratios (Table 4). To evaluate the performance of our
methods across different data selection ratios, we applied FO and LQS under varying selection
ratios and compared them with scoring methods from advanced data efficiency baselines. As shown
in Table 4, the FO method consistently demonstrates stable improvements across different scoring
methods and selection ratios. For the LQS method, it outperforms other baselines under the random
shuffle setting across most selection ratios. The combination of LQS and FO achieves the highest
average accuracy of 38.08% when the selection ratio is 1.0 and shows superior performance across
most selection ratios. For more details on the performance of various combinations under different
selection ratios, please refer to Table 7, Table 12, and Figure 11 in Appendix.

Domain Robustness in Post-training (Table 5). To validate the robustness of the DELT paradigm,
we conduct post-training experiments on datasets of OpenWebMath (Paster et al., 2023) and The-
Stack-v2 (Lozhkov et al., 2024) respectively across math and code domains, both of which are
sourced from the web data. As shown in Table 5, our method consistently outperforms the baselines
across benchmarks in different domains, demonstrating the strong versatility of the DELT under our
proposed LQS and FO methods.

Table 5: Data efficacy of models trained on different domain-specific datasets.
(a) Results on code domain.

Method HumanEval MBPP

Qwen1.5-0.5B Conventional 7.00 7.93
Ours 9.76 9.40

Qwen1.5-1.8B Conventional 9.15 12.00
Ours 16.46 13.20

(b) Results on math domain.

Method MathQA GPQA Diamond

Qwen1.5-0.5B Conventional 21.23 24.92
Ours 22.73 26.83

Qwen1.5-1.8B Conventional 22.72 27.17
Ours 24.75 28.94

Stability on Different Epochs (Figure 4). In addition to one-epoch training, we also evaluate the
impact of DELT under a multi-epoch setting. As shown in Figure 4, our method consistently boosts
the results of conventional random ordering as the number of epochs increases. While conventional
random ordering exhibits fluctuations and slow improvements after the second epoch, our approach
demonstrates steady progress, showcasing the effectiveness and stability of our method in maintain-
ing superior performance over multiple epochs. For more details, see Table 13 in Appendix.

4.3 ABLATION STUDY

L in Folding Learning (Figure 5). We explore the influence of different folding layers L on model
performance in Figure 5. As L > 1, the performance consistently surpasses that of L = 1 (curricu-
lum learning), verifying the benefits brought by folding learning. The average performance initially
increases and then gradually declines, peaking at L = 3. In the experiments conducted in this paper,
L is set to a default value of 3. For more results and analyses on FO, please refer to Table 14 and
Table 15 in the Appendix, respectively.
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Figure 4: Performance on different epochs. Figure 5: Influence of the folding layers L.

5 CONCLUSION

To address the underexplored research on data efficacy, we propose a novel data ordering method,
Folding Ordering (FO), and a new data scoring method, Learnability-Quality Scoring (LQS). To
further advance data efficacy, we develop the DELT paradigm, which integrates the proposed data
ordering and data scoring modules to enhance data efficacy. Additionally, DELT optionally incorpo-
rates data selection module to improve data efficiency as well. Our comprehensive experiments with
various DELT implementations confirm its effectiveness, demonstrating that our newly designed
methods for data scoring and ordering outperform existing approaches. We believe that the pro-
posed methods and paradigm highlight the significant potential of data efficacy, which focuses on
improving model performance without increasing data scale or model scale.
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ETHICS STATEMENT

This work focuses on improving data efficacy for LM training. While our model is trained on stan-
dard open-source datasets and tested in controlled settings, we acknowledge that any AI system may
potentially exhibit biases or produce unexpected behaviors. Our research is intended for academic
exploration only, and we emphasize that any such outcomes do not reflect the views of the authors.
We support the development of AI technologies that are ethical, safe, and aligned with societal
values.

REPRODUCIBILITY STATEMENT

This section discusses the authors’ efforts to maximize the reproducibility of the methods and im-
plementations presented, from the following two perspectives. First, we provide complete, runnable
code in the supplementary material with detailed execution instructions. The provided code covers
all experimental pipelines and settings in our paper, including data collection, scoring, ordering, and
selection, as well as model training and evaluation.

Secondly, we have provided detailed explanations of the implementation to enhance the repro-
ducibility of our method: 1) Algorithm Implementation. In Appendix 3.2 and E, we present a
comprehensive discussion of the implementation details of our method, along with pseudocode. 2)
Model Training and Testing. In Section 4.1, we provide detailed information about the data, mod-
els, and baseline methods. Additionally, in Appendix B, we elaborate on all experimental setups,
training details, computational resources, and other relevant information.
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APPENDIX

A DECLARATION OF LLM USAGE

In the preparation of this work, the authors used LLM (e.g., GPT-4) in order to improve the read-
ability and language of the manuscript. After using this tool, the authors reviewed and edited the
content as needed and take full responsibility for the content of the published article.

B ADDITIONAL EXPERIMENTAL SETUP

Training. Unless otherwise specified, we pre-train all LMs for one epoch, using a batch size of
512 and a maximum input length of 1,024. For the model, we utilize 160M parameters by default.
For pre-training, we randomly select a 1B-token subset from Redpajama by default, while for post-
training, we sample a 1B-token subset each from OpenWebMath and The-Stack-v2.

Evaluation. For general evaluation, we assess the trained models on a range of standard natu-
ral language understanding and reasoning benchmarks, including Hellaswag (HS; Zellers et al.,
2019), Winogrande (Wino; Levesque et al., 2012), LAMBADA (LAMB; Paperno et al., 2016),
OpenbookQA (OBQA; Mihaylov et al., 2018), ARC-easy/challenge (ARC-e/c; Clark et al., 2018),
PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), and BoolQ (Clark et al., 2019). For domain-
specific tasks, we assess the models on mathematical reasoning and code generation benchmarks.
Specifically, for math, we use GPQA Diamond (Rein et al., 2024) and MathQA (Amini et al., 2019),
while for code, we use HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021).

For the code generation benchmarks, we use a 0-shot setting for HumanEval and a 3-shot setting for
MBPP. Code generation performance is reported using pass rate@1, which indicates the percentage
of first-attempt solutions that pass all associated unit tests (pass@1). For the other benchmarks,
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the tasks are framed as multiple-choice questions, where the model selects the correct answer by
minimizing the normalized loss across all candidate options (acc norm).

Compute Resources. We train the 160M model on 1B-token datasets using a single NVIDIA A100
40GB GPU. For experiments with the 160M, 470M, and 1B models on 10B and 50B-token datasets,
we utilize 8 NVIDIA A100 40GB GPUs. All data scoring steps, including proxy data annotation,
scorer training, and data scoring, are performed on a single NVIDIA A100 80GB GPU.

Training Configuration. To create the data scorer, we fine-tune the Fairseq-Dense-125M model
(Artetxe et al., 2022) on the solved data weights γ. As described in algorithm 1, we apply a linear
transformation to the mean-pooled representations of instances along the sequence length. The
hidden state size is set to 768. The optimization of algorithm 1 is performed using the AdamW
optimizer (Loshchilov & Hutter, 2019) for 5 epochs, with a learning rate of 1 × 10−4 and a batch
size of 512. We train on 90% of the samples and reserve the remaining 10% from Dprx as a validation
set. The checkpoint with the highest Spearman correlation score (De Winter et al., 2016; Gu et al.,
2025) on the validation set is selected to infer data quality scores in D.

For LMs training, all models are trained with a batch size of 256 and a maximum input sequence
length of 1,024 for one epoch. The AdamW optimizer (Loshchilov & Hutter, 2019) is paired with a
cosine learning rate scheduler. The scheduler includes a warm-up phase for the first 2,000 steps, after
which the learning rate decays to 10% of its peak value. The model architecture and corresponding
learning rates are summarized in Table 6, following the configurations in (Gu et al., 2025).

Model Size dmodel dFFN nlayers nhead dhead learning rate

160M 768 3,072 12 12 64 6× 10−4

470M 1,024 4,096 24 16 64 3× 10−4

1B 1,536 6,144 24 16 96 2.5× 10−4

1.7B 2,048 8,192 24 16 128 2× 10−4

Table 6: Model configurations and corresponding learning rates.

To provide a clearer overview of our experimental setup, we present the following table for reference.
Table 7 details the goal, data, and model settings for all experiments conducted in the main text.

C LIMITATIONS AND FUTURE WORK

The proposed paradigm has two primary limitations. 1) The current verification is specifically fo-
cused on language models, with no evaluation in other modalities like image and audio, which
depend on different scoring implementations. 2) Similar to PDS data scoring, the implementation
of our designed LQS method requires calculating the downstream loss J(θ) on a high quality and
small scale dataset. In the future, we plan to scale up our method on larger models (e.g., tens or hun-
dreds of billions of parameters) and larger datasets (terabyte level). Additionally, we aim to explore
simpler and more effective data scoring methods and extend this paradigm to multimodal models.

D DELT PARADIGM

To lay the foundation for the further development of data efficacy, we propose a paradigm (Figure
6) to enhance data efficacy in LM training without modifying the data content D or the model
parameters θ. It currently comprises two components:

• Data Scoring: it aims to assign a score for each training sample based on specific criteria,
such as quality, difficulty, diversity, and learnability. These scores are then applied to guide
data selection and data ordering in subsequent stages.

• Data Ordering: it targets at reorganizing the order of training samples in D (or Dsub) to
create D′, such that LMs trained on D′ achieve superior performance. This process focuses
on the organization of dataset D (or Dsub), while it does not change the dataset scale.
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Table 7: Detailed experimental setting.

Category Table 1
(a)

Table 1
(b)

Table 1
(c)

Table 2 Table 3 Table 4 Table 5
(a)

Table 5
(b)

Goal Robustness
across
different
model
sizes
(Pre-
train)

Robustness
across
different
data
scales
(Pre-
train)

Scalability
to rel-
atively
large
model
size and
data scale
(Pre-
train)

Comparison
of dif-
ferent
ordering
methods
using
the same
scoring
method
(LQS)
(Pre-
train)

Comparison
of dif-
ferent
scoring
methods
using
the same
ordering
method
(FO)
(Pre-
train)

Robustness
across
different
data
selection
ratios
(Pre-
train)

Robustness
on the
Math
domain
(Post-
train)

Robustness
on the
Code
domain
(Post-
train)

Data 1B-token
data from
RedPa-
jama

10B-
token,
50B-
token
data from
RedPa-
jama

50B-
token
data from
RedPa-
jama

1B-token
data from
RedPa-
jama

1B-token
data from
RedPa-
jama

Subsets
of the
1B-token
RedPa-
jama data
based on
selection
ratios
from 0.5
to 1.0.

1B-token
data from
Open-
Web-
Math

1B-token
data
from The
Stack v2

Model 160M,
470M,
1B Mis-
tral

160M
Mistral

1.7B
Mistral

160M
Mistral

160M
Mistral

160M
Mistral

Qwen1.5-
0.5B,
1.8B

Qwen1.5-
0.5B,
1.8B
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In addition, to make the paradigm more general, we also integrate an optional data selection module,
enabling DELT to seamlessly enhance data efficiency. This module selects an optimal subset Dsub

from the dataset D, ensuring that LMs trained on Dsub achieve the best possible performance. While
this process adjusts the size of the dataset D, it does not affect the structure of Dsub.

Data 
Selection

Scored
data

Training 
Pipeline

Data 
Scoring

Data 
Ordering

Selected
data

Ordered
data Language model

DELT

Raw data

or

Bottom-k

Sorting
Folding

Difficulty
Quality

Learnability

Efficacy

Efficiency

Figure 6: Paradigm of Data Efficacy for LM training. The blue box represents the paradigm DELT.
Both the methods for data scoring and data ordering components in DELT are flexible and can
be adjusted, including those outlined in Section 3. Meanwhile, the data selection is an optional
component that can further improve data efficiency. Within the proposed DELT, data efficacy and
efficiency are seamlessly compatible, working together to optimize language model performance.

Unlike the baseline method, where the language model is trained directly on the raw data D, and the
data efficiency methods that use a selected subset Dsub, DELT processes the raw data D as follows:

Firstly, data scoring, defined as f , assigns a score vector γ to the raw data D, where γ lies in a
|D|-dimensional simplex. Samples with large γ are considered good according to their criteria.

γ = f(D) =
[
γ1, γ2, · · · , γ|D|

]⊤
(9)

Secondly, the optioned data selection, denoted as fs, identifies a subset Dsub from D based on the
scores γ by the selection ratio r. The number of samples K to be selected is determined by r. The
function rank provides the ranking index of each element in the set γ in ascending order.

Dsub = fs(D;γ,K) = {xk | rank(γk) > |D| −K and 1 ≤ k ≤ |D|} (10)

K = ⌊r · |D|⌋ (11)
Finally, data ordering, represented by fo, reorganizes the D or Dsub into a new dataset D′ with
unchanged size, based on a permutation π determined by γ. It could be πsort that returns the indices
of each element in γ after sorting or other functions.

D′ = fo(D;γ) =
[
xπ(γ)1 , xπ(γ)2 , · · · , xπ(γ)|D|

]
(12)

Compatibility of data efficacy and data efficiency in DELT. As shown in Figure 6, the DELT
paradigm can build upon data scoring and data ordering by incorporating data selection to further
enhance data efficiency. The entire DELT process can be defined as a transformation of the original
dataset D into a reordered dataset D′:

D′ = fo(γo) ◦ fs(D;γs,K), (13)

where the symbol ◦ denotes functional composition. γo and γs are the score vectors for data ordering
and data selection, respectively. Since data scoring often requires substantial computation time,
both data selection and data ordering in DELT apply a shared score vector for practicality, i.e.,
γo = γs = γ. This process ensures that the most qualified samples are selected and then optimally
ordered, thereby significantly improving model performance in both data efficacy and efficiency.

E LQS COMPUTATIONAL ANALYSIS.

We compare the computational complexity of LQS with pre-training in Table 8. Specifically, fol-
lowing Hoffmann et al. (2022), for an LM with N parameters to be trained on D tokens, we assume
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the computational FLOPs of a forward and a backward pass are 2ND and 4ND, respectively. We
compute the FLOPs and asymptotic complexities of different stages in LQS as follows.

Proxy Data Annotation. According to Section Appendix E, we first pre-train a proxy LM on D
which consumes 6NprxD FLOPs. Then, we perform Algorithm 1 in our paper M times on Dprx

based on the proxy LM. The forward inner loop in Algorithm 1 consumes 6NprxDprx FLOPs. The
reverse loop can be treated as the ”backward” propagation of the forward inner loop as discussed in
Appendix E.1, which consumes 2×6NprxDprx FLOPs. The update of γ results in one forward and
backward pass of the proxy LM on Dprx, which consumes 6NprxDprx FLOPs. In summary, the
asymptotic complexity of proxy data annotation (LQS calculation) is O(NprxD+ 4MNprxDprx).

Data Scorer Training. The data scorer with Nscore is trained on Dprx and used to infer data quality
scores on D. Therefore, the computation overhead is 6NscoreDprx+2NscoreD and the asymptotic
complexity is O(3NscoreDprx +NscoreD).

Data Selection & Ordering. Selecting and ordering pre-training corpus requires iterating over D,
whose asymptotic complexity is O(D). This process can be done on CPUs and does not require
GPU FLOPs.

Language Model Training. Pre-training an LM with N parameters requires 6ND FLOPs, whose
asymptotic complexity is O(ND).

Overall, since the parameter size of the LM used for training N , and the data size D, are typically
much larger than the parameter size of the data-scoring model Nscore, and the proxy data size Dprx,
the computational cost of model training is significantly higher than that of sample scoring.

Table 8: Asymptotic complexity, GPU FLOPs, and actually spent time of different DELT steps and
1B model pre-training.

Step Complexity FLOPs (×1020) Actual Time
Proxy Data Annotation (LQS) O(NprxD + 4MNprxDprx) 0.49 10.2 Hours
Data Scorer Training & Infering (LQS) O(3NscoreDprx +NscoreD) 0.063 1.50 Hours
Data Selection & Ordering O(D) 0 1.3 Minutes
LM Training O(ND) 2.8 96 Hours

F MORE EXPERIMENTS RESULTS

F.1 ROBUSTNESS EXPERIMENTS

Data Efficacy across Different Model Sizes and Data Scales on More Methods. (Table 9). To
supplement Table 1, we provide additional experimental results comparing DELT with data selec-
tion methods across different model sizes and data scales. As shown in Table 9, with increasing
model parameters and data scales, our proposed DELT demonstrates consistent improvements and
outperforms various methods across most benchmarks.

Robustness of folding ordering method. To complement Table 2, we rigorously validate the ef-
fectiveness and generality of our folding ordering (FO) strategy by applying it to two strong data
scoring baselines: Fineweb-edu (Penedo et al., 2024) and QuRating (Wettig et al., 2024).

• Fineweb-edu (Penedo et al., 2024) targets the educational value and learnability of web
text and provides publicly available scores at web scale.

• QuRating (Wettig et al., 2024) elicits pairwise comparisons from GPT-3.5-turbo on four
criteria (writing style, facts and trivia, educational value, and required expertise) and then
aggregates these signals with a Bradley–Terry model to produce a single scalar score for
each document.

In our experiments, we directly reuse their open scores on the CommonCrawl subset and ran-
domly sample 1B-tokens for training: we take the score field from Fineweb-edu 1 and the

1https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
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Table 9: Efficacy results on different downstream benchmarks. Ours means applying LQS for data
scoring and Folding for data ordering within the DELT paradigm.

(a) Results (%) for 1B-token data across model sizes (160M, 470M, 1B).

ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Model size = 160M

Conventional 21.27 34.32 27.85 20.25 24.40 55.19 56.93 50.72 36.37
KenLM 21.93 33.96 28.09 20.69 25.20 54.79 56.20 50.59 36.43

PDS 21.84 35.02 27.61 19.93 24.80 56.23 59.00 51.38 37.01
Ours 21.59 36.07 28.41 23.79 25.60 56.37 59.80 53.04 38.08

Model size = 470M

Conventional 21.16 34.91 28.11 21.88 23.90 56.07 58.75 50.04 36.85
KenLM 22.35 34.85 28.05 20.51 25.00 55.17 56.60 50.04 36.57

PDS 22.10 33.04 27.84 21.25 24.80 56.96 59.80 51.85 37.23
Ours 22.33 35.88 28.45 23.26 26.60 57.20 60.10 52.81 38.33

Model size = 1B

Conventional 20.58 36.12 28.32 23.56 25.00 56.49 60.05 52.07 37.77
KenLM 21.67 35.86 28.76 23.46 26.80 56.58 59.00 49.88 37.75

PDS 22.10 35.56 28.20 23.56 26.40 56.37 60.50 50.67 37.92
Ours 22.76 37.95 29.95 26.38 26.00 58.07 60.90 51.28 39.17

(b) Results (%) for 160M model across data sizes (10B, 50B).

ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Data size = 10B tokens

Conventional 22.82 38.51 30.72 30.40 25.70 57.32 64.90 51.54 40.24
KenLM 22.78 37.92 30.54 29.98 25.60 57.29 66.00 52.80 40.36

PDS 22.70 39.35 30.73 31.85 27.20 56.04 64.90 52.88 40.71
Ours 24.38 39.80 31.64 32.98 27.21 58.56 66.70 51.67 41.62

Data size = 50B tokens

Conventional 24.06 41.88 32.05 33.79 26.80 58.11 69.00 51.93 42.20
KenLM 23.74 40.14 32.10 35.13 28.41 58.15 67.52 51.71 42.11

PDS 24.57 41.37 32.44 35.36 29.20 59.25 68.10 50.83 42.64
Ours 24.65 41.07 33.00 36.07 29.30 59.10 68.40 52.67 43.03
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educational value average field from QuRating 2. As shown in Table 10, Applying FO
on these scores yields consistent and substantial improvements across evaluations, demonstrating
that FO is robust and broadly applicable to diverse data scoring signals.

Table 10: Performance of FO on different data scoring methods with different data source.

Ordering ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Fineweb-edu Shuffle 22.53 35.44 27.87 14.63 24.40 56.37 53.50 51.54 35.78
Folding 23.46 38.64 27.71 10.58 27.60 56.47 61.70 50.36 37.07

QuRating Shuffle 22.01 33.42 27.60 18.20 24.40 56.15 57.00 51.22 36.25
Folding 23.55 34.76 28.16 17.52 24.00 57.73 55.80 53.20 36.84

Comparison of Data Efficiency (Table 11). To supplement Table 4, we further highlight the supe-
riority of the DELT framework by comparing it with the data efficiency setting. Table 11 presents
the results of different methods applied within the DELT paradigm, all of which significantly out-
perform the conventional baseline. Notably, regardless of whether data selection is applied, our
proposed LQS scoring method achieves the best results. Furthermore, our proposed Folding order-
ing method consistently provides noticeable improvements across all baseline methods.
Table 11: Efficacy results of different DELT implementations. The best scores for each model size
are highlighted in bold, while the second-best scores are shown in italic bold. The selection methods
report the highest scores across all selection ratios.

Pipeline Scoring Selection Ordering ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Conventional - - - 21.27 34.32 27.85 20.25 24.40 55.19 56.93 50.72 36.37

DELT

KenLM - Sorting 21.93 33.96 28.09 20.69 25.20 54.79 56.20 50.59 36.43
KenLM - Folding 20.98 35.00 28.02 22.55 23.90 56.54 58.30 51.36 37.08
PDS - Sorting 22.44 34.18 27.98 21.35 25.40 55.28 55.80 49.17 36.45
PDS - Folding 21.93 34.81 28.04 22.43 26.00 56.42 59.30 50.20 37.40
LQS - Sorting 23.22 35.24 28.03 22.79 24.70 56.85 57.90 51.17 37.49
LQS - Folding 21.59 36.07 28.41 23.79 25.60 56.37 59.80 53.04 38.08

KenLM ✓ Sorting 21.93 34.68 27.78 19.37 26.40 54.95 56.30 52.96 36.80
KenLM ✓ Folding 22.10 34.30 27.62 21.56 25.00 56.26 58.10 52.80 37.22
PDS ✓ Sorting 22.61 35.27 28.08 19.68 25.80 56.53 59.60 51.54 37.38
PDS ✓ Folding 21.66 36.01 28.05 24.33 24.10 55.61 61.70 52.47 37.99
LQS ✓ Sorting 22.10 35.61 28.05 22.53 23.60 55.93 59.60 51.38 37.35
LQS ✓ Folding 21.59 36.07 28.41 23.79 25.60 56.37 59.80 53.04 38.08

Comparison with advanced data selection methods. To supplement Table 4, we presents the re-
sults comparing different data scoring methods without data ordering in Table 12. Compared to
the results from the conventional pipeline and state-of-the-art data efficiency baselines, the DELT
framework, which incorporates both data selection and ordering, consistently demonstrates signif-
icant improvements across various method combinations. Notably, our LQS also achieves the best
results even in the setting where only data selection is applied.

Table 12: Comparison among different data scoring methods. The selection methods report the
highest scores across all selection ratios.

Pipeline Scoring Selection Ordering ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

Conventional - - - 21.27 34.32 27.85 20.25 24.40 55.19 56.93 50.72 36.37

Efficiency KenLM ✓ - 21.42 34.34 27.76 20.84 25.00 56.31 54.30 51.07 36.38
DSIR ✓ - 22.69 34.55 28.26 21.81 24.40 56.80 54.80 51.14 36.81
PDS ✓ - 21.84 35.02 27.61 19.93 24.80 56.23 59.00 51.38 37.01
LQS (Ours) ✓ - 22.18 34.09 27.80 21.02 25.20 55.98 59.00 51.85 37.14

DELT LQS (Ours) ✓ Folding 21.59 36.07 28.41 23.79 25.60 56.37 59.80 53.04 38.08

Data efficiency promotion on existing methods (Figure 7). To supplement Table 4, we further
evaluates the data efficiency of the DELT framework by involving the data selection setting in Fig-
ure 7. Compared to the random selection baseline (Shuffling), the DELT framework (Sorting and
Folding) achieves superior performance across the majority of selection ratios. The results show

2https://huggingface.co/datasets/princeton-nlp/QuRatedPajama-260B
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that the DELT framework is compatible with the data selection method, and the combination further
improves their data efficiency.

(a) KenLM Scoring (b) PDS Scoring

Figure 7: The performance of KenLM (Heafield, 2011) and PDS (Gu et al., 2025) under different
data selection ratios, both with and without the DELT paradigm. Data efficiency is enhanced when
integrated into DELT.

Stability on Different Epochs. (Table 13) To supplement Figure 4, we further report the detailed
results of the proposed DELT across different epochs on various benchmarks. As shown in Table
13, with an increasing number of epochs, our method demonstrates stable improvements across most
benchmarks, further highlighting its robustness and generalizability.

Table 13: Results on OLMo for the different epochs.

Epoch ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

1 Conventional 21.27 34.32 27.85 20.25 24.40 55.19 56.93 50.72 36.37
DELT (Ours) 21.59 36.07 28.41 23.79 25.60 56.37 59.80 53.04 38.08

2 Conventional 21.93 36.20 29.18 25.93 23.00 56.86 61.20 50.99 38.16
DELT (Ours) 22.35 36.41 28.28 27.63 26.80 56.47 61.00 51.22 38.77

3 Conventional 21.35 35.78 28.76 27.14 26.20 56.51 62.80 49.51 38.51
DELT (Ours) 22.44 36.95 29.41 29.09 24.80 56.20 62.30 51.62 39.10

4 Conventional 21.10 35.99 28.97 27.51 27.20 55.69 61.80 49.28 38.44
DELT (Ours) 22.53 38.05 29.78 29.58 26.40 57.34 63.90 51.85 39.93

5 Conventional 20.59 37.55 29.31 28.05 27.00 57.11 61.20 50.54 38.92
DELT (Ours) 22.87 38.05 30.01 30.08 26.80 58.16 64.10 49.80 39.98

Details for L in Folding Learning (Table 14). To supplement Figure 5, we provide detailed results
for the proposed Folding Learning method with varying values of the parameter L. As shown in
Table 14, model performance reaches its peak at L = 3 and demonstrates significant advantages
across most benchmarks. Notably, compared to traditional Curriculum Learning (L = 1), our pro-
posed method (L > 1) achieves substantially better performance on all benchmarks.

Table 14: Effect of the fold layer L. L = − represents the conventional method, which is three times
the random average results. When L = 1, the ordering method reduces to curriculum learning.

L ARC-c ARC-e HS LAMB OBQA PIQA SciQ Wino Avg.

- 21.27 34.32 27.85 20.25 24.40 55.19 56.93 50.72 36.37

1 22.18 35.40 28.01 23.48 23.80 55.60 56.80 51.07 37.04
2 21.57 34.26 28.34 23.29 25.80 55.88 58.70 49.80 37.21
3 21.59 36.07 28.41 23.79 25.60 56.37 59.80 53.04 38.08
4 22.83 34.98 28.50 22.35 24.90 56.67 59.80 50.10 37.52
5 22.91 35.57 28.16 22.85 26.70 55.41 57.30 52.08 37.62

Revised Figure 1 with adjusted y-axis. To present a more objective assessment of our performance
gains, we have redrawn Figure 1 with the y-axis starting at zero. As shown in Figure 8, the gains
achieved by our method remain clearly visible.
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Figure 8: Redrawn Figure 1 with the y-axis starting at zero. Average result across 8 benchmarks for
different methods.

F.2 FOLDING LEARNING ANALYSIS

F.2.1 DATA BIAS ANALYSIS

Traditional curriculum learning restricts the model to only ”easy sample subsets” during early train-
ing (Bengio et al., 2009). This high homogeneity may restrict the gradient descent optimization path,
causing the model to converge to a difficult-to-escape sharp local minimum (Soviany et al., 2022).
To investigate the impact of the FO on data bias, we evaluate its advantages from two perspectives:
semantic diversity and difficulty diversity. Specifically, we define a sliding window of size w (equal
to the batch size) and analyze the data within each window.

For semantic diversity, we compute the average pairwise distance of sample features within the
window. These features are represented by the penultimate layer embeddings of GPT-3 and the
distance is measured using the Euclidean metric. For difficulty diversity, we compute the standard
deviation of the scores within the window.

As shown in Table 15, compared to the sorting method, the folding strategy significantly enhances
the local diversity of the data. This improvement prevents the model from encountering performance
bottlenecks caused by overly homogeneous samples within local regions.

Table 15: Effect of the fold layer.

Methods Semantic Difficulty

Sorting 0.060 0.0003
Folding 0.067 0.0014

F.2.2 MODEL FORGETTING ANALYSIS

Traditional CL starts training from the easiest data bucket (Bengio et al., 2009). This sequential
curriculum causes the model to lose contact with previously learned data, leading to the catastrophic
forgetting of even simple concepts learned early on (Wang et al., 2021).

To directly monitor the forgetting phenomenon, we designed a layered validation experiment. We
track the Perplexity (PPL) on the easiest 10% of the dataset (Dval easy) throughout training. As
shown in Figure 9, the PPL of traditional CL (sorting) on Dval easy rapidly drops (initial 30%
phase) but then significantly rebounds after entering the ”hard” data region (latter 50%), which
directly confirms the forgetting of simple samples. For the FO (L=3), PPL drops normally in Fold 1.
When simple data is reintroduced in Fold 2, PPL shows a secondary sharp drop (Re-learning). By
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the end of training (Fold 3), the model maintains an extremely low PPL on Dval easy and exhibits
no rebound phenomenon seen in CL.

Figure 9: The LMs’ perplexity (PPL) for Dval easy . Results obtained from a 160M Mistral model
trained on 1B-token data (Evaluated every 0.1B tokens).

G LQS ANALYSIS

G.1 VISUALIZATION OF SAMPLE LEARNABILITY SCORES AND GRADIENTS

To empirically validate the relationship between learnability scores and sample characteristics, we
visualize the gradient norm dynamics by tracking the gradient norms and learnability scores of the
5 samples across different training stages. Specifically, these samples consist of one hard and one
simple high-quality sample (approx. 800–1000 tokens), two long noisy samples (approx. 800–1000
tokens), and one short noisy sample (approx. 30 tokens).

As shown in Figure 10, the learnability score for high-quality samples (driven by gradient reduction)
consistently outweighs the variance observed in noisy samples, ensuring that learnable high-quality
data is assigned significantly higher scores. Additionally, long noisy samples exhibit a slight decline,
the magnitude of which likely correlates with their specific noise levels. In contrast, the gradient
norm of the short noisy sample stabilizes at a very early stage, suggesting that it has likely been
memorized (overfitted) by the model.

Figure 10: The gradient normalization results for 5 different data sample. Results obtained from a
160M Mistral model trained on 1B-token data (Evaluated every 0.1B tokens).
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G.2 SAMPLES SCORED BY LQS

To better illustrate our advantages, we visualized part samples. Specifically, we randomly sampled
examples from the top 10% and bottom 10% based on their scores for visualization.

As shown in Table 16 and 17, high-scoring samples are high-quality, complex sentences that are
not only challenging but also highly learnable, significantly aiding the model’s optimization in later
stages. In contrast, as shown in Table 18, low-scoring samples are often noisy and provide little to
no benefit for model training, making them ideal candidates for filtering (see Table 18 example 1
and 2). However, some low-scoring samples consist of simple words or short phrases (see Table 18
example 3 and 4), which are beneficial for the model’s learning in the early stages.
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Examples of Randomly Sampled High-Scoring Data Points (Top 10%)

# Example 1

<s> The precise nature of his doubt is not articulated but he aligns himself with the 17th century
dissenters who put personal religious conscience before the unifying demands of the Church. This
precipitates the move to the North, and determines the whole narrative arc of the novel. Before we
are thrust, along with our central characters, into the smoky North, it is worth lingering a while
on this short first stage of the novel. Gaskell does not make a simple thing of the South, as she
might have been tempted to do as a clear point of comparison. Instead she offers us two versions
of the South, two kinds of imaginings, both of which are then rejected. The drawing-room world of
the Shaws, while superficially appealing, is altogether too enervating for the Margaret Hale who is
gradually emerging even in these early chapters. Her decided refusal of Lennox is also a refusal of
that world. The rural delights of Helstone (in the New Forest) seem initially to offer a simpler,
perhaps a truer, version of the South. But that has already been put in doubt by Margaret and Henry
Lennox’s rather vexed discussion of it. In London, Henry suggests playfully that it is a ‘village
in a tale’, at which Margaret takes umbrage, only to offer instead that it is ‘a village in a poem’
(11). When Henry arrives bang in the middle of that poem, the scene is set for romance: ‘velvety
cramoisy roses’ (25), pears plucked from the tree and arranged on a plate of beetroot leaf, and
the ‘crimson and amber foliage’ (26) of the deep forest beyond. Yet instead of the completion of
the romantic dream, he comes up hard against Margaret’s refusal. Indeed she herself comes up hard
against it, and looks back at his proposal somewhat wistfully when she is plunged into her father’s
ferment, and briefly longs for the London/Shaw world where nothing ‘called for much decision’. But
if Margaret had accepted Henry { no novel. And besides, he can be kept in mind as a possible future
plot line. Gaskell is astute enough to know that challenge makes for a more interesting narrative,
and as it turns out, decision is something Margaret is rather good at. In the move to the South, she
becomes the adult of the household, her mother declining into frailty, her father exhausted by the
consequences of his own conscience. Her growth into her own strength of being is the more convincing
because she often quails at what is before her. ‘But the future must be met, however stern and iron
it be.’ (55) Thus, after a brief lull and taking of rest at the seaside town of Heston, Margaret and
her father make the journey to Milton { the ‘North’ of the novel { where, as she says playfully, ‘\I
am overpowered by the discovery of my own genius for management."’ (57) But the obstacles are real,
and the whole family must contend with their much-changed situation: They were settled in Milton,
and must endure smoke and fogs for a season; indeed all other life seemed shut out from them by as
thick a fog of circumstance. ... At night when Margaret realised this, she felt inclined to sit
down in a stupor of despair. The heavy smoky air hung about her bedroom, which occupied the long
narrow projection at the back of the house. The window, placed at the side of the oblong, looked
to the blank wall of a similar projection, not above ten feet distant. It loomed through the fog
like a great barrier to hope. (62) We are almost in the world of George Orwell’s The Road to Wigan
Pier { a work in fact heavily influenced by nineteenth-century depictions of urban industrialised
living conditions. As if to underline their changed life, a letter has come from Edith, full of
the delights of married life in Corfu: ‘Edith’s life seemed like the deep vault of blue sky above
her, free { utterly free from fleck or cloud’. (62) This leads Margaret to reflect in turn on how,
if she had accepted Lennox’s marriage proposal, things might have been different. The omniscient
narrative is here able to give much insight into Margaret’s inner thoughts, so that we see her
working through these difficult ideas and eventually finding herself clearer and happier: ‘As she
realised what might have been, she grew to be thankful for what was.’ (63) If there is a measure of
rationalisation in Margaret’s logic here { that too is realistic.

# Example 2

<s> For example, signals 116 and 118 may be in-phase (I) and quadrature (Q) baseband components
of a signal. In the example of FIG. 1B, signals 116 and 118 undergo a zero crossing as they
transition from +1 to -1. Signals 116 and 118 are multiplied by signal 120 or signal 120 phase
shifted by 90 degrees. Signal 116 is multiplied by a 0 degree shifted version of signal 120.
Signal 118 is multiplied by a 90 degree shifted version of signal 120. Resulting signals 122 and
124 represent time-varying complex carrier signals. Note that signals 122 and 124 have envelopes
that vary according to the time-varying amplitudes of signals 116 and 118. Further, signals 122
and 124 both undergo phase reversals at the zero crossings of signals 116 and 118. Signals 122
and 124 are summed to result in signal 126. Signal 126 represents a time-varying complex signal.
Signal 126 may represent an example input signal into VPA embodiments of the present invention.
Additionally, signals 116 and 118 may represent example input signals into VPA embodiments of the
present invention. 1.2) Example Generation of Time-Varying Complex Envelope Signals from Constant
Envelope Signals The description in this section generally relates to the operation of step 508
in FIG. 50. FIG. 1C illustrates three examples for the generation of time-varying complex signals
from the sum of two or more substantially constant envelope signals. A person skilled in the art
will appreciate, however, based on the teachings provided herein that the concepts illustrated in
the examples of FIG. 1C can be similarly extended to the case of more than two constant envelope
signals. In example 1 of FIG. 1C, constant envelope signals 132 and 134 are input into phase
controller 130. Phase controller 130 manipulates phase components of signals 132 and 134 to generate
signals 136 and 138, respectively. Signals 136 and 138 represent substantially constant envelope
signals, and are summed to generate signal 140. The phasor representation in FIG. 1C, associated
with example 1 illustrates signals 136 and 138 as phasors P136 and P138, respectively. Signal 140
is illustrated as phasor P140. In example 1, P136 and P138 are symmetrically phase shifted by an
angle ϕ1 relative to a reference signal assumed to be aligned with the real axis of the phasor
representation. Correspondingly, time domain signals 136 and 138 are phase shifted in equal amounts
but opposite directions relative to the reference signal. Accordingly, P140, which is the sum
of P136 and P138, is in-phase with the reference signal. In example 2 of FIG. 1C, substantially
constant envelope signals 132 and 134 are input into phase controller 130. Phase controller 130
manipulates phase components of signals 132 and 134 to generate signals 142 and 144, respectively.
Signals 142 and 144 are substantially constant envelope signals, and are summed to generate signal
150. The phasor representation associated with example 2 illustrates signals 142 and 144 as phasors
P142 and P144, respectively. Signal 150 is illustrated as phasor P150. In example 2, P142 and P144
are symmetrically phase shifted relative to a reference signal. Accordingly, similar to P140, P150
is also in-phase with the reference signal. P142 and P144, however, are phase shifted by an angle
whereby ϕ2 ̸= ϕ1 relative to the reference signal. P150, as a result, has a different magnitude than
P140 of example 1.

Table 16: Examples of Randomly Sampled High-Scoring Data Points (Top 10%).
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Examples of Randomly Sampled High-Scoring Data Points (Top 10%)

# Example 3

<s> Then Eddie owned up and said I took the records and my mummy said what did you do with them Eddie
and he said I played cards with them that’s what I done with them where as everybody was playing
cards for tuppence and thrupence and he was playing with the records and our Tommy stood and looked
at him, I have never forgotten the expression on Tommy’ s face. Eddie was about 15 or 16 then.
When Eddie left school he successfully applied for a job in the Belfast City Council and I remember
everybody being very proud because it was difficult to get a job with the Council back then. My
mummy came in one day and said I was talking to the foreman about our Eddie and he said he’s a great
worker, my mummy was very proud of him. He used to land in for his lunch to my mummy with all the
other binmen, she would have to feed them all. He stayed there until 1968 when he began working
at boarding up buildings that had been damaged in the Troubles. As a way to earn an extra bit of
money for the family he also worked nights as a barman. When Eddie got older he was always very
particular about his appearance, he always wore a suit, sometimes with shirt or tee shirt, he was
always very spick and span. Eddie smoked but he wasn’t a drinker. That’s not to say that he didn’t
try it at the beginning but it wasn’t for him, he became a lifelong pioneer and a blood donor. He
was also in the Confraternity (which was a sort of prayer group for men) at Clonard Monastery and
he loved it; that was his wee place to get away to. He had strong faith. When Eddie was sixteen
he met and fell in love with his future wife Marie. Marie was the love of his life and they courted
for six years before getting married in 1962. Five years later their first child was born, quickly
followed by three more. Eddie and Marie had three sons { Eamon, Patrick and Ciaran, and one daughter
{ Brenda. When they got married they went to live with Marie’s grandmother in Fort Street. But he
wanted his own house for himself and Marie and the only way that was going to happen was to get the
money together to buy one. My daddy said to him. \look if you’re looking extra money to buy a house
go and join the TA its only 2 months a year". So he went and joined the Territorial Army and the
money he was getting he sent it home to Marie. He wasn’t in the TA for very long and had left by the
time his first child was born. When Eddie came home things didn’t work out the way he wanted about
the house and things got too much for him, he ended up with a bit of a breakdown. Eventually they
got the money for a house in Iveagh Street it was in a bad state of repair but Eddie and Marie fixed
it up and made it their home. He suffered with mental health difficulties a couple of times in the
early-mid 1960s but that was well behind him by the time of his death. Eddie just lived for Marie
and their kids, he took on a couple of extra jobs, working as a bar man and doing a bit of painting
and decorating. He was always ready and willing to drop everything and do something for you. It
was just an ordinary family life and he just loved Marie, he idolised her and she could do no wrong
in his eyes. All he had time for was work, home and the confraternity. When he did have free time
he liked fishing and clay pigeon shooting. He was content with what he had and he was in his own
wee orbit that he owned his house, and provided for his kids he was just happy to be a husband and a
daddy. On payday he would give Marie his unopened pay packet, she would then buy him his cigarettes
for the week. Not too many men did that in those days. Eddie was strict in a way too with the kids,
I remember Eddie coming to visit me with Ciaran, I had a rocking horse in the living room and Ciaran
wanted on it and Eddie said no you’re not going over it doesn’t belong to you, and I looked at Eddie
and said let the child go over and get on to the horse I said catch yourself on there is nobody even
on it and he went over but he was holding him on it because he maybe would of toppled.

# Example 4

<s> I was interested to see if I would lean closer to earlier poems or later poems since sometimes
there can be a significant difference in a poets writing style compared to when they began and
ended. Turns ou This.Was.My.Jam Where do I even begin? So the collection is written in reverse
chronological- yeah that’s right I actually read the introduction to something. I found this
particularly interesting because I feel like we often start in the beginning and naturally work our
way through their work. I was interested to see if I would lean closer to earlier poems or later
poems since sometimes there can be a significant difference in a poets writing style compared to
when they began and ended. Turns out I pretty steadily loved it all. I think if I HAD to chose
I would lean just slightly closer to the beginning of the collection, but just slightly. That
might have a bit of a biases though since Annabelle Leigh is the very first poem we read and it’s
always been my absolute favorite. Annabelle Leigh aside, I can only imagine what other wonderfully
powerful and hauntingly beautiful pieces he could have continued to write had he lived longer.
(Internally sobbing) You’ll probably notice that there’s a lot of reoccurrence with things like the
moon, celestial bodies, night, and the evening star- all things I really enjoyed. Also, (and this
might quite well be my favorite) Poe has some of the best rhymes. Words that rhymed but weren’t your
usual rhymes, if you will. For example: departed and brokenhearted, month of June and mystic-moon,
dipt in folly and melancholy, Heaven and unforgiven (you gotta twang a little for that one), itself
alone and gray tombstone, heart’s content and own element. etc. And it doesn’t stop there! The
the entire language being used is SO GOOD. I’d be reading a poem and then I’d hit a particular
line or phrase and just have to a take a moment to say "damn" while the words were absorbed. Some
examples of that are "And the silken, sad, uncertain rustling of each purple curtain" (The Raven),
I stand amid the roar of a surf-tormented shore (A Dream Within a Dream), With the moon-tints of
purple and pearl (Eulalie-A Song), Sound loves to revel in a summer night: Witness the murmur of
the gray twilight. (Al Aaraaf Part 2) and "So like you gather in your breath, a portrait taken after
death. (Tamberlane) Even the poems that I didn’t mark as favorites I still really enjoyed. My least
favorite in the collect was Al Aaraaf (both parts), I’m not really sure why I just didn’t feel as
wow’ed by it. Also, the play that ends the collection I wasn’t a huge fan of but I think that just
speaks true to the format. Plays are different than poetry. I haven’t read any Poe stories for a
long time, so I think it would be interesting to see where my enjoyment falls on the prose. But,
the poetry is definitely out of the park for me. Something I do find intriguing is that growing up
I also thought Poe was just a dark and haunted poet. I think he was in fact haunted, but I don’t
think (the poetry at least) is as horrific as people usually indicate. In fact, I’m willing to
call it beautiful. Beautifully dark, perhaps? Read it, it’s perfect. Mateo { Oct 24, 2020 I did
not make this image but this is my review I did not make this image but this is my review Stephanie
Grosse { Sep 23, 2018 This review has been hidden because it contains spoilers. To view it, click
here. Simultaneously mysterious and familiar, like the old friend who suddenly astonishes you with
his strangeness or the acquaintance whom you are convinced you must have known since childhood. I
very much enjoyed the use of onomatopoeia. You will be hypnotised by the sounds (for example "ee",
"em" in the summer dream beneath the tamarind tree). Poe has you forever, in "a dream within a
dream" Very memorable.A must read for all poetry lovers. Simultaneously mysterious and familiar,
like the old friend who suddenly astonishes you with his strangeness or the acquaintance whom you are
convinced you must have known since childhood. I very much enjoyed the use of onomatopoeia.

Table 17: Examples of Randomly Sampled High-Scoring Data Points (Top 10%).
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Examples of Randomly Sampled Low-Scoring Data Points (Bottom 10%)

# Example 1

<s>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Select a country but NOT a region All you need to know about the Indian Defence Forces!

# Example 2

<s>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Select a country but NOT a region A site focusing on Australian Modelling with galleries, articles
and discussion forums.

# Example 3

<s>USA, Liberia USA, Lithuania, Italy USA, Luxembourg USA, Luxembourg, UK USA, Malaysia USA, Malta,
France, UK USA, Malta, UK USA, Mexico USA, Mexico, Australia USA, Mexico, Australia, Canada USA,
Mexico, Canada USA, Mexico, Canada, Germany USA, Mexico, Germany USA, Mexico, Hong Kong USA, Mexico,
Japan USA, Mexico, Spain USA, Mexico, UK USA, Mexico, United Arab Emirates USA, Monaco USA, Monaco,
Morocco USA, Morocco USA, Morocco, Spain, UK USA, Morocco, Switzerland USA, Myanmar USA, Netherlands
USA, Netherlands, France USA, Netherlands, Germany, France, Austria USA, Netherlands, South Africa
USA, Netherlands, UK USA, Netherlands, UK, Denmark USA, New Zealand USA, New Zealand, Canada, Israel,
Japan, Nigeria USA, New Zealand, Germany USA, New Zealand, Japan USA, New Zealand, South Africa, UK,
Lithuania USA, New Zealand, UK USA, Nicaragua USA, Nigeria USA, Norway USA, Pakistan USA, Panama,
Argentina USA, Panama, Japan, Canada USA, Panama, Mexico USA, Peru USA, Philippines USA, Philippines,
Puerto Rico USA, Philippines, Taiwan, South Korea, China, Canada USA, Poland USA, Poland, Slovenia,
Czech Republic, UK USA, Portugal USA, Portugal, France USA, Puerto Rico USA, Qatar USA, Romania USA,
Romania, Canada USA, Romania, France, Italy, Germany USA, Romania, Germany USA, Romania, Iceland USA,
Romania, UK USA, Russia USA, Russia, Hungary USA, Russia, UK USA, Saudi Arabia USA, Senegal USA,
Serbia USA, Serbia, Canada USA, Singapore USA, Singapore, Taiwan USA, Slovakia USA, Slovakia, China
USA, South Africa USA, South Africa, Germany USA, South Africa, India USA, South Africa, Italy USA,
South Africa, Zambia, Germany USA, South Korea USA, South Korea, Australia USA, South Korea, India
USA, South Korea, Japan USA, South Korea, Singapore USA, South Korea, Singapore, Russia, Malaysia,
Kazakhstan, Taiwan, Hong Kong, Japan, China, India, Syria, Iran, Egypt, Pakistan USA, South Korea,
Spain

# Example 4

Phillip L. Horrell v. David Gomez, Warden, No. 20-5306 Ganaa Otgoo v. Illinois, No. 20-5109
Phillip Hartsfield v. Stepanie Dorethy, Warden, No. 19-1473 Anthony Jackson v. Supreme Court
of Illinois, No. 19-8665 David Beverly v. Illinois, No. 19-8502 Lamont Dantzler v. Illinois,
No. 19-8448 Joh-ner Taylor Wilson v. Illinois, No. 19-8437 Herbert Burgess v. Illinois, No.
19-8379 Joseph M. Coffman v. Illinois, No. 19-8391 Timothy J. McVay v. Illinois, No. 19-8304
Kenneth Durant v. Frank Lawrence, Warden, No. 19-7967 Seth A. Weaver v. Illinois, No. 19-7823
Lyarron T. Emers v. Illinois, No. 19-7759 Bethany Austin v. Illinois, No. 19-1029 Anthony Allen
v. Illinois, No. 19-7633 Kenin L. Edwards v. Michael L. Atterberry, et al., No. 19-965 Pablo
Rodriguez-Palomino v. Illinois, No. 19-7273 Christopher L. Croom v. Illinois, No. 19-7237 Tony
Robinson v. Illinois, No. 19-7226 Lazaro Zapata v. Illinois, No. 19-7264 Fernando Oliveros v.
Illinois, No. 19-7141 Kevin Dameron v. Illinois, No. 19-6945 Peter Gakuba v. Michelle Neese, No.
19-6543 Richard Kalinowski v. Illinois, No. 19-6368 Rafael Alvarado v. Frank Lawrence, Warden,
No. 19-6347 Chad M. Cutler v. Illinois, No. 19-6150 Hezekiah Whitfield v. Deanna Brookhart,
Warden, No. 19-6051 Lorenzo Davis, Jr. v. Illinois, No. 19-5831 Chadwick N. Barner v. Illinois,
No. 19-5655 Charles Donelson v. Q. Tanner, et al., No. 19-5397 Robert Curry v. Illinois, No.
19-5366 Andrew Condon v. Illinois, No. 19-5349 Keith Talbert v. Illinois, No. 18-9768 Juan
Rodriguez v. Illinois, No. 18-9759 Miguel Alcantar v. Illinois, No. 18-1548 Gregory Rayford
v. Illinois, No. 18-9612 Irving Madden v. Michael Melvin, Warden, No. 18-9474 Denzel Pittman v.
Illinois, No. 18-9451 Jesus Cotto v. Jacqueline Lashbrook, Warden, No. 18-9116 Pierre Montanez v.
Ursula Walowski, No. 18-9101 Russell Frey v. Illinois, No. 18-9120 Peter Gakuba v. Illinois, No.
18-9041 Jose Cobian v. Illinois, No. 18-8963 Derrick Redmond v. Illinois, No. 18-8808 Jennifer N.
Nere v. Illinois, No. 18-8625 Gerald W. Long v. Illinois, No. 18-8577 Willie White v.

Table 18: Examples of Randomly Sampled Low-Scoring Data Points (Bottom 10%).28
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