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Abstract
We study the complexity of heavy-tailed sampling and present a separation result
in terms of obtaining high-accuracy versus low-accuracy guarantees i.e., samplers
that require only O(log(1/ε)) versus Ω(poly(1/ε)) iterations to output a sample
which is ε-close to the target in χ2-divergence. Our results are presented for
proximal samplers that are based on Gaussian versus stable oracles. We show that
proximal samplers based on the Gaussian oracle have a fundamental barrier in
that they necessarily achieve only low-accuracy guarantees when sampling from a
class of heavy-tailed targets. In contrast, proximal samplers based on the stable
oracle exhibit high-accuracy guarantees, thereby overcoming the aforementioned
limitation. We also prove lower bounds for samplers under the stable oracle and
show that our upper bounds cannot be fundamentally improved.

1 Introduction
The task of sampling from heavy-tailed targets arises in various domains such as Bayesian statis-
tics [GJPS08, GLM18], machine learning [CDV09, BZ17, NŞR19, ŞZTG20, DKTZ20], robust
statistics [KN04, JR07, Kam18, YŁR22], multiple comparison procedures [GBH04, GB09], and
study of geophysical systems [SP15, QM16, PBEM23]. This problem is particularly challenging
when using gradient-based Markov Chain Monte Carlo (MCMC) algorithms due to diminishing
gradients, which occurs when the tails of the target density decay at a slow (e.g. polynomial) rate.
Indeed, canonical algorithms like Langevin Monte Carlo (LMC) have been empirically observed to
perform poorly [LWME19, HMW21, HFBE24] when sampling from such heavy-tailed targets.

Several approaches have been proposed in the literature to overcome these limitations of LMC and
related algorithms. The predominant ones include (i) transformation-based approaches, where a
diffeomorphic (invertible) transformation is used to first map the heavy-tailed density to a light-tailed
one so that a light-tailed sampling algorithm can be used [JG12, YŁR22, HBE24], (ii) discretizing
general Itô diffusions with non-standard Brownian motion that have heavy-tailed densities as their
equilibrium density [EMS18, LWME19, HFBE24], and (iii) discretizing stable-driven stochastic
differential equations [ZZ23]. However, the few theoretical results available on the analysis of
algorithms based on approaches (i) and (ii) provide only low-accuracy heavy-tailed samplers; such
algorithms require poly(1/ε) iterations to obtain a sample that is ε-close to the target in a reasonable
metric of choice. Furthermore, quantitative complexity guarantees for the sampling approach used in
(iii) are not yet available; thus, existing comparisons are mainly based on empirical studies.

In stark contrast, when the target density is light-tailed it is well-known that algorithms like proximal
samplers based on Gaussian oracles and the Metropolis Adjusted Langevin Algorithm (MALA) have
high-accuracy guarantees; these algorithms require only polylog(1/ε) iterations to obtain a sample
which is ε-close to the target in some metric. See, for example, the works by [DCWY19, LST21b,
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ν ≥ 1 ν ∈ (0, 1)

Oracle Gaussian (Alg. 1) Stable (Alg. 2 & 3) Gaussian (Alg. 1) Stable (Alg. 2 & 3)

Complexity Ω̃(ε−
1
ν ) (Cor. 2) O(log(ε−1)) (Cor. 5) Ω̃(ε−

1
ν ) (Cor. 2) Õ(ε− 1

ν +1) (Cor. 5)

Table 1: Separation for Proximal Samplers: Gaussian vs. practical Stable oracles (α=1): Upper and lower
iteration complexity bounds to generate an ε-accurate sample in χ2-divergence from the generalized Cauchy
target densities with degrees of freedom ν, i.e. πν ∝ (1 + |x|2)−(d+ν)/2. Here, Ω̃, Õ hide constants depending
on ν and polylog(d, 1/ε). For the proximal sampler with a general α-Stable oracle (Algorithm 2), the upper
bound for ν ∈ (0, 1) is O(log(1/ε)) when α = ν. The lower bounds are from Corollary 2 via 2TV2 ≤ χ2.

WSC22a, CCSW22, CG23]. Specifically, [LST21b] analyzed the proximal sampling algorithm
to sample from a class of strongly log-concave densities and obtained high-accuracy guarantees.
[CCSW22] established similar high-accuracy guarantees for the proximal sampler to sample from
target densities that satisfy a certain functional inequality, covering a range of light-tailed densities
with exponentially fast tail decay (e.g. log-Sobolev and Poincaré inequalities). However, it is not clear
if the proximal sampler achieves the same desirable performance when the target is not light-tailed.

In light of existing results, in this work, we first consider the following question:
Q1. What are the fundamental limits of proximal samplers under the Gaussian

oracle when sampling from heavy-tailed targets?

To answer this question, we construct lower bounds showing that Gaussian-based samplers necessarily
require poly(1/ε) iterations to sample from a class of heavy-tailed targets. These results complement
the lower bounds on the complexity of sampling from heavy-tailed densities using the LMC algorithm
established in [MHFH+23]. With this lower bound in hand, we next consider the following question:

Q2. Is it possible to design high-accuracy samplers for heavy-tailed targets?

We answer this in the affirmative by constructing proximal samplers that are based on stable oracles
(see Definition 1 and Algorithm 2) by leveraging the fractional heat-flow corresponding to a class of
stable-driven SDEs. We analyze the complexity of this algorithm when sampling from heavy-tailed
densities that satisfy a fractional Poincaré inequality, and establish that they require only log(1/ε)
iterations. Together, our answers to Q1 and Q2 provide a clear separation between samplers based on
Gaussian and stable oracles. Our contributions can be summarized as follows.

• Lower bounds for the Gaussian oracle: In Section 2, we focus on Q1 and establish in Theorems 1
and 2 respectively that the Langevin diffusion and the proximal sampler based on the Gaussian
oracle necessarily have a fundamental barrier when sampling from heavy-tailed densities. Our
proof technique builds on [Hai10], and provides a novel perspective for obtaining algorithm-
dependent lower bounds for sampling, which may be of independent interest.

• A proximal sampler based on the stable oracle: In Section 3, we introduce a proximal sampler
based on the α-stable oracle, which fundamentally relies on the exact implementations of the
fractional heat flow that correspond to a stable-driven SDE. Here, the parameter α determines the
allowed class of heavy-tailed targets which could be sampled with high-accuracy. In Theorem 3
and Proposition 1, we provide upper bounds on the iteration complexity that are of smaller order
than the corresponding lower bounds established for the Gaussian oracle. We provide a rejection-
sampling based implementation of the α-stable oracle for the case α = 1 and prove complexity
upper bounds in Corollary 3. Finally, in Theorem 4, considering a sub-class of Cauchy-type
targets, we prove lower bounds showing that our upper bounds cannot be fundamentally improved.

An illustration of our results for Cauchy target densities, πν ∝ (1 + |x|2)−(d+ν)/2 where ν is the
degrees of freedom, is provided in Table 1. We specifically consider the practical version of the stable
proximal sampler with α = 1 (i.e., Algorithm 2 with the stable oracle implemented by Algorithm 3),
and show that it always outperforms the Gaussian proximal sampler (Algorithm 1). Indeed, when
ν ≥ 1, the separation between these algorithms is obvious. In the case ν ∈ (0, 1), Algorithm 2 & 3
has a poly(1/ε) complexity, nevertheless, it still improves the complexity of the Gaussian proximal
sampler by a factor of ε. We also show via lower bounds (in Section 3.4) that the poly(1/ε) complexity
for Algorithm 2 & 3, when ν ∈ (0, 1), can only be improved up to certain factors. We remark that
for the ideal proximal sampler (Algorithm 2), the upper bound when ν ∈ (0, 1) is also O(log(1/ε)).
These results demonstrate a clear separation between Gaussian and stable proximal samplers.

Related works. We first discuss works analyzing the complexity of heavy-tailed sampling as charac-
terized by a functional inequality assumption. [CDV09] analyzed the connection between sampling
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algorithms for a class of s-concave densities satisfying a certain isoperimetry condition related to
weighted Poincaré inequalities. [HFBE24] undertook a mean-square analysis of discretization of
a specific Itô diffusion that characterizes a class of heavy-tailed densities satisfying a weighted
Poincaré inequality. [ALPW22] and [ALPW23] analyzed the complexity of pseudo-marginal MCMC
algorithms and the random-walk Metropolis algorithm respectively, under weak Poincaré inequalities.
As mentioned before, [MHFH+23] showed lower bounds for the LMC algorithm when the target
density satisfies a weak Poincaré inequality. [HBE24] and [YŁR22] analyzed a transformation based
approach for heavy-tailed sampling under conditions closely related to the same functional inequality.
This transformation methodology is also used to demonstrate asymptotic exponential ergodicity for
other sampling algorithms like the bouncy particle sampler and the zig-zag sampler, in the heavy-
tailed settings [DBCD19, DGM20, BRZ19]. These works provide only low-accuracy guarantees for
heavy-tailed sampling and do not consider the use of weak Fractional Poincaré inequalities.

Recent years have witnessed a significant focus on (strongly) log-concave sampling, leading to an
extensive body of work that is challenging to encapsulate succinctly. In the context of (strongly) log-
concave or light-tailed distributions, a plethora of non-asymptotic investigations have been conducted
on LMC variations, including advanced integrators [SL19, LWME19, HBE20], underdamped LMC
[CCBJ18, EGZ19, CLW23, DRD20], and MALA [DCWY19, LST20, CLA+21, WSC22b]. Outside
the realm of log-concavity, the dissipativity assumption, which regulates the growth of the potential,
has been used in numerous studies to derive convergence guarantees [DM17, RRT17, EMS18, EH21,
MFWB22, EHZ22, BCE+22].

While research on upper bounds of sampling algorithms’ complexity has advanced considerably, the
exploration of lower bounds is still nascent. [CGL+22] explored the query complexity of sampling
from strongly log-concave distributions in one-dimensional settings. [LZT22] established lower
bounds for LMC in sampling from strongly log-concave distributions. [CBL22] presented lower
bounds for sampling from strongly log-concave distributions with noisy gradients. [GLL20] focused
on lower bounds for estimating normalizing constants of log-concave densities. Contributions by
[LST21a] and [WSC22b] provide lower bounds in the metropolized algorithm category, including
Langevin and Hamiltonian Monte Carlo, in strongly log-concave contexts. Finally, [CGLL22]
contributed to lower bounds in Fisher information for non-log-concave sampling.

2 Lower Bounds for Sampling with the Gaussian Oracle
In this section, we focus on Q1 for both the Langevin diffusion (in continuous time) and the proximal
sampler (in discrete time), where both procedures have the target density as their invariant measures.
Our results below illustrate the limitation of the Gaussian oracle1 for heavy-tailed sampling in both
continuous and discrete time, showing that the phenomenon is not because of the discretization effect,
but is inherently related to the use of Gaussian oracles.

Langevin diffusion. We first start with the overdamped Langevin diffusion (LD):

dXt = −∇V (Xt)dt+
√
2dBt. (LD)

LD achieves high-accuracy “sampling” in continuous time, i.e. a polylog(1/ε) convergence rate in
the light-tailed setting. We make the following dissipativity-type assumption.
Assumption 1. The target density is given by πX(x) ∝ exp(−V (x)), where V : Rd → R satisfies

∀x ∈ Rd,
(d+ ν1)|x|2

1 + |x|2
≤ ⟨x,∇V (x)⟩ ≤ (d+ ν2)|x|2

1 + |x|2
for some ν2 ≥ ν1 ≥ 0.

Remark 1. The upper bound on ⟨x,∇V (x)⟩ ensures that V grows at most logarithmically in |x|.
Consequently, πX is heavy-tailed and in fact does not satisfy a Poincaré inequality. The lower bound
on ⟨x,∇V (x)⟩ is only needed for deriving the dimension dependency in our guarantees. If one is
only interested in the ε dependency, this condition can be replaced with 0 ≤ ⟨x,∇V (x)⟩.

A classical example of a density satisfying the above assumption is the generalized Cauchy density
with degrees of freedom ν = ν1 = ν2 > 0, where the potential is given by

Vν(x) :=
d+ ν

2
ln(1 + |x|2). (1)

The following result, proved in Appendix A, provides a lower bound on the performance of LD.
1Here, for the sake of unified presentation, we refer the use of Brownian motion in (LD) as Gaussian oracle.
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Algorithm 1 Gaussian Proximal Sampler [LST21b]
Input: Sample x0, and step η > 0. for k = 0, 1, · · · , N − 1 // Gibbs sampler

Sample yk ∼ πY |X(·|xk) = N (xk, ηId) // Heat flow

Sample xk+1|yk ∼ πX|Y (·|yk) ∝ πX(·) exp
(−| · −yk|2

2η

)
// Calls to RGO

return xN

Theorem 1. Suppose πX ∝ exp(−V ) satisfies Assumption 1. Let Xt be the solution of the Langevin
diffusion, and µt := Law(Xt). Then, for any δ > 0,

TV(πX , µt) ≥ Cν1,ν2
d
ν1−ν2

2 (1+δ) (Cδ(µ0) + κδt)
−

ν2(1+δ)
2 ,

where κδ := 1 ∨ 2
d+ν2

∨ ν2(1+δ)
(d+ν2)δ

, Cδ(µ0) :=
1

d+ν2
E[(1 + |X0|2)γ ]1/γ with γ = κδ(d+ ν2)/2, and

Cν1,ν2
is a constant depending only on ν1 and ν2.

If we assume |X0| ≤ O(
√
d) for simplicity, then by choosing δ = 2 ln ln t

ν2 ln t ∧
2 ln ln d

(ν2−ν1) ln d , we obtain

TV(πX , µt) ≥ Ω̃ν1,ν2
(d

ν1−ν2

2 t−
ν2

2 ).

Thus, LD requires at least T = Ω̃ν1,ν2

(
d

ν1−ν2
ν2 (1/ε)2/ν2

)
to reach ε error in total variation. While

this bound may be small in high dimensions when ν2 > ν1, for the canonical model of Cauchy-type
potentials with ν2 = ν1 = ν, it will be independent of dimension, as stated by the following result.
Note that Assumption 1 can also cover a general scaling by replacing |x| with c|x| for some constant
c, which would introduce a multiplicative factor of 1/c2 for the lower bound on T . This is expected
as e.g., mixing to the Gibbs potential c2|x|2 can be faster than mixing to |x|2 by a factor of 1/c2.
Corollary 1. Consider the generalized Cauchy density πX

ν ∝ exp(−Vν) where Vν is as in (1).
Let Xt be the solution of the Langevin diffusion, and µt := Law(Xt). For simplicity, assume the
initialization satisfies |X0| ≤ O(

√
d). Then, achieving TV(πX

ν , µT ) ≤ ε requires T ≥ Ω̃ν

(
ε−

2
ν

)
.

The above lower bound implies that LD is a low-accuracy “sampler” for this target density in the
sense that it depends polynomially on 1/ε; this dependence gets worse with smaller ν as the tails
get heavier. It is worth highlighting the gap between the upper bound of [MHFH+23, Corollary 8],
which is Õ

(
1/ε4/ν

)
, and the lower bound in Corollary 1.

Gaussian proximal sampler. In the remainder of this section, we prove that the Gaussian proximal
sampler, described in Algorithm 1, also suffers from a poly(1/ε) rate when the target density is
heavy-tailed. In each iteration of Algorithm 1, the first step involves sampling a standard Gaussian
random variable yk centered at the current iterate xk with variance ηI; this is a one-step isotropic
Brownian random walk. Alternatively, since the Fokker-Planck equation of the standard Brownian
motion is the classical heat equation, this step could also be interpreted as an exact simulation of the
heat flow; see, for example, [CG03] and [Wib18]. Specifically, the density of yk is the solution to
the heat flow at time η with the initial condition being the density of xk. The second step is called
the restricted Gaussian oracle (RGO) as coined by [LST21b]; under which (xk, yk) is a reversible
Markov chain whose stationary density has x-marginal πX .
Assumption 2. For some ν2 ≥ ν1 ≥ 0, the target πX(x) ∝ exp(−V (x)) with V : Rd → R satisfies

∀x ∈ Rd (d+ ν1)|x|2

1 + |x|2
≤ ⟨x,∇V (x)⟩, |∇V (x)| ≤ (d+ ν2)|x|

1 + |x|2
, ∆V (x) ≤ (d+ ν2)

2

1 + |x|2
.

The first condition above also appears in Assumption 1 and the second condition implies the upper
bound of Assumption 1; thus, the above assumption is stronger. Note that the generalized Cauchy
measure (1) satisfies this assumption with ν1 = ν2 = ν. Under Assumption 2, we state the following
lower bound on the Gaussian proximal sampler and defer its proof to Appendix A.
Theorem 2. Suppose πX ∝ exp(−V ) satisfies Assumption 2. Let xk denote the kth iterate of the
Gaussian proximal sampler (Algorithm 1) with step η and let ρXk := Law(xk). Then, for any δ > 0,

TV(πX , ρXk ) ≥ Cν1,ν2
d
ν1−ν2

2 (1+δ) (Cδ(µ0) + κδηk)
−

ν2(1+δ)
2 ,

where κδ , Cδ(µ0), and Cν1,ν2
are defined in Theorem 1.

4



Above, assuming |X0| ≤ O(
√
d) with the same choice of δ as in Theorem 1 yields TV(πX

ν , ρXk ) ≥
Ω̃ν1,ν2

(
d

ν1−ν2
2 (kη)

−ν2
2

)
. Note that in order for the RGO step to be efficiently implementable, we

need to have a sufficiently small η. The state-of-the-art implementation of RGO requires a step size of
order η = Õ(1/(Ld1/2)) when V has L-Lipschitz gradients [FYC23]. With this choice of step size,
the above lower bound requires at least N = Ω̃ν1,ν2

(
Ld1/2+(ν1−ν2)/ν2(1/ε)2/ν2

)
iterations. The

assumptions in Theorem 2 once again cover the canonical examples of generalized Cauchy densities,
where we have L = d+ ν, which simplifies the lower bound as follows.
Corollary 2. Consider the generalized Cauchy density πX

ν ∝ exp(−Vν) where Vν is as in (1).
Let xk denote the kth iterate of the Gaussian proximal sampler, and define ρXk := Law(xk), and
choose the step size η = Õ(1/(Ld1/2)). If we assume |X0| ≤ O(

√
d) for simplicity, then achieving

TV(πX
ν , ρXN ) ≤ ε requires N ≥ Ω̃ν

(
d

3
2 ε−

2
ν

)
iterations.

We emphasize that the above lower bound is of order poly(1/ε) as advertised. Thus, the RGO-based
proximal sampler can only yield a low-accuracy guarantee in this setting.

3 Stable Proximal Sampler and the Restricted α-Stable Oracle
Having characterized the limitations of Gaussian oracles for heavy-tailed sampling, thereby answering
Q1, in what follows, we will focus on Q2 and construct proximal samplers based on the α-stable
oracle, and prove that they achieve high-accuracy guarantees when sampling from heavy-tailed targets.
First, we provide a basic overview of α-stable processes and fractional heat flows.

Isotropic α-stable process. For t ≥ 0, let X(α)
t be the isotropic stable Lévy process in Rd, starting

from x ∈ Rd, with the index of stability α ∈ (0, 2], defined uniquely via its characteristic function
Exe

i⟨ξ,X(α)
t −x⟩ = e−t|ξ|α . When α = 2, X(2)

t is a scaled Brownian motion, and when 0 < α < 2, it
becomes a pure Lévy jump process in Rd. The transition density of X(α)

t is then given by

p(α)(t;x, y) = p
(α)
t (y − x) with p

(α)
t (y) = (2π)−d

∫
Rd

exp(−t|ξ|α)e−i⟨ξ,y⟩dξ, (2)

where the second equation above is the inverse Fourier transform of the characteristic function, thus
returns the density. The transition kernel and the density in (2) have closed-form expressions for the
special cases α = 1, 2. In particular, when α = 1, p(1)t reduces to a Cauchy density with degrees of
freedom ν = 1, i.e. p(1)t (y) ∝ (|y|2 + t2)−(d+1)/2. We finally note that the isotropic stable Lévy
process X(α)

t displays self-similarity like the Brownian motion; the processes X(α)
at and a1/αX

(α)
t

have the same distribution. This property is crucial in the development of the stable proximal sampler.

Fractional heat flow. The equation ∂tu(t, x) = −(−∆)α/2u(t, x) with the condition u(0, x) =
u0(x) is an extension of the classical heat flow, and is referred to as the fractional heat flow. Here,
−(−∆)α/2 is the fractional Laplacian operator with α ∈ (0, 2], which is the infinitesimal generator
of the isotropic α-stable process. For α = 2, it reduces to the standard Laplacian operator ∆.

Stable proximal sampler. Let π(x, y) be a joint density such that π(x, y) ∝ πX(x)p(α)(η;x, y),
where πX is the target and p(α)(η;x, y) is the transition density of the α-stable process, introduced in
(2). It is easy to verify that (i) the X-marginal of π is πX , (ii) the conditional density of Y given X is
πY |X(·|x) = p(α)(η;x, ·), (iii) the Y -marginal is πY = πX ∗ p(α)η , i.e. πY is obtained by evolving
πX along the α-fractional heat flow for time η, and (iv) the conditional density of X given Y is
πX|Y (·|y) ∝ πX(·)p(α)(η; ·, y). Based on these, we introduce the following stable oracle.

Definition 1 (Restricted α-Stable Oracle). Given y ∈ Rd, an oracle that outputs a random vector
distributed according to πX|Y (·|y), is called the Restricted α-Stable Oracle (RαSO).

Note that when α = 2, the RαSO reduces to the RGO of [LST21b]. The Stable Proximal Sampler
(Algorithm 2) with parameter α is initialized at a point x0 ∈ Rd and performs Gibbs sampling on
the joint density π. In each iteration, the first step involves sampling an isotropic α-stable random
vector yk centered at the current iterate xk, which is a one-step isotropic α-stable random walk. This
could also be interpreted as an exact simulation of the fractional heat flow. Indeed, due to the relation
between the fractional heat flow and the isotropic stable process, the density of yk is exactly the
solution to the α-fractional heat flow at time η with the initial condition being the density of xk.
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Algorithm 2 Stable Proximal Sampler with parameter α
Input: Sample x0, step η > 0, and α ∈ (0, 2).
for k = 0, 1, · · · , N − 1 // Gibbs sampler

Sample yk ∼ πY |X(·|xk) = p(α)(η;xk, ·) // Fractional heat flow

Sample xk+1|yk ∼ πX|Y (·|yk) ∝ πX(·)p(α)(η; ·, yk) // Calls to RαSO
return xN

When α = 2, the first step reduces to an isotropic Brownian random walk and a simulation of the
classical heat flow. The second step calls the RαSO at the point yk.

3.1 Convergence guarantees
We next provide convergence guarantees for the stable proximal sampler in χ2-divergence assuming
access to the RαSO. Similar results for a practical implementation are presented in Section 3.2. To
proceed, we introduce the fractional Poincaré inequality, first introduced in [WW15] to characterize a
class of heavy-tailed densities including the canonical Cauchy class.
Definition 2 (Fractional Poincaré Inequality). For ϑ ∈ (0, 2), a probability density µ satisfies a
ϑ-fractional Poincaré inequality (FPI) if there exists a positive constant CFPI(ϑ) such that for any

function ϕ : Rd → R in the domain of E(ϑ)µ , we have

Varµ(ϕ) ≤ CFPI(ϑ)E(ϑ)µ (ϕ). (FPI)

where E(ϑ)µ is a non-local Dirichlet form associated with µ defined as

E(ϑ)µ (ϕ) := cd,ϑ

∫∫
{x ̸=y}

(ϕ(x)− ϕ(y))2

|x− y|(d+ϑ)
dxµ(y)dy with cd,ϑ =

2ϑΓ((d+ ϑ)/2)

πd/2|Γ(−ϑ/2)|
.

Remark 2. FPI is a weaker condition than Assumption 2. In fact, any density satisfying the first 2
conditions in Assumption 2 satisfies ϑ-FPI for all ϑ < ν1 [WW15, Theorem 1.1]. In Proposition 2,
we show that as ϑ→ 2−, FPI becomes equivalent to the standard Poincaré inequality.

In the sequel, ρXk denotes the law of xk, ρYk denotes the law of yk, and ρk = ρX,Y
k is the joint law of

(xk, yk). We provide the following convergence guarantee under an FPI, proved in Appendix B.2.
Theorem 3. Assume that πX satisfies the α-FPI with parameter CFPI(α) for α ∈ (0, 2). For any step
size η > 0 and initial density ρX0 , the kth iterate of Algorithm 2, with parameter α, satisfies

χ2(ρXk |πX) ≤ exp
(
−kη

(
CFPI(α) + η

)−1
)
χ2(ρX0 |πX).

As a consequence of Remark 2 and Proposition 2, we recover the result in [CCSW22, Theorem 4], by
letting α→ 2−. While our results in Theorem 3 are based on Algorithm 2 which requires exact calls
to RαSO, the next result, proved in Appendix B.3, shows that even with an inexact implementation
of RαSO, the error accumulation is at most linear, and Algorithm 2 still converges quickly.
Proposition 1. Suppose the RαSO in Algorithm 2 is implemented inexactly, i.e. there exists a positive
constant εTV such that TV(ρ̃

X|Y
k (·|y), ρX|Y

k (·|y)) ≤ εTV for all y ∈ Rd and k ≥ 1, where ρ̃X|Y
k (·|y)

is the density of the inexact RαSO sample conditioned on y. Let ρ̃Xk be the density of the output of
the kth step of Algorithm 2 with the inexact RαSO and ρXk be the density of the output of kth step
Algorithm 2 with the exact RαSO. Then, for all k ≥ 0,

TV(ρ̃Xk , ρXk ) ≤ TV(ρ̃X0 , ρX0 ) + k εTV.

Further, if ρ̃X0 = ρX0 , for any K ≥ K0, we get TV(ρ̃KX , πX) ≤ ε, if εTV ≤ ε/2K, where the constant
K0 = (1 + CFPI(α)η

−1) log
(
χ2(ρ̃X0 |πX)/ε2

)
with CFPI(α) being the α-FPI parameter of πX .

3.2 A practical implementation of RαSO
In the sequel, we introduce a practical implementation of RαSO when α = 1. For this, we consider
the case when the target density πX ∝ e−V satisfies the 1-FPI with parameter CFPI(1). A more
thorough implementation of RαSO for other values of α will be investigated in future work.
Assumption 3. There exist constants β, L > 0 such that for any minimizer x∗ ∈ argminy∈Rd V (y)

and for all x ∈ Rd, V satisfies V (x)− V (x∗) ≤ L|x− x∗|β .
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Algorithm 3 RαSO Implementation for α = 1 via Rejection Sampling
Input: V , x∗ ∈ argminV , η > 0, y ∈ Rd.
while TRUE // Rejection sampling

Generate (Z1, Z2, u) ∼ N (0, Id)⊗N (0, 1)⊗ U [0, 1]
x← y + ηZ1/|Z2| // Cauchy random vector
return x if u ≤ exp(−V (x) + V (x∗)) // Accept-reject step

Algorithm 3 provides an exact implementation of RαSO for α = 1 via rejection sampling. Inputs to
this algorithm are the intermediate points yk in the stable proximal sampler (Algorithm 2). Note that
Algorithm 3 requires a global minimizer of V , which is always assumed to exist, which guarantees
that the acceptance probability is non-trivial. It generates proposals with density p(1)(η; ·, y) and
utilizes that p(1) is a Cauchy density and Cauchy random vectors can be generated via ratios between
a Gaussian random vector and square-root of a χ2 random variable. Finally, the accept-reject step
ensures that the output x has density πX|Y (·|y) ∝ e−V p(1)(η; ·, y). This makes Algorithm 3 a
zeroth-order algorithm requiring only access to function evaluations of V . Under Assumption 3, by
choosing a small step-size, we can control the expected number of rejections in Algorithm 3. We now
state the iteration complexity of our stable proximal sampler with this RαSO implementation in the
following result, whose proof is provided in Appendix B.3.

Corollary 3. Assume V satisfies Assumption 3. If we choose the step-size η = Θ(d−
1
2L− 1

β ), then
Algorithm 3 implements the RαSO with α = 1, with the expected number of zeroth-order calls to V of
order E[exp(L|yk|β)]. Further assume πX satisfies 1-FPI with parameter CFPI(1). Suppose we run
Algorithm 2 with RαSO implemented for with α = 1 by Algorithm 3. Then, to return a sample which
is ε-close in χ2-divergence to the target, the expected number of iterations required by Algorithm 2 is

O
(
CFPI(1)d

1
2L

1
β log(χ2(ρX0 |πX)/ε)

)
.

Note that the above result provides a high-accuracy guarantee for the implementable version of the
stable proximal sampler (Algorithm 3) for a class of heavy-tailed targets, overcoming the fundamental
barrier established in Theorem 2 for the Gaussian proximal sampler (i.e., Algorithm 1). A numerical
illustration of this improvement is provided in Appendix D by sampling from student-t distributions.
Remark 3. (1) Finding a global minimizer of the potential V can be hard, which could be avoided if a
lower bound on the potential V is available; see Appendix B.3. (2) A trivial bound for E[exp(L|yk|β)]
is exp(LM) for M = EπX [|X|β ] + χ2(ρX0 |πX)EπX [|X|2β ] 12 . Since our main focus is high vs low
accuracy samplers, deriving a sharper bound is beyond the scope of the current paper.

3.3 Illustrative examples

To illustrate our results, we now apply the proximal algorithms to sample from Cauchy densities and
discuss the complexity of both the ideal sampler (Algorithm 2) in which we can choose any α ∈ (0, 2)
and the implementable version with α = 1 (Algorithm 3). For the ideal sampler, we can choose
α ≤ ν for any degrees of freedom ν > 0, and apply Theorem 3 since πν satisfies a α-FPI [WW15].
Corollary 4. For any ν > 0, consider the generalized Cauchy target πν ∝ exp(−Vν) with Vν defined
in (1). For the stable proximal sampler with parameter α ∈ (0, 2) and α ≤ ν (i.e., Algorithm 2),
suppose we set the step-size η ∈ (0, 1) and draw the initial sample from the standard Gaussian
density. Then, the number of iterations required by Algorithm 2 to produce an ε-accurate sample in
χ2-divergence is O(CFPI(α)η

−1 log(d/ε)), where CFPI(α) is the α-FPI parameter of πν .

For the implementable sampler, since the parameter α is fixed to be 1, whether a suitable FPI is
satisfied or not depends on the degrees of freedom ν. Specifically, when ν ≥ 1, 1-FPI is satisfied
and Corollary 5 applies. When ν ∈ (0, 1), on the other hand, 1-FPI is not satisfied. To tackle this
issue, we prove convergence guarantees for the proximal sampler under a weak fractional Poincaré
inequality; the next corollary, proved in Appendix B.4, summarizes these results.
Corollary 5. For the Cauchy target πν ∝ exp(−Vν) where Vν is defined in (1), we consider
Algorithm 2 with α = 1, a standard Gaussian initialization, and RαSO implemented by Algorithm 3.

(1) When ν ≥ 1, if we set the step-size η = Θ
(
d−

1
2 (d + ν)−4

)
, the expected number iterations

required by Algorithm 2 to output a sample which is ε-close in χ2-divergence to the target is of
order O

(
CFPI(1)d

1
2 (d+ ν)4 log(d/ε)

)
, where CFPI(1) is the 1-FPI parameter of πν .
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(2) When ν ∈ (0, 1), if we set the step-size η = Θ
(
d−

1
2 (d + ν)−

4
ν

)
, the expected number of

iterations required by Algorithm 2, to output a sample which is ε-close in χ2-divergence to the
target is of order Õ

(
max

{
c

1
ν d

1
2ν + 4

ν2 , cd
1
2+

4
ν ε−

1
ν +1
})

, where c is the positive constant given
in (16). Here, Õ hides the polylog factors on d and 1/ε.

The stable proximal sampler (Algorithm 2) is a high accuracy sampler for the class of generalized
Cauchy targets, as long as α ≤ ν, meaning that it achieves log(1/ε) iteration complexity. The
improvement from poly(1/ε) to log(1/ε) separates the stable proximal sampler and the Gaussian
proximal sampler in the task of heavy-tailed sampling. When we use the rejection-sampling imple-
mentation with parameter α = 1 (Algorithm 3), iteration complexity goes through a phase transition
as the tails get heavier. When the generalized Cauchy density has a finite mean (ν > 1), we achieve
a high-accuracy sampler with log(1/ε) iteration complexity. However, without a finite mean (i.e.,
ν ∈ (0, 1)), the algorithm becomes a low-accuracy sampler with poly(1/ε) complexity. Even in this
low-accuracy regime, the implementable stable proximal sampler outperforms the Gaussian one, as
originally highlighted in Table 1. Last, we claim that the poly(1/ε) complexity of Algorithms 2 and 3
is not due to a loose analysis, as we show poly(1/ε) lower bounds in the following section.

3.4 Lower bounds for the stable proximal sampler

We now study lower bounds on the stable proximal sampler to sample from the class of target densities
satisfying Assumption 2, which includes the generalized Cauchy target. Recall that Assumption 2
implies the FPI used in Theorem 3. The result below, proved in Appendix C, complements Theorem 3,
showing the impossibility of achieving log(1/ε) rates for a sufficiently large α.

Theorem 4. Suppose πX ∝ exp(−V ) with V satisfying Assumption 2 and ν2(d+ν2)
d+ν1

< α ≤ 2 . Let
xk denote the kth iterate of Algorithm 2 with parameter α and step size η, and let ρXk := Law(xk).
Then for any τ ∈

(ν2(d+ν2)
d+ν1

, α
)
, and g(d, ν1, ν2, τ) = ν2/{τ(d+ ν1)− ν2(d+ ν2)}, we have

TV(πX , ρXk ) ≥ Cν1,ν2,αd
τ(d+ν1)g(d,ν1,ν2,τ)

2
(
E[(1 + |x0|2)

τ
2 ] +m(α)

τ k
τ
2+1η

τ
α
)−(d+ν2)g(d,ν1,ν2,τ)

,

where Cν1,ν2,α is a constant depending only on ν1, ν2, α, and m
(α)
τ is the τ th absolute moment of the

α-stable random variable with density p
(α)
1 defined in (2).

Remark 4. The parameter τ in Theorem 4 can be chosen arbitrarily close to α. Specifically, if we
assume |X0| ≤ O(

√
d), then with the choice of τ = α−

( log(log d)
log d ∧ log log(η−1)

log(η−1)

)
, we have

TV(πX , ρXk ) ≥ Ω̃ν1,ν2,α

(
d
τ(d+ν1)g(d,ν1,ν2,α)

2
(
dα +m(α)

τ k
α
2 +1η

)−(d+ν2)g(d,ν1,ν2,α))
,

where Ω̃ hides polylog(d/η) factors.

The τ th absolute moment of the α-stable random variable depends on the choice of α and the
dimension d. It is hard to find an explicit formula of m(α)

τ in general. An explicit formula is only
available in some special cases, such as α = 1, 2. Specializing Theorem 4 for the generalized Cauchy
potential (i.e., ν1 = ν2) we obtain the following explicit result.
Corollary 6. Let α ∈ (0, 2]. Suppose πν ∝ exp(−Vν) where Vν(x) is as in (1) for some ν ∈ (0, α).
Let (xk)k≥0 be the output of Algorithm 2 with parameter α and step-size η > 0, and ρXk := Law(xk)
for all k ≥ 0. Then for any τ ∈ (ν, α),

TV(ρXk , πν) ≥ Cν,αd
ντ

2(τ−ν)
(
E[(1 + |x0|2)

τ
2 ] +m(α)

τ k
τ
2+1η

τ
α
)− ν

τ−ν .

where m
(α)
τ is the τ th absolute moment of the α-stable random variable with density p

(α)
1 as in (2).

For the rejection sampling implementation in Algorithm 3, α = 1 and m
(1)
τ = Θ(d

τ
2 ) for all τ < 1

(see Appendix B.1). Notice that to implement the RαSO in the Stable proximal sampler efficiently,
we need a sufficiently small step-size η. When the target potential satisfies Assumption 3, i.e. V
is β-Hölder continuous with parameter L, we require η = Θ(d−

1
2L− 1

β ) to ensure RαSO can be
implemented with O(1) queries. Therefore, if we choose η = Θ(d−

1
2L− 1

β ), the minimum number
of iterations we need to get an ε-error in TV is

Ων,τ

(
ε
−

2(τ−ν)
(2+τ)ν d

τ
2+τ L

2τ
β(2+τ)

)
.
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For the generalized Cauchy potential with ν ∈ (0, 1), we have β = ν/4 and L = (d+ ν)/ν, which
leads to the following corollary.

Corollary 7. Suppose πX
ν ∝ exp(−Vν) is the generalized Cauchy density with ν ∈ (0, 1). Let xk

denote the k-th iterate of the stable proximal sampler with α = 1 (Algorithm 3), and ρXk := Law(xk).
If we choose the step size η = Θ(L− 4

ν d−
1
2 ) where L = d+ν

ν is the ν/4-Hölder constant of Vν , and as-

sume, for simplicity, |x0| ≤ O(
√
d), then, TV(πX

ν , ρXN ) ≤ ε requires N ≥ Ων,τ

(
d

τ+8τ/ν
2+τ ε−

2(τ−ν)
ν(2+τ)

)
,

for any τ ∈ (ν, 1). Further, by choosing τ = max(ν, 1− log(log(d/ε))
log(d/ε) ), we obtain

N ≥ Ω̃ν

(
d
ν+8
3ν ε−

2(1−ν)
3ν

)
, in order for TV(πX

ν , ρXN ) ≤ ε.

The above result shows that when implementing the RαSO in Algorithm 2 with Algorithm 3, to
sample from generalized Cauchy targets with ν ∈ (0, 1), we can at best have an iteration complexity
of order poly(1/ε), matching the upper bounds in Corollary 5 up to certain factors.

4 Overview of Proof Techniques
Lower bounds. We build on the techniques developed in [Hai10]. Let µt denotes the law of LD
along its trajectory. To proceed, we need some G : Rd → R for which we can upper bound µt(G) :=∫
Gdµt, and some f : Rd → R that satisfies πX(G ≥ y) ≥ f(y) for all y ∈ R+. After finding the

candidates G and f , Lemma 1 in Appendix A guarantees TV(πX , µt) ≥ supy∈R+
f(y)− µt(G)/y.

This technique relies on choosing G such that it has heavy tails under πX leading to a large f(y),
while having light tails along the trajectory, thus small µt(G). By picking G = exp(κV ) with κ ≥ 1,
one can immediately observe that πX(G) =∞, thus G indeed has heavy tails under πX .

To control µt(G) along the trajectory, one can use the generator of LD to bound ∂tµt(G). Recall
the generator of LD, LLD(·) = ∆(·) − ⟨∇V,∇·⟩. Therefore, with a choice of G = exp(κV ),
controlling ∂tµt(G) requires bounding the first and second derivatives of V . To avoid making extra
assumptions for V in the analysis of LD, we instead construct G based on a surrogate potential
Ṽ (x) = d+ν2

2 ln(1 + |x|2), which is an upper bound to the potential V . We then estimate f based on
this surrogate potential in Lemma 2, and control the growth of µt(G) in Lemma 3. Combined with
Lemma 1, this leads to the proof of Theorem 1, with the details provided in Appendix A.

For the Gaussian proximal sampler, bounding ρXk (G) requires controlling the expectation of G
along the forward and backward heat flow. For the particular choice of G = exp(κV ), we show
in Lemma 4 that the growth of ρXk (G) can be controlled only by considering a forward heat flow
with the corresponding generator LHF = 1

2∆. Therefore, given additional estimates on the second
derivatives of V , we bound the growth of ρXk (G) in Lemma 5. Once this bound is achieved, we can
invoke Lemma 1 to finish the proof of Theorem 2.

Upper bounds. Our upper bound analysis builds on that by [CCSW22] in the specific ways discussed
next. We consider the change in χ2 divergence when we apply the two operations to the law ρXk to
the iterates and the target πX : (i) evolving the two densities along the α-fractional heat flow for time
η and (ii) applying the RαSO to the resulting densities. For the step (i), it is required to show that
the solution along the fractional heat flow of the stable proximal sampler at any time, satisfies FPI. To
show this, (a) the convolution property of the FPI is proved in Lemma 6, and (b) the FPI parameter
for the stable process follows from [Cha04, Theorem 23]. In Proposition 3, it is then shown that
the χ2 divergence decays exponentially fast along the fractional heat flow under the assumption of
FPI. The aforementioned results enable us to prove the exponential decay of χ2 divergence along
the fractional heat flow under FPI in Proposition 3. To deal with the step (ii) above, we use the data
processing inequality; see Proposition 3. These two steps together, enable us to derive the stated
upper bounds for the stable proximal sampler.

5 Discussion
We showed the limitations of Gaussian proximal samplers for high-accuracy heavy-tailed sampling,
and proposed and analyzed stable proximal samplers, establishing that they are indeed high-accuracy
algorithms. We now list a few important limitations and problems for future research: (i) It is
important to develop efficiently implementable versions of the stable proximal sampler for all values
of α ∈ (0, 2), and characterize their complexity in terms of problem parameters, (ii) Gaussian
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proximal samplers can be interpreted as a proximal point method for approximating the entropic
regularized Wasserstein gradient flow of the KL objective [CCSW22]. This leads to the question,
can we provide a variational intepreration of the stable proximal sampler? A potential approach is
to leverage the results by [Erb14] on gradient flow interpretation of jump processes corresponding
to the fractional heat equation, (iii) It is possible to use a non-standard Itô process in the proximal
sampler (in place of the α-stable diffusion); see, for example, [EMS18, LWME19, HFBE24]. With
this modification, it is interesting to examine the rates under weighted Poincaré inequalities that also
characterize heavy-tailed densities. There are two difficulties to overcome here: (a) How to generate
an exact non-standard Itô process? (b) How to implement the corresponding Restricted non-standard
Gaussian Oracle, which requires the zeroth order information of the transition density of the Itô
process? In certain cases, non-standard Itô diffusion can be interpreted as a Brownian motion on an
embedded sub-manifold; thus, the approach in [GLL+23] might be useful.
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A Lower Bound Proofs for the Langevin Diffusion and the Gaussian
Proximal Sampler

While research on upper bounds of sampling algorithms’ complexity has advanced considerably, the
exploration of lower bounds is still nascent. [CGL+22] explored the query complexity of sampling
from strongly log-concave distributions in one-dimensional settings. [LZT22] established lower
bounds for LMC in sampling from strongly log-concave distributions. [CBL22] presented lower
bounds for sampling from strongly log-concave distributions with noisy gradients. [GLL20] focused
on lower bounds for estimating normalizing constants of log-concave densities. Contributions by
[LST21a] and [WSC22b] provide lower bounds in the metropolized algorithm category, including
Langevin and Hamiltonian Monte Carlo, in strongly log-concave contexts. Finally, [CGLL22]
contributed to lower bounds in Fisher information for non-log-concave sampling. In what follows,
we take a different approach and rely on the arguments developed in [Hai10].

We begin by stating the following result which drives our lower bound strategy.

Lemma 1 ([Hai10, Theorem 5.1]). Suppose µ and ν are probability measures on Rd. Consider some
G : Rd → R+ and f : R+ → R+ satisfying µ(G ≥ y) ≥ f(y) for all y ∈ R+. Then,

TV(µ, ν) ≥ sup
y∈R+

f(y)−
∫
Gdν

y
.

In particular, suppose Id · f : R+ ∋ y 7→ yf(y) ∈ R+ is a bijection, then

TV(µ, ν) ≥ 1

2
f
(
(Id · f)−1

(
2m
))

,

for any m ≥
∫
Gdν.

Proof. By the definition of total variation and Markov’s inequality, for any y > 0

TV(µ, ν) ≥ µ(G ≥ y)− ν(G ≥ y) ≥ f(y)−
∫
Gdν

y
.

When Id · f is invertible, choosing y = (Id · f)−1(2m) implies yf(y) = 2m and yields the desired
result.

To apply Lemma 1 when the target density satisfies Assumption 1, we need to establish tail lower
bounds for this density, which we do so via the following lemma. In the following, let ωd :=

πd/2

Γ((d+2)/2) denote the volume of the unit d-ball.

Lemma 2. Suppose πX(x) ∝ exp(−V (x)) satisfies Assumption 1. Then, for all R > 0,

πX(|x| ≥ R) ≥ 2de−ν1/d

(d+ ν1)Γ(ν1/2)
(d/2)ν1/2(1 +R−2)−(d+ν2)/2R−ν2 .

When focusing on dependence on R and d, we obtain,

πX(|x| ≥ R) ≥ Cν1
dν1/2(1 +R−2)−(d+ν2)/2R−ν2 ,

where Cν1
= 21−ν1/2e−ν1

(1+ν1)Γ(ν1/2)
.

Proof. Without loss of generality assume V (0) = 0. Via Assumption 1, we have the estimates for V ,

V (x) =

∫ 1

t=0

⟨x,∇V (tx)⟩dt ≤ (d+ ν)

∫ 1

t=0

t|x|2dt
1 + |tx|2

=
d+ ν2

2
ln(1 + |x|2),

and similarly

V (x) ≥ d+ ν1
2

ln(1 + |x|2).
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Consequently, using the spherical coordinates,

πX(|x| ≥ R) ≥ 1

Z

∫
|x|≥R

(1 + |x|2)−(d+ν2)/2dx

=
dωd

Z

∫
r≥R

(1 + r2)−(d+ν2)/2rd−1dr

≥ dωd(1 +R−2)−(d+ν2)/2

Z

∫
r≥R

r−ν2−1dr

=
dωd(1 +R−2)−(d+ν2)/2

Zd
R−ν2 .

Next, using the lower bound established on V and spherical coordinates, we obtain,

Z ≤
∫
Rd

(1 + |x|2)−(d+ν1)/2dx

= dωd

∫ ∞

0

(1 + r2)−(d+ν1)/2rd−1dr

=
1

2
dωd

∫ ∞

0

uν1/2−1(1− u)d/2−1du

=
1

2
dωdB(ν1/2, d/2)

=
dωdΓ(ν1/2)Γ(d/2)

2Γ((d+ ν1)/2)
,

where B denotes the beta function. Plugging back into our tail lower bound, we obtain,

πX(|x| ≥ R) ≥ 2Γ((d+ ν1)/2)

Γ(ν1/2)Γ(d/2)
(1 +R−2)−(d+ν2)/2R−ν2 .

Moreover, by [MHFH+23, Lemma 32] we have
Γ((d+ ν1)/2)

Γ(d/2)
=

d

d+ ν1

Γ((d+ ν1 + 2)/2)

Γ((d+ 2)/2)
≥ 2de−ν1/d

d+ ν1
(d/2)ν1/2,

which completes the proof.

Another element of Lemma 1 is controlling the growth of E[G(Xt)] throughout the process. The
following lemma achieves such control under the Langevin diffusion.
Lemma 3. Suppose (Xt)t≥0 is the solution to the Langevin diffusion starting at X0 with the
corresponding potential V (x) satisfying Assumption 1. Let G(x) = exp(κṼ (x)) where Ṽ (x) =
d+ν2

2 ln(1 + |x|2) and κ ≥ 2
d+ν2

∨ 1. Then,

E[G(Xt)] ≤
(
E[G(X0)]

2
κ(d+ν2) + 4κ(d+ ν2)t

)κ(d+ν2)
2

.

Proof. Recall the generator of the Langevin diffusion L(·) = ∆ · −⟨∇V ,∇·⟩. Then,
dE[G(Xt)]

dt
= E[LG(Xt)]

= κE
[(

κ|∇Ṽ |2 +∆Ṽ − ⟨∇Ṽ ,∇V ⟩
)
G
]

≤ κE
[(

κ|∇Ṽ |2 +∆Ṽ
)
G
]

(Assumption 1)

≤ 2κ2(d+ ν2)
2E
[

G(Xt)

1 + |Xt|2

]
= 2κ2(d+ ν2)

2E
[
G(Xt)

1− 2
κ(d+ν2)

]
≤ 2κ2(d+ ν2)

2E[G(Xt)]
1− 2

κ(d+ν2) (Jensen′s Inequality).

Integrating the above inequality completes the proof.
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With the above lemmas in hand, we are ready to present the proof of Theorem 1.

Proof of Theorem 1. To apply Lemma 1 we choose G(x) = exp(κṼ (x)) where Ṽ (x) = d+ν2

2 ln(1+

|x|2) with κ ≥ 1 ∨ 2
d+ν2

. By Lemma 2 we have

πX(G(x) ≥ y) ≥ πX
(
|x| ≥ y

1
κ(d+ν2)

)
≥ Cν1

dν1/2
(
1 + y

−2
κ(d+ν2)

)−(d+ν2)/2

y
−ν2

κ(d+ν2) .

Moreover, define

g(t) :=
(
g(0)

2
κ(d+ν2) + 4κ(d+ ν2)t

)κ(d+ν2)
2

,

with g(0) := E[G(X0)]. Then by Lemma 3 we have E[G(Xt)] ≤ g(t) and we can invoke Lemma 1
to obtain

TV(πX , µt) ≥ sup
y∈R+

Cν1
dν1/2

(
1 + y

−2
κ(d+ν2)

)−(d+ν2)/2

y
−ν2

κ(d+ν2) − g(t)

y
.

≥ sup
y∈R+

Cν1d
ν1/2 exp

(
− (d+ ν2)y

−2
κ(d+ν2)

2

)
y

−ν2
κ(d+ν2) − g(t ∨ 1)

y
,

where we used the fact that 1 + x ≤ ex for all x ∈ R and g(t) is non-decreasing in t. Choose

y∗ := C ′
ν1,ν2

(
g(t ∨ 1)

dν1/2

) κ(d+ν2)

κ(d+ν2)−ν2

,

for a sufficiently large constant C ′
ν1,ν2

≥ 1. For simplicity, let

g̃(t) :=
g(t ∨ 1)

2
κ(d+ν2)

4κ(d+ ν2)
,

and notice that

y∗ = C ′
ν1,ν2

d
κ(d+ν2)

2 ·κ(d+ν2)−ν1
κ(d+ν2)−ν2 (4κ(1 + ν2/d)g̃(t))

κ2(d+ν2)2

2(κ(d+ν2)−ν2) . (3)

Using the fact that

y∗ ≥ (4κ)
κ2(d+ν2)2

2(κ(d+ν2)−ν2) d
κ(d+ν2)

2 ·κ(d+ν2)−ν1
κ(d+ν2)−ν2 ,

we have

TV(πX , µt) ≥ Cν1
exp

(
− 1 + ν2/d

8κ
· d

ν1−ν2
κ(d+ν2)−ν2

)
dν1/2y∗

−ν2
κ(d+ν2) − g(t ∨ 1)

y∗

≥ C̃ν1,ν2
dν1/2y∗

−ν2
κ(d+ν2) − g(t ∨ 1)

y∗
,

where C̃ν1,ν2 = Cν1e
− 1+ν2/d

8 . By plugging in the value of y∗ from (3), we obtain,

TV(πX , µt)

≥
{
C̃ν1,ν2

C ′
ν1,ν2

−ν2
κ(d+ν2) − C ′

ν1,ν2

−1
}{

d
ν1−ν2

2 (2κ(1 + ν2/d)g̃(t))
−ν2
2

}1+
ν2

κ(d+ν2)−ν2
.

Thus for sufficiently large C ′
ν1,ν2

, there exists C ′′
ν1,ν2

such that

TV(πX , µt) ≥ C ′′
ν1,ν2

{
d

ν1−ν2
2 (4κ(1 + ν/d)g̃(t)))

−ν2
2

}1+
ν2

κ(d+ν2)−ν2
.

Choosing κ according to the statement of the theorem completes the proof.

In order to prove a similar theorem for the Gaussian proximal sampler, we control the growth of
E[G(xk)] for the iterates of the proximal sampler via the following lemmas.
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Lemma 4. Suppose (xk, yk)k are the iterates of the Gaussian proximal sampler with step size η and
target density πX ∝ exp(−V ) for some V : Rd → R. Let G(x) = exp(κV (x)) with κ ≥ 1. Then,
for every k ≥ 0,

E[G(xk+1)] ≤ E[G(xk +
√
2ηz)],

where z ∼ N (0, Id) is sampled independently from xk.

Proof. Recall that πX|Y (x|y) ∝ exp
(
− V (x)− |x−y|2

2η

)
. Therefore,

E[G(xk+1) | yk] = Cyk

∫ exp
(
(κ− 1)V (x)− |x−yk|2

2η

)
(2πη)d/2

dx

= Cyk
E[G(yk +

√
ηz1)

1−1/κ | yk],

where z1 ∼ N (0, Id). Furthermore,

Cyk
=

1

(2πη)d/2

∫
exp

(
− V (x)− |x− yk|2

2η

)
dx

= E[G(yk +
√
ηz1)

−1/κ | yk].

Therefore,

E[G(xk+1) | yk]

=
E[G(yk +

√
ηz1)

1−1/κ | yk]
E[G(yk +

√
ηz1)−1/κ | yk]

≤E[G(yk +
√
ηz1) | yk]1−1/κE[G(yk +

√
ηz1) | yk]1/κ (Jensen’s Inequality)

=E[G(yk +
√
ηz1) | yk].

Recall yk = xk +
√
ηz2 where z2 ∼ N (0, Id) is independent from xk. By the towering property of

conditional expectation,

E[G(xk+1)] ≤ E[G(xk +
√
ηz1 +

√
ηz2)]

= E[G(xk +
√
2ηz)],

where z ∼ N (0, Id) is independent from xk, which completes the proof.

In order to provide a more refined control over E[G(xk)], we need additional assumptions on V . In
particular, when considering the generalized Cauchy density, we arrive at the following lemma.

Lemma 5. Suppose (xk, yk)k are the iterates of the Gaussian proximal sampler with step size η and
target density πX ∝ exp(−V ) satisfies

|∇V (x)| ≤ (d+ ν2)|x|
1 + |x|2

and ∆V (x) ≤ (d+ ν2)
2

1 + |x|2
,

for all x ∈ Rd. Let G(x) = exp(κV (x)) with κ ≥ 1 ∨ 2
d+ν2

. Then, for every k ≥ 0,

E[G(xk+1)]
2

κ(d+ν2) ≤ E[G(xk)]
2

κ(d+ν2) + 4κηk(d+ ν2).

Proof. From Lemma 4, we have

E[G(xk+1)] ≤ E[G(xk +
√

2ηz)],

where z ∼ N (0, Id) is independent from xk. Consider the Brownian motion starting at xk, denoted
by Zt = Bt + xk where (Bt) is a standard Brownian motion in Rd. Notice that the generator for the
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process dZt = dBt is L = 1
2∆. Therefore,

dE[G(Zt)]

dt
= E[LG(Zt)]

=
κ

2
E
[
G(Zt)

(
κ|∇V |2 +∆V

)]
≤ κ(κ+ 1)

2
E
[
G(Zt)

(d+ ν2)
2

1 + |Zt|2
]

≤ 2κ2(d+ ν2)
2E
[
G(Zt)

1− 2
κ(d+ν2)

]
≤ 2κ2(d+ ν2)

2E[G(Zt)]
1− 2

κ(d+ν2) (Jensen’s Inequality).

Integrating the above inequality yields

E[G(Zt)]
2

κ(d+ν2) ≤ E[G(Z0)]
2

κ(d+ν2) + 2κ(d+ ν2)t.

The proof is complete by noticing that Z0 = xk and Zt = xk +
√
2ηz for t = 2η.

Proof of Theorem 2. Notice that the statements of Lemmas 3 and 5 are virtually the same by changing
t to 2kη. Using this fact, the rest of the proof follows exactly the same as the proof of Theorem 1.

B Proofs for the Stable Proximal Sampler

B.1 Preliminaries

In this section, we introduce additional preliminaries on the isotropic α-stable process, the fractional
Poincaré-type inequalities, the fractional Laplacian and the fractional heat flow.

The Lévy process is a stochastic process that is stochastically continuous with independent and
stationary increments. Due to the stochastic continuity, the Lévy processes have càdlàg trajectories,
which allows jumps in the paths. A Lévy process Yt is uniquely determined by a triple (b, A, ν)
through the following Lévy-Khinchine formula: for all t ≥ 0 and ξ ∈ Rd,

E
[
ei⟨ξ,Yt⟩

]
= exp

(
t
(
i⟨b, ξ⟩ − ξ⊺Aξ +

∫
Rd\{0}

(ei⟨ξ,y⟩ − 1− i⟨ξ, y⟩1{|y|≤1}(y))ν(dy)
))

, (4)

where b ∈ Rd is a drift vector. A ∈ Rd×d is the covariance matrix of the Brownian motion in the
Lévy-Itô decomposition[App09, Thereom 2.4.16] and ν is the Lévy measure related to the jump parts
in the Lévy-Itô decomposition.

The rotationally invariant(isotropic) stable process is a special case for the Lev́y process when b = 0,
A = 0 and ν is the measure given by

ν(dy) = cd,α|y|−(d+α), cd,α = 2αΓ((d+ α)/2)/(πd/2|Γ(−α/2)|). (5)

Based on the Lévy-Khinchine formula (4), if we initialize the process at x ∈ Rd, its characteristic
function is given by

Exe
i⟨ξ,X(α)

t −x⟩ = e−t|ξ|α , x, ξ ∈ Rd, t ≥ 0. (6)

The index of stability α ∈ (0, 2] determines the tail-heaviness of the densities: the smaller is α, the
heavier is the tail. The parameter t in (6) measures the spread of Xt around the center. When α = 2,
the stable process pertains to the Brownian motion running with a time clock twice as fast as the
standard one and hence it has continuous paths. When α ∈ (0, 2), the stable process paths contain
discontinuities, which are often referred as jumps. At each fixed time, unlike the Brownian motion,
the α-stable process density only has a finite pth-moment for p < α, i.e.

E[|X(α)
1 |p] =

{
+∞ p ∈ [α,+∞), α ∈ (0, 2),

m(α)
p < +∞ p ∈ (0, α), α ∈ (0, 2).
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When d = 1, the fractional absolute moment formula for m(α)
p can be derived explicitly, see [Nol20,

Chapter 3.7]. When d > 1, the explicit formula for m(α)
p is only known in some special cases. For

example, when α = 1, m(1)
p = Γ((d+p)/2)Γ((1−p)/2)

Γ(d/2)Γ(1/2) for all p < 1. Another good property of α-stable
process is the self-similarity. By examining the characteristic functions, it is easy to verify that the
isotropic α-stable process is self-similar with the Hurst index 1/α, i.e. X(α)

at and a1/αX
(α)
t have the

same distribution. Or equivalently, p(α)t (x) = t−
d
α p

(α)
1 (t−

1
αx) for all x ∈ Rd and t > 0.

The fractional Laplacian operator in Rd of order α is denoted by −(−∆)α/2 for α ∈ (0, 2]. It
was introduced as a non-local generalization of the Laplacian operator to model various physical
phenomenons. In [Kwa17], ten equivalent definitions of the fractional Laplacian operator are
introduced. Here we recall two of them:

(a) Distributional definition: For all Schwartz functions ϕ defined on Rd, we have∫
Rd

−(−∆)α/2f(y)ϕ(y)dy =

∫
Rd

f(x)
(
−(−∆)α/2ϕ(x)

)
dx.

(b) Singular integral definition: For a limit in the space Lp(Rd), p ∈ [1,∞), we have

−(−∆)α/2f(x) = lim
r→0+

2αΓ(d+α
2 )

πd/2|Γ(−α
2 )|

∫
Rd\Br

f(x+ z)− f(x)

|z|d+α
dz.

where Br is the unit ball with radius r centered at the origin.

The fractional Laplacian can be understood as the infinitesimal generator of the stable Lev́y process.
More explicitly, the semigroup defined by the transition probability p

(α)
t in (2) has the infinitesimal

generator −(−∆)α/2, i.e. the density function p
(α)
t satisfies the following equation in the sense of

distribution, [BHJ08]:

∂tp
(α)
t (x) = −(−∆)α/2p

(α)
t (x). (7)

(7) is usually referred as the α-fractional heat flow. When α = 2, −(−∆)α/2 is the Laplacian
operator and (7) becomes the heat flow.
Proposition 2 (From FPI to PI). When ϑ → 2−, the ϑ-FPI reduces to the classical Poincaré
inequality with Dirichlet form Eµ(ϕ) =

∫
|∇ϕ(x)|2dx for any smooth bounded ϕ : Rd → Rd.

Proof. It suffices to prove that E(ϑ)µ (ϕ) converges to Eµ(ϕ) as ϑ → 2− for any smooth function ϕ.
Recall the definition of E(ϑ)µ (ϕ):

E(ϑ)µ (ϕ) := cd,ϑ

∫∫
{x ̸=y}

(ϕ(x)− ϕ(y))2

|x− y|(d+ϑ)
dxµ(y)dy with cd,ϑ =

2ϑΓ((d+ ϑ)/2)

πd/2|Γ(−ϑ/2)|
,

where cd,ϑ = O(2 − ϑ) as ϑ → 2−. Now we rewrite the inside integral in E(ϑ)µ (ϕ) and split the
integral region into a centered unit ball, denoted as B1, and its complement:∫

x̸=y

(ϕ(x)− ϕ(y))2

|x− y|(d+ϑ)
dx =

∫
z ̸=0

(ϕ(y + z)− ϕ(y))2

|z|(d+ϑ)
dz

=

∫
B1

(ϕ(y + z)− ϕ(y))2

|z|(d+ϑ)
dz︸ ︷︷ ︸

I1

+

∫
Rd\B1

(ϕ(y + z)− ϕ(y))2

|z|(d+ϑ)
dz︸ ︷︷ ︸

I2

.

For I2, we have

I2 ≤ 4 ∥ϕ∥2∞
∫
Rd\B1

1

|z|d+ϑ
dz =

4 ∥ϕ∥2∞ dπ
d
2

Γ(d2 + 1)

∫ ∞

1

r−ϑ+1dr =
4 ∥ϕ∥2∞ dπ

d
2

ϑΓ(d2 + 1)
.

As a result, the term in E(ϑ)µ (ϕ) that is induced by I2 satisfies

cd,ϑ

∫
Rd

I2µ(y)dy ≤ cd,ϑ
4 ∥ϕ∥2∞ dπ

d
2

ϑΓ(d2 + 1)
→ 0 as ϑ→ 2−.
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For I1, we have when ϑ > 1,

I1 −
∫
B1

|⟨∇ϕ(y), z⟩|2

|z|d+ϑ
dz

=

∫
B1

(
ϕ(y + z)− ϕ(y)− ⟨∇ϕ(y), z⟩

)(
ϕ(y + z)− ϕ(y) + ⟨∇ϕ(y), z⟩

)
|z|d+ϑ

dz

≤ ∥ϕ∥C2(Rd) ∥ϕ∥C1(Rd)

∫
B1

|z|−(d+ϑ−3)dz

= ∥ϕ∥C2(Rd) ∥ϕ∥C1(Rd)

dπ
d
2

Γ(d2 + 1)

∫ 1

0

rϑ−2dr

= ∥ϕ∥C2(Rd) ∥ϕ∥C1(Rd)

dπ
d
2

(ϑ− 1)Γ(d2 + 1)
,

where ∥ϕ∥Ci(Rd) := supx∈Rd |ϕ(i)(x)| for i = 1, 2. As a result, the term in E(ϑ)µ (ϕ) that is induced
by I1 satisfies

cd,ϑ

∫
Rd

(
I2 −

∫
B1

|⟨∇ϕ(y), z⟩|2

|z|d+ϑ
dz
)
µ(y)dy ≤ cd,ϑ

∥ϕ∥C2(Rd) ∥ϕ∥C1(Rd) dπ
d
2

(ϑ− 1)Γ(d2 + 1)
→ 0 as ϑ→ 2−.

Therefore we have E(ϑ)µ (ϕ) → cd,ϑ
∫
Rd

∫
B1

|⟨∇ϕ(y),z⟩|2
|z|d+ϑ µ(y)dzdy as ϑ → 2−. Last, we prove the

limit is equivalent to 2Eµ(ϕ). For i ̸= j, we have∫
B1

∂iϕ(y)∂jϕ(y)zizjdz = −
∫
B1

∂iϕ(y)∂jϕ(y)z̃iz̃jdz̃,

where z̃k = zk for all k ̸= j and z̃j = −zj . Therefore,
∫
B1

∂iϕ(y)∂jϕ(y)zizjdz = 0. As a result,∫
B1

|⟨∇ϕ(y), z⟩|2

|z|d+ϑ
dz =

∫
B1

∑d
i=1(∂iϕ(y))

2z2i
|z|d+ϑ

dz

=

d∑
i=1

(∂iϕ(y))
2 1

d

∫
B1

|z|2

|z|d+ϑ
dz

= |∇ϕ(y)|2 π
d
2

(2− ϑ)Γ(d2 + 1)
,

and the proof follows from cd,ϑ
π

d
2

(2−ϑ)Γ( d
2+1)

→ 2 as ϑ→ 2−.

B.2 χ2 convergence under FPI

In this section, we study the decaying property of χ2-divergence from ρXk to πX , where ρXk is the
law of xk. In the following analysis, we denote ρk = ρX,Y

k as the law of (xk, yk), ρYk the law of yk.
We will analyze the two steps in the stable proximal sampler separately.

Step 1. In the following proposition, we study the decay of χ2-divergence in step 1.

Proposition 3. Assume that πX satisfies the α-FPI with parameter CFPI(α), then for each k ≥ 0,

χ2(ρYk |πY ) ≤ exp
(
−η
(
CFPI(α) + η

)−1
)
χ2(ρXk |πX).

Proof of Proposition 3. For the simplicity of notations, we will write p(α) and p
(α)
t as p and pt

respectively in this proof. Since xk ∼ ρXk and yk|xk ∼ p(η;x, ·), we have

ρYk (y) =

∫
Rd

p(η;x, y)ρXk (x)dx =

∫
Rd

ρXk (x)pη(y − x)dx = ρXk ∗ pη(y).
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Therefore, we can view ρYk as ρXk evolving along the following factional heat flow

∂tρ̃t = −(−∆)
α
2 ρ̃t.

That is if ρ̃0 = ρXk , then ρ̃η = ρYk . Similarly, since πY = πX ∗ pη, if ρ̃0 = πX , then ρ̃η = πY . For
any t ∈ [0, η], define πX

t = πX ∗ pt and ρXt = ρXk ∗ pt. The derivative of ϕ-divergence from ρXt to
πX
t can be calculated as

d

dt

∫
Rd

ϕ(
ρXt
πX
t

)πX
t dx

=

∫
Rd

∂tπ
X
t ϕ(

ρXt
πX
t

) + ϕ′(
ρXt
πX
t

)

(
∂tρ

X
t − ∂tπ

X
t
ρXt
πX
t

)
dx

=−
∫
Rd

ϕ(
ρXt
πX
t

)(−∆)
α
2 πX

t dx+

∫
Rd

ϕ′(
ρXt
πX
t

)

(
ρXt
πX
t

(−∆)
α
2 πX

t − (−∆)
α
2 ρXt

)
dx

=

∫
Rd

[
− ρXt
πX
t

(−∆)
α
2 ϕ′(

ρXt
πX
t

) + (−∆)
α
2

(
ρXt
πX
t

ϕ′(
ρXt
πX
t

)

)
− (−∆)

α
2 ϕ(

ρXt
πX
t

)

]
πX
t dx,

where in the second identity we used the distributional definition of the fractional Laplacian. Next according to
the singular integral definition of fractional Laplacian, we have

−(−∆)
α
2 f(x) := cd,α lim

r→0+

∫
Rd\Br

f(x+ z)− f(x)

|z|d+α
dz, (8)

where Br = {x ∈ Rd : |x| ≤ r} and cd,α is given in (5). With (8), we have

d

dt

∫
Rd

ϕ(
ρXt
πX
t

)πX
t dx

= cd,α lim
r→0+

∫
Rd

∫
Rd\Br

ϕ(
ρXt (x+z)

πX
t (x+z)

)− ϕ(
ρXt (x)

πX
t (x)

)− ρXt (x+z)

πX
t (x+z)

ϕ′(
ρXt (x+z)

πX
t (x+z)

) +
ρXt (x)

πX
t (x)

ϕ′(
ρXt (x+z)

πX
t (x+z)

)

|z|d+α
dzπX

t (x)dx.

When ϕ(r) = (r − 1)2,
∫
Rd ϕ(

ρXt
πX
t
)πX

t dx = χ2(ρXt |πX
t ) and we have

d

dt
χ2(ρXt |πX

t ) = −cd,α lim
r→0+

∫
Rd

∫
Rd\Br

(
ρXt (x+z)

πX
t (x+z)

− ρXt (x)

πX
t (x)

)2

|z|d+α
dzπX

t dx := −EπX
t
(
ρXt
πX
t

).

According to [Cha04, Theorem 23], pt satisfies α-FPI with parameter t for all t ∈ (0, η]. Since πX also satisfies
the α-FPI with parameter CFPI(α), Lemma 6 implies that πX

t = πX ∗ pt satisfies the α-FPI with parameter
CFPI(α) + η for all t ∈ (0, η]. Therefore we have

d

dt
χ2(ρXt |πX

t ) = −EπX
t
(
ρXt
πX
t

) ≤ −
(
CFPI(α) + η

)−1
χ2(ρXt |πX

t ).

Last, according to Gronwall’s inequality we have

χ2(ρYk |πY ) = χ2(ρXη |πX
η ) ≤ exp

(
−η

(
CFPI(α) + η

)−1
)
χ2(ρXk |πX).

Step 2. In this step, we study the decay of χ2-divergence in step 2. building on the work by
[CCSW22]. According to the RαSO, we have ρXk+1(x) =

∫
Rd π

X|Y (x|y)ρYk (y)dy. Also notice that
πX(x) =

∫
Rd π

X|Y (x|y)πY (y)dy. According to the data processing inequalities, χ2 divergence
won’t increase after step 2, i.e. χ2(ρXk+1|πX) ≤ χ2(ρYk |πY ).

Combining our results in Step 1 and Step 2, we prove Theorem 3.
Lemma 6. Let µ1, µ2 be two probability densities satisfying the ϑ-FPI with parameters C1, C2

respectively. Then µ1 ∗ µ2 satisfies the ϑ-FPI with parameter C1 + C2.

Proof of Lemma 6. Let X,Y be two independent random variables such that X ∼ µ1 and Y ∼ µ2.
Then X + Y ∼ µ1 ∗ µ2. According to variance decomposition, we have for any function ϕ,

Varµ1∗µ2
(ϕ) = Var (ϕ(X + Y )) = E [Var (ϕ(X + Y )|Y )] + Var (E [ϕ(X + Y )|Y ]) .
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Since X ∼ µ1 and µ1 satisfies the ϑ-FPI with parameter C1, we have

Var (ϕ(X + Y )|Y ) ≤ C1cd,α

∫∫
{z ̸=0}

(ϕ(x+ Y + z)− ϕ(x+ Y ))
2

|z|(d+ϑ)
dzµ1(x)dx,

therefore we have

E [Var (ϕ(X + Y )|Y )]

≤C1cd,α

∫∫∫
{z ̸=0}

(ϕ(x+ y + z)− ϕ(x+ y))
2

|z|(d+ϑ)
dzµ1(x)dxµ2(y)dy.

(9)

Since Y ∼ µ2 and µ2 satisfies the ϑ-FPI with parameter C2, we have

Var (E [ϕ(X + Y )|Y ])

≤C2cd,α

∫∫
{z ̸=0}

(∫
ϕ(x+ y + z)µ1(x)dx−

∫
ϕ(x+ y)µ1(x)dx

)2
|z|(d+ϑ)

dzµ2(y)dy

≤C2cd,α

∫∫
{z ̸=0}

∫
(ϕ(x+ y + z)− ϕ(x+ y))2

|z|(d+ϑ)
µ1(x)dxdzµ2(y)dy (10)

where the last inequality follows from Jensen’s inequality. Combining (9) and (10), we have

Varµ1∗µ2(ϕ) ≤ C1cd,α

∫∫∫
{z ̸=0}

(ϕ(x+ y + z)− ϕ(x+ y))2

|z|(d+ϑ)
dzµ1(x)dxµ2(y)dy

+ C2cd,α

∫∫
{z ̸=0}

∫
(ϕ(x+ y + z)− ϕ(x+ y))2

|z|(d+ϑ)
µ1(x)dxdzµ2(y)dy

≤ (C1 + C2) cd,α

∫∫∫
{z ̸=0}

(ϕ(x+ y + z)− ϕ(x+ y))2

|z|(d+ϑ)
dzµ1(x)dxµ2(y)dy

= (C1 + C2) cd,α

∫∫
{z ̸=0}

(ϕ(u+ z)− ϕ(u))2

|z|(d+ϑ)
dzµ1 ∗ µ2(u)du

= (C1 + C2) Eµ1∗µ2(ϕ),

where the second inequality follows from Fatou’s lemma.

B.3 Implementation of the Stable Proximal Sampler

In this section we discuss the implementation of the RαSO step in our stable proximal sampler. We
introduce an exact implementation of the RαSO step without optimizing the target potential and the
proofs for Corollary 3 and Proposition 1.

Rejection sampling without optimization. Suppose a uniform lower bound of the target potential
is known, i.e. there is a constant CLow such that infx∈Rd V (x) ≥ CLow > −∞, RαSO at each step
can be implemented exactly via a rejection sampler with proposals x̃k+1 following p

(α)
η (· − yk) and

the acceptance probability exp(−V (x̃k+1) + CLow). Then the expected number of rejections, N ,
satisfies

N =
( ∫

Rd

e−V (x)+CLowp(η;x, yk)dx
)−1

and logN = −CLow − log
( ∫

Rd

e−V (x)p(α)(η;x, yk)dx
)
.

Without loss of generality, we assume x∗ = 0, which always hold if we translate the potential V by
V (0). Then we have

logN ≤ −CLow +

∫
Rd

(
V (x)− V (0)

)
p(α)(η;x, yk)dx

≤ −CLow + L

∫
Rd

∣∣x+ yk
∣∣βp(α)η (x)dx

≤ −CLow + LEX∼πX [|X|β ] + Lηβd
β
2 + LEX∼πX [|X|2β ] 12χ2(ρX0 |πX)

1
2 +

Γ(d+1
2 )Γ( 1−β

2 )L

Γ(d+1−β
2 )π

1
2

ηβ ,
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where the second inequality follows from Assumption 3 and the last inequality follows from

the proof of Corollary 3. With the above estimation, we can pick η = Θ(C
1
β

Lowd
− 1

2L− 1
β )

and the expected number of rejections satisfies logN = O(CLow + LM) with
M = EπX [|X|β ] + χ2(ρX0 |πX)EπX [|X|2β ] 12 .

Proof of Corollary 3. The expected number of iterations conditioned on yk in the rejection sampling
is

N =

(∫
Rd

e−V (x)+V (x∗)p(α)(η;x, yk)dx

)−1

and logN = −V (x∗)− log
( ∫

Rd

e−V (x)p(α)(η;x, yk)dx
)

≤
∫
Rd

(
V (x)− V (x∗)

)
p(α)(η;x, yk)dx

=

∫
Rd

(
V (x+ yk)− V (x∗)

)
p(α)η (x)dx.

WLOG, assume x∗ = 0. Since V satisfies Assumption 3, we have

logN ≤ L

∫
Rd

∣∣x+ yk
∣∣βp(α)η (x)dx =

LΓ(d+1
2 )

π
d+1
2

η

∫
Rd

∣∣x+ yk
∣∣β(∣∣x∣∣2 + η2)−

d+1
2 dx

≤ L|yk|β +
LΓ(d+1

2 )

π
d+1
2

η

∫
Rd

∣∣x∣∣β(∣∣x∣∣2 + η2)−
d+1
2 dx

≤ L|yk|β +
LΓ(d+1

2 )

π
d+1
2

η

∫
Rd

(
∣∣x∣∣2 + η2)−

d+1−β
2 dx

= L|yk|β +
Γ(d+1

2 )Γ( 1−β
2 )L

Γ(d+1−β
2 )π

1
2

ηβ .

Therefore, when η = Θ(d−
1
2L− 1

β ), the expected number of rejections N is of order E[exp(L|yk|β ].
Since πX satisfies a 1-FPI with parameter CFPI(1), according to [Cha04], pt satisfies the 1-FPI with
parameter η for any t ∈ (0, η). Last it follows from Theorem 9 that for any η > 0, to achieve a
ε-accuracy in χ2 divergence, we need to perform the stable proximal sampler K steps with

K ≥
(
CFPI(1)η

−1 + 1
)
log

(
χ2(ρX0 |πX)

ε

)
= O

(
CFPI(1)d

1
2L

1
β log

(χ2(ρX0 |πX)

ε

))
.

Proof of Proposition 1. For all k ≥ 0, we have

TV(ρ̃Xk+1, ρ
X
k+1) = TV

( ∫
ρ̃
X|Y
k+1 (·|y)ρ̃

Y
k (y)dy,

∫
ρ
X|Y
k+1 (·|y)ρ

Y
k (y)dy

)
≤ TV

( ∫
ρ̃
X|Y
k+1 (·|y)ρ̃

Y
k (y)dy,

∫
ρ
X|Y
k+1 (·|y)ρ̃

Y
k (y)dy

)
+TV

( ∫
ρ
X|Y
k+1 (·|y)ρ̃

Y
k (y)dy,

∫
ρ
X|Y
k+1 (·|y)ρ

Y
k (y)dy

)
≤ Eρ̃Y

k
[TV(ρ̃

X|Y
k+1 (·, y)], ρ

X|Y
k+1 (·|y)) + TV(ρ̃Yk , ρ

Y
k )

≤ εTV +TV(ρ̃Xk , ρXk ),

where the last two inequalities follow from the data processing inequality. Therefore, TV(ρ̃Xk , ρXk ) ≤
kεTV +TV(ρ̃X0 , ρX0 ) for all k ≥ 1.
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Next, the iteration complexity of Algorithm 2 with an inexact RαSO can be obtained from Proposition
1. Since ρ̃X0 = ρX0 , according to Pinsker’s inequality, we have

TV(ρ̃Xk , πX) ≤ TV(ρ̃Xk , ρXk ) + TV(ρXk , πX) ≤ TV(ρ̃Xk , ρXk ) +
√
χ2(ρXk |πX)/2

≤ kεTV +
√

exp(−kη(CFPI(α) + η)−1)χ2(ρ̃X0 |πX)/2.

For any ε > 0 and any K satisfies

K ≥ (CFPI(α)η
−1 + 1) ln

(
2χ2(ρ̃X0 |πX)/ε2

)
,

if the RαSO can be implemented inexactly with εTV ≤ ε
2K , the density of the K

th
iterate of

Algorithm 2 is ε-close to the target in the total variation distance, i.e. TV(ρ̃KX , πX) ≤ ε.

B.4 Convergence under Weak Fractional Poincaré Inequality

Our main result for Algorithm 2 in Theorem 3 is proved under the assumption the target satisfying
α-FPI. Furthermore, for the rejection-sampling based implementation of the RαSO in Algorithm 3,
the parameter α is set to be 1. In order to use Theorem 3 for the case of generalized Cauchy targets,
one has to check if the α-FPI is satisfied or not, which depends on the degrees of freedom parameter
ν of the generalized Cauchy desity. Specifically, when ν ≥ 1, 1-FPI is satisfied and we hence
have Corollary 5, part (i) based on Theorem 3. When ν ∈ (0, 1), 1-FPI is not satisfied and hence
Theorem 3 no longer applies.

To tackle this issue, we now introduce a generalization of Theorem 3 to the case when the target
satisfies a weak version of Fractioanl Poincaré inequality (wFPI) and provide convergence guarantees
for the stable proximal sampler in χ2-divergence.
Definition 3 (weak Fractional Poincaré Inequality). For ϑ ∈ (0, 2), a probability density µ satisfies
a ϑ-weak fractional Poincaré inequality if there exists a decreasing function βWFPI(ϑ) : R+ → R+

such that for any ϕ : Rd→ R in the domain of E(ϑ)µ with µ(ϕ) = 0, we have

µ(ϕ2) ≤ βWFPI(ϑ)(r)E(ϑ)µ (ϕ) + r ∥ϕ∥2∞ , ∀r > 0, (wFPI)

where E(ϑ)µ is a non-local Dirichlet form associated with µ defined as

E(ϑ)µ (ϕ) := cd,ϑ

∫∫
{x ̸=y}

(ϕ(x)− ϕ(y))2

|x− y|(d+ϑ)
dxµ(y)dy with cd,ϑ =

2ϑΓ((d+ ϑ)/2)

πd/2|Γ(−ϑ/2)|
.

The wFPI is satisfied by any probability density that is locally bounded, and is hence extremely
general. Setting the parameter r = 0, wFPI reduces to FPI with CFPI(ϑ) = βWFPI(ϑ)(0).

Theorem 5. Assume that πX satisfies the α-wFPI with parameter βWFPI(α)(r) for some α ∈ (0, 2).
Then for any step size η > 0 and initial condition ρX0 such that R∞(ρX0 |πX) <∞, the kth iterate of
the stable proximal sampler with parameter α (Algorithm 2) satisfies

χ2(ρXk |πX) ≤ exp
(
− (βWFPI(α)(r) + η)−1kη

)
χ2(ρX0 |πX)

+ 4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1(k + 1)η

))
exp

(
2R∞(ρX0 |πX)

)
.

The proof of Theorem 5 follows the same two-step analysis as it is introduced in the beginning of
Section B.2. The convergence property corresponding to Step 1 is stated in the following Proposition.
Proposition 4. Assume that πX satisfies the α-wFPI with parameter βWFPI(α) for some α ∈ (0, 2),
then for each k ≥ 0, r > 0,

χ2(ρYk |πY ) ≤ exp
(
− (βWFPI(α)(r) + η)−1η

)
χ2(ρXk |πX)

+ 4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1η

)
exp

(
2R∞(ρXk |πX)

)
.

(11)

Proof of Proposition 4. In the stable proximal sampler with parameter α, we have ρYk = ρXk ∗ p
(α)
η

and πY = πX ∗ p(α)η . Therefore we can view ρYk and πY as ρXk and πX evolving along the fractional
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heat flow by time η respectively. For any t ∈ [0, η], define πX
t = πX ∗ p(α)t and ρXt = ρXk ∗ p

(α)
t . We

have

d

dt
χ2(ρXt |πX

t ) = −EπX
t
(
ρXt
πX
t

) = −EπX
t
(
ρXt
πX
t

− 1).

According to [Cha04, Theorem 23], p(α)t satisfies α-FPI with parameter η for all t ∈ (0, η]. According
to Lemma 7, πX

t satisfies the α-wFPI with βWFPI(α)(r) + η. Therefore we get

d

dt
χ2(ρXt |πX

t ) ≤
(
βWFPI(α)(r) + η

)−1
χ2(ρXt |πX

t ) + r
(
βWFPI(α)(r) + η

)−1 ∥∥ρXt /πX
t − 1

∥∥2
∞

≤
(
βWFPI(α)(r) + η

)−1
χ2(ρXt |πX

t ) + 4r
(
βWFPI(α)(r) + η

)−1
exp

(
2R∞(ρXk |πX)

)
,

where the last inequality follows from the definition of Renyi-divergence and the data processing
inequality. Last, (11) follows from Gronwall’s inequality.

Proof of Theorem 5. According to Proposition 4, the χ2 decaying property in step 1 of the algorithm
is as follows,

χ2(ρYk |πY ) ≤ exp
(
− (βWFPI(α)(r) + η)−1η

)
χ2(ρXk |πX)

+ 4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1η

)
exp

(
2R∞(ρXk |πX)

)
.

In step 2, we have ρXk+1 = ρYk ∗ πX|Y and πX = πY ∗ πX|Y . Therefore according to the data
processing inequality, we get

χ2(ρXk+1|πX) ≤ χ2(ρYk |πY )

≤ exp
(
− (βWFPI(ϑ)(r) + η)−1η

)
χ2(ρXk |πX)

+ 4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1η

)
exp

(
2R∞(ρXk |πX)

)
≤ exp

(
− k(βWFPI(α)(r) + η)−1η

)
χ2(ρX0 |πX)

+ +4r
(
1− exp

(
− (βWFPI(α)(r) + η)−1(k + 1)η

))
exp

(
2R∞(ρX0 |πX)

)
,

where the last inequality follows from the data processing inequality. Last, apply the above iterative
relation k times and we prove (11).

Lemma 7. Let µ1 be a probability density on Rd satisfying the ϑ-wFPI with parameter βWFPI(ϑ)(r).
Let µ2 be a probability density on Rd satisfying the ϑ-FPI with parameter CFPI(ϑ). Then µ1 ∗ µ2

satisfies ϑ-wFPI with parameter βWFPI(ϑ)(r) + CFPI(ϑ).

Proof of Lemma 7. Let X,Y be two independent random variables such that X ∼ µ2 and Y ∼ µ1.
According to variance decomposition, we have for any function ϕ such that µ1 ∗ µ2(ϕ) = 0,

Varµ1∗µ2
(ϕ) = Var (ϕ(X + Y )) = E [Var (ϕ(X + Y )|Y )] + Var (E [ϕ(X + Y )|Y ]) .

Since X ∼ µ2 and µ2 satisfies the ϑ-FPI with parameter CFPI(ϑ), we have

E[Var (ϕ(X + Y )|Y )] (12)

≤CFPI(ϑ)cd,α

∫∫∫
{z ̸=0}

(ϕ(x+ y + z)− ϕ(x+ y))
2

|z|(d+ϑ)
dzµ2(x)dxµ1(y)dy. (13)

Since Y ∼ µ1 and µ1 satisfies the ϑ-wFPI with parameter βWFPI(ϑ), following the proof of Lemma 6,
we have

Var (E [ϕ(X + Y )|Y ])

≤βWFPI(ϑ)cd,α

∫∫
{z ̸=0}

∫
(ϕ(x+ y + z)− ϕ(x+ y))2

|z|(d+ϑ)
µ2(x)dxdzµ1(y)dy

+ r

∥∥∥∥∫ ϕ(x+ ·)µ2(x)dx−
∫∫

ϕ(x+ y)µ2(x)dxµ1(y)dy

∥∥∥∥2

∞

≤βWFPI(ϑ)cd,α

∫∫
{z ̸=0}

∫
(ϕ(x+ y + z)− ϕ(x+ y))2

|z|(d+ϑ)
µ2(x)dxdzµ1(y)dy + r ∥ϕ∥2∞ ,

(14)
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where the last inequality follows from the fact that µ1 ∗ µ2(ϕ) = 0 and the convexity ∥·∥∞. Combining (12)
and (14), we have

Varµ1∗µ2(ϕ)

≤CFPI(ϑ)cd,α

∫∫∫
{z ̸=0}

(ϕ(x+ y + z)− ϕ(x+ y))2

|z|(d+ϑ)
dzµ2(x)dxµ1(y)dy

+ βWFPI(ϑ)(r)cd,α

∫∫
{z ̸=0}

∫
(ϕ(x+ y + z)− ϕ(x+ y))2

|z|(d+ϑ)
µ2(x)dxdzµ1(y)dy + r ∥ϕ∥2∞

=
(
βWFPI(ϑ)(r) + CFPI(ϑ)

)
cd,α

∫∫
{z ̸=0}

(ϕ(u+ z)− ϕ(u))2

|z|(d+ϑ)
dzµ1 ∗ µ2(u)du+ r ∥ϕ∥2∞

=
(
βWFPI(ϑ)(r) + CFPI(ϑ)

)
Eµ1∗µ2(ϕ) + r ∥ϕ∥2∞ .

Lemma 7 is hence proved.

B.5 Proofs for the Generalized Cauchy Examples

In this section, we provide proofs for the two corollaries in Section 3.2.

Proof of Corollary 4. According to [WW15, Corollary 1.2], πν satisfies α-FPI with parameter
CFPI(ϑ) for any α ≤ min(2, ν). Therefore it follows from Theorem 3 that

χ2(ρXk |πν) ≤ exp
(
−kη

(
CFPI(α) + η

)−1
)
χ2(ρX0 |πν). (15)

According to [MHFH+23, Corollary 22], when ρX0 = N (0, Id) and d ≥ 2, R∞(ρX0 |πν) ≤
ln(2ν/2Γ(ν/2)) + ln(d+ν

2e ) which implies χ2(ρX0 |πν) = Θ(d). Therefore Corollary 4 follows
from (15) and η ∈ (0, 1).

Proof of Corollary 5. We prove the two part in the Corollary separately:

(i) When ν ≥ 1, according to [WW15, Corollary 1.2] πν satisfies the 1-FPI with parameter CFPI(1).
Corollary 3 applies with L = 4(d+ ν) and β = 1/4 and the iteration complexity of Algorithm 2 is
of order O

(
CFPI(1)d

1
2 (d+ ν)4 ln(χ2(ρX0 |πν)/ε)

)
.

(ii) When ν ∈ (0, 1), according to [WW15, Corollary 1.2], there exists a positive constant c such
that πν satisfies the 1-wFPI with parameter

βWFPI(1)(r) = c(1 + r−(1−ν)/ν). (16)
Theorem 5 implies that

χ2(ρXk |πν) ≤ exp
(
− kη

η + c(1 + r−(1−ν)/ν)

)
χ2(ρX0 |πν)

+ r
(
1− exp

(
− (k + 1)η

η + c(1 + r−(1−ν)/ν)

))
exp

(
2R∞(ρX0 |πX)

)
≤ exp

(
− kη

η + c(1 + r−(1−ν)/ν)

)
χ2(ρX0 |πν)

+
(k + 1)ηr

η + c(1 + r−(1−ν)/ν)
exp

(
2R∞(ρX0 |πX)

)
.

For any ε > 0 and k ≥ 1, pick r =
exp

(
−2νR∞(ρX0 |πν)

)
cνεν

(k+1)νην , we have χ2(ρXk |πν) ≤ ε if

k ≥
[
1 + c

1
ν η− 1

ν + 21/νcη−1ε−(1−ν)/ν exp
(2(1− ν)R∞(ρX0 |πν)

ν

)]
ln1/ν(

2χ2(ρX0 |πν)

ε
).

Corollary 3 applies with L = (d+ ν)/ν and β = ν/4. Therefore, by choosing η = Θ(d−
1
2 (d+ ν)−

4
ν ), the

iteration complexity in Algorithm 2 is of order

O
(
max

{
c

1
ν d

1
2ν

+ 4
ν2 , cd

1
2
+ 4

ν ε−
1−ν
ν exp

(2(1− ν)R∞(ρX0 |πν)

ν

)}
ln

1
ν (

2χ2(ρX0 |πν)

ε
)

)
.
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C Proofs for the Lower Bounds on the Stable Proximal Sampler

In this section we introduce the proofs for the lower bounds for the stable proximal sampler with
parameter α when the target is the generalized Cauchy density with degrees of freedom strictly
smaller than α. The lower bound is proved following the idea introduced in Section 2.

Lemma 8. Suppose (xk, yk)k are the iterates of the stable proximal sampler with parameter α, step
size η and target density πX ∝ exp(−V ) for some V : Rd → R. Let G(x) = exp(κV (x)) with
κ ∈ (0, 1). Then, for every k ≥ 0,

E[G(xk+1)] ≤ E[G(xk + 2
1
α η

1
α zk)],

where zk, with density p
(α)
1 , is sampled independently from xk.

Proof of Lemma 8. Recall that πX|Y (x|y) ∝ πX(x)p(α)(η;x, y). We have

E[G(xk+1)] = E
[
E[G(xk+1)|yk]

]
= E

[
Z−1
yk

∫
G(x)πX(x)p(α)η (x− yk)dx

]
= E

[
Z−1
yk

E[G(yk + η
1
α zk)π

X(yk + η
1
α zk)|yk]

]
,

where Zyk
=
∫
πX(x)p

(α)
η (x − yk)dx = E[πX(yk + η

1
α zk)|yk] and zk is the α-stable random

vector with density p
(α)
1 , which is independent to yk, xk. Let T : R+ → R be T (r) = r−κ. Since

κ ∈ (0, 1), T is convex and r 7→ rT (r) is concave. According to the fact that G(x) = T (πX)(x)
and Jensen’s inequality, we have

E[G(xk+1)] = E
[
E
[
(πXT (πX))(yk + η

1
α zk)|yk

]
E
[
πX(yk + η

1
α zk)|yk]

]
≤ E

[
T
(
E[πX(yk + η

1
α zk)|yk]

)]
.

Since T is convex, apply Jensen’s inequality again and we get

E[G(xk+1)] ≤ E[G(yk + η
1
α zk)] = E

[
E[G(xk + η

1
α z′k + η

1
α zk)|xk]

]
= E[G(xk + 2

1
α η

1
α z̄k)|xk],

where z′k is the α-stable random vector with density p
(α)
1 , which is independent to xk, zk and the last

identity follows from the self-similarity of α-stable process with z̄k ∼ p
(α)
1 which is independent to

xk.

Lemma 9. Suppose (xk, yk)k are the iterates of the stable proximal sampler with parameter α, step
size η and target density πX ∝ exp(−V ) satisfies

|∇V (x)| ≤ (d+ ν2)|x|
1 + |x|2

and ∆V (x) ≤ (d+ ν2)
2

1 + |x|2
,

for some ν2 ∈ (0, α) and for all x ∈ Rd. Let G(x) = exp(κV (x)) with

κ ∈ (ν2(d+ ν2)
−1, α(d+ ν2)

−1).

Then, for every k ≥ 0 and for all r > 0,

E[G(xk+1)] ≤ (1 + r)
κ(d+ν2)

2 E[G(xk)] + 2
κ(d+ν2)

α η
κ(d+ν2)

α (1 + r−1)
κ(d+ν2)

2 m
(α)
κ(d+ν2)

, (17)

where m
(α)
κ(d+ν2)

= E[|zk|κ(d+ν2)] with zk being an α-stable random vector with density p
(α)
1 .

Moreover, for every N ≥ 0,

E[G(xN )] ≲ E[G(x0)] +m
(α)
κ(d+ν2)

N
κ(d+ν2)

2 +1η
κ(d+ν2)

α , (18)

where ≲ is hiding a uniform positive constant factor.
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Proof of Lemma 9. Without loss of generality assume V (0) = 0. Then, we have that,

V (x) =

∫ 1

0

⟨x,∇V (tx)⟩dt ≤ (d+ ν2)

∫ 1

0

t|x|
1 + |tx|2

dt =
d+ ν2

2
ln(1 + |x|2).

Therefore G(x) = exp(κV (x)) ≤ (1 + |x|2)κ(d+ν2)/2, Since κ ∈ (ν2(d + ν2)
−1, α(d + ν2)

−1),
G(x) = O(|x|κ(d+ν2)) when |x| ≫ 1 and E[G(xk + 2

1
α η

1
α zk)] in Lemma 8 is finite. We have

E[G(xk + 2
1
α η

1
α zk)]

≤E[(1 + |xk + 2
1
α η

1
α zk|2)

κ(d+ν2)
2 ]

≤E[(1 + (1 + r)|xk|2 + 4
1
α η

2
α (1 + r−1)|zk|2)

κ(d+ν2)
2 ]

≤(1 + r)
κ(d+ν2)

2 E[G(xk)] + 2
κ(d+ν2)

α η
κ(d+ν2)

α (1 + r−1)
κ(d+ν2)

2 E[|zk|κ(d+ν2)]

≤(1 + r)
κ(d+ν2)

2 E[G(xk)] + 2
κ(d+ν2)

α η
κ(d+ν2)

α (1 + r−1)
κ(d+ν2)

2 m
(α)
κ(d+ν2)

,

where the first inequality follows from the Young’s inequality and m
(α)
κ(d+ν2)

= E[|zk|κ(d+ν2)] with

zk being an α-stable random vector with density p
(α)
1 . (17) follows from Lemma 8. Furthermore, by

induction we have
E[G(xN )] ≤ (1 + r)κ(d+ν2)N/2E[G(x0)]

+
(1 + r)κ(d+ν2)N/2 − 1

(1 + r)κ(d+ν2)/2 − 1
2

κ(d+ν2)
α η

κ(d+ν2)
α (1 + r−1)

κ(d+ν2)
2 m

(α)

κ(d+ν2)
.

Pick r = 2
κ(d+ν2)N

and (18) is proved.

Proof of Theorem 4. To apply Lemma 1, we choose G(x) = exp(κV (x)) with κ ∈ (ν2(d +
ν2)

−1, α(d+ ν2)
−1) ⊂ (0, 1). Without loss of generality assume V (0) = 0. Via Assumption 1, we

have the estimates for V ,

V (x) =

∫ 1

0

⟨x,∇V (tx)⟩dt ≥ (d+ ν1)

∫ 1

0

t|x|
1 + |tx|2

dt =
d+ ν1

2
ln(1 + |x|2).

By Lemma 2 we have

πX(G(x) ≥ y) ≥ πX
(
|x| ≥ y

1
κ(d+ν1)

)
≥ Cν1

d
ν1
2

(
1 + y

−2
κ(d+ν1)

)− d+ν2
2

y
−ν2

κ(d+ν1) .

We then invoke Lemma 1 and Lemma 9 to obtain

TV(ρXN , πX)

≳ sup
y≥1

Cν1d
ν1
2

(
1 + y

−2
κ(d+ν1)

)− d+ν2
2

y
−ν2

κ(d+ν1) −
E[G(x0)] +m

(α)
κ(d+ν2)

N
κ(d+ν2)

2 +1η
κ(d+ν2)

α

y
.

The fact that κ ∈ (ν2(d+ ν1)
−1, α(d+ ν2)

−1) ensures that the supremum on the right side is always
positive. In particular, picking y such that

y
1− ν2

κ(d+ν1) = Θ
(
C−1

ν1
d−

ν2
2

(
E[G(x0)] +m

(α)
κ(d+ν2)

N
κ(d+ν2)

2 +1η
κ(d+ν2)

α

))
,

we obtain that

TV(ρXN , πX)

≳C
κ(d+ν1)

κ(d+ν1)−ν2
ν1 d

κ(d+ν1)ν2
2κ(d+ν1)−2ν2

(
E[G(x0)] +m

(α)
κ(d+ν2)

N
κ(d+ν2)

2 +1η
κ(d+ν2)

α

)− ν2
κ(d+ν1)−ν2 ,

where ≳ is hiding a uniform positive constant factor. Therefore, for any α ∈ (ν2(d+ν2)
d+ν1

, 2] and

δ ∈ (0, α− ν2(d+ν2)
d+ν1

), we can choose κ = α−δ
d+ν2

∈ ( ν2

d+ν1
, α
d+ν2

) and get that

TV(ρXN , πX)

≥Cν1,ν2,δd
ν2(α−δ)(d+ν1)

2(α−δ)(d+ν1)−2ν2(d+ν2)
(
E[G(x0)] +m

(α)
α−δN

α−δ
2 +1η

α−δ
α

)− ν2(d+ν2)

(α−δ)(d+ν1)−ν2(d+ν2) .

Theorem 4 then follows by taking τ = α− δ.
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Figure 1: Comparison between Gaussian and Stable Proximal Sampler: target is chosen to be one-
dimensional student-t with center 0 and 4 degrees of freedom; initialization is chosen x0 = 20.

C.1 Further Discussions on Lower bounds of the stable proximal sampler

To derive a lower bound for the stable proximal sampler with parameter α, it is worth mentioning
that there is an extra difficulty applying our method when ν ≥ α. Recall that when ν ∈ (0, α), πν

has heavier tail than ρXk does. Therefore, when we apply

TV(ρXk , πν) ≥ |πν(G ≥ y)− ρXk (G ≥ y)|, (19)

to study the lower bound, it suffices to derive a lower bound on πν(G ≥ y), and an upper bound
on ρXk (G ≥ y) which is smaller than the lower bound on πν(G ≥ y). Deriving these bounds is not
too hard: the lower bound can be obtained by looking at an explicit integral against πν directly and
the upper bound is derived based on the fractional absolute moment accumulation of the isotropic
α-stable random variables along the stable proximal sampler.

However, when ν ≥ α, we expect that ρXk has heavier tail than πν . Therefore, to apply (19), we need
to find an upper bound on πν(G ≥ y), and a lower bound on ρXk (G ≥ y) which is smaller than the
upper bound on πν(G ≥ y). Notice that ρXk (G ≥ y) is a quantity varying along the trajectory of the
stable proximal sampler. Deriving a lower bound along the trajectory is essentially more challenging
than deriving an upper bound.

In order to derive a satisfying lower bound in this case, it hence remains to characterize the stable
proximal sampler as an approximation of an appropriate gradient flow, just as that the Brownian-
driven proximal sampler can be interpret as the entropy-regularized JKO scheme in [CCSW22];
see also Section 5. To understand this kind of gradient flow approximations itself is an interesting
future work as it may help us to understand and characterize the class of MCMC samplers that utilize
heavy-tail samples to approximate lighter-tail target densities, which is non-standard compared to
commonly used MCMC samplers such as ULA, MALA, etc.

D Numerical Illustrations

In this section, we present numerical results that illustrate the improved performance of the proximal
sampler with stable oracles (α = 1) compared to that with Gaussian oracles. We first sample from
the one-dimensional student-t distribution with center zero and 4 degrees of freedom by running
the proximal samplers with different oracles in parallel for 100 times. Each individual chain is run
for 100 iterations with step-size η = 0.1. Figures 1,2,3 present the convergence results for different
initializations x0 = 20, 5,−5 respectively. In each figure, the first column shows the means and
variances of the iterates along the trajectories; the center column shows the histograms of the last
iterates and the target density (red curve); the last column shows the convergence of Wasserstein-2
distance along the trajectories. We also sample from the two-dimensional student-t distribution with
center at the origin and 4 degrees of freedom by running the proximal samplers with different oracles
in parallel for 30 times. Each individual chain is run for 20 iterations with step-size η = 0.1 with
the initialization at x0 = [5, 1]. In Figure 4, we present the convergence results, the first column
showing the means and variances of the first-coordinates along the trajectories, the center column
showing the histograms of first-coordinate in the last iterates and the first-coordinate marginal density
of the target distribution (red curve), and the last column showing the convergence of Wasserstein-2
distance along the trajectories.
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Figure 2: Comparison between Gaussian and Stable Proximal Sampler: target is chosen to be one-
dimensional student-t with center 0 and 4 degrees of freedom; initialization is chosen x0 = 5.

Figure 3: Comparison between Gaussian and Stable Proximal Sampler: target is chosen to be one-
dimensional student-t with center 0 and 4 degrees of freedom; initialization is chosen x0 = −5.

Figure 4: Comparison between Gaussian and Stable Proximal Sampler: target is chosen to be two-
dimensional student-t with center (0, 0) and 4 degrees of freedom; initialization is chosen x0 = [5, 1].
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claim in the abstract and introduction is the separation result between
Gaussian and Proximal Sampler. The rest of the sections are exactly stating (and proving)
the aforementioned separation result.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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will be specifically instructed to not penalize honesty concerning limitations.
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provided in the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• The proofs can either appear in the main paper or the supplemental material, but if
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of the paper (regardless of whether the code and data are provided or not)?
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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dataset, or provide access to the model. In general. releasing code and data is often
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tions to faithfully reproduce the main experimental results, as described in supplemental
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
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• The assumptions made should be given (e.g., Normally distributed errors).
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read the Ethics Guideline and followed it in the paper
preperation.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work is primarily theoretical.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work is primarily theoretical.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work is primarily theoretical.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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