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ABSTRACT 

 

Deep learning methods in LiDAR-based archaeological 

research often leverage visualisation techniques derived from 

Digital Elevation Models to enhance characteristics of 

archaeological objects present on the images. This paper 

investigates the impact of visualisations on deep learning 

performance through a comprehensive testing framework. 

The study involves the use of eight semantic segmentation 

models to evaluate seven diverse visualisations across two 

study areas, encompassing five archaeological classes. 

Experimental results reveal that the choice of appropriate 

visualisations can influence performance by up to 8%. Yet, 

pinpointing one visualisation that outperforms the others in 

segmenting all archaeological classes proves challenging. 

The observed performance variation, reaching up to 25% 

across different model configurations, underscores the 

importance of thoughtfully selecting model configurations 

and LiDAR visualisations for successfully segmenting 

archaeological objects. 

 

Index Terms— LiDAR visualisation, semantic 

segmentation, deep learning, cultural heritage, archaeology. 

 

1. INTRODUCTION 

 

Archaeological prospections based on airborne LiDAR 

(ALS) data usually rely on the visual inspection of point 

cloud-interpolated Digital Elevation Models (DEM) [1] - [3]. 

To enhance the visibility of subtle topographic alterations 

characteristic of archaeological objects, images are typically 

processed through a comprehensive set of algorithms, 

convolutional filters, and image-blending methods often 

termed Visualisation Techniques (VTs) [4].  

In the last five years, the visual analysis of DEM has been 

increasingly assisted by the application of Deep Learning 

(DL) methods, significantly reducing the time needed for 

processing extensive territorial data [5], [6]. By relying on the 

good practices established for visual inspection, VTs are 

generally employed in training DL models. While the use of 

 
 Equal contribution 

VTs for visual assessments has been widely acknowledged 

by the scientific community,1 their impact on DL 

performance is often overlooked. Only a handful of studies 

have deliberately attempted to assess the significance of 

incorporating VTs in DL models [7], [8]. To our knowledge, 

Guyot et al. 2021 are the sole contributors who have ranked 

VTs based on the performance achieved on semantic 

segmentation tasks, rather than object detection. Their 

experiments, however, lack comprehensiveness, hindering a 

general extrapolation of results. This limitation stems from 

the use of a limited archaeological dataset and a unique 

architecture of the DL model. Advancing beyond the state-

of-the-art, this work establishes a comprehensive testing 

framework aiming at facilitating the selection of appropriate 

DEM-derived products (VTs) for enhancing the performance 

of semantic segmentation models in archaeological 

applications. Specifically, this study assesses the influence of 

diverse DL configurations and visualisations in identifying 

five distinct archaeological object classes. The contribution 

extends existing research in three crucial aspects: 

- broader archaeological context: considering five 

classes of archaeological objects from two 

geographically separated ALS datasets.  

- diverse semantic segmentation models: deploying 

and evaluating eight distinct semantic segmentation 

models characterised by various architectures, 

encoders, and initialisation procedures. 

- innovative visualisation techniques: introducing 

three novel VTs designed to explore DL capabilities 

in identifying archaeological objects. 

 

2. DATASETS 

 

This research utilises two distinct ALS datasets, 

encompassing diverse territories with varying geological, 

topographic, climatic, vegetational, and archaeological 

attributes: the Chactun dataset and the Veluwe dataset. Each 

dataset comprises tiles (256 pixels per size) generated from a 

LiDAR-derived DEM featuring a ground sample distance of 

0.5 m, along with a raster mask identifying labelled 



archaeological objects. The Chactun dataset [9] includes 

three archaeological classes: aguadas (artificial water 

reservoirs, 166 tiles), buildings and platforms (3532 and 2472 

tiles, respectively) from the Mayan civilisation. Spanning the 

central region of Yucatan, Mexico, this dataset consists of 

3568 tiles. The Veluwe dataset [10], from the Netherlands, 

comprises 1314 tiles with two classes: barrows (round 

earthen burial mounds, 998 tiles) and charcoal kilns (circular 

shallow ditch with a central platform for charcoal production, 

328 tiles). 

 

3. VISUALISATIONS 

 

A total of 7 VTs were computed using the Relief 

Visualization Toolbox [4] (fig.1). DEM-c is a stretched 

version of the DEM, computed by cutting 1% at both tails of 

the distribution for each tile. SLRM is a trend-removal filter 

that reduces the impact of large-scale features (e.g. terrain 

slopes) on the visibility of small-scale archaeological objects. 

e2MSTP is an enhanced version of the Multiscale 

Topographic Position index computed to highlight variations 

across various scales. Notably, this specific VT attained the 

highest ranking in the semantic segmentation task conducted 

by Guyot et al. in their work [8]. The VAT is a composite 

image that stacks Slope, Openness and Sky-View Factor [4], 

[11] ranked highest in Somrak et al. study [7] on the object 

detection task over the Chactun dataset. 

This paper presents three novel VTs to investigate the 

capabilities of DL in detecting archaeological objects. DEM-

s, a three-layer stack of a single DEM-c, was created to assess 

potential variations in performance between a single band 

image and a three bands image. This is done to evaluate the 

impact of the model’s initialisations pre-trained on RGB 

benchmark datasets (ref. chapter 4). DSS is a stack of DEM-

c, Slope (i.e., the first derivative of DEM) and SLRM. Its 

purpose is to evaluate whether incorporating additional 

visualisations to DEM-c can enhance performance. e2MSTP-

1B integrates e2MSTP into a single-band image, allowing us 

to evaluate the potential loss of information when 

transitioning from a three-band image to a single band. 

 

4. METHODOLOGY 

 

This study aims to provide a nuanced understanding of the 

performance of semantic segmentation architectures across a 

spectrum of seven visualisations. Two renowned networks 

for semantic segmentation, specifically U-Net [12] and 

DeepLabV3+ [13], were chosen. The decision to employ U-

Net in archaeological research was driven by its proficiency 

in handling scenarios with limited data. This is attributed to 

its distinctive architecture, characterised by a contracting 

path, bottleneck layer, and expansive path, which excels in 

capturing intricate contextual information while preserving 

fine details. The incorporation of skip connections further 

enhances accuracy by integrating low-level features. 

On the other hand, DeepLabV3+ was purposefully chosen for 

its exceptional accuracy in multi-scale segmentation. This 

sophisticated technique excels in meticulously analysing 

images at different scales, guaranteeing the thorough capture 

of objects with various sizes and shapes, qualities frequently 

encountered in archaeological imagery. These two networks 

were modified by changing their backbone feature extractors 

to ResNet [14] and EfficientNet [15], aiming to assess the 

capability of each encoder in extracting features of 

Fig. 1: Appearance of archaeological classes on different Visualisation Techniques and ground truth mask 



archaeological objects. In addition to the variation of the 

network architectures, the effect of weight initialisation is 

also investigated by comparing networks pre-trained with a 

commonly adopted benchmark dataset (ImageNet) and 

Kaiming initialisation [16]. In total, this paper compares eight 

models, as the combination of two networks, two encoders 

and two initialisations for each LiDAR visualisation.  

 

4.1. Experimental Setting 

 

The training process spanned 50 epochs, utilising the 

PyTorch Adam optimiser initialised with a learning rate of 

0.001. The choice of Tversky loss, specifically designed for 

semantic segmentation, was selected for its capacity to handle 

a good trade-off between precision and recall as outlined by 

Seyed et al. [17]. Employing a 5-fold cross-validation 

approach for each model added robustness to the empirical 

results, mitigating the impact of statistical fluctuations. 

During the training phase, Kornia's augmentation techniques 

were leveraged, including vertical flip, horizontal flip, and 

45-degree rotation (50% probability). A threshold of 0.5 was 

employed to determine detected pixels.  

The evaluation of segmentation results relied on the 

Intersection over Union (IoU) per class, precision, and recall. 

These metrics were deliberately selected to address the class- 

imbalance issue by minimising the importance of empty tiles 

when IoU is computed for each class.  

 

5. EXPERIMENTAL RESULTS  

 

The comprehensive analysis of the obtained results reveals 

that buildings is the class with the highest segmentation 

performance, showcasing the best model with an IoU of 0.66. 

Following closely are barrows at 0.57, platforms at 0.53, 

aguadas at 0.47, and charcoal kilns at 0.34 (refer to Fig. 2). 

The analysis of the best models, depicted in Fig. 2, shows that 

both DEM-c and DEM-s achieved good performance in all 

the classes, excelling in the segmentation of buildings and 

charcoal kilns with IoU of 0.67 and 0.34. Interestingly, their 

best models alternatively outperform each other in various 

classes, with no apparent correlation to the characteristics of 

the archaeological objects. At the same time, these 

visualisations yield a large difference in performance among 

the configurations as shown in Fig. 3. Overall, DEM-s 

exhibits a slightly superior performance compared to DEM-c 

attributed to lower variability among configurations. SLRM 

consistently yields good results across all the classes, 

although with high variability for various configurations. 

Notably, it achieves the second highest IoU when detecting 

buildings (0.65), platforms (0.53), and barrows (0.57). In 

contrast, models using this visualisation could not accurately 

classify charcoal kilns.  

Models utilising DSS excelled in detecting barrows with 

the highest IoU of 0.57 and ranked second for aguadas (0.46). 

This implies that incorporating additional visualisations into 

DEM stack could potentially enhance the detection of 

specific features, though not always applicable, as evidenced 

by lower performance in charcoal kilns and buildings.  

Despite e2MSTP overall performance falling below 

average for every class, it stands out as the most consistent 

and reliable VT across various configurations, showcasing a 

narrower range of performance compared to most other VTs. 

Surprisingly, the e2MSTP-1B generally outperformed 

e2MSTP, although it displayed a wider variability among the 

model’s configurations. This suggests that flattening the 

bands into one can be beneficial for extracting more 

information from the data when selecting suitable 

configurations.  

The VAT exhibits the highest ranking for aguadas with 

an IoU of 0.47 and performs above average in the other 

classes, although it exhibits poor performance on platforms 

(0.45). Despite that, it demonstrates the lowest variability 

among configurations in the Chactun dataset. Upon analysing 

the results presented in Fig. 4, it becomes evident that model 

5 stands out as the best configuration in both datasets, with 

models 1, 6 and 7 closely following. Notably, these models 

consistently exhibit performance across the various 

visualisations, as underscored by the lower variability 

compared to the other models. 

Fig. 2: Validation IoU of the best model for each 

visualisation over the five archaeological classes 

Fig. 3: Validation IoU of all the models over each VT 



However, when specifically focusing on the Veluwe 

dataset alone, variability increases, primarily due to mixed 

results in detecting charcoal kilns. Nevertheless, models 5 

and 1 consistently outperform other models, while models 2, 

3, 4, 6, 7, and 8 exhibit minimal fluctuation when selecting 

various VTs concerning the validation IoU. Noteworthy is the 

observation that models 1 and 5 display low fluctuation of 

performance when opting for different visualisations yet 

manage to achieve the highest IoU in both datasets. This 

suggests that, in specific scenarios, the appropriate choice of 

configuration mitigates variability of performance across the 

visualisations, emphasising the increased significance of 

configuration over visualisation selections.  

 

6. DISCUSSION  

 

The experimental results underscore the pivotal role of 

visualisations in DL models, with the potential to influence 

performance by up to 8%. Despite the absence of a clear 

dominance among various visualisations, the thoughtful 

selection of VTs proves crucial in preventing the 

misclassification of specific classes, as evidenced in the case 

of charcoal kilns, and enhance segmentation quality. When 

choosing the evaluation criteria, it is essential to consider not 

only the results of the best model but also how visualisations 

affect the variability of results across various model 

configurations. For example, DEM-c and DEM-s excel in 

performance but show a high variance potentially impacting 

the training procedure’s reliability. 

Opting for more consistent VTs, such as VAT, e2MSTP 

or SLRM, can be beneficial to avoid unforeseen performance 

declines, especially with limited configuration choices. 

Explore architectural nuances is recommended to potentially 

enhance overall performance. It is advisable considering 

experiments with DEM-s, one of the novel VTs introduced in 

this study, for the excellent results achieved in all the classes, 

with outstanding performance in charcoal kilns segmentation. 

Comparison between DEM-c and DEM-s revealed that a 

three-band image has lower performance variability than a 

single band image. On the other hand, leveraging a single 

band image, in conjunction with specific configurations, can 

attain the highest performance, particularly for buildings and 

barrows. Similar behaviour is observed between three-band 

e2MSTP and single-band e2MSTP-1B. Contrary to Guyot et 

al. [8], our findings did not identify e2MSTP as a clear 

contributor to the top-performing model. Nevertheless, we 

align with Somrak et al. [7] on the VAT visualization's good 

performance, especially in the Chactun dataset, suggesting its 

suitability for segmentation tasks. 

The findings reveal the ability to pinpoint optimal model 

configurations that excel across all visualisations and classes. 

Thoughtful choices in architectures, encoders, and 

initializations can significantly boost performance, achieving 

improvements of up to 25%. The configuration employing U-

Net, EfficientNet-B6 encoder and initialised with ImageNet 

consistently emerged as the top performer, frequently 

achieving the highest IoU on most visualisations. The U-Net 

architecture outperforms DeeplabV3+, mainly due to the 

inclusion of skip connections facilitating the detection of 

complex shapes, particularly in the building class. The 

primary performance gap stems from encoder selection, 

favouring EfficientNet-B6 over ResNet101. EfficientNet-

B6's superior performance is attributed to its compound 

scaling method, enabling more effective feature extraction 

with a comparable number of parameters [15], consistent 

with prior experiments on these datasets [18]. 

 

7. CONCLUSION 

 

This study emphasises the key role of selecting LiDAR-

derived DEM visualisations to enhance the efficacy of deep 

learning models for supporting archaeological prospection. 

Notably, the previously unexplored importance of model 

configurations is underscored in contrast to various 

visualisations within the existing literature. The observed 

synergy between visualisations and model configurations 

presents promising avenues for advancing future applications 

and leveraging deep learning in archaeological research. 

Our future goal is to deploy this framework across 

different archaeological classes located in various 

geographical areas, incorporating additional model 

configurations to further enrich the significance and impact 

of our study. 

Acknowledgement 

 

MF contributed to this study as part of the OPTIMAL project: 

this project has received funding from the European Union’s 

Horizon 2020 research and innovation programme under 

grant agreement No 101027956.  

The authors thank PhD Wouter Verschoof-van Der Vaart for 

providing the Veluwe dataset. 

  

Fig. 4: Validation IoU of all the VTs over each model 



8. REFERENCES 
 

[1] R. S. Opitz and D. C. Cowley, Eds., Interpreting 

Archaeological Topography: 3D Data, Visualisation and 

Observation. Oxbow Books, 2013. 

[2] B. Štular, S. Eichert, and E. Lozić, “Airborne LiDAR Point 

Cloud Processing for Archaeology. Pipeline and QGIS 

Toolbox”, Remote Sens., vol. 13, no. 16, p. 3225, Aug. 2021. 

[3] A. S. Z. Chase, D. Z. Chase, and A. F. Chase, “LiDAR for 

Archaeological Research and the Study of Historical 

Landscapes”, Sensing the Past. Geotechnologies and the 

Environment, N. Masini and F. Soldovieri, Eds., vol. 16, 

Cham: Springer International Publishing, pp. 89–100, 2017. 

[4] Ž. Kokalj and M. Somrak, “Why Not a Single Image? 

Combining Visualizations to Facilitate Fieldwork and On-

Screen Mapping”, Remote Sens., vol. 11, no. 7, p. 747, Mar. 

2019. 

[5] W. B. Verschoof‐van Der Vaart and K. Lambers, “Applying 

automated object detection in archaeological practice: A case 

study from the southern Netherlands”, Archaeol. Prospect., 

vol. 29, no. 1, pp. 15–31, Jan. 2022. 

[6] Ø. D. Trier, D. C. Cowley, and A. U. Waldeland, “Using deep 

neural networks on airborne laser scanning data: Results from 

a case study of semi‐automatic mapping of archaeological 

topography on Arran, Scotland”, Archaeol. Prospect., vol. 26, 

no. 2, pp. 165–175, Apr. 2019. 

[7] M. Somrak, S. Džeroski, and Ž. Kokalj, “Learning to Classify 

Structures in ALS-Derived Visualizations of Ancient Maya 

Settlements with CNN”, Remote Sens., vol. 12, no. 14, Jan. 

2020. 

[8] A. Guyot, M. Lennon, and L. Hubert-Moy, “Objective 

comparison of relief visualization techniques with deep CNN 

for archaeology”, J. Archaeol. Sci. Rep., vol. 38, p. 103027, 

Aug. 2021. 

[9] Ž. Kokalj, S. Džeroski, I. Šprajc, J. Štajdohar, A. Draksler, and 

M. Somrak, “Machine learning-ready remote sensing data for 

Maya archaeology”, Sci. Data, vol. 10, no. 1, p. 558, Aug. 

2023. 

[10] M. Fiorucci, W. B. Verschoof-van Der Vaart, P. Soleni, B. Le 

Saux, and A. Traviglia, “Deep Learning for Archaeological 

Object Detection on LiDAR: New Evaluation Measures and 

Insights”, Remote Sens., vol. 14, no. 7, p. 1694, Mar. 2022. 

[11] M. Doneus, “Openness as Visualization Technique for 

Interpretative Mapping of Airborne Lidar Derived Digital 

Terrain Models”, Remote Sens., vol. 5, no. 12, pp. 6427–6442, 

Nov. 2013. 

[12] O, Ronneberger, P. Fischer, and T. Brox. "U-net: 

Convolutional networks for biomedical image segmentation", 

In Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) 

Medical Image Computing and Computer-Assisted 

Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in 

Computer Science(), vol 9351. Springer, Cham. 2015. 

[13] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. 

"Encoder-decoder with atrous separable convolution for 

semantic image segmentation." In Proceedings of the 

European conference on computer vision (ECCV), pp. 801-

818. 2018. 

[14] Kaiming, H, X. Zhang, S. Ren, and J. Sun. "Deep residual 

learning for image recognition." In Proceedings of the IEEE 

conference on computer vision and pattern recognition, pp. 

770-778. 2016. 

[15] Mingxing T., and Q. Le. "Efficientnet: Rethinking model 

scaling for convolutional neural networks." In International 

conference on machine learning, pp. 6105-6114. PMLR, 2019. 

[16] Kaiming H., X. Zhang, S. Ren, and J. Sun. "Delving deep into 

rectifiers: Surpassing human-level performance on imagenet 

classification." In Proceedings of the IEEE international 

conference on computer vision, pp. 1026-1034. 2015. 

[17] S.S.M. Salehi, D. Erdogmus, and A. Gholipour. "Tversky loss 

function for image segmentation using 3D fully convolutional 

deep networks." In International workshop on machine 

learning in medical imaging, pp. 379-387. Cham: Springer 

International Publishing, 2017. 

[18] G. Sech, P. Soleni, W. B. Verschoof-van Der Vaart, Ž. Kokalj, 

A. Traviglia, and M. Fiorucci, “Tranfer Learning of Semantic 

Segmentation Methods for Identifying Buried Archaeological 

Structures on Lidar Data,” in IGARSS 2023 - 2023 IEEE 

International Geoscience and Remote Sensing Symposium, 

Pasadena, CA, USA: IEEE, Jul. 2023, pp. 6987–6990. 

 


