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Abstract

Improving and guaranteeing the robustness of
deep learning models has been a topic of intense
research. Ensembling, which combines several
classifiers to provide a better model, has been
shown to be beneficial for generalisation, uncer-
tainty estimation, calibration, and mitigating the
effects of concept drift. However, the impact of
ensembling on certified robustness is less well
understood. In this work, we generalise Lipschitz
continuity by introducing S-Lipschitz classifiers,
which we use to analyse the theoretical robustness
of ensembles. Our results are precise conditions
when ensembles of robust classifiers are more
robust than any constituent classifier, as well as
conditions when they are less robust.

1. Introduction
Deep learning classifiers are almost as celebrated for their
near-perfect accuracy, as they are notorious for their lack
of robustness (Biggio et al., 2013; Szegedy et al., 2014;
Goodfellow et al., 2015). Within the past decade, as em-
pirically robust classifiers have begun to emerge (Madry
et al., 2017; Wang et al., 2018), so did attempts to certify
their robustness. The goal of robustness certification is to
obtain a set of additive perturbations around an input under
which the prediction remains unchanged. Most approaches
fall under one of three families of methods: exact certifica-
tion (Katz et al., 2017; Ehlers, 2017; Huang et al., 2017),
over-approximation (Wong & Kolter, 2018; Salman et al.,
2019b), or probabilistic certification (Weng et al., 2019), no-
tably randomized smoothing methods (Lecuyer et al., 2019;
Cohen et al., 2019).

Ensembling consists in combining several classifiers to ob-
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tain a better-performing one (Hansen & Salamon, 1990;
Sagi & Rokach, 2018). While it was originally proposed
to improve the accuracy of weak classifiers (Rokach, 2016;
Allen-Zhu & Li, 2023), it is also beneficial for improving
uncertainty estimation and calibration (Lakshminarayanan
et al., 2017; Zhang et al., 2020), as well as mitigating the
effects of concept drift (Sagi & Rokach, 2018). These bene-
fits of ensembling have inspired research into studying its
effect on robustness. For example, recent empirical works
have shown that encouraging diversity in the non-maximal
predictions (Pang et al., 2019), or in the gradient directions
(Kariyappa & Qureshi, 2019) of individual classifiers results
in ensembles with improved robustness.

However, the degree of improved performance depends on
the ensembled classifiers. When the constituent classifiers
are all highly accurate, there is little room for improvement
after ensembling; the gains are most pronounced with weak
classifiers. Possibly, a similar limitation holds for robust-
ness: perhaps ensembles of robust classifiers enjoy lower
robustness improvements than ensembles of non-robust clas-
sifiers. Pang et al. (2019), Horváth et al. (2021), Yang et al.
(2022) and Puigcerver et al. (2022) propose theoretical justi-
fications for why ensembles boost robustness but stop short
of quantifying the improvement, especially when the individ-
ual classifiers are already robust. This raises the following
questions on the robustness limitations of ensembles:

i. For a collection of robust classifiers, can their ensem-
ble be more robust than its constituents? If so, what
is the maximum achievable improvement, and under
which conditions?

ii. Conversely: Is it possible for an ensemble of robust
classifiers to be less robust than its constituents? If
so, what is the worst possible drop in robustness, and
under which conditions?

We tackle these questions by introducing S-Lipschitzness
in Section 3, a generalization of Lipschitz continuity that
enables tight analysis of the theoretical robustness of ensem-
bles. S-Lipschitzness gives rise to certificates which need
not be symmetric and are guaranteed to certify regions at
least as large as the classical Lipschitz ones.

Building on the S-Lipschitzness framework, in Section 4,
we offer the following answers to the above questions:
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i. It is possible for ensembles to certify every perturba-
tion that any of the individual classifiers can certify,
and even a superset of their union. However, we note
that the gain is most pronounced when the individual
classifiers are not robust; as the robustness of the indi-
vidual classifiers improves, the robustness gain from
ensembling becomes more limited.

ii. It is possible for ensembles to fail to certify perturba-
tions that every single one of the individual classifiers
certifies, e.g. the ensemble certificate can be a proper
subset of the intersection of the constituent certificates.
Interestingly, in the worst case, ensembles of robust
classifiers do not certify any perturbation at all. How-
ever, we show that as long as all classifiers have the
same prediction, the ensemble certificate will never be
a subset of the intersection.

2. Related work
Certified Adversarial Robustness. Deep neural networks
are vulnerable to adversarial attacks (Szegedy et al., 2014;
Goodfellow et al., 2015). The emergence of empirical de-
fences to these mechanisms (Papernot et al., 2017; Madry
et al., 2017; de Jorge et al., 2022), has motivated the need
for methods that achieve certified robustness. Those meth-
ods can be classified into exact, i.e., complete (Katz et al.,
2017; Ehlers, 2017; Huang et al., 2017; Lomuscio & Mag-
anti, 2017; Bunel et al., 2018), or conservative, i.e., sound
but incomplete (Gowal et al., 2018; Mirman et al., 2018;
Wang et al., 2018; Ayers et al., 2020). Probabilistic meth-
ods, mostly based on randomized smoothing (Lecuyer et al.,
2019; Cohen et al., 2019), have been shown to scale to large
networks but have high inference time complexity.

Robustness of Ensembles. While ensembles have long
been used to boost the accuracy of classifiers, interest in
their robustness properties is rather recent. Pang et al. (2019)
propose a regulariser that diversifies the non-maximal pre-
dictions of individual classifiers which leads to empirically
better robustness. Kariyappa & Qureshi (2019) recommend
a different type of regularisation: Diversity Training which
encourages misaligned gradients. Moreover, Horváth et al.
(2021) and Yang et al. (2022) observe that applying random-
ized smoothing after ensembling results in more certifiably
robust models than applying it to the individual classifiers.
Xu et al. (2021) proposed using a mixture of clean and
robust experts, while Puigcerver et al. (2022) studied the
Lipschitz continuity of ensembles.

3. S-Certificates with S-Lipschitzness
We start by introducing the definition of point-wise adver-
sarial robustness of a classifier1.

1A list of symbols is provided in Appendix A.

Definition 1 (Robustness). Given a classifier f : Rd →
RK , an x ∈ Rd and a set Q ⊂ Rd, f is said to be robust
at x if argmaxi∈1,...,K fi(x) = argmaxi∈1,...,K fi(x +
δ), ∀δ ∈ Q, where fi is the prediction for the i-th class.
We will call Q a certificate at x.

As Q, also known as a perturbation set, depends on x, this
notion of robustness is also called point-wise robustness. We
start by reviewing the classical notion of Lipschitzness and
its relation to robustness before introducing S-Lipschitzness:
our generalization that permits more general certificates.

3.1. Lipschitz Certificates

The Lipschitz continuity2 of a classifier is linked to its
robustness. The predictions of Lipschitz classifiers with
smaller Lipschitz constant change less for the same input
perturbations compared to Lipschitz classifiers with a larger
constant. Hence, Lipschitz continuity is commonly used
for robustness analysis of neural networks (Hein & An-
driushchenko, 2017; Bartlett et al., 2017; Cisse et al., 2017;
Weng et al., 2018; Huang et al., 2021; Zhang et al., 2021;
2022; Eiras et al., 2022; Alfarra et al., 2022b;a).

The Lipschitz constant of a function is closely related to its
gradients. The larger the norm of the gradients, the more
sensitive the function is to perturbations and the larger its
Lipschitz constant becomes. Furthermore, given a Lipschitz
classifier with a Lipschitz constant L, the prediction gaps,
i.e., the differences between the confidence of the top pre-
diction and the other classes, fully determine the certificate
Q. As such, we have the following proposition.
Proposition 1 (Certification of Lipschitz classifiers).
Take a differentiable3 classifier f : Rd → RK such that
supx ∥∇fi(x)∥⋆ ≤ Li, ∀i. Then fi is Li-Lipschitz with
respect to ∥·∥. Moreover, f has a certificate

Q=

{
δ ∈ Rd : ∥δ∥≤min

i ̸=cA

fcA(x)−fi(x)

Li+LcA

= min
i ̸=cA

ri
Li+LcA

}
.

(1)
Here, ∥·∥⋆ is the dual norm to ∥·∥ and cA is
argmaxi fi(x). If all classes have the same Lipschitz
constant L, i.e., Li ≤ L,∀i, the certificate simplifies to

Q =

{
δ ∈ Rd : ∥δ∥ ≤ fcA(x)− fcB (x)

2L
=

rcB
2L

}
, (2)

where cB = argmaxi̸=cA fi(x). (Proof on p. 20)

We refer to the formulation in Equation (1) as class-wise
Lipschitz continuity (CW ) since it accounts for the classes

2Some works refer to Lipschitz continuity as smoothness.
3For simplicity, we work with differentiable classifiers, even

though our results are also valid for continuous classifiers that are
not differentiable at finite number of points.
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a) b)

Figure 1. Lipschitz certificate for the ℓ∞ norm (a) and S-
certificate (b). These are shown with . The S-certificate is
a superset of the Lipschitz certificate. Both certificates are in the
uniform setting (U ) for a classifier f : Rd→RK with range space
of gradients S = {∇fi(x) : x ∈ Rd, i=1, . . . ,K} (shown in ).
We assume rcB = 1. B⋆ is the smallest ℓ1 ball containing S.

potentially having different Lipschitz constants. Often, how-
ever, in prior art, all classes are considered to have the same
Lipschitz constant L set such that L ≥ maxi Li. We refer
to this setting captured by Equation (2) as uniform Lipschitz
continuity (U ). Moreover, the Lipschitz certificates apply to
any choice of norm; the main text considers only ℓp norms
but we give further examples in Appendix C.1.

Example 1 (ℓp certificates). We can construct ℓp Lipschitz
certificates, by bounding the supremum of the dual ℓq norm
of the classifier gradients, where 1/p+1/q = 1. This follows
directly from Hölder’s inequality.

Figure 1a demonstrates the intimate relationship between
the norm of the gradients of a classifier, i.e., its Lipschitz-
ness, and the resulting certificates from Proposition 1. Take
a classifier f : Rd → RK and the set of all its gradients
S={∇fi(x) : x ∈ Rd, i=1, . . .,K} shown in . For sim-
plicity, assume also that rcB=1. As sups∈S ∥s∥1≤1.5, the
fi are 1.5-Lipschitz with respect to the ℓ∞ norm. Therefore,
from Equation (2) the certificate Q is the ℓ∞ ball of radius
1/3 shown with . Taking the supremum of the ℓ1 norm
introduces overapproximation of the true set of gradients.
Note how the region has the same supremum ℓ1 norm as
S and hence has the same certificate . However, is a
superset of the gradients S and must correspond to a more
sensitive classifier. This is due to the overapproximating ac-
tion of the supremum of the gradient norms. To rectify this,
we offer a novel generalization of Lipschitzness working
directly with the gradients S.

3.2. S-Certificates

We observed that Lipschitzness induces a larger gradient
overapproximation to the set of gradients set S. This begs
the question: Can we enlarge the certificates by avoiding
the dual norm ball overapproximation of the gradients and

work directly with the exact gradient set S? To this end, we
first generalize the definition of a Lipschitz function which
allows the use of the exact range space of the gradient as
opposed to any overapproximation.

Definition 2 (S-Lipschitz function). A function f : Rd →
R is S-Lipschitz for a bounded set S ⊂ Rd if it holds that:

−ρS(x− y) ≤ f(y)− f(x) ≤ ρS(y − x), ∀x, y ∈ Rd,

with ρS(δ) = supc∈S c⊤δ. If S is convex, then ρS corre-
sponds to its support function.

Intuitively, ρS(δ) is the biggest change in direction δ that
we can incur using the gradients in S. Note that the
S-Lipschitzness generalizes the previous definition of a
Lipschitz function. To see this, consider the case where
S = {x : ∥x∥⋆ ≤ L}. Following Hölder’s inequality,
we observe that Definition 2 reduces to the classical L-
Lipschitzness definition with respect to ∥·∥ norm.

In contrast to the classical Lipschitzness, S-Lipschitzness
accounts not only for the magnitude of the gradients but
also for their direction. We also can generalize the notion of
dual norms to sets that are not norm balls:

Definition 3 (Polar set). For a set S ⊂ Rd, the polar set4

to S of radius r > 0 is defined as:

(S)r =
{
δ ∈ Rd : ρS(δ) = supx∈Sx

⊤δ ≤ r
}
.

Take f : Rd → R to be S-Lipschitz with S = {x ∈ Rd :
∥x∥1 ≤ L}. Then, the polar set (S)r of radius r is the
perturbation set that will not change f by more than r. (S)r
is {δ ∈ Rd : ∥δ∥∞ ≤ r/L} which is the same result that
follows from f being L-Lipschitz. We are now ready to
generalize Proposition 1 with S-Lipschitzness:

Theorem 1 (S-certificates). Let f : Rd → RK be a clas-
sifier with fi being differentiable and ∇fi : Rd → Si for
all i = 1, . . . ,K. Then, each fi is Si-Lipschitz. Further-
more, for a fixed x, f is robust at x against all δ in

Q =
⋂

i̸=cA
(Si ⊕−ScA)

ri . (3)

Here, cA=argmaxc fc(x), ri=fcA(x)−fi(x), and ⊕ is
the Minkowski sum. If S ⊇ Si,∀i, then we have the
simplified certificate

Q = (S ⊕ −S)rcB , (4)

where cB = argmaxc̸=cA fc(x). (Proof on p. 21)

Note the similarities between Proposition 1 and Theorem 1.

4We are extending the standard notion of a polar set (Rockafel-
lar, 1970) to encompass radii different from 1.

3



Certifying Ensembles: A General Certification Theory with S-Lipschitzness

-1

-1

1

1 2 3

C
la

ss
 2

Class 2

C
la

ss
 3

Class 1
Class 3

Class 1

The uniform   -Lipschitz certificate is a subset of the 
class-wise   -Lipschitz certificate as it considers 
a larger set of gradients than strictly necessary. 

For this classifier, the class-wise   -Lipschitz 
certificate is the complete preimage of class 2.

The Lipschitz certificates (    and    ) are smaller than the
   -Lipschitz certificates because they ignore the direction 
of the gradients and account only for their magnitude.

For the      and       norms, the uniform Lipschitz certificates (   ) 
are smaller than the class-wise Lipschitz certificates (   )
because they consider the worst-case gradient norm across classes.

For the      norm, the uniform and class-wise Lipschitz certificates 
are the same. This is since the gradients for all classes have the
same      norm, hence no overapproximation in the uniform case. 

Figure 2. Lipschitz and S-Lipschitz certificates at x = [2, 0]⊤ for a linear classifier that splits the domain into three equal sectors.
Step-by-step explanation of the construction of the certificates is provided in Appendix C.3.

Si generalizes the Lipschitz constant Li, while the polar set
generalizes the dual norm. (Si ⊕−ScA)

ri is the certificate
that the prediction does not change from cA to i. Taking
the intersection in Equation (3) ensures that cA will not be
mistaken for any other class. This corresponds to the min
in Equation (1). We also have the CW (Equation (3)) and
U (Equation (4)) modes, mapping to the same modes for
the Lipschitz case (Equations (1) and (2)). Furthermore, we
show Theorem 1 is tight in an example in Proposition 9.

The certificate in Theorem 1 is a polar set (or intersection
of polar sets), hence, it has a natural dependence on the
gradient sets S and the prediction gap r:

Proposition 2 (Polar set dependence on S and r). Let
S,S1,S2,S3,S4 ⊂ Rd be bounded and r, r1, r2 > 0:

i. S1 ⊆ S2 ⇒ (S1 ⊕ 9S1) ⊆ (S2 ⊕ 9S2);
ii. S1 ⊆ S2 ⇒ (S1)

r ⊇ (S2)
r;

iii. r1 ≤ r2 ⇒ (S)r1 ⊆ (S)r2 ;
iv. ((S1⊆S3) ∧ (S2⊆S4)) ⇒ (S3⊕9S4)

r ⊆ (S1⊕9S2)
r.

where ⊕ is the Minkowski sum operator. (Proof on p. 22)

The statements i and ii imply that enlarging the set S of
an S-Lipschitz classifier reduces the certificate Q. This is
since a larger set of possible derivatives means a more sensi-
tive classifier, hence the set of perturbations that would not
change the classification is more restricted. Similarly, reduc-
ing the prediction gap r means that the certificate must be
smaller in order to prevent a change of prediction (statement
iii). Statement iv implies that any overapproximation to both
S1 and S2 for a fixed r results in a smaller certificate.

3.3. S-Certificates Subsume Lipschitz Certificates

We introduced Theorem 1 in order to avoid overapproxi-
mating the gradients of the classifier with a norm ball in
the hopes of obtaining larger certificates. Figure 1 com-
pares the Lipschitz and S-certificates and shows that this
is indeed the case. In Section 3.1 we showed that the illus-

trated classifier is 1.5-Lipschitz with respect to ℓ∞ norm
and that its Lipschitz certificate is therefore the ℓ∞ ball
of radius 1/3. The same result can be viewed as a special
case of S-certification when we observe that the classifier
is B⋆-Lipschitz with B⋆ = {x ∈ Rd : ∥x∥1 ≤ 1.5}. Hence,
for rcB = 1, from Equation (4) we get the same certificate
(B⋆ ⊕ 9B⋆)

1 = (2B⋆)
1 = {δ ∈ Rd : ∥δ∥∞ ≤ 1/3} ( in

Figure 1a). However, if we do not overapproximate S with
B⋆, then Equation (4) gives us the S-certificate (S ⊕ 9S)1
( in Figure 1b). Clearly, the S-certificate is larger than
the Lipschitz one. Proposition 10 in the appendix shows
that this is always the case. We now address two questions
related to the properties of S-certificates.

Could it be that the S-certificate in Figure 1 is larger than
the Lipschitz certificate because of a suboptimal choice
of norm? No, because whenever the set of gradients is not
centrally symmetric, i.e., S ̸= −S, then no matter what
norm we choose, we have B⋆ ⊃ S and thus an S-certificate
larger than the Lipschitz certificate. This is because norms
are centrally symmetric by definition.

Are CW certificates always supersets to the U certifi-
cates? The CW and U S-certificates are larger than any
Lipschitz certificate (Proposition 10). As CW generalizes
U , its certificates are supersets to the ones of U . This
follows from CW reducing to U by taking S⊇ ∪ Si, i.e.,
overapproximating some of the classes with a larger S . This
is analogous to setting L≥maxLi in the Lipschitz case.
Then, from Proposition 2iv, it directly follows that CW
certificates are always supersets of U certificates. Another
view is that U certificates are restricted to only symmetric
sets since S⊕9S is symmetric (Aux. Lemma 7), while CW
certificates, i.e.,

⋂
i ̸=cA

(Si⊕ 9 ScA)
ri , can be asymmetric.

The example in Figure 2 (with detailed calculations in Ap-
pendix C.3) shows how the certified regions can vary de-
pending on whether we use S-Lipschitz or Lipschitz certifi-
cates and on the CW or U modes.
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Class-difference (CD )
S-Lipschitz
(Theorem 2)

Class-difference (CD )
Lipschitz

(Weng et al., 2018;
Yang et al., 2022)

Class-wise (CW )
S-Lipschitz
(Theorem 1)

Class-wise (CW )
Lipschitz

(Proposition 1)

Uniform (U )
S-Lipschitz
(Theorem 1)

Uniform (U )
Lipschitz

(Proposition 1)

Take Li9j to be
sup ∥Si9j∥⋆

Take Li to be
sup ∥Si∥⋆

Take L to be
sup ∥S∥⋆

Replace Si9j

with Si⊕9Sj

Replace Si

with ∪Si

Replace Li9j

with Li + Lj

Replace Li

with maxLi

Figure 3. The lattice of continuity certificates. A → B means
that the certificate provided by B is a subset of the certificate of
A. Therefore, class-difference S-certificates are the largest, while
uniform Lipschitz certificates are the smallest.

3.4. Tightening Certificates via Class Differences

We conclude this section by showing how to further enlarge
the certificates by directly targeting the S-Lipschitzness
of the class difference. Recall the S-certificate Q =⋂

i ̸=cA
(Si ⊕ −ScA)

ri for the CW mode from Theorem 1.
The role of the Si⊕−ScA term is to measure the S-Lipschitz
continuity of hi9cA = fi − fcA . It is straightforward to
see that hi9cA is indeed (Si ⊕−ScA)-Lipschitz. However,
it is not necessarily the tightest S for hi9cA . Intuitively,
Si ⊕−ScA takes the differences of the gradients of fi and
fcA , regardless of the input x. However, the set of gradients
of hi9cA are the difference of gradients of fi and fcA at
the same x. If all classes are similarly sensitive at a given
x but their sensitivity varies jointly across the domain, the
difference between Si ⊕ −ScA and the gradients of hi9cA
can be significant. Using this, we can tighten Theorem 1
with class-difference (CD ) certificates.

Theorem 2. Let f : Rd → RK be a classifier such that
hi9j = fi − fj is Si9j-Lipschitz, ∀i, j ∈ 1, . . . ,K, i ̸= j.
Then, given an input x ∈ Rd, f is robust at x against all δ
in Q =

⋂
i ̸=cA

(Si9cA)
ri . (Proof on p. 23)

The following Example 2 illustrates how the CD certifi-
cates (Theorem 2) are larger than the CW certificates (The-
orem 1).

Example 2. Consider the piece-wise linear clas-
sifier f : R → R2 that we wish to certify at x0 = 2:

f1(x)=

{
0.1x+0.7 if x≤3,

1.1x−2.3 if x>3,

f2(x)=

{
0.3x+0.1 if x≤3,

1.3x−2.9 if x>3. 1 2 3 4
0

1

2

We have cA = 1, r2 = 0.2, S1 = {0.1, 1.1},
S2 = {0.3, 1.3}, S2 ⊕ −S1 = {0.2,−0.8, 1.2, 0.2},
S2−1 = {0.2}. Therefore, Theorem 1 gives a certificate
QCW = (S2 ⊕−S1)

r2 = [0.2/−0.8, 0.2/1.2]. Theorem 2 in-
stead gives the much bigger QCD = (S291)

r2 = (−∞, 1].

This approach generalizes the CW S-certificates from The-
orem 1 and provides the tightest certificates. For exam-
ple, replacing Si9cA with (Si⊕9ScA) recovers Equation (3).
Hence, throughout the rest of the paper, we will use class
difference unless stated otherwise. Prior work looked at the
Lipschitz CD certificates (Weng et al., 2018) and regulariza-
tion (Yang et al., 2022). To the best of our knowledge, we are
the first to offer a theoretical justification of why it enlarges
the certificates through the new lens of S-Lipschitzness.

Figure 3 summarizes the big picture relating the certificates
with function continuity and positions our new results with
respect to prior art. Our results fully complete the lattice re-
lating all components together, i.e., Lipschitz, S-Lipschitz,
CW , U , and CD modes, and their relation to certifica-
tion. The bottom row shows the Lipschitz certificates, while
the top row shows our S-certificates. The vertical arrows
demonstrate how S-certificates are always larger than the
corresponding Lipschitz certificates. The horizontal arrows
show that CW certificates are smaller than CD certificates,
and that U certificates are smaller than CW certificates.
Therefore, the CD S-certificates we introduce here provide
the largest certificates (top left corner), while the U Lips-
chitz certificates (bottom right) —which are commonly used
in prior work— result in the smallest certificates.

4. Robustness of Ensembles of Classifiers
We can use S-Lipschitzness to study how the robustness
properties of individual classifiers affect the robustness of
an ensemble of them. Given N classifiers f j : Rd → RK ,
consider their weighted ensemble:

g(x) =
∑N

j=1αjf
j(x), αj ≥ 0,

∑N
j=1 αj = 1. (5)

We will indicate the prediction gaps of f j as rj . We can
use the S-certificates from Theorem 2 in order to relate
the ensemble robustness to that of the individual classifiers.

Theorem 3 (Addition of S-Lipschitz classifiers). Take
an ensemble as in Equation (5) with N = 2 and the CD
setting, i.e., hj

i9k=f j
i − f j

k is Sj
i9k-Lipschitz. Then, at a

fixed x ∈ Rd, it holds that g is robust against all δ in

Qg =
⋂

i ̸=cgA

(
α1S1

i9cgA
⊕ α2S2

i9cgA

)rgi
,

with cgA = argmaxi gi and rgi = gcgA − gi. The case for
N > 2 follows by induction. (Proof on p. 23)

In the U mode, where all classes have the same Lipschitz-
ness Sj ⊇ ∪iSj

i the Sj
i9k term reduces to Sj ⊕−Sj .

We study whether ensembling two classifiers f1 and f2
results in better robustness by comparing the ensemble cer-
tificate Qg with the individual certificates Q1 and Q2. We
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identify three regimes. First, the ensemble certificate Qg

includes all certified points in Q1 and Q2. Second, the
ensemble certificate fails to include some perturbations cer-
tified in both Q1 and Q2. Third, an ensemble certificate
somewhere between the two. Formally,

Qg ⊃ Q1 ∪Q2 uniform improvement, ❶

Q1 ∩Q2 ⊆ Qg ⊆ Q1 ∪Q2 inconclusive, ❷

Q1 ∩Q2 ⊃ Qg uniform reduction. ❸

Ideally, we wish to construct ensembles that are in regime
❶. We may tolerate ensembles in ❷. But most importantly,
we want to avoid ensembles in regime ❸ at all costs.

The certification regime depends on whether we are in the
U or CD mode. It also depends on the ensemble agreement
on the top predictions, i.e., which of the following holds:

cA = cjA = argmax
i

f j
i (x), for all j ∈ 1, . . . , N c=A

cjA ̸= cj
′

A , for j ̸= j′ c̸=A

cB = cjB = argmax
i̸=cjA

f j
i (x), for all j ∈ 1, . . . , N c=B

The rest of this section outlines the conditions leading to
each one of the ❶,❷ and ❸ certification regimes.

Let us first examine a common scenario for ensembles and
identify what certification regime most ensembles fall in. In
particular, consider the setting where the constituent clas-
sifiers agree on the top two predictions (c=A and c=B ). This
is a reasonable assumption, particularly when the number
of constituent classifiers N is small and the training pro-
cedure for all classifiers is similar. Under the common U
mode where all classes are similarly Lipschitz, one might
guess that ensembling such agreeing classifiers must boost
robustness. However, the above conditions put the ensemble
solidly in regime ❷, as shown in Theorem 4.
Theorem 4. Consider an ensemble of U classifiers and a
fixed x for which c=A and c=B hold. Then, for any choice
of weights αj in Equation (5), the S-certificate of the
ensemble satisfies ❷. (Proof on p. 24)

Theorem 4 is particularly concerning when S1 and S2 are
norm balls with the same norm but different radii, as we
show with an example in Appendix C.4.

Under the assumptions in Theorem 4 ensembling can never
be in the favourable regime ❶. The following section shows
how relaxing these conditions enables all three regimes.

4.1. Certification Governed by the Prediction Gap

Theorem 3 shows that the prediction gaps r and the conti-
nuity S interact in complex ways in the construction of the
ensemble certificate Qg . However, if all classifiers have the

same smoothness for all the classes, i.e., U and Sj = S,
then the differences between Q1, Q2 and Qg are fully de-
termined by r1, r2 and rg. We will refer to this setting
as U′ . This restriction is not uncommon as often ensem-
bled classifiers are identically trained. For example, if ran-
domized smoothing is used, then S is uniquely defined by
the smoothing distribution (Yang et al., 2020; Eiras et al.,
2022; Rumezhak et al., 2023), which is the same for all
constituents.

In this case, there is one-to-one mapping between the certi-
fication regimes ❶, ❷, ❸ and the prediction gaps. Consider
the following conditions on the prediction gaps:

rgcB > maxj r
j
cB = r gap gain, ①

r ≤ rgcB ≤ r inconclusive, ②

minj r
j
cB = r > rgcB gap loss. ③

Then, we have that ① ⇒ ❶, ② ⇒ ❷, and ③ ⇒ ❸. Therefore,
in this subsection, we will focus on the conditions resulting
in ①, ②, and ③ towards understanding the certification
properties of the ensembles in mode U′ .

Same top two predictions results in ②. Note that if the top
predictions are consistent across all constitute classifiers, i.e.
c=A and c=B hold, this implies that the ensemble prediction
gap is the linear combination of the individual predictions
gaps rgcB =

∑
j αjr

j
cB . Hence, the gap regime must be ②

as minj r
j
cB ≤ rgcB ≤ maxj r

j
cB , which implies regime ❷

for U′ . This is a special case of Theorem 4.

Regime ❶ is possible. For a U′ ensemble, prediction gaps
in regime ① (rgcB>r) imply ❶. One conditions for ❶ is c̸=A
and c=B with the classifiers having similar confidences in
the top two classes and low confidence in all other classes
(see Figure 5a). Another possibility is c=A , but each classifier
having a different second prediction, as in Figure 5b.

The margin of improvement when ① holds is small. Al-
though the feasibility of regime ① is noteworthy, unfortu-
nately, the improvement of rgcB over r is limited.

Proposition 3. Consider N classifiers over K classes.
We have that for any ensemble g the prediction confidence
is upper bounded as follows:

rgcB ≤ r +
1− r

2
− 1− r

2(K − 1)
(10)

The bound is tight: given r and K there exists an ensemble
f1, . . . , fN , such that the prediction gap rgcB of g attains
the upper bound. (Proof on p. 24)

Equation (10) does not depend on the weights αj . Further-
more, rgcB − r decreases monotonically with r, reaching 0
for r = 1: improving the robustness of the best classifier de-
creases the room for improvement of the ensemble. This is a

6



Certifying Ensembles: A General Certification Theory with S-Lipschitzness

0.0 0.2 0.4 0.6 0.8 1 .0

0.0

0.2

0.4

0.6

0.8

1 . 0

Impossible region

Best individual classifer gap ( )G
ap

 o
f t

he
 e

ns
em

bl
e 

w
ith

 th
e 

la
rg

es
t g

ap
 ( 

   
 )

a)

0.0 0.2 0.4 0.6 0.8 1 .0

Impossible region

Best individual classifer gap ( )G
ap

 o
f t

he
 u

ni
fo

rm
 w

ei
gh

ts
 e

ns
em

bl
e 

(  
   

)

b)

0.0 0.2 0.4 0.6 0.8 1 .0

Worst individual classifer gap ( )

Di�erent top
predictions
Same top
predictions

G
ap

 o
f t

he
 u

ni
fo

rm
 w

ei
gh

ts
 e

ns
em

bl
e 

(  
   

)

c)

Figure 4. A set of 1000 ensembles of 2, 3 or 4 classifiers, each a uniform draw from the 4-dimensional probability simplex. (a) shows
the best individual gap among the classifiers in each ensemble (r) vs the largest ensemble gap (rgcB ) attainable across all αj . The larger
the best gap r, the lower the potential gain rgcB − r (the vertical gap between the diagonal and the impossible region). (b) has the same
horizontal axis as a) but the ensemble gap (rgcB ) is computed for uniform weights αj . Most of the uniform weights ensembles witness
gain loss. (c) has the same vertical axis as b) but the horizontal axis shows the worst individual gap (r) instead of the best one. The
ensembles with same (c=A ) and different top predictions (c̸=A ) are highlighted, showing that the c=A regime always results in rgcB ≥ r.
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Figure 5. Ensembles of two classifiers (N=2,K=3) in regime ①

(a and b), and regime ③ with rg = 0 and hence Qg = {0} (c).

key finding: ensembling can do little to boost the robustness
of a set of already robust classifiers. We illustrate this in
Figure 4a: for 1000 random classifiers, we show the gap rgcB
vs r for the weights αj that maximize rgcB for the specific
ensemble. The margin of improvement via ensembling is
the gap between the diagonal and the bottom boundary of
the orange region and indeed decreases to 0 as r→1.

In practice, the prediction gap gains are likely even
smaller. Most ensembles of random classifiers stay far from
the bound and have even lower ensemble gap gain rgcB than
Equation (10) predicts, as Figure 4a shows. Furthermore,
in reality, one has to pick a single set of weights αj for all
inputs x. Often that is the uniform ensemble weight, i.e.,
αj=1/N . We show the gap gain for random classifiers with
uniform weights in Figure 4b. Only a handful of ensembles
remain in the ① regime (above the diagonal in Figure 4b)
under uniform weights. The majority of the points have
rgcB<r and are in ② or ③ (under the diagonal). Therefore,
in practice, ensembling rarely results in gap gains which is
at odds with the ensembling for robustness paradigm. This
is also true for real-world ensembles (see Appendix B).

Regime ❸ is possible. Figure 4b compares rgcB against r,
i.e., the most robust individual classifier. However, at dif-
ferent inputs x the best classifier may be different. Even
if g is always marginally less robust than the most robust

classifier at a single x, g might still be overall more robust
than any single f j . To this end, Figure 4c shows the en-
semble gap rgcB against the worst individual gap r. This
shows that roughly half of the points are in gap regime ③,
indicating that ensemble are often less robust than the least
robust individual classifier. For U′ ensembles this directly
implies regime ❸. The same findings hold for the real-world
classifiers in Appendix B: for all of them the constituent
models are on average more robust than the ensemble.

Ensembles can result in zero robustness. To make matters
worse, not only is it possible that rgcB is smaller than all
individual gaps, but it can even be 0, i.e., Qg = {0}.

Proposition 4. For any set of N ≥ 2 classifiers satisfy-
ing c ̸=A , there exist weights αj for which the resulting
ensemble has rgcB = 0 and a certified perturbation set
Qg = {0}. (Proof on p. 25)

Figure 5c shows an example of rgcB = 0. Therefore, ensem-
bling not only can reduce robustness but can also result in
an entirely non-robust classifier. Figures B.3 and B.4 show
examples of this scenario occurring in practice.

Same top predictions prevent gap regime ③. The possi-
bility of ③ and the complete loss of robustness is certainly
disappointing. However, there is a simple way to prevent ③
from occurring. Proposition 4 constructs an ensemble which
has a decision boundary passing through x. This is only
possible if there are two classifiers in the ensemble with
different top predictions (c ̸=A ). As long as all classifiers
have the same top prediction, the ensemble cannot have a
decision boundary passing through x. Not only that, but
also it will never be in regime ③, as illustrated by the red
subset of ensembles in Figure 4c.

7
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Proposition 5. No ensemble of N classifiers over K
classes with ri ≥ 0, i=1, . . . , N satisfying c=A can be
in regime ③. (Proof on p. 25)

Therefore, a practical way to avoid ensembles that are less
robust than the least robust individual classifier is to enforce
that all classifiers have the same top prediction.

Summary. Restricting the ensemble to satisfy c=A and c=B
leads to regime ②; no gap gain nor gap loss (Theorem 4).
Dropping both conditions enables regime ① but also ③.
However, keeping only condition c=A , prevents regime ③
while keeping ① and ② possible (Proposition 5). For robust
classifiers, the best-case ensemble prediction gap gains are
very small (Proposition 3). Finally, for ensembles in the U′

mode ①,② and ③ imply ❶,❷ and ❸, respectively.

4.2. Ensemble Certification for Different Sj

Section 4.1 considered the U′ case where the prediction gap
regimes are enough to reason about the certification regimes
❶,❷,❸. It this section, we drop the U′ requirement and
show how the same results hold for general ensembles.

Regimes ❶ and ❸ are possible for general smoothness.
This follows trivially from the examples in Figure 5 as gen-
eral S-Lipschitzness subsumes the U′ case. Proposition 4
applies too, meaning that ensembles of robust classifiers can
have Qg = {0} regardless of their S-Lipschitzness.

Same top predictions prevent regime ❸. As this is a non-
existence result, it does not follow directly from Proposi-
tion 5. We would have to take into account the interaction
of the shape and size of the S sets and the prediction gaps r.

Proposition 6. No ensemble of classifiers as in Theorem 3
satisfying c=A can be in regime ❸. (Proof on p. 26)

Therefore, c=A is sufficient to ensure regimes ❶ or ❷, and
avoid ❸. This improves on Theorem 4 as relaxing the c=B
and U conditions enable regime ❶, while still preventing
❸, and extends Proposition 5 to general ensembles.

Themargin of improvement is still limited. Proposition 3
showed that even in regime ①, the gap gain is limited. A
similar observation holds for the robustness gain of arbitrary
Sj . To simplify the analysis, we assume c=A holds. This is
a reasonable assumption as c=A prevents ❸ as per Proposi-
tion 6. We will also assume that all S are of the same shape,
e.g., norms, though not necessarily of the same size5. This
allows us to work with scalar radii instead of sets.
Proposition 7. Take two classifiers f1, f2 : Rd → RK

satisfying c=A . Further, assume that all hj
i9k = f j

i − f j
k

are ϵj,i9kB⋆-Lipschitz for some closed convex symmetric

5This is more general than the U′ condition in Section 4.1
which restricted the sizes to also be the same.

set B⋆. Then, the maximum improvement in the certified
radius Rg of g relative to the larger one of R1 and R2 is

Rg9max{R1, R2}≤ 1

min{M1,M2}
−

min{r1
c1B
, r2

c2B
}

min{M1,M2}+∆
,

where we have defined Mk as mini̸=cA ϵk,i9cA and ∆ as
maxk=1,2 maxi ̸=cA(ϵk,i9cA−Mk). (Proof on p. 27)

In the above proposition, min{M1,M2} refers to the radius
of the least sensitive classifier, i.e., the one with smallest
Lipschitz constant or S-Lipschitzness. ∆ measures how
the Lipschitzness ranges amongst the classes and classifiers.
∆ = 0 implies that all ϵk,i−cA are the same and therefore,
all classifiers have the same Lipschitzness for all class pairs.
On the other hand, large ∆ means that some classifiers
are more robust for some class pairs while others are very
sensitive for particular class pairs.

Proposition 7 is more restrictive when the individual clas-
sifiers have large predictions gaps (r1

c1B
, r2

c2B
) and/or similar

Lipschitzness (small ∆). Both factors likely hold for robust
classifiers: the large prediction gap is necessary for a large
certificate and the similar Lipschitzness ensures similarly
sized certificates for the different classes. Therefore, in line
with Proposition 3, the ensembling improvement is only
significant when the individual classifiers are not robust.

Sufficient conditions for improved certification are re-
strictive. Focusing again on the setting of Proposition 7,
we can provide sufficient conditions for regime ❶:
Proposition 8. Take an ensemble as in Proposition 7. As-
sume two different second top predictions and that classes
that are not in the top two predictions of any individual
classifier have low confidences6. Then ❶ occurs when:

f1
cA>f1

c2B
+r2c2B

ϵ1,c2B9cA

ϵ2,c2B9cA

and f2
cA>f2

c1B
+r1c1B

ϵ2,c1B9cA

ϵ1,c1B9cA

.

(Proof on p. 28)

The conditions in Proposition 8 are rather limiting: the
second class predicted by f2 should have low enough con-
fidence by f1 and vice versa. This means that ensembling
ends up being beneficial at a fixed x if each classifier has a
different second prediction and all other predictions are very
close to 0. Therefore, regime ❶ is unlikely to occur unless
the classifiers are carefully regularized. Pang et al. (2019)
suggest encouraging diversity among the non-maximal pre-
dictions. Proposition 8 theoretically justifies this approach.

Summary. The findings from Section 4.1 hold also with-
out the U′ assumption. Namely, all three regimes ❶,❷,❸
are possible, c=A prevents ❸ (Proposition 6) and the best-
case ensembling improvement is small for robust classifiers

6“Low confidences” is formally defined in the proof.
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(Proposition 7). Furthermore, we provide sufficient condi-
tions for ❶ but these are severely limiting (Proposition 8).

5. Discussion
In this section, we provide some comments on the implica-
tions and limitations of our theoretical analysis.

The conditions preventing regime ❸ also prevent accu-
racy gain for the ensemble. Proposition 6 showed that c=A
prevents regime ❸. However, ensembling cannot boost accu-
racy when in the c=A regime. Hence robustness seems to be
at odds with accuracy, in line with the robustness-accuracy
trade-off (Zhang et al., 2019; Tsipras et al., 2019).

Ensembling can generate directionally-balanced certifi-
cates. When we have different shapes for S1 and S2, an
ensemble can be used to trade-off classifiers that specialize
in robustness in particular directions. As shown in Figure 6,
this technique can be used to construct more directionally-
balanced certificates. Therefore, depending on the notion of
robustness, ❷ can be desirable when proper care is taken.

The prediction gap and S-Lipschitzness are not indepen-
dent. Throughout this paper, we treated the S-Lipschitzness
and the prediction gaps as two independent tools for boost-
ing robustness. Intuitively, one would like to have as much
as possible from both: smooth classifiers with high predic-
tion gaps. However, this is not possible. The smoother a
classifier is, the lower its prediction gaps are likely to be.
Therefore, the robustness gains from ensembling are likely
even smaller than the already conservative bounds we have.
Appendix B offers experiments demonstrating this effect.

Robustness over distributions rather than single points.
Section 4 focused on point-wise robustness: all the results
presented there are for a fixed x. In reality, we are usually
interested in the expected robustness over a distribution of
inputs. Even if the ensemble performs worse than the best
individual classifier (e.g., ❷) at all x, it might still be overall
more robust than any individual classifier. Furthermore, the
unfavourable conditions in Proposition 4 might exist for
some x, but it is likely that they are rare for real classifiers
and distributions. We provide experimental observations
to this effect in Appendix B. The highlight is that for all
ensembles considered, the ensemble certificates are smaller
than these of the individual classifiers for more than 50%
of the inputs. Hence, real world ensembles seem to worsen
robustness across distributions of inputs.

Limitations of the S-Lipschitzness analysis. Most of the
results in this paper are valid within the context of S-
certificates: inferring certificates for ensembles from the S-
Lipschitzness properties of the individual classifiers. While
this framework was necessary for the theoretical analysis, it
might be conservative. Methods that construct certificates

Q1 Q2 Qg

Figure 6. Highly directional certificates
can be ensembled to obtain directionally
balanced certificates. Qg is constructed
for αj=1/2 and r1cB = r2cB = 1.

without direct reliance on (S)-Lipschitzness properties, e.g.,
abstract interpretation (Gehr et al., 2018) or SMT solvers
(Huang et al., 2017), might be able to provide larger certifi-
cates than what our theory predicts. However, these methods
cannot provide general theoretical analysis of the type we
offer in this work.

Tightening via local S-Lipschitzness In Theorems 1 and 2,
we required that fi is Si-Lipschitz. However, we do not
necessarily need to constrain the S-Lipschitzness across
the whole domain. Instead, we can work with fi locally
Si-Lipschitz in a set P containing x (Weng et al., 2018).
Note that when using local S-Lipschitzness, the certificate
is valid only within P , i.e., the valid certificate is P ∩Q.

6. Conclusion
We propose a new notion of Lipschitz continuity, namely
S-Lipschitzness, that offers tighter robustness certificates.
We use this new framework to analyse the robustness prop-
erties of ensembles of classifiers. Our results theoretically
suggest that ensembling can improve the certification over
the most robust individual classifier only under very strict
conditions. Moreover, even when improvements are possi-
ble, they are theoretically very small. In addition, we prove
that ensembling, if not done appropriately, can result in an
ensemble worse than the least robust constituent classifier.
Even worse, it may result in a classifier with zero robustness.
Our theory suggests that boosting robustness via ensembling
requires all classifiers to have the same top predictions and
diverse second top predictions.
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A. List of symbols
For the ease of the reader, we have summarized the notation used in the paper in the following table:

αj The weight of the j-th classifier in the ensemble
B A norm ball
B⋆ A dual norm ball
cjA The class predicted by the j-th classifier with the highest confidence
cjB The class predicted by the j-th classifier with the second highest confidence
cgA The class predicted by the ensemble with the highest confidence
cgB The class predicted by the ensemble with the second highest confidence
c=A All top predictions in the ensemble are the same
c̸=A At least two classifiers in the ensemble differ in their top prediction
c=B All second highest predictions in the ensemble are the same
f A classifier
fi The confidence for the i-th class of the classifier f
f j The j-th classifier in the ensemble of classifiers
g An ensemble of classifiers f1, . . . , fN
hi9k The difference of the confidence of classes i and k

i Class index
j Classifier index in an ensemble
K Number of classes
Li The Lipschitz constant for the i-th class
N Number of classifiers in the ensemble
Q Certificate
Qj Certificate for the j-th classifier in the ensemble
Qg Certificate for the ensemble
rji The confidence gap between the top class and the i-th class for the j-th classifier in the ensemble
rgi The confidence gap between the top class and the i-th class for the ensemble
r The maximum confidence gap in the ensemble (maxj r

j
cB )

r The minimum confidence gap in the ensemble (minj r
j
cB )

Rj Certified radius for the j-th classifier in the ensemble when Qj is a norm ball
Rg Certified radius for the ensemble when Qg is a norm ball
ρS Support function
S Range space of gradients
Si Range space of gradients for the i-th class
Sj Range space of gradients for the j-th classifier in the ensemble
Si9k Range space of gradients for the difference of the confidence of classes i and k (hi9k)

(S)r Polar set of S with radius r
σ Smoothing Gaussian noise for randomised smoothing
U Uniform continuity regime
U′ Uniform continuity regime with all classifiers having the same S-Lipschitz for all classes
CW Class-wise continuity regime
CD Class-difference continuity regime

13
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B. Experiments
In this appendix we describe several experiments that vali-
date and illustrate the observations in the main body of the
paper.

Experimental setup We use the ensembles trained by
Horváth et al. (2021) that they have released publicly7. The
classifiers are based on the ResNet20 and ResNet50 archi-
tectures (He et al., 2016) and are trained respectively on
CIFAR10 (Krizhevsky, 2009) and ImageNet (Russakovsky
et al., 2015). We use randomized smoothing (Lecuyer et al.,
2019; Cohen et al., 2019) to obtain individual classifiers
with known continuity properties (S). Concretely, a model
smoothed with independent Gaussian noise with variance σ2

is
√

2/πσ2-Lipschitz for the ℓ2 norm (Salman et al., 2019a).
As standard with randomized smoothing, each classifier
is trained with Gaussian noise with variance matching the
smoothing variance (Lecuyer et al., 2019).

We consider the following ensembles:

i. Ensemble of N=6 ResNet20 classifiers trained on CI-
FAR10 (K=10), trained and smoothed with σ=0.25.

ii. Ensemble of N=6 ResNet20 classifiers trained on CI-
FAR10 (K=10), trained and smoothed with σ=0.50.

iii. Ensemble of N=6 ResNet20 classifiers trained on CI-
FAR10 (K=10), trained and smoothed with σ=1.00.

iv. Ensemble of N=3 ResNet50 classifiers trained on Ima-
geNet (K=1000), trained and smoothed with σ=1.00.

We construct each ensemble with uniform weights αj =
1/N . As all classifiers comprising an ensemble have the same
S and are in the uniform continuity regime (U ), they are
also in the U′ regime. Hence, as discussed in Section 4.1,
we can directly infer the robustness certificates from the
prediction gaps alone.

Note that for the experiments in this appendix, we first
smoothen the individual classifiers and then ensemble them.
This is as to make sure that the individual classifiers are
smooth. This is opposite to the procedure suggested by
Horváth et al. (2021) and Yang et al. (2022). They ensemble
first and smoothen the ensemble second.

Regime ❶ is possible but occurs rarely in practice. From
the 1000 CIFAR10 inputs at which we evaluated the three
ResNet20 ensembles not a single one had an ensemble gap
rgcB larger than the best individual classifier gap r. This
is shown in the left-most column in Figure B.1 that shows
rgcB against r: there is no points over the diagonal. The
ResNet50 ensemble, though, has 7 samples out of 500 in
regime ❶, i.e., for which the ensemble has a larger certified
radius than the best individual classifier (left plot in Fig-
ure B.2). However, this amounts to only 1.4% of the inputs

7Trained models are available at https://github.com/
eth-sri/smoothing-ensembles

being in regime ❶. Moreover, they are all very far from
the bound on the maximum ensemble improvement from
Equation (10). This supports our hypothesis that, while the
bound is achievable, the improvements ensembles would
see in practice would be well below it.

Regime ❸ occurs in practice but is also rare. Regime ❸,
in which the ensemble fails to certify perturbations that
every one of the individual classifiers certifies, does occur
in practice as well. This is evident from the points under
the line in the middle plots in Figures B.1 and B.2 which
show rgcB against r. For all four ensembles, there are inputs
in regime ❸. For the ResNet20 ensembles evaluated on
CIFAR10, this occurs in respectively 3.9%, 4.1% and 3.3%
of the cases. The ResNet50 ensemble has 10.2% of its
ImageNet samples in regime ❸. These are much lower
rates of occurrence than in the random ensemble in Figure 4
which is in regime ❸ for 43.2% of the inputs. Still, all four
ensembles have much larger rates of regime ❸ compared
to regime ❶. Therefore, this indicates that for real-world
ensembles, most inputs are likely in regime ❷, with some
in regime ❸, and very few, if any, in regime ❶.

Overall, the ensembles have smaller certificates than the
individual classifiers. Most inputs of real-world ensembles
seem to be in regime ❷. This means that the ensemble
prediction gap for an input x (and hence certified radius)
is between the smallest and the largest individual classifier
gaps at x. However, this does not tell us much about how
the ensemble compares with a single individual classifier,
which is what one needs in order to decide whether it is
better to use the ensemble or a single model.

We can make this comparison with the help of the leftmost
and rightmost plots in Figures B.1 and B.2 which show rgcB
against respectively the best individual classifier gap r and
the gap of one of the classifiers in the ensemble r1cB . The
plots also show the average ensemble gap rgcB and average
individual gap r1cB across all samples. We can see that for all
four ensembles, the average ensemble gap is smaller than the
average gap of the individual classifier. Therefore, as far as
the average certified radius is concerned, the ensembles have
lower robustness than the individual classifier. Furthermore,
only between 35% and 48% of the inputs have an ensemble
gap that is larger than the individual gap. Hence, it appears
that if one cares about robustness, they would be better off
selecting one of the individual classifiers rather than the
ensemble, for all four of these examples.

Ensembles of robust predictions can be non-robust in
practice. Proposition 4 showed that it is possible that ensem-
bles which, at a given x, all have rjcB > 0, when ensembled
can have rgcB = 0 and hence a certificate Qg = {0}, re-
gardless of the continuity properties of the classifiers. One
would hope that this is a purely theoretical curiosity and
such situations do not occur in practice. However, as all
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Figure B.1. Gap of the uniform weights ensemble plotted against the best individual gap (left), the worst individual gap (center) and
against the gap of one of the constituent classifiers (right). The plots against the other classifiers are similar and are hence omitted. Each
row shows one ensemble of 6 classifiers. Each individual classifier is a smoothed ResNet20 classifier trained by Horváth et al. (2021)
using the train split of CIFAR10 and a different random seed. For these plots, we evaluate all classifiers at the same 1000 inputs from the
CIFAR10 test split, each corresponding to a single point in the plots. The impossible region in the leftmost plots follows from the bound
from Equation (10). We have reported the average value for the horizontal and vertical axis for each plot. The percentage of inputs for
which the ensemble has a larger gap than the individual classifier, is also shown in the rightmost plots.
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Figure B.2. Gap of the uniform weights ensemble plotted against the best individual gap (left), the worst individual gap (center) and
against the gap of one of the constituent classifiers (right). The plots against the other classifiers are similar and are hence omitted. Each
individual classifier is a smoothed ResNet50 classifier trained by Horváth et al. (2021) using the train split of ImageNet and a different
random seed. For these plots, we evaluate all classifiers at the same 500 inputs from the ImageNet test split, each corresponding to a
single point in the plots. The impossible region in the leftmost plot follows from the bound from Equation (10). We have reported the
average value for the horizontal and vertical axis for each plot. The percentage of inputs for which the ensemble has a larger gap than the
individual classifier, is also shown in the rightmost plot.

of the centre plots in Figures B.1 and B.2 show, for every
ensemble, there are inputs for which the worst individual
classifier has gap well above 0, while the ensemble gap is
practically 0. These are the points close to the horizontal
axis. We discuss two examples in more details.

Figure B.3 shows one CIFAR10 sample and its predictions
by all 6 ResNet20 (σ = 1.00) models and the ensemble
prediction. On average, the 6 classifiers have prediction
gap 0.19, with the smallest one being r = r5cB = 0.09.
However, the ensemble gap is rgcB = 0.0069, more than an
order of magnitude smaller than the smallest individual gap.
Hence, the ensemble certificate would too be more than
an order of magnitude smaller than the smallest individual
certificate. This situation occurs as the 6 classifiers are split
between classifying the input as a horse or a deer, resulting
in very close predictions for the ensemble.

Similarly, the three ResNet50 classifiers have three different
predictions for the input in Figure B.4, none of which is
the correct class (overskirt). With r = 0.21 and rgcB =
0.0076, this leads to almost 30 times smaller certified radius
of the ensemble compared with the least robust individual
classifier.

In both of these examples, people would also likely be
confused and would make mistakes. Perturbing just a couple
of pixels in the CIFAR10 input would likely be sufficient
to nudge one in classifying the input as horse or as deer.
Therefore, lack of robustness in the ensemble might not be

a bug, but in fact be a feature: a sign of better calibration.

Different top prediction is sufficient to ensure an ensem-
ble is not in regime ❷. From Propositions 5 and 6 we
know that inputs for which all individual classifiers agree
(c=A ) must be in regimes ❶ or ❷. From the center plots in
Figures B.1 and B.2 one can observe that all inputs corre-
sponding to this regime (in orange) are above the diagonal.
Therefore, our experimental results support Propositions 5
and 6.

C. Additional examples
C.1. Examples of Lipschitz certificates for different

norms

In the main text, we showed how to construct ℓp certificates
(Example 1) and gave an illustration with an ℓ∞ Lipschitz
certificate in Figure 1. We offer some further examples here
that we illustrate in Figure B.5 using the same classifier as
in Figure 1.

Other ℓp certificates. Let’s take a look at the other two
commonly used ℓp certificates. First, there is the ℓ2 certifi-
cate. From Example 1 and the Hölder inequality we have
that the dual norm of ℓ2 is again ℓ2. Hence, the certificate
can be computed by finding the radius of the smallest ℓ2
ball that contains the gradients S. In the case illustrated in
Figure B.5b we have sups∈S ∥s∥2=1.12. Hence, f is 1.12-
Lipschitz with respect to the ℓ2 norm, and from Proposition 1
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Figure B.3. A CIFAR10 sample for which the ResNet20 (σ = 1.00) ensemble is in regime ❸ and has a certificate Qg barely larger than
{0}. For clarity, only the 5 classes with the highest confidences are shown.
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Figure B.4. An ImageNet sample for which the ResNet50 ensemble is in regime ❸ and has a certificate Qg barely larger than {0}. For
clarity, only the 5 classes with the highest confidences are shown.

a) b) c) d) e) g)

Set of gradients ( ) Certificate ( )
for a) to f) and

for g)
Minimal dual norm ball 
containing the gradients (               )

-Certificate
Certificate Certificate Certificate Certificate Certificate

f)

Certificate for the 
Minkowski functional 

norm of  

Set     inducing 
the       norm

Figure B.5. (a-f) are Lipschitz certificates for the set of gradients S = {∇fi(x) : x ∈ Rd, i = 1, . . . ,K}. We assume the U mode and
rcB = 1. B⋆, the minimum dual norm ball containing S, is shown. The certificate Q is the polar set (2B⋆)

1. For (d) and (e) we have

Σ = Λ =
[

5/4 1/4
1/4 5/4

]
. (f) is the certificate constructed using the Minkowski functional norm (gauge) of K, the closed convex symmetric set

marked in blue. (g) is the S-certificate for the same S . As there is no overapproximation of S , the certificate is directly Q = (S ⊕ −S)1,
the largest of them all. Note that (a) and (g) are the same as (a) and (b) in Figure 1.
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we have that the certificate Q is {δ ∈ R2 : ∥δ∥2 ≤ 1/2.24}
which corresponds to the circle marked with in Fig-
ure B.5b.

Similarly, the dual norm for ℓ1 is ℓ∞. Hence, we ob-
serve that f is 1-Lipschitz with respect to the ℓ1 norm,
that is sups∈S ∥s∥∞=1. Therefore, the ℓ1 certificate is
Q = {δ ∈ R2 : ∥δ∥1 ≤ 1/2}, the rhombus marked with
in Figure B.5c.

Anisotropic certificates. Proposition 1 is not limited to ℓp
norms. Anisotropic certificates can be larger in some di-
rections and smaller in others. This is in contrast with the
ℓp certificates which have the same radius in all directions.
This allows anisotropic certificates, in either of the CD ,
CW or U modes, to be tighter in directions with smaller
gradients. For example, ellipsoidal certificates —certificates
with the ℓΣ2 norm defined as ∥δ∥Σ2 =

√
δ⊤Σ−1δ— can be

constructed by bounding the gradients with its dual norm
ℓΣ

−1

2 . Similarly, generalized cross-polytopes can be con-
structed with the ℓΛ1 norm defined as ∥δ∥Λ1 =

∥∥Λ−1δ
∥∥
1

by
bounding gradients with its dual norm ℓΛ

−1

∞ . The smallest
norm balls ( ) for Σ = Λ =

[
5/4 1/4
1/4 5/4

]
and the correspond-

ing certificates ( ) are shown in Figure B.5d and e. Refer
to Eiras et al. (2022) for further details.

Arbitrary norms defined as Minkowski functionals. Any
closed convex symmetric set K ⊂ Rd containing the origin
gives rise to a norm on Rd defined as pK(x) := inf{a ∈ R :
a > 0 and x ∈ aK}. This is called Minkowski functional or
gauge of K (Schechter, 1997). Intuitively, pK(x) measures
how much we need to scale K in order to have x barely
fitting in it, i.e., x being on the border of the scaled K.
Figure 1f illustrates such a closed convex symmetric set K
in and the minimum dual p⋆K norm containing S ( )
with a radius sups∈S ∥s∥p⋆

K
=1. Therefore, the certificate is

the pK norm ball of radius 1/2, shown in .

Comparison with the S-certificate. The S-certificate
shown with in Figure 1g is the largest of all seven cer-
tificates. Proposition 10 shows that this must always be the
case: there is no norm for which the Lipschitz certificate
will be a strict superset of the S-certificate. More detailed
explanation is offered in Section 3.3 in the main text.

C.2. One-dimensional binary classifier example

Linear classifiers are easy to analyse as their S sets are
singleton sets. Let’s then see the difference between the Lip-
schitz and the S-Lipschitz certificates for a one-dimensional
linear binary classifier defined as

f1(x) = x− 1, f2(x) = −x+ 1.

For this classifier we have S1 = {+1} and S2 = {−1}. We
want to compute certificates for the input x = −1. Hence

1 2 3

1

2

3

-1

-2

-3

-4 -3 -2 -1

Figure C.1. Illustration of the one-dimensional binary classifier
example in Appendix C.2.
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Figure C.2. Illustration of the two-dimensional three-way classifier
example from Appendix C.3 and Figure 2.

cA = 2 and rcB = f2(−1) − f1(−1) = 4. Let’s first
consider the CW certificate from Equation (3). We have
QCW = (S1 ⊕ −S2)

r = ({1} ⊕ −{−1})4 = {2}4 =
(−∞, 2]. This certificate is shown in blue in Figure C.1. If
we instead construct the U certificate by taking the small-
est S such that f1 and f2 are S-Lipschitz, then we get
S = {−1, 1}. Certifying using this S , Equation (4) gives us
QU = (S⊕−S)r = {−2, 0, 2}4 = [−2, 2]. This certificate
is shown in orange in Figure C.1. f is 1-Lipschitz with
respect to any ℓp norm and the Lipschitz certificate Proposi-
tion 1 results in the same certified perturbation set: [−2, 2]
for any ℓp. Therefore, even in this simple case, we see that
the CW S-certificate covers the whole domain in which
f predicts 2 while the Lipschitz approach and the U S-
certificate are limited to the largest symmetric perturbation
set.

C.3. Derivation of the certificates in Figure 2

This is an extended explanation of Figure 2 with all the
intermediate steps and calculations.

Consider the 3-class two-dimensional linear classifier de-
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fined as:

f1(x) = x⊤v1 = [0, 1] · x
f2(x) = x⊤v2 = [

√
3/2,−1/2] · x

f3(x) = x⊤v3 = [−
√
3/2,−1/2] · x

We want to construct a certificate for x0 = [2, 0]⊤. We then
have f1(x0) = 0, f2(x0) =

√
3, f3(x0) = −

√
3, cA = 2,

cB = 1, r1 =
√
3, r3 = 2

√
3.

Let’s first consider the U Lipschitz case using the obser-
vation that f1, f2, and f3 are Lp-Lipschitz for the ℓp norm
with L1 = L2 = 1, L∞ = (

√
3+1)/2 (from Aux. Lemma 2).

The respective certificates would be the ℓp ball with radius
r1/2Lp, as shown in Figure C.2. Now, let’s compare with the
CW case.

S1=

{[
0

1

]}
L1
1=1 L2

1=1 L∞
1 =1

S2=

{[√
3/2

−1/2

]}
L1
2=

√
3

2
L2
2=1 L∞

2 =

√
3 + 1

2

S3=

{[
−

√
3/2

−1/2

]}
L1
3=

√
3

2
L2
3=1 L∞

3 =

√
3 + 1

2

The respective certificates would be the intersection of the ℓp
balls with radius min{r1/(Lp

1+Lp
2), r3/(L

p
3+Lp

2)}. For ℓ1 and
ℓ∞ we observe increased certified radii when using CW
Lipschitzness: respectively from

√
3/2 to 2

√
3/(2+

√
3) and

from
√
3/(1+

√
3) to 2

√
3/(3+

√
3). The certified radius for ℓ2

remained unchanged:
√
3/2: that’s because L2

1 = L2
2 = L2

3

and hence we don’t overapproximate the true smoothness in
the U case.

Next, let’s do the same analysis using S-Lipschitzness in-
stead. In the U case, we have that f is S-Lipschitz with
S = S1∪S2∪S3. Therefore, the certified set is the hexagon
in Figure C.2 (via Aux. Lemma 8).

Finally, let’s take a look at the CW S-certificate: this
should give us the largest certified region. Again using
Aux. Lemma 8 we have

Q = (S1 ⊕−S2)
r1 ∩ (S3 ⊕−S2)

r2

= {x ∈ Rd : [−1/2,
√
3/2] · x ≤ 1 ∧ [−1/2, 0] · x ≤ 1}.

This is all of the domain that f classifies as class 2.

Hence, the CW S-Lipschitz approach gives us the maxi-
mum possible certified domain: the whole preimage of the
class 2 prediction. All CW Lipschitz certificates are smaller
than the CW S-certificate as they consider only the norm
of the gradients and ignores their orientation. Similarly all
U Lipschitz certificates are smaller than the U S-certificate.
The U S-certificate is smaller than the CW S-certificate

Figure C.3. Illustration for the example in Appendix C.4.

as it ignores the class-wise differences, and similarly the
U Lipschitz certificate is smaller than the CW Lipschitz
certificate.

C.4. Example for Theorem 4

Take two classifiers f1, f2 : R2 → RK under the conditions
in Theorem 4. Assume further that their S-Lipschitz sets
have the same shape but possibly different sizes. That is,
S1 = ϵ1B⋆,S2 = ϵ2B⋆, ϵ1, ϵ2 > 0 where B⋆ = {x ∈
Rd : ∥x∥⋆ ≤ 1} for some norm ∥ · ∥⋆. We use B to denote
the unit ball defined by the dual norm ∥·∥. From Theorem 2,
we have

Q1=
r1cB
2ϵ1

B, Q2=
r2cB
2ϵ2

B, Qg=
α1r

1
cB + α2r

2
cB

2(α1ϵ1 + α2ϵ2)
B.

The radius of Qg interpolates from r1cB/2ϵ1 to r2cB/2ϵ2 and
can never be larger than max{r1cB/2ϵ1, r2cB/2ϵ2}. Therefore,
in this setting, ensembling will always result in a smaller
certified radius than the most robust individual classifier.

We illustrate this phenomenon in Figure C.3. Consider the
anisotropic ellipsoidal norm ∥x∥=

√
x⊤ [ 1 0

0 2 ]x (see Ap-
pendix C.1 for further details on this norm). The radii of
S1 and S2 are respectively ϵ1=1/2 and ϵ2=1/5 (shown in

), and their prediction gaps are r1cB=1 and r2cB=
3/4. We

show the certificate Q1 for f1 as the smallest ellipse and
the certificate Q2 for f2 as the largest one. We also show
three sets of mixing coefficients α1, α2 in grey, which all
fall between Q1 and Q2. This illustrates how in the U , c=A ,
c=B and same shape of the S-Lipschitzness regime, we will
always have the largest certified radius by picking the best
individual classifier (f2 in this case), instead of ensembling.

D. Deferred Proofs
Aux. Lemma 1. Consider a classifier f : Rd → RK

such that fi is Li-Lipschitz with respect to the norm ∥·∥,
that is |fi(x) − fi(x

′)| ≤ Li ∥x− x′∥, ∀i, x, x′. Then,
at a fixed x, we have argmaxi fi(x + δ) = cA for all
∥δ∥ ≤ mini ̸=cA

(fcA (x)−fi(x))/(LcA
+Li), where cA =

argmaxi fi(x).
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Proof of Aux. Lemma 1. From the definition of fi being Li-
Lipschitz it follows that for all i = 1, . . . ,K:

fi(x) + Li ∥δi∥ ≥ fi(x+ δi) ≥ fi(x)− Li ∥δi∥

For argmaxc fc(x + δ) = cA it must be that fi(x + δ) ≤
fcA(x+δ) for all i ̸= cA. By applying the above inequalities
for every i ̸= cA we obtain:

fcA(x)− LcA ∥δi∥ − fi(x)− Li ∥δi∥ ≥ 0

∥δi∥ ≤ fcA(x)− fi(x)

LcA + Li
. (11)

Equation (11) is an upper bound of the perturbation that
will not change the prediction from cA to i. Since
this must hold for all i ̸= cA, it is only valid for
the intersection of these perturbation sets, i.e., ∥δ∥ ≤
mini̸=cA

(fcA (x)−fi(x))/(LcA
+Li).

Aux. Lemma 2. Consider a differentiable h : Rd → R,
such that supx ∥∇h(x)∥⋆ ≤ L, where ∥·∥⋆ is the dual norm
of ∥·∥. Then h is L-Lipschitz with respect to ∥·∥.

Proof of Aux. Lemma 2. See proof of Proposition 1
from (Eiras et al., 2022).

Proposition 1 (Certification of Lipschitz classifiers). Take
a differentiable6 classifier f : Rd → RK such that
supx ∥∇fi(x)∥⋆ ≤ Li, ∀i. Then fi is Li-Lipschitz with
respect to ∥·∥. Moreover, f has a certificate

Q=

{
δ ∈ Rd : ∥δ∥≤min

i ̸=cA

fcA(x)−fi(x)

Li+LcA

= min
i ̸=cA

ri
Li+LcA

}
.

(1)
Here, ∥·∥⋆ is the dual norm to ∥·∥ and cA is argmaxi fi(x).
If all classes have the same Lipschitz constant L, i.e., Li ≤
L,∀i, the certificate simplifies to

Q =

{
δ ∈ Rd : ∥δ∥ ≤ fcA(x)− fcB (x)

2L
=

rcB
2L

}
, (2)

where cB = argmaxi ̸=cA fi(x).

Proof of Proposition 1. Follows directly from Aux. Lem-
mas 1 and 2.

Aux. Lemma 3. For a bounded set S ⊆ Rd, it holds that
ρhullS(δ) = ρS(δ), ∀δ ∈ Rd. In other words, f being
S-Lipschitz is the same as it being (hullS)-Lipschitz.

Aux. Lemma 4 (S-Lipschitz function and gradients). Con-
sider a differentiable f : Rd → R. If ∇f : Rd → S , then f
is S-Lipschitz. The reverse also holds: if f is S-Lipschitz,
then, ∇f(x) ∈ hullS, ∀x ∈ Rd.

Proof of Aux. Lemma 4. Let’s first start by showing that a
function with bounded gradients is S-Lipschitz. Consider
any x, y ∈ Rd and define γ : [0, 1] → Rd where γ(t) =
(1− t)x+ ty. Then we have that:

f(y)− f(x) = f(γ(1))− f(γ(0))

=

∫ 1

0

df(γ(t))

dt
dt

=

∫ 1

0

df(γ(t))

dγ(t)

dγ(t)

dt
dt

=

∫ 1

0

∇xf(γ(t))
⊤∇tγ(t)dt

=

∫ 1

0

∇xf((1− t)x+ ty)⊤(y − x)dt

≤
∫ 1

0

max
t∈[0,1]

{
∇xf((1− t)x+ ty)⊤(y − x)

}
dt

= max
t∈[0,1]

{
∇xf((1− t)x+ ty)⊤(y − x)

}
≤ sup

∇f∈S
∇f⊤(y − x)

= ρS(y − x),

where we used the fundamental theorem of calculus, the
fact that f is continuous, and Definition 2. Similarly,

f(y)− f(x) ≥
∫ 1

0

min
t∈[0,1]

{
∇xf((1− t)x+ ty)⊤(y − x)

}
dt

= min
t∈[0,1]

{
∇xf((1− t)x+ ty)⊤(y − x)

}
= − max

t∈[0,1]

{
∇xf((1− t)x+ ty)⊤(x− y)

}
≥ − sup

∇f∈S
∇f⊤(x− y)

= −ρS(x− y).

Next, let’s show the reverse: that if a function is S-Lipschitz,
then its gradients must be in hullS . If f is S-Lipschitz, then
f(y)− f(x) ≤ supc∈S c⊤(y−x). Consider the directional
derivative of f in direction v ∈ Rd at x, and taking y =
x+ hv:

∇vf(x) = lim
h→0

f(x+ hv)− f(x)

h

≤ lim
h→0

supc∈S c⊤(hv)

h

= lim
h→0

h supc∈S c⊤v

h
∗
= sup

c∈S
c⊤v

= ρS(v),

with ∗ following from the L’Hôpital’s rule. Similarly,
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∇vf(x) ≥ −ρS(−v), ∀x ∈ Rd. Hence, we have:

−ρS(−v) = − sup
c∈S

c⊤(−v) ≤ ∇f(x)⊤v ≤ sup
c∈S

c⊤v.

(12)
Now we need to show that Equation (12) implies that
∇f(x) ∈ hullS. By the properties of support functions
of convex sets we have that ∇f(x) ∈ hullS iff

sup
c′∈hullS

{
c′⊤∇f(x)− ρS(c

′)
}
= 0.

In the above, we use that ρS(δ) = ρhullS(δ) (Aux.
Lemma 3). Substituting from Equation (12) we get:

sup
c′∈hullS

{
c′⊤∇f(x)− ρS(c

′)
}

≤ sup
c′∈hullS

{
sup
c∈S

c⊤c′ − sup
c∈S

c⊤c′
}

= 0,

hence, ∇f(x) ∈ hullS, ∀x ∈ Rd.

Aux. Lemma 5. Given S ⊆ Rn, it holds that ρS(δ) =
ρ−S(−δ), ∀δ ∈ Rd.

Proof of Aux. Lemma 5. ρ−S(−δ) = supc∈−S c⊤(−δ) =
supc∈S(−c)⊤(−δ) = supc∈S c⊤δ = ρS(δ).

Aux. Lemma 6. Given S,S ′ ⊆ Rn, for all δ ∈ Rd it holds
that ρS(δ)+ρ−S′(δ) = ρS⊕−S′ , where ⊕ is the Minkowski
sum operator.

Proof of Aux. Lemma 6.

sup
c∈S

(c⊤δ) + sup
c′∈−S′

(c′⊤δ) = sup
c∈S

(c⊤δ) + sup
c′∈S′

(−c′⊤δ)

= sup
c∈S,c′∈S′

(c− c′)⊤δ.

At the same time, by definition of the Minkowski sum:

ρS⊕−S′(δ) = sup
c∈S⊕−S′

c⊤δ = sup
c∈S,c′∈−S′

(c+ c′)⊤δ.

Theorem 1 (S-certificates). Let f : Rd → RK be a classi-
fier with fi being differentiable and ∇fi : Rd → Si for all
i = 1, . . . ,K. Then, each fi is Si-Lipschitz. Furthermore,
for a fixed x, f is robust at x against all δ in

Q =
⋂

i̸=cA
(Si ⊕−ScA)

ri . (3)

Here, cA=argmaxc fc(x), ri=fcA(x)−fi(x), and ⊕ is
the Minkowski sum. If S ⊇ Si,∀i, then we have the simpli-
fied certificate

Q = (S ⊕ −S)rcB , (4)

where cB = argmaxc̸=cA fc(x).

Proof of Theorem 1. The connection between gradients and
S-Lipschitzness comes from Aux. Lemma 4.

Following Definition 2, we have:

fcA − ρScA
(x− y) ≤ fcA(y)

fi + ρSi
(y − x) ≥ fi(y), ∀i ̸= cA.

We want fcA(y) > fi(y), ∀i ̸= cA, hence, a sufficient
condition following the two inequalities above is

fi + ρSi
(y − x) < fcA − ρScA

(x− y) ⇐⇒
ρSi

(y − x) + ρScA
(x− y) < fcA − fi.

Using Aux. Lemmas 5 and 6 and setting δ = y − x we get:

ρSi⊕−ScA
(δ) < fcA − fi,

which is the definition of (Si ⊕−ScA)
ri . As this needs to

hold for all i ̸= cA we take the intersection.

To show Equation (4) observe that rcB≤ri,∀i ̸= cA. Hence,
by Proposition 2iii, (Si ⊕−ScA)

ri ⊇ (Si ⊕−ScA)
rcB .

The rest follows from Si ⊆ S and Proposition 2iv.

Proposition 9 (Tightness of S-certificates). For any δ ̸∈
(S ⊕ −S)r, there exists an f : Rd → RK with fi S-
Lipschitz for all i and rcB = fcA(x) − fcB (x) such that
argmaxi fi(x+ δ) ̸= cA.

Proof of Proposition 9. Let’s take a constructive approach
and provide a classifier that classifies x and x+δ differently.
For simplicity, we will consider a binary classifier. Let’s fix
x ∈ Rd, δ ̸∈ (S ⊕ −S)rcB and construct a classifier that
reduces the gap between cA and cB as much as possible,
while still being S-Lipschitz. Take c, c′ ∈ S that attain the
supremum

ρS⊕−S(δ) = sup
c∈S, c′∈S

(c− c′)⊤δ > rcB .

Note that c, c′ depend only on S and δ but not on the classi-
fier f . Now, let’s define the classifier f as:

fcA(y) = (y − x)⊤c′ + rcB

fcB (y) = (y − x)⊤c.

We can verify that fcA(x) > fcB (x) and that fcA(x) −
fcB (x) = rcB , as well as that fcA and fcB are S-Lipschitz,
hence satisfying all requirements. However, we also have:

fcA(x+ δ)− fcB (x+ δ)

= δ⊤c′ + rcB − δ⊤c = rcB − (c− c′)⊤δ

< 0,

hence argmaxi fi(x+ δ) = cB .
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Proposition 2 (Polar set dependence on S and r). Let
S,S1,S2,S3,S4 ⊂ Rd be bounded and r, r1, r2 > 0:

i. S1 ⊆ S2 ⇒ (S1 ⊕ 9S1) ⊆ (S2 ⊕ 9S2);
ii. S1 ⊆ S2 ⇒ (S1)

r ⊇ (S2)
r;

iii. r1 ≤ r2 ⇒ (S)r1 ⊆ (S)r2 ;
iv. ((S1⊆S3) ∧ (S2⊆S4)) ⇒ (S3⊕9S4)

r ⊆ (S1⊕9S2)
r.

where ⊕ is the Minkowski sum operator.

Proof of Proposition 2.
Proof of i.: For all s ∈ (S1 ⊕ −S1) there must be some
s′, s′′ ∈ S1 such that s′ − s′′ = s. But s′, s′′ ∈ S2 and
hence s′ − s′′ must also be in S2 ⊕−S2.
Proof of ii.: We have to show that ∀y ∈ Rd we have
supx∈S2

x⊤y ≤ r implying supx∈S1
x⊤y ≤ r. This is

equivalent to showing that

sup
x∈S1

x⊤y ≤ sup
x∈S2

x⊤y, ∀y ∈ Rd. (13)

We can rewrite the right-hand side as

sup
x∈S2

x⊤y = max

{
sup
x∈S1

x⊤y, sup
x∈S2\S1

x⊤y

}
,

for all y ∈ Rd, hence Equation (13) is always true.
Proof of iii.: If y ∈ (S)r1 then:

sup
x∈S

x⊤y ≤ r1.

But then it also holds that supx∈S2 x
⊤y ≤ r2 as r2 ≥ r1

and hence y ∈ (S)r2 .
Proof of iv.: If y ∈ (S3 ⊕−S4)

r then for all s3 ∈ S3, s4 ∈
S4 it holds that (s3 − s4)

⊤y ≤ r. However, as S1 and S2

are subsets of respectively S3 and S4 it must then also hold
that ∀s1 ∈ S1,∀s2 ∈ S2 we have (s1 − s2)

⊤y ≤ r. This
implies that y ∈ (S1 ⊕−S2)

r.

Proposition 10 (The S-certificate subsumes any Lipschitz
certificate). Take f : Rd → RK to be a classifier that such
that:

i. fi is Si-Lipschitz for every i = 1, . . . ,K and Si is the
smallest such set (CW case); or

ii. fi is S-Lipschitz for all i = 1, . . . ,K (U case) and S
is the smallest such set.

Consider a fixed input x ∈ Rd. Then, the corresponding
S-certificate from Theorem 1 at x is always a superset of
the Lipschitz certificate for any norm ∥ · ∥.

Proof of Proposition 10. We will only consider the CW
case as the U follows trivially from it. As discussed in the
main text, if fi is Li-Lipschitz with respect to the norm

∥ · ∥, then the Lipschitz certificate at x is equal to the Bi,⋆-
Lipschitz certificate, where Bi,⋆ = {y ∈ Rd : ∥y∥⋆ ≤ Li}.
Formally:

QLip =

{
δ ∈ Rd : ∥δ∥ ≤ min

i ̸=cA

ri
Li+LcA

}
=

⋂
i ̸=cA

(Bi,⋆ ⊕ 9BcA,⋆)
ri .

At the same time, the S-certificate is:

QS =
⋂

i ̸=cA

(Si ⊕−ScA)
ri .

Next, note that Si ⊆ Bi,⋆, regardless of the choice of
the norm ∥ · ∥. This follows from the definitions of
Si = {∇fi(z) : z ∈ Rd} and Bi,⋆ = {y ∈ Rd : ∥y∥⋆ ≤
supz ∥∇fi(z)∥⋆}.

As Si ⊆ Bi,⋆, from Proposition 2iv we have:

(Si ⊕−ScA)
ri ⊇ (Bi,⋆ ⊕−Bi,⋆)

ri .

Finally, as set intersection preserves the superset relation,
we have that

QS =
⋂

i ̸=cA

(Si⊕9ScA)
ri ⊇

⋂
i ̸=cA

(Bi,⋆⊕9BcA,⋆)
ri = QLip.

Aux. Lemma 7. For any bounded set S ⊂ Rd it holds that
S ⊕ −S is symmetric, i.e.

x ∈ (S ⊕ −S) ⇒ −x ∈ (S ⊕ −S).

Furthermore, for any r > 0 and any symmetric S ⊂ Rd, it
holds that Sr is also symmetric. Finally, if S is symmetric
and convex, then

S ⊕ −S = 2S.

Proof of Aux. Lemma 7. If x ∈ (S⊕−S) then ∃s1, s2 ∈ S
such that x = s1 − s2. However, then it also must hold that
s2 − s1 = −x is in S ⊕ −S .

Let’s now prove the second part. The condition for −y to
be in Sr when S is symmetric is supx∈S x⊤(−y) ≤ r. The
left side can be rewritten as:

sup
x∈S

x⊤(−y) = sup
x∈S

(−x)⊤y = sup
x∈−S

x⊤y = sup
x∈S

x⊤y,

which is the same as the condition for y to be in Sr. In the
above, we use the fact that S = −S, the definition of S
being symmetric.
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For the last part we have

S ⊕ −S = S ⊕ S = 2S.

The last equality follows from convexity: for any s1, s2 ∈ S
it holds that (s1 + s2)/2 ∈ S and hence s1 + s2 ∈ 2S .

Aux. Lemma 8. For a S ⊂ Rd its polar set of radius r is
the intersection of |S| half-spaces:

(S)r =
⋂
s∈S

{
x ∈ Rd :

1

r
s⊤x ≤ 1

}
.

Theorem 2. Let f : Rd → RK be a classifier such that
hi9j = fi − fj is Si9j-Lipschitz, ∀i, j ∈ 1, . . . ,K, i ̸= j.
Then, given an input x ∈ Rd, f is robust at x against all δ
in Q =

⋂
i ̸=cA

(Si9cA)
ri .

Proof of Theorem 2. For a fixed class i ̸= cA we have that
the following must hold from Definition 2:

hi9cA(y)− hi9cA(x) ≤ ρSi9j (y − x)

fi(y)− fcA(y)− fi(x) + fcA(x) ≤ ρSi9j (y − x).

Rearranging the terms gives:

fi(y)− fcA(y) ≤ ρSi9j (y − x) + fi(x)− fcA(x)︸ ︷︷ ︸
−ri

.

We are interested in the values of y for which the left-hand
side is nonpositive as these are inputs for which the con-
fidence is higher for cA than for i. Hence, we restrict the
right-hand side to be upper-bounded by zero:

ρSi9j (y − x︸ ︷︷ ︸
δ

) ≤ ri.

The values of δ satisfying this inequality are exactly the
polar set (Si9j)

ri (Definition 3).

Finally, as we need that the confidence for class cA is larger
than the confidences for any other class, we need to take
the intersection over i ̸= cA resulting in the certificate
Q =

⋂
i ̸=cA

(Si9cA)
ri .

Aux. Lemma 9 (Scaling of S-Lipschitz Classifiers). Con-
sider a constant α > 0 and a classifier f : Rd → RK such
that hi9j = fi − fj is Si9j-Lipschitz for all i ̸= j. Then
αhi9j = αfi − αfj is αSi9j-Lipschitz but f and αf have
the same certificates:

Qf =
⋂

i ̸=cgA

(Si9cgA
)ri =

⋂
i ̸=cgA

(αSi9cgA
)αri = Qαf . (14)

Proof of Aux. Lemma 9. Note that scaling with a positive
constant α does not change the top class cgA and also scales

the prediction gaps proportionally: αfcgA(x) − αfi(x) =
αri.

Next, let’s show that αfi is αSi-Lipschitz. If g : Rd → R
is S-Lipschitz, then we have

− sup
c∈S

c⊤(x− y) ≤ g(y)− g(x) ≤ sup
c∈S

c⊤(y − x)

for all x, y ∈ Rd. As α > 0, multiplying everything by α
results in:

− sup
c∈S

αc⊤(x− y) ≤ αg(y)− αg(x) ≤ sup
c∈S

αc⊤(y − x)

− sup
c∈αS

c⊤(x− y) ≤ αg(y)− αg(x) ≤ sup
c∈αS

c⊤(y − x),

which is the condition for αg being (αS)-Lipschitz.

Now, we can show that scaling the S set and the polar set
radius with the same constant does not change the polar set:

(αS)αr =

{
y ∈ Rd : sup

x∈αS
x⊤y ≤ αr

}
=

{
y ∈ Rd : sup

x∈S
αx⊤y ≤ αr

}
=

{
y ∈ Rd : sup

x∈S
x⊤y ≤ r

}
= (S)r.

Equation (14) directly follows.

Theorem 3 (Addition of S-Lipschitz classifiers). Take an
ensemble as in Equation (5) with N = 2 and the CD setting,
i.e., hj

i9k=f j
i −f j

k is Sj
i9k-Lipschitz. Then, at a fixed x ∈ Rd,

it holds that g is robust against all δ in

Qg =
⋂

i ̸=cgA

(
α1S1

i9cgA
⊕ α2S2

i9cgA

)rgi
,

with cgA = argmaxi gi and rgi = gcgA − gi. The case for
N > 2 follows by induction.

Proof of Theorem 3. From Aux. Lemma 9 we know that
α1h

i9j
1 and α2h

i9j
2 are α1S1

i9j- and α2S2
i9j-Lipschitz. Then,

following Aux. Lemma 4, we have that ∇α1h
i9j
1 ∈

hullα1S1
i9j and ∇α2h

i9j
2 ∈ hullα2S2

i9j . Since ∇hg
i9j =

∇(gi − gj) = ∇α1h
i9j
1 + ∇α2h

i9j
2 , we have ∇hg

i9j ∈
α1 hullS1

i9j ⊕ α2 hullS2
i9j = hull(α1S1

i9j ⊕ α2S2
i9j) as

constructing the convex hull and taking the Minkowski sum
commute. By Theorem 1, hg

i9j is (hull(α1S1
i9j ⊕ α2S2

i9j))-
Lipschitz which by Aux. Lemma 3 is the same as being
(α1S1

i9j ⊕ α2S2
i9j)-Lipschitz. The rest follows from Theo-

rem 2.

Theorem 4. Consider an ensemble of U classifiers and a
fixed x for which c=A and c=B hold. Then, for any choice of
weights αj in Equation (5), the S-certificate of the ensemble
satisfies ❷.
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Qg =

y ∈ Rn : sup
x1,x2∈S1

x3,x4∈S2

{
α1(x1 − x2)

⊤y + α2(x3 − x4)
⊤y

}
≤ α1r

1 + α2r
2

 (15)

Proof of Theorem 4. We will prove only the case for N = 2.
N > 2 follows by induction. Furthermore, we assume
αj ≥ 0,∀j as in Equation (5).

We will denote the individual classifier gaps and the ensem-
ble gap as r1 = f1

cA(x) − f1
cB (x), r

2 = f2
cA(x) − f2

cB (x),
rg = gcA(x)− gcB (x). First, from Theorem 1 we have

Q1 = (S1 ⊕−S1)r
1

,

Q2 = (S2 ⊕−S2)r
2

,

Qg =
(
(α1S1 ⊕ α2S2)⊕−(α1S1 ⊕ α2S2)

)α1r
1+α2r

2

= (α1(S1 ⊕−S1)⊕ α2(S2 ⊕−S2))α1r
1+α2r

2

.

Qg can also be expanded as Equation (15). Consider the
two inequalities that define Q1 and Q2:

sup
x1,x2∈S1

(x1 − x2)
⊤y ≤ r1, sup

x3,x4∈S2

(x3 − x4)
⊤y ≤ r2.

If for a given y, both of these hold, then the inequality in
Equation (15) also must hold. Hence, the intersection of Q1

and Q2 must be a subset of Qg. Similarly, it is necessary
for at least one of them to hold, hence every element of Qg

must be an element of the union of Q1 and Q2.

Aux. Lemma 10. Let S ⊆ Rd be a convex set, α, β ≥ 0,
and a, b ∈ Rd. Then it holds that

(αS + a)⊕ (βS + b) = (α+ β)S + (a+ b).

A special case is the summing of ℓp norm balls (p ≥ 1):

Bp[µ1, ϵ1]⊕ Bp[µ1, ϵ1] = Bp[µ1 + µ2, ϵ1 + ϵ2].

Proof of Aux. Lemma 10. It is trivial to see that

(αS + a)⊕ (βS + b) = αS ⊕ βS + (a+ b).

Hence, we only need to show if αS ⊕ βS
?
= (α + β)S

which is the same as:

SL = {αx+ βy : x, y ∈ S} ?
= {(α+ β)x′ : x′ ∈ S} = SR.

It is obvious that SR ⊆ SL. So we only need to show that
SL ⊆ SR. Take a z ∈ SL. Then there must be x, y ∈ S
such that αx+ βy = z. Now, take x′ = z/(α+β):

x′ =
z

α+ β
=

αx+ βy

α+ β
=

α

α+ β
x+

β

α+ β
y.

x′ is a linear combination of elements of the convex S,
hence x′ is also in S. Therefore, for every z ∈ SL we can
construct an x′ ∈ S such that (α + β)x′ = z ∈ SR. This
concludes our proof that SL = SR.

The ℓp norm ball special case follows directly when we note
that Bp[µ, ϵ] can be represented as

ϵ · {x ∈ Rd : ∥x∥p ≤ 1}+ µ.

Aux. Lemma 11. Take to be B⋆ ⊂ Rd a closed convex
symmetric set. Define B to be the norm ball of its dual norm,
i.e.:

B =

{
y ∈ Rd : sup

x∈B⋆

x⊤y ≤ 1

}
.

Then, the polar set of ϵB with radius r is:

(ϵB⋆)
r =

r

ϵ
B.

Proposition 3. Consider N classifiers over K classes. We
have that for any ensemble g the prediction confidence is
upper bounded as follows:

rgcB ≤ r +
1− r

2
− 1− r

2(K − 1)
(10)

The bound is tight: given r and K there exists an ensemble
f1, . . . , fN , such that the prediction gap rgcB of g attains the
upper bound.

Proof of Proposition 3. We have N normalized K-class
classifiers, so fj ∈ RK ,

∑
i f

j
i = 1, f j

i > 0, for all
j ∈ 1, . . . , N . Furthermore, g being a linear combination
of f1, . . . , fN means that we have g =

∑N
j=1 αjfj , for

some αj>0,
∑

j αj = 1. cjA and cjB are the top two classes
of fj and similarly cgA and cgB are the top two classes of
g. We also have rj = f j

cjA
− f j

cjB
, rg = gcgA − gcgB , and

r = maxj∈1,...,N rj .

From f j

cjA
+ f j

cjB
≤ 1, f j

cjA
≥ f j

cjN
and f j

cjA
− f j

cjB
≤ r we

have:

f j

cjA
≤ r +

1− r

2
.
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Note that gcgA has the same bound:

gcgA =
∑
j

αjf
j
cgA

≤
∑
j

αjf
j

cjA

≤
∑
j

αj

(
r +

1− r

2

)
= r +

1− r

2
.

(16)

As the classes must sum to 1 we have∑
i ̸=cjA

f j
i = 1− f j

cjA
≥ 1− r

2
, ∀j ∈ 1, . . . , N.

The minimum cgB can be obtained when all cjA are the same.
Then the top weight for each classifier gets sent to cgA. There-
fore, we have: ∑

i ̸=cgA

gi =
∑
i ̸=cgA

∑
j

αjf
j
i

=
∑
j

αj

∑
i̸=cjA

f j
i

≥
∑
j

αj
1− r

2

=
1− r

2
.

The largest element of {gi : i ̸= cgA} must be at least as
large as the average, hence:

gcgB ≥ 1− r

2(K − 1)
(17)

Hence, from Equations (16) and (17) we have:

rg = gcgA − gcgB ≤ r +
1− r

2
− 1− r

2(K − 1)
.

Let’s show that this bound is tight. For that, we need to
construct a set of N classifiers that attain it. Consider N =
K − 1: the number of classifiers being one less than the
number of classes. Take all fj to be such that

f j
i =


r̄ + (1− r̄)/2 if i = K,

(1− r̄)/2 if i ≤ K − 1, i = j,

0 if i ≤ K − 1, i ̸= j.

It is easy to verify that
∑

i∈1,...,K f j
i = 1, ∀j ∈ 1, . . . , N .

Take also uniforms weights: αj = 1/N . Then we have:

gi =

{
1−r̄
2N = 1−r̄

2(K−1) if i ≤ K − 1,

r̄ + 1−r̄
2 if i = K.

And hence: rg = r̄ + 1−r̄
2 − 1−r̄

2(K−1) .

Proposition 4. For any set of N ≥ 2 classifiers satisfying
c ̸=A , there exist weights αj for which the resulting ensemble
has rgcB = 0 and a certified perturbation set Qg = {0}.

Proof of Proposition 4. First, note that Qg(α) = {0} if
rgcB = 0, that is if the top two classes of g have the same
confidence. In other words, if x is on the decision boundary
for the ensemble g. Therefore, we want to show that it is
possible to construct an ensemble for which the decision
boundary passes through x.

Let’s first consider the case with two classifiers (N = 2) and
when the top prediction of g is one of the top predictions of
the individual classifiers for any α: cgA ∈ {c1A, c2A},∀α ∈
[0, 1]. We denote by g(α) the ensemble g(α) = αf1 +(1−
α)f2. Therefore, we have c

g(α)
A = c2A when α is close to 0

and c
g(α)
A = c1A when α is close to 1. The switch between

the two values happens at

α⋆ =
f2
c2A

− f2
c1A

f1
c1A

− f1
c2A

+ f2
c2A

− f2
c1A

, (18)

if the denominator is not 0. It follows that when α = α⋆

we have that gcgA = gcgB , hence rgcB = 0 and Qg(α) = {0}.
Note that if the denominator in Equation (18) is 0, then
Qg(α) = {0} for all α.

Now consider the case when for some α the top prediction of
g is not one of the top predictions of the individual classifiers.
Then we can split the domain [0, 1] for α into a subset that
has only two top predictions and apply the above analysis to
this subset. Therefore, when N = 2 the proposition holds.

To see that it holds for N > 2, note that we can always fix
N − 2 of the αj weights to 0. As long as we select two
individual classifiers with different top predictions to have
non-zero weights, we can apply the N = 2 analysis to them.
Therefore, the proposition holds for all N .

Proposition 5. No ensemble of N classifiers over K classes
with ri ≥ 0, i=1, . . . , N satisfying c=A can be in regime ③.

Proof of Proposition 5. We have N normalized K-class
classifiers, so fj ∈ RK ,

∑
i f

j
i = 1, f j

i > 0, for all
j ∈ 1, . . . , N . Furthermore, g being a linear combination
of f1, . . . , fN means that we have g =

∑N
j=1 αjfj , for

some αj>0,
∑

j αj = 1. cjA and cjB are the top two classes
of fj and similarly cgA and cgB are the top two classes of
g. We also have rj = f j

cjA
− f j

cjB
, rg = gcgA − gcgB , and

r = minj∈1,...,N rj .

First, observe that if all cjA are the same and are equal to
cA, then cgA must also be the same, i.e. cgA = cA. Then,
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f j
cgB

≤ f j

cjB
,∀j. From these two observations we have:

N∑
j=1

αjf
j
cgA

=

N∑
j=1

αjf
j

cjA

N∑
j=1

αjf
j
cgB

≤
N∑
j=1

αjf
j

cjB
.

Hence the prediction gap of g can be lower-bounded as:

rg =

N∑
j=1

αjf
j
cgA

−
N∑
j=1

αjf
j
cgB

≥
N∑
j=1

αjf
j

cjA
−

N∑
j=1

αjf
j

cjB

=

N∑
j=1

αj

(
f j

cjA
− f j

cjB

)

=

N∑
j=1

αjr
j

≥ min
j∈1,...,N

rj = r.

As rg ≥ r ≥ 0, the ensemble must be in regimes ① or
②.

Aux. Lemma 12. For any ensemble of N normalized K-
class classifiers satisfying c=A it holds that the i-th class
prediction gap rgi of the ensemble is the weighted sum of the
gaps rji of the individual classifiers:

rgi =

N∑
j=1

αjr
j
i , ∀i = 1, . . . ,K.

Proof of Aux. Lemma 12.

rgi =

N∑
j=1

αjf
cgA
j −

N∑
j=1

αjf
j
i

=

N∑
j=1

αjf
j

cjA
−

N∑
j=1

αjf
j
i

=

N∑
j=1

αj

(
f j

cjA
− f j

i

)

=

N∑
j=1

αjr
j
i .

Proposition 6. No ensemble of classifiers as in Theorem 3
satisfying c=A can be in regime ❸.

Proof of Proposition 6. We will deal only with the N = 2
case as N ≥ 2 follows by induction. Furthermore, we will
assume that α2 = 1− α1 for simplicity. This doesn’t affect
the proof as the α1+α2 scaling does not affect the certificate
(Aux. Lemma 9).

We prove by contradiction. We restrict to same cA, and
assume that we have α1, classifier outputs and S sets such
that:

Qg ⊂ Q1 ∩Q2, (19)

where

Q1 =
⋂

i̸=cA

(
S1
i9cA

)r1i
Q2 =

⋂
i̸=cA

(
S2
i9cA

)r2i
Qg =

⋂
i̸=cA

(
α1S1

i9cA ⊕ (1− α1)S2
i9cA

)rgi .
Hence, Equation (19) becomes⋂
i̸=cA

(
α1S1

i9cA⊕(19α1)S2
i9cA

)rgi ⊂
⋂

j=1,2

⋂
i̸=cA

(
Sj
i9cA

)rji
.

(20)
This implies that there must be a point x in the right-hand
side of Equation (20) that is not in the left-hand side. This
x must satisfy:

sup
t∈Sj

i9cA

t⊤x ≤ rji for all j = 1, 2, i ̸= cA.

For the left-hand side of Equation (20), using c=A and Aux.
Lemma 12 we have:(

α1S1
i9cA ⊕ (1− α1)S2

i9cA

)rgi
=

(
α1S1

i9cA ⊕ (1− α1)S2
i9cA

)α1r
1
i+(1−α1)r

2
i .

We can see that x must be in this polar set:

sup
t1∈S1

i9cA

t2∈S2
i9cA

(
α1t

⊤
1 x+ (1− α1)t

⊤
2 x

)
= α1 sup

t1∈S1
i9cA

t⊤1 x+ (1− α1) sup
t2∈S2

i9cA

t⊤2 x

≤ α1r
1
i + (1− α1)r

2
i .

As this holds for all i ̸= cA, x must also be in the inter-
section and hence in Qg. This is a contradiction of the
assumption that x is not in Qg .

Proposition 7. Take two classifiers f1, f2 : Rd → RK

satisfying c=A . Further, assume that all hj
i9k = f j

i − f j
k are

ϵj,i9kB⋆-Lipschitz for some closed convex symmetric set B⋆.
Then, the maximum improvement in the certified radius Rg

of g relative to the larger one of R1 and R2 is
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Rg9max{R1, R2}≤ 1

min{M1,M2}
−

min{r1
c1B
, r2

c2B
}

min{M1,M2}+∆
,

where we have defined Mk as mini̸=cA ϵk,i9cA and ∆ as
maxk=1,2 maxi ̸=cA(ϵk,i9cA−Mk).

Proof of Proposition 7. We assume that the predictions of
each classifier are normalized, i.e.,

∑
i f

j
i = 1, ∀j =

1, . . . , N . Because all difference smoothness sets S have
the same shape B⋆ and the shape is closed under scaling
and Minkowski sum (Aux. Lemma 10), we can simply work
with a certified radius rather than a certified set. Note, how-
ever, that the shape of the certified sets would be the dual of
the shape of the smoothness, i.e., B. Therefore, from Aux.
Lemma 11 we have:

Qj =
⋂

i̸=cA

(ϵj,i9cAB⋆)
rji

= min
i̸=cA

{
rji

ϵj,i9cA

}
B for j = 1, 2 (21)

= min
i̸=cA

{
Rj

i

}
B,

= Rj

Q∪ = Q1 ∪Q2

= max{min
i̸=cA

R1
i ,min

i ̸=cA
R2

i }B (22)

= max{R1, R2}B
= R∪B⋆

Q∩ = Q1 ∩Q2

= min{min
i̸=cA

R1
i ,min

i ̸=cA
R2

i }B (23)

= min{R1, R2}B
= R∩B

Next, note that as we have the same top predictions cA,
according to Aux. Lemma 12 it holds that rgi = α1r

1
i +α2r

2
i .

Therefore, from Aux. Lemmas 10 and 11 we have

Qg =
⋂

i ̸=cA

(α1ϵ1,i9cAB⋆ ⊕ α2ϵ2,i9cAB⋆)
α1r

1
i+α2r

2
i

=
⋂

i ̸=cA

((α1ϵ1,i9cA + α2ϵ2,i9cA)B⋆)
α1r

1
i+α2r

2
i

=
⋂

i ̸=cA

α1r
1
i + α2r

2
i

α1ϵ1,i9cA + α2ϵ2,i9cA
B (24)

=
⋂

i ̸=cA

Rg
iB

= min
i̸=cA

{Rg
i }B

= RgB.

From Equation (24) it follows that the absolute values of
α1 and α2 do not matter, only their relative size. This

Figure D.1. Illustration of the certified radii in Proposition 7. The
specific parameters used are K = 4, cA = 2

follows from the fact that Rg
i is unchanged if we normalize

α1 and α2 by diving by α1 +α2. Therefore, with no loss of
generality we will assume that α1 = α and α2 = 1− α for
the rest of the proof. This also follows from Aux. Lemma 9.

While the claims of this proposition can be proven alge-
braically, we opt for a more intuitive graphical approach.
First, notice that Rg

i is a linear-fractional function in α and is
monotonically increasing or decreasing from R2

i (for α = 0)
to R1

i (for α = 1). Therefore, we can plot the Rj
i and Rg

i

(as functions of α) as in Figure D.1.

From Equation (22) we know that R∪ equals the larger one
between the smallest radius on the left and the smallest
radius on the right. Similarly, from Equation (23) we have
that R∩ is the smallest radius on either side. Finally, Rg is
the minimum of Rg

i across α ∈ [0, 1], or the thick red line
in Figure D.1.

Note the peak of Rg cannot be larger than the smaller of the
largest R1

i or the largest R2
i due to the monotonicity of Rg

i .
Recall also that max{R1, R2} = R∪ from Equation (22).
Hence, Rg − max{R1, R2} is upper bounded by Λ, the
height of the shaded region in Figure D.1:

Λ=min{max
i̸=cA

R1
i ,max

i̸=cA
R2

i } 9max{min
i ̸=cA

R1
i ,min

i ̸=cA
R2

i }
(25)

As rj
cjB

is the smallest gap for fj and as no gap can be larger
than 1 we have:

rj
cjB

ϵj,i9cA
≤ Rj

i =
rji

ϵj,i9cA
≤ 1

ϵj,i9cA
. (26)

Using this we can upper-bound the first term in Equa-
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tion (25):

min

{
max
i̸=cA

R1
i ,max

i ̸=cA
R2

i

}
≤min

{
max
i̸=cA

1

ϵ1,i9cA
,max
i ̸=cA

1

ϵ2,i9cA

}
(from Eq. 26)

=min

{
1

M1
,

1

M2

}
=

1

max{M1,M2}
.

(27)

Using Equation (26) we can also lower-bound the second
term in Equation (25):

max

{
min
i̸=cA

R1
i ,min

i ̸=cA
R2

i

}
≥max

{
min
i ̸=cA

r1
c1B

ϵ1,i9cA
,min
i ̸=cA

r2
c2B

ϵ2,i9cA

}

=max

{
r1
c1B

maxi ̸=cA ϵ1,i9cA
,

r2
c2B

maxi ̸=cA ϵ2,i9cA

}

≥max

{
min{r1

c1B
, r2

c2B
}

maxi ̸=cA ϵ1,i9cA
,
min{r1

c1B
, r2

c2B
}

maxi ̸=cA ϵ2,i9cA

}

=
min{r1

c1B
, r2

c2B
}

min{maxi ̸=cA ϵ1,i9cA ,maxi ̸=cA ϵ2,i9cA}

≥
min{r1

c1B
, r2

c2B
}

max{M1,M2}+∆
.

(28)

Finally, substituting Equations (27) and (28) into Equa-
tion (25), we get the upper bound for Rg −max{R1, R2}:

Rg −max{R1, R2}
≤Λ

≤ 1

max{M1,M2}
−

min{r1
c1B
, r2

c2B
}

max{M1,M2}+∆
.

Proposition 8. Take an ensemble as in Proposition 7. As-
sume two different second top predictions and that classes
that are not in the top two predictions of any individual
classifier have low confidences6. Then ❶ occurs when:

f1
cA>f1

c2B
+r2c2B

ϵ1,c2B9cA

ϵ2,c2B9cA

and f2
cA>f2

c1B
+r1c1B

ϵ2,c1B9cA

ϵ1,c1B9cA

.

Proof of Proposition 8. We restrict ourselves to the c=A and
different cB setting as this is the regime that prevents ❸
and allows for ❶ (Theorem 4 and Proposition 6). We ask
the classes that are not in the top two predictions of any

individual classifier to have low predictions in order for them
to not compete for the top ensemble prediction. Formally:

f i
c < f j

ckB
,∀j, k ∈ {1, 2},∀c /∈ {cA} ∪ {clB : l = 1, 2}.

From the proof of Proposition 7 and our small third predic-
tions assumptions we have:

R∪ = max

{
r1
c1B

ϵ1,c1B9cA

,
r2
c2B

ϵ2,c2B9cA

}
,

and

Rg

= min
i ̸=cA

{
α1r

1
i + α2r

2
i

α1ϵ1,i9cA + α2ϵ2,i9cA

}
=min

{
α1r

1
c1B
+α2r

2
c1B

α1ϵ1,c1B9cA+α2ϵ2,c1B9cA

,
α1r

1
c2B
+α2r

2
c2B

α1ϵ1,c2B9cA+α2ϵ2,c2B9cA

}
.

Both terms in the above minimum are monotonic. Therefore,
the only way that Rg > R∪ for some α1, α2 is that the first
term is decreasing while the second is increasing. This
happens when

r1
c2B

ϵ1,c2B−cA

>
r2
c2B

ϵ2,c2B−cA

r2
c1B

ϵ2,c1B−cA

>
r1
c1B

ϵ1,c1B−cA

,

which, when rearranged, results in the conditions in the
proposition.
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