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ABSTRACT

For nonconvex objective functions, including deep neural networks, stochastic
gradient descent (SGD) with momentum has faster convergence and better gen-
eralizability than SGD without momentum, but a theoretical explanation for this
is lacking. Adding momentum is thought to reduce stochastic noise, but several
studies have argued that stochastic noise actually contributes to the generalizabil-
ity of the model, which raises a contradiction. We show that the stochastic noise
in SGD with momentum smoothes the objective function, the degree of which is
determined by the learning rate, the batch size, the momentum factor, the variance
of the stochastic gradient, and the upper bound of the gradient norm. By numer-
ically deriving the stochastic noise level in SGD with and without momentum,
we provide theoretical findings that help explain the training dynamics of SGD
with momentum, which were not explained by previous studies on convergence
and stability, and that resolve the contradiction. We also provide experimental re-
sults for an image classification task using ResNets that support our assertion that
model generalizability depends on the stochastic noise level.

1 INTRODUCTION

1.1 BACKGROUND

First-order optimizers that use mini-batch stochastic gradients, such as stochastic gradient descent
(SGD) (Robbins & Monro, 1951), SGD with momentum (Polyak, 1964; Rumelhart et al., 1986), and
adaptive methods (Duchi et al., 2010; Kingma & Ba, 2015), are the most commonly used methods
for solving empirical risk minimization problems that appear in machine learning. These methods
have been well studied for their convergence (Bottou et al., 2018; Chen et al., 2021; 2019; Fehrman
et al., 2020; Iiduka, 2022a; Loizou et al., 2021; Scaman & Malherbe, 2020; Zaheer et al., 2018; Zhou
et al., 2020a; Zou et al., 2019) and stability (Hardt et al., 2016; He et al., 2019; Lin et al., 2016; Mou
et al., 2018), and it has been shown that tuning the hyperparameters such as the learning rate, batch
size, and momentum factor is essential for successful training. This paper focuses on the SGD with
momentum method and provides new insights into the role of the momentum factor.

For nonconvex objective functions, including deep neural networks (DNNs), SGD with momentum
experimentally has better generalizability than SGD without momentum (simply ”SGD” hereafter),
but theoretical explanations for this characteristic have not yet been provided. The generalizability of
SGD with momentum has been well studied, and various experimental findings have been reported.
While it has been suggested that momentum plays a role in reducing stochastic noise (Defazio, 2020;
Cutkosky & Mehta, 2020), stochastic noise has been shown to increase generalizability (Li et al.,
2019; Wen et al., 2020; HaoChen et al., 2021), and it has been claimed that stochastic noise can
help an algorithm escape from local solutions with poor generalizability (Ge et al., 2015; Jin et al.,
2017; Daneshmand et al., 2018; Harshvardhan & Stich, 2021; Kleinberg et al., 2018). Furthermore,
several studies (Shallue et al., 2019; Jelassi & Li, 2022; Kunstner et al., 2023) have shown that the
gap in convergence speed and generalizability between SGD and SGD with momentum is more
pronounced for large batches. There is an inconsistency in that adding momentum should reduce
stochastic noise, but because momentum has excellent generalizability, it should have sufficiently
large noise, and this contradiction makes it difficult to understand the effect of momentum in DNNs.
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The geometry of loss landscapes, in particular the relationship between the flatness of the minima
and generalization, has been extensively studied from both theoretical and empirical perspectives
(Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Dziugaite & Roy, 2017; Jiang et al., 2020;
Foret et al., 2021). In general, a local optimal solution with flatter neighborhoods is considered to
have better generalizability than that with steeper neighborhoods. Several previous studies (Keskar
et al., 2017; Liang et al., 2019; Tsuzuku et al., 2020; Petzka et al., 2021; Kwon et al., 2021) de-
veloped measures for the flatness of the minima, “sharpness”. It has been experimentally observed
to correlate with the generalization performance of a model. One previous study (Kleinberg et al.,
2018) suggested that the objective function is smoothed by stochastic noise in the optimizer. A more
recent study demonstrated that stochastic noise in SGD implicitly smoothes the objective function,
that the degree of smoothing caused by stochastic noise in SGD and sharpness both represent the
flatness/sharpness of the function, and that the degree of smoothing is correlated with generalization
performance (Sato & Iiduka, 2023b). Based on these studies, our study focused on the smoothing
of the objective function by stochastic noise in SGD with momentum and the relationship between
the degree of smoothing and the generalizability of the model. When considering stochastic noise
in optimizers, most previous studies (Zhang et al., 2020; Zhou et al., 2020b; Kunstner et al., 2023)
defined stochastic noise as the difference between the mini-batch stochastic gradient and the full
gradient. We call this difference “gradient noise.” Here, in order to discuss smoothing with stochas-
tic noise, we define optimizer’s stochastic noise as the difference between the search direction of
the optimizer and the steepest descent direction, which we call “search direction noise.” Search
direction noise can be viewed as an extension of gradient noise. Note that gradient noise and search
direction noise in SGD are consistent with each other.

The simplest method for adding a momentum term to SGD is the stochastic heavy ball (SHB) method
(Algorithm 1) (Polyak, 1964). Although it has been widely used in experiments, it is lacking in
theoretical analysis. In contrast, the normalized-SHB (NSHB) method (Algorithm 2 with ν = 1)
(Gupal & Bazhenov, 1972) has been well analyzed theoretically for convergence and stability but
has rarely been used in experiments. Note that the algorithm referred to as “SGD with momentum
(SGDM)” in many previous studies is actually NSHB, while that provided by PyTorch (Paszke
et al., 2019) and TensorFlow (Abadi et al., 2016) is SHB. Many variants of the momentum method
have been proposed, including Nesterov’s accelerated gradient method (Nesterov, 1983; 2004; 2013;
Sutskever et al., 2013), synthesized Nesterov variants (Lessard et al., 2016), Triple Momentum (Scoy
et al., 2018), Robust Momentum (Cyrus et al., 2018), PID control-based methods (An et al., 2018),
accelerated SGD (Jain et al., 2018; Kidambi et al., 2018; Varre & Flammarion, 2022; Li et al., 2024),
and quasi-hyperbolic momentum (QHM, Algorithm 2) (Ma & Yarats, 2019). This paper focuses on
SHB and QHM, which covers many momentum methods, especially NSHB, but does not cover
SHB.

Motivation. Our main goal in this paper is to resolve the contradiction described in Section 1.1 that
exists between momentum and stochastic noise and to clarify the role of momentum in DNNs train-
ing. It was recently found that the stochastic noise in SGD implicitly smoothes the objective function
and that the degree of smoothing is determined by the learning rate, batch size, and variance of the
stochastic gradient (Sato & Iiduka, 2023b). We extend this analysis to SGD with momentum, and
by focusing on the stochastic noise between the search direction and the steepest descent direction,
we attempt to reveal how momentum is involved in the smoothing of the objective function.

1.2 CONTRIBUTIONS

SGD with momentum’s smoothing property (Section 3). We show that SGD with momentum’s
search direction noise has a smoothing effect on the objective function, the degree of which is
determined by the momentum factor β, the variance of the stochastic gradient C2

opt, and the upper
bound of the gradient norm K2

opt, in addition to learning rate η and batch size b:

δSGD = η

√
C2

SGD

b
, δSHB = η

√(
1 + β̂

) C2
SHB

b
+ β̂K2

SHB, δ
NSHB = η

√
1

1− β

C2
NSHB

b
, (1)

where β̂ := β(β2−β+1)
(1−β)2 . (See Assumption 2.1 for exact definitions of C2

opt and K2
opt). We call this

the “degree of smoothing” and denote it by δopt for each optimizer (The subscript “opt” indicates
the optimizer’s name). The larger the degree, the smoother the function and the greater the dif-
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ference from the original function, and the smaller the degree, the smaller the difference between
the smoothed function and the original function and the less smoothed the function. Equation (1)
shows that a large learning rate and/or small batch size, and/or a large momentum factor, smooths
the function even more. Although their results were derived from a different perspective, Smith et
al. obtained similar results (Smith et al., 2018). Furthermore, the results of several experimental
studies suggest that these hyperparameters are interrelated (Kidambi et al., 2018; Leclerc & Madry,
2020; Kunstner et al., 2023; Fu et al., 2023). Equation (1) also shows that these hyperparameters are
interrelated through the degree of smoothing. Therefore, our results provide theoretical support for
these previous findings and new insights into the role of hyperparameters in DNNs training.

Estimation of critical batch size and variance of stochastic gradient (Section 4). To estimate
the variance of stochastic gradient C2

opt contained in the degree of smoothing as in (1), we consider
a critical batch size that is defined by a global minimizer of the stochastic gradient computation
cost. We show the existence of a critical batch size in the training of a DNNs with SGD and SGD
with momentum and provide a formula for estimating the size. We also estimate the variance of the
stochastic gradient for an optimizer from the experimentally estimated critical batch size and show
that SGD with momentum, especially SHB, has a smaller variance than SGD. This is the first paper
to provide a formula for estimating the critical batch size for SGD and SGD with momentum, and,
to the best of our knowledge, the first attempt to estimate the variance of stochastic gradients.

Why and when momentum improves generalizability (Section 5). Using the estimated variance
of the stochastic gradient, we numerically derived the degree of smoothing introduced by search
direction noise (see Figure 1 (Left)). Figure 1 shows that SHB always has a greater degree of
smoothing than SGD. Of particular note is that the degree of smoothing depends on the batch size,
so that as the batch size increases, the degree of smoothing for SGD and NSHB approaches zero,
whereas that for SHB does not decrease thanks to a term independent of batch size (see (1)). Figure
1 also shows that the degree of smoothing introduced by search direction noise is closely related
to the generalizability of the model. We observed that an appropriate degree of smoothing, neither
too large nor too small, leads to high generalizability. Therefore, the theoretical reason for the
phenomenon observed experimentally in some previous studies (Kunstner et al., 2023; Shallue et al.,
2019; Jelassi & Li, 2022) that the generalization performance of SHB compared with that of SGD
does not deteriorate with an increase in the batch size is that SHB is able to maintain a reasonably
large degree of smoothing when the batch is large. Conversely, when the batch is small, the degree
of smoothing of SHB is too large, and generalization performance is not excellent. Therefore, the
role of the momentum factor in SHB is maintaining a high degree of smoothing even when the batch
is large. Furthermore, since an appropriate degree of smoothing leads to high generalizability, we
can say that our results are useful for selecting appropriate hyperparameters.
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Figure 1: Left: Degree of smoothing introduced by search direction noise with η = 0.1 and β = 0.9
versus batch size for each optimizer. Center: Test accuracy for each optimizer versus batch size.
Right: Test accuracy for each optimizer versus degree of smoothing in training ResNet18 on CI-
FAR100 dataset. There is a clear relationship between the degree of smoothing and generalizability;
i.e., generalizability is clearly a concave function with respect to the degree of smoothing. Thus, a
degree of smoothing that is neither too large nor too small leads to high generalizability. In particu-
lar, the degree of smoothing of SHB is not smaller than that of SGD and NSHB when the batch size
is large, so the generalizability of SHB remains high even when the batch size is large.

Resolving the contradiction that exists between momentum and stochastic noise (Section 5). In
summary, adding momentum reduces the gradient noise. Conversely, adding momentum increases
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search direction noise, which contributes to smoothing of the objective function. Furthermore, the
degree of smoothing can be expressed in terms of hyperparameters including the momentum factor.
Since the degree of smoothing is well correlated with the generalizability of the model, the stochastic
noise that contributes to the generalizability of the model is search direction noise, not gradient
noise. The degree of smoothing of SHB leads to high generalizability because the momentum factor
enables it to maintain an appropriate value even when the batch is large. Therefore, the arguments
“adding momentum should reduce stochastic noise” and “stochastic noise leads to generalizability”
do not conflict, and the contradiction is resolved, namely, “adding momentum reduce gradient noise”
and “search direction noise leads to generalizability.”

2 PRELIMINARIES

2.1 NOTATION, DEFINITIONS, AND ASSUMPTIONS

Let N be the set of non-negative integers. For m ∈ N\{0}, define [m] := {1, 2, . . . ,m}. Rd is a
d-dimensional Euclidean space with inner product ⟨·, ·⟩, which induces the norm ∥ · ∥. Id denotes
a d × d identity matrix. Let N (µ; Σ) be a d-dimensional normal distribution with mean µ ∈ Rd
and variance Σ ∈ Rd×d. The DNNs is parametrized with parameter x ∈ Rd, which is optimized by
minimizing empirical loss function f(x) := 1

n

∑
i∈[n] fi(x), where fi(x) is a loss function for x ∈

Rd and the i-th training data point zi (i ∈ [n]). Let ξ be a random variable that does not depend on
x ∈ Rd, and Eξ[X] means the expectation with respect to ξ of a random variableX . ξt,i is a random
variable generated from the i-th sampling at time t, and ξt := (ξt,1, ξt,2, . . . , ξt,b) is independent
of (xk)tk=0 ⊂ Rd, where b (≤ n) is the batch size. From the independence of ξ0, ξ1, . . . , we can
define the total expectation E by E = Eξ0

Eξ1
· · ·Eξt

. Let Gξt
(x) be the stochastic gradient of f(·)

at x ∈ Rd. St is the mini-batch of b samples at time t, and ∇fSt
(xt) is the mini-batch stochastic

gradient of f(xt) for St; i.e., ∇fSt
(xt) :=

1
b

∑
i∈[b] Gξt,i(xt).

In general, smoothing of a function is achieved by convolving the function with a random variable
that follows a normal distribution (Wu, 1996):

Definition 2.1 (Smoothed function). Given a function f : Rd → R, define f̂δ : Rd → R to be the
function obtained by smoothing f as f̂δ(x) := E

u∼N
(
0; 1√

d
Id

) [f(x− δu)] ,where δ > 0 represents

the degree of smoothing and u is a random variable from a normal distribution.

The following lemma represents an important property of smoothed function f̂δ . This is general and
has already been reported by (Hazan et al., 2016). The proof of Lemma 2.1 is in Appendix C.1.

Lemma 2.1. Let f̂δ be the smoothed version of f ; then, for all x ∈ Rd, |f̂δ(x) − f(x)| ≤
Eu[∥u∥]δLf .

Considering that a local optimal solution with a flatter landscape in the neighborhood yields better
generalizability, we can say that the degree of smoothing δ must be sufficiently large. However,
Lemma 2.1 implies that the greater the δ, the greater the gap between original function f(x) and
smoothed function f̂δ . Therefore, if the degree of smoothing is constant throughout the training, we
can say that its level must be neither too large nor too small.
Assumption 2.1. (A1) fi : Rd → R (i ∈ [n]) is continuously differentiable and a Lf -Lipschitz
function; i.e., for all x,y ∈ R, |f(x) − f(y)| ≤ Lf∥x − y∥. (A2) (xt)t∈N ⊂ Rd is a sequence
generated by an optimizer. (i) For each iteration t, Eξt

[Gξt
(xt)] = ∇f(xt). (ii) There exists a

non-negative constant C2
opt for an optimizer such that Eξt

[
∥Gξt

(xt)−∇f(xt)∥2
]
≤ C2

opt. (A3)
For each iteration t, the optimizer samples a mini-batch St ⊂ S and estimates the full gradient ∇f
as ∇fSt

(xt) :=
1
b

∑
i∈[b] Gξt,i(xt) =

1
b

∑
{i : zi∈St} ∇fi(xt). (A4) There exists a positive constant

Kopt for an optimizer, for all t ∈ N, E
[
∥∇f(xt)∥2

]
≤ K2

opt.

The variance of the stochastic gradient and the upper bound of the gradient are often assumed to be
constant for any optimizer, but we define them as C2

opt and Kopt for each optimizer. The subscript
“opt” indicates the optimizer’s name. Thus, for example, Assumption (A2)(ii) means that when a
sequence (xt)t∈N is generated by SGD, there existsC2

SGD satisfying Eξt

[
∥Gξt

(xt)−∇f(xt)∥2
]
≤

C2
SGD. Here, C2

opt depends not only on random variable ξt but also on parameter xt. Since different
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optimizers yield different xt at given time t, C2
opt depends on the optimizer, so Assumption (A2)(ii)

is valid. Experimental results supporting this assertion are plotted in Figure 5 in Appendix A.1.

2.2 ALGORITHMS

We consider two algorithms that are a type of SGD with momentum.

Algorithm 1 Stochastic Heavy Ball (SHB)
Require: x0, η > 0, β ∈ [0, 1),m−1 := 0

for t = 0 to T − 1 do
mt := ∇fSt

(xt) + βmt−1

xt+1 := xt − ηmt

end for
return xT

Algorithm 2 Quasi-Hyperbolic Momentum (QHM)
Require: x0, η > 0, ν, β ∈ [0, 1),d−1 := 0

for t = 0 to T − 1 do
dt := (1− νβ)∇fSt

(xt) + νβdt−1

xt+1 := xt − ηdt
end for
return xT

In accordance with Gitman et al. (Gitman et al., 2019), we refer to Algorithm 1 as the SHB method.
In Algorithm 2, ν is the coefficient balancing SGD (ν = 0) with NSHB (ν = 1).

3 SGD WITH MOMENTUM’S STOCHASTIC NOISE AND SMOOTHING

Kleinberg et al. suggested that stochastic noise in SGD may smooth the objective function (Klein-
berg et al., 2018). Sato and Iiduka supported this theoretically and showed that the degree of
smoothing is determined by hyperparameters (Sato & Iiduka, 2023b). In this section, we extend
this discussion to SHB and QHM.

At time t, let ωSHB
t be the difference between the search direction of the gradient descent and the

search direction of SHB, and let ωQHM
t be the difference between the search direction of the gradient

descent and the search direction of QHM:

ωSHB
t := mt −∇f(xt) and ωQHM

t := dt −∇f(xt).

ωSHB
t and ωQHM

t are search direction noise; it is analogous to “search direction” in the optimization
field. Indeed, they take into account not only its direction but also its magnitude. Then, the following
theorem holds:
Theorem 3.1. Suppose that Assumptions (A2)(ii), (A3), and (A4) hold, then, for all t ∈ N,

E
[∥∥ωSHB

t

∥∥] ≤√C2
SHB

b
+
β(β2 − β + 1)

(1− β)2

(
C2

SHB

b
+K2

SHB

)
, E

[∥∥∥ωQHM
t

∥∥∥] ≤
√

1

1− νβ

C2
QHM

b
.

Hence, search direction noise ωSHB
t can be expressed as

ωSHB
t =

√(
1 +

β(β2 − β + 1)

(1− β)2

)
C2

SHB

b
+
β(β2 − β + 1)

(1− β)2
K2

SHBut =: ψSHBut,

where ut ∼ N
(
0; 1√

d
Id

)
. It has been observed that the gradient noise ∇fSt

(xt)−∇f(xt) follows
a normal distribution in CNN-based image classification models (Zhang et al., 2020; Kunstner et al.,
2023). We confirmed experimentally that the search direction noise follows a normal distribution
as well (see Section D.2). In addition, let yt be the parameter updated by the gradient descent and
xt+1 be the parameter updated by SHB at time t; i.e.,

yt := xt − η∇f(xt), xt+1 := xt − ηmt = xt − η(∇f(xt) + ωSHB
t ).

Then, according to Definition 2.1 and Assumption (A1), we have

EωSHB
t

[yt+1] = EωSHB
t

[yt]− η∇EωSHB
t

[
f
(
yt − ηωSHB

t

)]
(2)

= EωSHB
t

[yt]− η∇E
ut∼N

(
0; 1√

d
Id

) [f(yt − ψSHBut)
]

= EωSHB
t

[yt]− η∇f̂ηψSHB(yt).
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(The derivation of Equation (2) is presented in Appendix C.3.) This shows that the function
EωSHB

t

[
f
(
yt − ηωSHB

t

)]
is a smoothed version of f with degree of smoothing ηψSHB. Furthermore,

optimizing function f with SHB is equivalent to optimizing function f̂ηψSHB with gradient descent in
the sense of expectation. Therefore, we can say that the degree of smoothing due to search direction
noise in SHB is determined by δSHB = ηψSHB, i.e., learning rate η, batch size b, momentum factor
β, the variance of stochastic gradient C2

SHB, and the upper bound of full gradientKSHB for SHB. The
same argument holds for QHM. The degree of smoothing for each optimizer can be expressed as

δSGD = η

√
C2

SGD

b
, (3)

δSHB = η

√(
1 +

β(β2 − β + 1)

(1− β)2

)
C2

SHB

b
+
β(β2 − β + 1)

(1− β)2
K2

SHB, (4)

δQHM = η

√
1

1− νβ

C2
QHM

b
, (5)

and if ν = 1 in δQHM, we obtain δNSHB. Note that δSGD is the result derived by a previous study (Sato
& Iiduka, 2023b). Since δSHB and δNSHB coincide with δSGD when β = 0 and ν = 0, respectively, our
results are an extension of their result. Since the terms β(β

2−β+1)
(1−β2) and 1

1−νβ are monotone increasing
for momentum factor β or νβ, we can say that a larger momentum factor leads to a greater degree
of smoothing. In addition to the momentum factor, Equations (4) and (5) show that hyperparameters
such as the learning rate and batch size also contribute to smoothing. Therefore, the learning rate,
the batch size, and the momentum factor are interrelated, and they should be selected such that the
degree of smoothing is appropriate. This finding is helpful in selecting appropriate hyperparameters.
For example, from Lemma 2.1, if a large learning rate is used, a small momentum should obviously
be used in order to obtain the appropriate degree of smoothing, i.e., one that is neither too large nor
too small. Leclerc and Madry observed this phenomenon experimentally (Leclerc & Madry, 2020,
Figure 4).

Remark 3.1. One may find it strange that, in equations (4) and (5), the upper bound K2
opt of the

gradient norm appears only for δSHB and that it may be loose. In fact, the term K2
SHB plays an

important role in our argument in Section 5, so we would like to add that this result is not arbitrary.
As seen from the δQHM derivation, when expanding ∥ωQHM

t ∥2, we do not add unnecessary terms
to the upper bound thanks to the convex combination property of the NSHB algorithm (see (20)
in Appendix C.2 and Proposition A.1). This is one of our key technical contributions. In fact, by
simply following the derivation of δSHB, one can derive δQHM as follows:

δQHM = η

√
(1 + 4ν2β2)

C2
QHM

b
+ 4ν2β2K2

QHM.

Thus, the reason QHM does not need an upper bound on the gradient to suppress δQHM, even though
QHM (NSHB) has a momentum term like SHB, is the presence of a convex combination in the
QHM algorithm (see Algorithm 2). Furthermore, K2

SHB appears in the upper bound of SHB because
the expansion of ∥ωSHB

t ∥2 cannot take advantage of the theoretically tractable properties of a convex
combination. Because we experimentally demonstrated that SHB and QHM (NSHB) are completely
different (see Figures 2 and Figure 4), we do not believe that this problem is simply due to a lack
of good theoretical capture. Rather, we have shown for the first time, both theoretically and experi-
mentally from the perspective of search direction noise, that the difference between the algorithms
in terms of convex combination accounts for the difference in their respective performances. Of
course, deriving δSHB without using K2

SHB should prove to be interesting and important future work.

Then, what are the magnitudes of the degree of smoothing δSGD, δSHB, and δQHM, respectively? Since
these include hyperparameters η, b, and β as well as the unknowns C2

opt and K2
SHB, it is necessary

to estimate them in order to reveal the magnitude of the degree of smoothing. To estimate them, we
provide some results in Section 4.
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4 THEORETICAL ANALYSIS OF SHB AND QHM

We first use convergence analysis of SHB and QHM to clarify the relationship between batch size
and the number of steps required for training. We then provide an equation for estimating the critical
batch size and the variance of the stochastic gradient for an optimizer. To analyze SHB and QHM,
we further assume that,
Assumption 4.1. For all x ∈ Rd, there exists a positive real number D(x) such that, for all t ∈ N,

∥xt − x∥ ≤ D(x).

Assumption 4.1 has been used to provide upper bounds on the performance measures when ana-
lyzing both convex and nonconvex optimization of DNNs (Kingma & Ba, 2015; Reddi et al., 2018;
Zhuang et al., 2020). An example satisfying this assumption 4.1 is the boundedness condition of
(xt)t∈N; i.e., there exists D1 > 0 such that, for all t ∈ N, ∥xt∥ ≤ D1. Then, we have that, for
all x ∈ Rd and all t ∈ N, ∥xt − x∥ ≤ ∥xt∥ + ∥x∥ ≤ D1 + ∥x∥ =: D(x), which implies that
Assumption 4.1 holds.

4.1 CONVERGENCE ANALYSIS OF SHB AND QHM

We present convergence analyses of Algorithms 1 and 2 (The proofs of Theorems 4.1 and 4.2 are in
Appendix A.4 and A.6 respectively).
Theorem 4.1. Suppose that Assumptions (A1)−(A4) and 4.1 hold and consider the sequence
(xt)t∈N generated by SHB. Then, for all x ∈ Rd and all T ≥ 1, the following holds:

1

T

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤
∥x0 − x∥2

2ηT
+
βD(x)

1− β

√
C2

SHB

b
+K2

SHB

+
η
(
β2 − β + 1

)
2β(1− β)2

(
C2

SHB

b
+K2

SHB

)
.

Theorem 4.2. Suppose that Assumptions (A1)−(A4) and 4.1 hold and consider the sequence
(xt)t∈N generated by QHM. Then, for all x ∈ Rd and all T ≥ 1, the following holds:

1

T

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤
∥x0 − x∥2

2η(1− νβ)T
+
νβD(x)

1− νβ

√
C2

QHM

b
+K2

QHM

+
η

2(1− νβ)

(
C2

QHM

b
+K2

QHM

)
.

Convergence analysis for NSHB is performed using Theorem 4.2 with ν = 1.

Remark 4.1. To illustrate the validity of the evaluation metrics in Theorems 4.1 and 4.2, we include
Proposition A.2 in Appendix A. It implies that, if the upper bound of the inner product ⟨xt −
x,∇f(xt)⟩ becomes small, xt comes to approximate a local minimizer of f and that, if the upper
bound is negative, xt is simply a local minimizer of f . Therefore, Theorems 4.1 and 4.2 can be used
to evaluate the inner products of unknown positivity.

4.2 ESTIMATION OF CRITICAL BATCH SIZE

We first define the stochastic first-order oracle (SFO) complexity, which is the stochastic gradient
computation cost. If an optimizer uses batch size b for training a DNNs, the optimizer computes b
stochastic gradients per step. If T is the number of steps needed to train the DNNs, the optimizer
has a stochastic gradient computation cost of Tb, which is the SFO complexity. We would like to
minimize SFO complexity in order to minimize the computational cost. Previous studies (Shallue
et al., 2019; Ma et al., 2018; McCandlish et al., 2018) have shown experimentally that the number
of steps T required to train a DNNs is halved when batch size b is doubled, but this phenomenon is
not observed beyond critical batch size b⋆. Therefore, the critical batch size is defined as the batch
size that minimizes the SFO complexity for training, which is why it is desirable for the optimizer
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to use the critical batch size that is the global minimizer of the SFO complexity Tb. Zhang et al.
suggested that the critical batch size depends on the optimizer (Zhang et al., 2019), and Iiduka and
Sato theoretically proved its existence and provided a formula for estimating its lower bound from
the hyperparameters (Iiduka, 2022b; Sato & Iiduka, 2023a).

Letting ϵ > 0 and using Theorems A.1, 4.1, and 4.2, we take Topt satisfying
1
Topt

∑Topt−1
t=0 E [⟨xt − x,∇f(xt)⟩] ≤ ϵ2 to be the number of steps required for training each op-

timizer. Thus, ϵ2 is a threshold and a stopping condition for training. Critical batch size b⋆opt is
defined as b⋆opt := argminb∈[n]Toptb. From Theorems A.1, 4.1, and 4.2, we can derive the following
proposition, which gives a lower bound on critical batch size b⋆opt. The proof of Proposition 4.1 and
a more detailed discussion of its derivation are given in Appendix B.
Proposition 4.1. Suppose that Assumptions (A1)−(A4) and 4.1 hold and consider SGD, SHB, and
QHM. Let ϵ > 0. Then, the following hold:

b⋆SGD >
ηC2

SGD

ϵ2
, b⋆SHB >

η(β2 − β + 1)C2
SHB

β(1− β)2ϵ2
, b⋆QHM >

ηC2
QHM

(1− νβ)ϵ2
.

Proposition 4.1 implies that the lower bound on the critical batch size of SHB is determined by
learning rate η, the variance of the stochastic gradient C2

SHB, momentum factor β, and threshold
ϵ. It has been shown experimentally that there is a relationship between critical batch size and ϵ,
with more severe conditions increasing the critical batch size; see, for example, (Zhang et al., 2019).
Our Proposition 4.1 theoretically supports their experimental results. It also provides a formula for
estimating the lower bound for the critical batch size. In practice, however, estimating the critical
batch size completely in advance is impossible because it involves an unknown, C2

opt. Nevertheless,
this is an important proposition because it connects theory and experiment, and we can use it to
back-calculate the variance of stochastic gradient C2

opt (see Section 4.3).

4.3 ESTIMATION OF VARIANCE OF STOCHASTIC GRADIENT

We experimentally demonstrated the existence of a critical batch size. For different batch sizes, we
measured the number of steps Topt required for the gradient norm of the preceding t steps at time
t to average less than ϵ = 0.5 in training ResNet18 (He et al., 2016) on the CIFAR100 dataset
(Krizhevsky, 2009). See Appendix B.4 for more details on the experiments discussed in this section
and similar results on several datasets and models (see also Table 1).

23 24 25 26 27 28 29 210 211 212 213

batch size

108

SF
O

SGD
SHB
NSHB

Figure 2: SFO complexities for SGD, SHB, and
NSHB needed to train ResNet18 on CIFAR100
dataset versus batch size. The double circle sym-
bols denote the critical batch sizes that minimize
SFO complexity. The solid lines represent the
mean value, and the shaded areas represent the
maximum and minimum over three runs.

A learning rate η of 0.1 was used for all op-
timizers, with a momentum factor β of 0.9
for SHB and NSHB. Figure 2 plots SFO com-
plexity Toptb versus b. The estimated critical
batch sizes for SGD, SHB, and NSHB were
29, 210, and 29, respectively. From Proposition
4.1 and these experimental results, we can es-
timate the upper bound on the variance of the
stochastic gradient. For example, the variance
of the stochastic gradient of SGD for training
ResNet18 on the CIFAR100 dataset can be ob-
tained as

C2
SGD <

b⋆SGDϵ
2

η
=

29 · (0.5)2

0.1
= 1280.

Similar calculations for SHB and NSHB lead to
C2

SHB < 25.3 and C2
NSHB < 128 (see Appendix

B.5). Thus, adding a momentum term reduces
the variance of the stochastic gradient, and the
effect is seen especially in SHB for training ResNet18 on CIFAR100 dataset. We performed similar
experiments for training WideResNet-28-10 (Zagoruyko & Komodakis, 2016) and MobileNetV2
(Sandler et al., 2018) on CIFAR100 dataset and training ResNet18 on CIFAR10 dataset (Krizhevsky,
2009). We also estimated an upper bound on the variance of the stochastic gradient C2

opt from a
similar discussion. The results are summarized in Table 1. We also experimentally observed an

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

upper bound on the gradient norm (see Assumption (A4)) for training ResNet18 on the CIFAR100
dataset: KSGD = 4.528, KSHB = 1.77, and KNSHB = 4.5 (see Appendix B.5). These values are
used in our discussion of the smoothing property of SGD with momentum in Section 3.

Table 1: The variance of stochastic gradient C2
opt for training ResNet18, WideResNet-28-10, and

MobileNetV2 on CIFAR100 and CIFAR10 datasets.
CIFAR100 CIFAR10

ResNet18 WideResNet-28-10 MobileNetV2 ResNet18
C2

SGD 1280 10 20 20
C2

SHB 25.3 0.79 6.33 0.79
C2

NSHB 128 1 2 2

5 DEGREE OF SMOOTHING AND GENERALIZABILITY

We have now completed estimating the unknowns in the equation for the degree of smoothing for
each optimizer (3)-(5) we derived in Section 3. Using the value of the variance of the stochastic
gradient and the upper bound of the gradient norm obtained in Section 4.3, we can obtain the degree
of smoothing for each batch size. Figure 3 plots the degree of smoothing defined in (3)-(5) when
η = 0.1 and β = 0.9 versus batch size.

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

batch size
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de
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50000

Training ResNet18 on CIFAR100 dataset

SGD
SHB
NSHB

Figure 3: Degree of smoothing δSGD, δSHB, and
δNSHB when η = 0.1 and β = 0.9 for SGD,
SHB, and NSHB versus batch size in train-
ing ResNet18 on CIFAR100 dataset. See Ap-
pendix C.4 for details on calculating the degree
of smoothing and a logarithmic graph version
(see also Figure 1).
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Training ResNet18 on CIFAR100 dataset
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Figure 4: Test accuracy for SGD, SHB, and
NSHB versus batch size in training ResNet18 on
CIFAR100 dataset. The solid line represents the
mean value, and the shaded area represents the
maximum and minimum over seven runs.

Why and when momentum improves generalizability. We measured the test accuracy for 11
batch sizes for 200 epochs for training ResNet18 for SGD, SHB, and NSHB on the CIFAR100
dataset. As shown in Figure 4, the generalizability of SGD and NSHB deteriorated as the batch size
was increased, whereas that of SHB remained stable. If the degree of smoothing is not sufficient,
the optimizer will fall into a sharp local optimal solution, and generalizability will be compromised.
Therefore, the reason SHB outperforms SGD and NSHB when the batch is large is that the degree
of smoothing of SGD and NSHB approaches zero, whereas SHB has a reasonably large degree of
smoothing even for large batches. This is also why the gap in generalizability between SGD and
SHB is more pronounced for large batches as observed in several previous studies (Shallue et al.,
2019; Jelassi & Li, 2022; Kunstner et al., 2023).

Figure 4 also shows that SHB has stable generalizability for all batch sizes, but accuracy never ex-
ceeds 70%, which is highest accuracy of SGD and NSHB. This can also be explained by the greater
or lesser degree of smoothing shown in Figure 3: SHB does not decrease in degree of smoothing
with increasing batch size but always has a greater degree of smoothing than SGD and NSHB. From
Lemma 2.1, a too large degree of smoothing leads to too large deviations from the original func-
tion. Therefore, the reason that the test accuracy of SHB never exceeds 70% is that the degree of
smoothing for SHB is always slightly greater than the appropriate value. Then, we can say that the
degree of smoothing from b = 23 to b = 28, where SGD and NSHB achieve high test accuracies, is
an appropriate value for training on the ResNet18 on CIFAR100 dataset.
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In summary, momentum improves generalizability when the batch size is large, but deteriorates
generalizability when the batch size is small. There is an impressive correlation between the degree
of smoothing and model generalizability, which is why we can say that the degree of smoothing
introduced by the optimizer’s search direction noise dominates model training and generalizability.

Remark 5.1. Recently, Wang et al. showed that when the learning rate is small, there is no signifi-
cant difference in generalization performance between SGD and SGD with momentum (Wang et al.,
2024). SGD with momentum in their paper is NSHB in our paper (see (Wang et al., 2024, Definition
2.3) and our Algorithm 2). Our results show that SGD and NSHB have same degrees of smoothing
(see Figure 3), which results in nearly same test accuracy (see Figure 4). Therefore, our results do
not conflict with theirs.

Remark 5.2. Let us explain the relationship between the degree of smoothing and expected loss.
Previous studies (Keskar et al., 2017; Izmailov et al., 2018; Li et al., 2018) have shown that the sharp-
ness around the approximate solution to which the optimizer converges is closely related to the gen-
eralization performance of the model, i.e., the expected loss. Sato and Iiduka (Sato & Iiduka, 2023b)
experimentally demonstrated that sharpness and the degree of smoothing introduced by search di-
rection noise are inextricably linked. That is, when the degree of smoothing is small (resp. large),
sharpness is large (resp. small). Thus, the degree of smoothing due to empirical loss is related to
expected loss, a measure of true generalization performance, via sharpness. In particular, the degree
of smoothing is correlated with generalization performance, as shown by a previous study (Sato &
Iiduka, 2023b) and our experimental results.

Resolving the contradiction between momentum and stochastic noise. Figure 3 shows that SHB
always has a greater degree of smoothing than SGD. Therefore, for SHB, which is often used ex-
perimentally, adding momentum increases the search direction noise. We can thus say that adding
momentum reduces the variance of the stochastic gradient (see Section 4.3) and conversely increases
the degree of smoothing introduced by the search direction noise. This is why the arguments that
“adding momentum should reduce stochastic noise” and that “stochastic noise leads to generaliz-
ability” do not conflict, which resolves the contradiction. Figure 3 also shows that NSHB has the
same degree of smoothing as SGD. Thus, for NSHB, which is rarely used experimentally, adding
momentum does not contribute to an increase in the degree of smoothing. In fact, the performances
of SGD and NSHB are very similar (see Figures 2 and 4). This not only demonstrates that the de-
gree of smoothing is a hidden factor governing the training of the model but also that the reason
NSHB is not as good and not used experimentally as often as SHB is that the degree of smoothing
does not differ from that of SGD despite the addition of momentum. Thus, for NSHB, there was no
contradiction regarding the momentum term and stochastic noise.

6 CONCLUSION

Our investigation of the smoothing properties of SGD with momentum resolved the contradiction
between momentum and stochastic noise, namely that adding momentum reduces gradient noise
and conversely increases search direction noise, which contributes to smoothing of the objective
function. It also showed that the degree of smoothing is determined by the hyperparameters such as
the momentum factor. Through convergence analysis and discussion of critical batch size estima-
tion, we derived the degree of smoothing numerically and found an impressive correlation between
the degree of smoothing and model generalizability. Specifically, too large or too small a degree
of smoothing leads to poor generalizability, whereas a moderate one leads to high generalizability.
From this perspective, we showed that SHB and NSHB are completely different, that NSHB has
almost no experimental value, and that the momentum factor in SHB maintains a high degree of
smoothing even when the batch is large. The relationship between the degree of smoothing and
model generalizability is, so to speak, a hidden factor in DNNs training, and it helps in selecting
the optimal hyperparameters and understanding the training dynamics of a DNNs. Finally, we em-
phasize that the degree of smoothing introduced by search direction noise is determined by several
hyperparameters, including the learning rate and batch size, that are easier to grasp than sharpness.
They are thus useful as a new measure of generalization performance. Deriving or estimating the
optimal degree of smoothing for generalization performance is important future work, which, if
accomplished, will reduce the huge computational cost of hyperparameter tuning.
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A CONVERGENCE ANALYSIS OF STOCHASTIC GRADIENT DESCENT (SGD),
STOCHASTIC HEAVY BALL (SHB), AND QUASIHYPERBOLIC MOMENTUM
(QHM)

A.1 VERIFICATION OF THE VALIDITY OF ASSUMPTION (A2)(II)

We measured the value ∥Gξt
(xt) − ∇f(xt)∥ 500 times using ResNet18 trained on the CIFAR100

dataset by SGD, SHB, and NSHB (10,000 steps) to determine its magnitude. As seen in Figure
5, the variance of stochastic gradient C2

opt depends on the optimizer. In fact, the values for SHB
training are smaller than the ones for SGD training.

SGD SHB NSHB

5

10

15

20

25

30

500 measurements G t(xt) f(xt)

Figure 5: Box plot of 500 measurements of ∥Gξt
(xt) − ∇f(xt)∥ using ResNet18 trained

on CIFAR100 dataset by SGD, SHB, and NSHB (10,000 steps). The code used is avail-
able at our anonymous GitHub repository (https://anonymous.4open.science/r/
role-of-momentum).

Note that although these experimental results are important in motivating Assumption (A2)(ii),
C2

opt cannot be estimated from these results alone since C2
opt is a constant satisfying ∥Gξt

(xt) −
∇f(xt)∥ ≤ C2

opt for any t ∈ N. See Section 4 for a discussion of our estimation of C2
opt.

A.2 PROPOSITIONS AND LEMMAS FOR ANALYSES

Proposition A.1. For all x,y ∈ Rd and all α ∈ R, the following holds:

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

Proof. Since 2⟨x,y⟩ = ∥x∥2 + ∥y∥2 − ∥x− y∥2 holds, for all x,y ∈ Rd and all α ∈ R,

∥αx+ (1− α)y∥2 = α∥x∥2 + 2α(1− α)⟨x,y⟩+ (1− α)2∥y∥2

= α∥x∥2 + α(1− α)(∥x∥2 + ∥y∥2 − ∥x− y∥2) + (1− α)2∥y∥2

= α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

This completes the proof.
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The following proposition describes the relationship between the stationary point problem and vari-
ational inequality.
Proposition A.2. Suppose that f : Rd → R is continuously differentiable and x∗ is a stationary
point of f . Then, ∇f(x∗) = 0 is equivalent to the following variational inequality: for all x ∈ Rd,

⟨∇f(x∗),x− x∗⟩ ≥ 0.

Proof. Suppose that x ∈ Rd satisfies ∇f(x) = 0. Then, for all y ∈ Rd,
⟨∇f(x),y − x⟩ ≥ 0.

Suppose that x ∈ Rd satisfies ⟨∇f(x),y − x⟩ ≥ 0 for all y ∈ Rd. Let y := x−∇f(x). Then we
have

0 ≤ ⟨∇f(x),y − x⟩ = −∥∇f(x)∥2.
Hence,

∇f(x) = 0.

This completes the proof.

Lemma A.1. Suppose that (A2)(ii) and (A3) hold for all t ∈ N; then,

Eξt

[
∥∇fSt

(xt)−∇f(xt)∥2
]
≤
C2

opt

b
.

Proof. Let t ∈ N and ξt := (ξt,1, · · · , ξt,b)⊤. Then, (A2)(ii) and (A3) guarantee that

Eξt

[
∥∇fSt(xt)−∇f(xt)∥2

∣∣xt] = Eξt

∥∥∥∥∥1b
b∑
i=1

Gξt,i(xt)−∇f(xt)

∥∥∥∥∥
2


= Eξt

∥∥∥∥∥1b
b∑
i=1

Gξt,i(xt)−
1

b

b∑
i=1

∇f(xt)

∥∥∥∥∥
2


= Eξt

∥∥∥∥∥1b
b∑
i=1

(
Gξt,i(xt)−∇f(xt)

)∥∥∥∥∥
2


=
1

b2
Eξt

∥∥∥∥∥
b∑
i=1

(
Gξt,i(xt)−∇f(xt)

)∥∥∥∥∥
2


=
1

b2
Eξt

[
b∑
i=1

∥∥Gξt,i(xt)−∇f(xt)
∥∥2]

≤
C2

opt

b
.

This completes the proof.

Lemma A.2. Suppose that Assumptions (A2) and (A4) hold, then for all t ∈ N,

E
[
∥∇fSt(xt)∥2

]
≤
C2

opt

b
+K2

opt,

where E = Eξ0
Eξ1

· · ·Eξt
.

Proof. Let t ∈ N. From (A2)(i), we obtain
Eξt

[
∥∇fSt

(xt)∥2
∣∣xt] = Eξt

[
∥∇fSt

(xt)−∇f(xt) +∇f(xt)∥2
∣∣xt]

= Eξt

[
∥∇fSt

(xt)−∇f(xt)∥2
∣∣xt]+ E

[
∥∇f(xt)∥2

∣∣xt]
+ 2Eξt

[
⟨∇fSt

(xt)−∇f(xt),∇f(xt)⟩
∣∣∣xt]

= E
[
∥∇fSt(xt)−∇f(xt)∥2

∣∣xt]+ ∥∇f(xt)∥2,
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which, together with (A2)(ii), (A4), Lemma A.1, and E = Eξ0
Eξ1

· · ·Eξt
implies that

E
[
∥∇fSt(xt)∥2

]
≤
C2

opt

b
+K2

opt.

This completes the proof.

A.3 LEMMAS FOR THE CONVERGENCE ANALYSIS OF SHB

Lemma A.3. Suppose that Assumptions (A2)(ii), (A3), and (A4) hold, then for all t ∈ N,

E [∥mt∥] ≤
1

1− β

√
C2

SHB

b
+K2

SHB.

Proof. Let (xt)t∈N be the sequence generated by SHB and t ∈ N. The definition of mt implies that

mt := ∇fSt(xt) + βmt−1

= ∇fSt
(xt) + β(∇fSt−1

(xt−1) + βmt−2)

...

= ∇fSt(xt) + β∇fSt−1(xt−1) + β2∇fSt−2(xt−2) + · · ·+ βt∇fS0(x0).

By using the triangle inequality, we obtain

∥mt∥ = ∥∇fSt
(xt) + β∇fSt−1

(xt−1) + β2∇fSt−2
(xt−2) + · · ·+ βt∇fS0

(x0)∥
≤ ∥∇fSt(xt)∥+ β∥∇fSt−1(xt−1)∥+ β2∥∇fSt−2(xt−2)∥+ · · ·+ βt∥∇fS0(x0)∥.

From Lemma A.2,

E [∥mt∥] ≤
√
C2

SHB

b
+K2

SHB + β

√
C2

SHB

b
+K2

SHB + β2

√
C2

SHB

b
+K2

SHB + · · ·βt
√
C2

SHB

b
+K2

SHB

=
(1− βt)

1− β

√
C2

SHB

b
+K2

SHB

≤ 1

1− β

√
C2

SHB

b
+K2

SHB.

This completes the proof.

Lemma A.4. Suppose that Assumptions (A2) and (A4) hold, then for all t ∈ N,

E
[
∥mt∥2

]
≤ β2 − β + 1

β(1− β)2

(
C2

SHB

b
+K2

SHB

)
.

Proof. Let (xt)t∈N be the sequence generated by SHB and t ∈ N. Proposition A.1 guarantees that

β(1− β)∥∇fSt
(xt) +mt−1∥2

= β∥∇fSt(xt−1)∥2 + (1− β)∥mt−1∥2 − ∥β∇fSt(xt)− (1− β)mt−1∥2

≤ β∥∇fSt
(xt)∥2 + (1− β)∥mt−1∥2.

Hence,

∥∇fSt
(xt) +mt−1∥2 ≤ 1

1− β
∥∇fSt

(xt)∥2 +
1

β
∥mt−1∥2. (6)

On the other hand,

∥∇fSt
(xt) +mt−1∥2 = ∥∇fSt

(xt)∥2 + 2⟨∇fSt
(xt),mt−1⟩+ ∥mt−1∥2. (7)

From (6) and (7), we obtain

∥∇fSt(xt)∥2 + 2⟨∇fSt(xt),mt−1⟩+ ∥mt−1∥2 ≤ 1

1− β
∥∇fSt(xt)∥2 +

1

β
∥mt−1∥2.
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Therefore,

2⟨∇fSt(xt),mt−1⟩ ≤
β

1− β
∥∇fSt(xt)∥2 +

1− β

β
∥mt−1∥2. (8)

The definition of mt implies that

∥mt∥2 = ∥∇fSt
(xt) + βmt−1∥2

= ∥∇fSt
(xt)∥2 + 2β⟨∇fSt

(xt),mt−1⟩+ β2∥mt−1∥2. (9)

From (8) and (9), we obtain

∥mt∥2 ≤ β2 − β + 1

1− β
∥∇fSt

(xt)∥2 +
(
β2 − β + 1

)
∥mt−1∥2

≤ β2 − β + 1

1− β
∥∇fSt

(xt)∥2

+
(
β2 − β + 1

){β2 − β + 1

1− β
∥∇fSt−1

(xt−1)∥2 +
(
β2 − β + 1

)
∥mt−2∥2

}
≤ β2 − β + 1

1− β
∥∇fSt

(xt)∥2 + · · ·+ β2 − β + 1

1− β

(
β2 − β + 1

)t ∥∇fS0
(x0)∥2.

By taking the total expectation on both sides, from Lemma A.2, we obtain

E
[
∥mt∥2

]
≤ β2 − β + 1

1− β
E
[
∥∇fSt(xt)∥2

]
+ · · ·+ β2 − β + 1

1− β

(
β2 − β + 1

)t E [∥∇fS0(x0)∥2
]

≤ β2 − β + 1

1− β

(
C2

SHB

b
+K2

SHB

)
+ · · ·+ β2 − β + 1

1− β

(
β2 − β + 1

)t(C2
SHB

b
+K2

SHB

)
=
β2 − β + 1

1− β

(
C2

SHB

b
+K2

SHB

)
·
1−

(
β2 − β + 1

)t+1

1− (β2 − β + 1)

≤ β2 − β + 1

1− β

(
C2

SHB

b
+K2

SHB

)
· 1

1− (β2 − β + 1)

=
β2 − β + 1

1− β

(
C2

SHB

b
+K2

SHB

)
· 1

β(1− β)

=
β2 − β + 1

β(1− β)2

(
C2

SHB

b
+K2

SHB

)
.

This completes the proof.

A.4 PROOF OF THEOREM 4.1

Proof. Let x ∈ Rd and t ∈ N. The definition of xt+1 implies that

∥xt+1 − x∥2 = ∥(xt − ηmt)− x∥2

= ∥xt − x∥2 − 2η⟨xt − x,mt⟩+ η2∥mt∥2

= ∥xt − x∥2 − 2η⟨xt − x,∇fSt(xt)⟩+ 2ηβ⟨x− xt,mt−1⟩+ η2∥mt∥2.

We then have

Eξt

[
⟨xt − x,∇fSt

(xt)⟩
∣∣∣xt]

= Eξt

[
1

2η

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
+ β⟨x− xt,mt−1⟩+

η

2
∥mt∥2

∣∣∣xt] .
On the other hand, Assumptions (A2)(ii) and (A3) guarantees that

Ext

[
Eξt

[
⟨xt − x,∇fSt

(xt)⟩
∣∣∣xt]] = Ext

[〈
xt − x,Eξt

[
∇fSt

(xt)
∣∣∣xt]〉]

= Ext
[⟨xt − x,∇f(xt)⟩] .
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Hence, by taking the total expectation on both sides, we obtain

E [⟨xt − x,∇f(xt)⟩]

=
1

2η

(
E
[
∥xt − x∥2

]
− E

[
∥xt+1 − x∥2

])
+ βE [⟨x− xt,mt−1⟩] +

η

2
E
[
∥mt∥2

]
.

According to Lemmas A.3 and A.4, Assumption 4.1, and the Cauchy-Schwarz inequality,

E [⟨xt − x,∇f(xt)⟩] ≤
1

2η

(
E
[
∥xt − x∥2

]
− E

[
∥xt+1 − x∥2

])
+
βD(x)

1− β

√
C2

SHB

b
+K2

SHB +
η
(
β2 − β + 1

)
2β(1− β)2

(
C2

SHB

b
+K2

SHB

)
.

Summing over t from t = 0 to t = T − 1, we obtain

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤
1

2η

(
E
[
∥x0 − x∥2

]
− E

[
∥xT − x∥2

])
+
βD(x)

1− β

√
C2

SHB

b
+K2

SHBT +
η
(
β2 − β + 1

)
2β(1− β)2

(
C2

SHB

b
+K2

SHB

)
T.

Therefore,

1

T

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩]

≤ ∥x0 − x∥2

2ηT
+
βD(x)

1− β

√
C2

SHB

b
+K2

SHB +
η
(
β2 − β + 1

)
2β(1− β)2

(
C2

SHB

b
+K2

SHB

)
.

This completes the proof.

A.5 LEMMA FOR CONVERGENCE ANALYSIS OF QHM

Lemma A.5. Suppose that Assumptions (A2) and (A4) hold, then for all t ∈ N,

E
[
∥dt∥2

]
≤
C2

QHM

b
+K2

QHM.

Proof. The convexity of ∥ · ∥2, together with the definition of dt and Lemma A.2, guarantees that,
for all t ∈ N,

E
[
∥dt∥2

]
≤ νβE

[
∥dt−1∥2

]
+ (1− νβ)E

[
∥∇fSt

(xt)∥2
]

≤ νβE
[
∥dt−1∥2

]
+ (1− νβ)

(
C2

QHM

b
+K2

QHM

)
.

Induction ensures that, for all t ∈ N,

E
[
∥dn∥2

]
≤ max

{
∥d−1∥2,

C2
QHM

b
+K2

QHM

}
=
C2

QHM

b
+K2

QHM,

where d−1 = 0. This completes the proof.

A.6 PROOF OF THEOREM 4.2

Proof. Let x ∈ Rd and t ∈ N. The definition of xt+1 implies that

∥xt+1 − x∥2 = ∥(xt − ηdt)− x∥2

= ∥xt − x∥2 − 2η⟨xt − x,dt⟩+ η2∥dt∥2

= ∥xt − x∥2 − 2η(1− νβ)⟨xt − x,∇fSt
(xt)⟩+ 2ηνβ⟨x− xt,dt−1⟩+ η2∥dt∥2.
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Then we have

Eξt

[
⟨xt − x,∇fSt

(xt)⟩
∣∣∣xt] = Eξt

[
1

2η(1− νβ)

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
+

νβ

1− νβ
⟨x− xt,dt−1⟩+

η

2(1− νβ)
∥dt∥2

∣∣∣xt] .
On the other hand, Assumptions (A2)(ii) and (A3) guarantee that

Ext

[
Eξt

[
⟨xt − x,∇fSt

(xt)⟩
∣∣∣xt]] = Ext

[〈
xt − x,Eξt

[
∇fSt

(xt)
∣∣∣xt]〉]

= Ext
[⟨xt − x,∇f(xt)⟩] .

Hence, by taking the total expectation on both sides, we obtain

E [⟨xt − x,∇f(xt)⟩] =
1

2η(1− νβ)

(
E
[
∥xt − x∥2

]
− E

[
∥xt+1 − x∥2

])
+

νβ

1− νβ
E [⟨x− xt,dt−1⟩] +

η

2(1− νβ)
E
[
∥dt∥2

]
.

According to Lemma A.5, Assumption 4.1, and the Cauchy-Schwarz inequality,

E [⟨xt − x,∇f(xt)⟩] ≤
1

2η(1− νβ)

(
E
[
∥xt − x∥2

]
− E

[
∥xt+1 − x∥2

])
+
νβD(x)

1− νβ

√
C2

QHM

b
+K2

QHM +
η

2(1− νβ)

(
C2

QHM

b
+K2

QHM

)
.

Summing over t from t = 0 to t = T − 1, we obtain
T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤
1

2η(1− νβ)

(
E
[
∥x0 − x∥2

]
− E

[
∥xT − x∥2

])
+
νβD(x)

1− νβ

√
C2

QHM

b
+K2

QHMT +
η

2(1− νβ)

(
C2

QHM

b
+K2

QHM

)
T.

Therefore,

1

T

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤
∥x0 − x∥2

2η(1− νβ)T
+
νβD(x)

1− νβ

√
C2

QHM

b
+K2

QHM

+
η

2(1− νβ)

(
C2

QHM

b
+K2

QHM

)
.

This completes the proof.

A.7 CONVERGENCE ANALYSIS OF SGD

convergence analysis of SGD is needed to discuss critical batch size.
Theorem A.1. Suppose that Assumptions (A1)-(A4) hold and consider the sequence (xt)t∈N gen-
erated by SGD. Then, for all x ∈ Rd and all T ≥ 1, the following holds:

1

T

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤
∥x0 − x∥2

2ηT
+
η

2

(
C2

SGD

b
+K2

SGD

)
.

Proof. Let x ∈ Rd and t ∈ N. The definition of xt+1 implies that

∥xt+1 − x∥2 = ∥(xt − η∇fSt(xt))− x∥2

= ∥xt − x∥2 − 2η⟨xt − x,∇fSt
(xt)⟩+ η2∥∇fSt

(xt)∥2.
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Then we have

Eξt

[
⟨xt − x,∇fSt(xt)⟩

∣∣∣xt] = Eξt

[
1

2η

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
+
η

2
∥∇fSt(xt))∥2

∣∣∣xt] .
On the other hand, Assumptions (A2)(ii) and (A3) guarantee that

Ext

[
Eξt

[
⟨xt − x,∇fSt

(xt)⟩
∣∣∣xt]] = Ext

[〈
xt − x,Eξt

[
∇fSt

(xt)
∣∣∣xt]〉]

= Ext
[⟨xt − x,∇f(xt)⟩] .

Hence, by taking the total expectation on both sides, we obtain

E [⟨xt − x,∇f(xt)⟩] =
1

2η

(
E
[
∥xt − x∥2

]
− E

[
∥xt+1 − x∥2

])
+
η

2
E
[
∥∇fSt

(xt)∥2
]
.

According to Lemma A.2,

E [⟨xt − x,∇f(xt)⟩] ≤
1

2η

(
E
[
∥xt − x∥2

]
− E

[
∥xt+1 − x∥2

])
+
η

2

(
C2

SGD

b
+K2

SGD

)
.

Summing over t from t = 0 to t = T − 1, we obtain

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤
1

2η

(
E
[
∥x0 − x∥2

]
− E

[
∥xT − x∥2

])
+
η

2

(
C2

SGD

b
+K2

SGD

)
T

Therefore,

1

T

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤
∥x0 − x∥2

2ηT
+
η

2

(
C2

SGD

b
+K2

SGD

)
.

This completes the proof.

B ANALYSIS OF CRITICAL BATCH SIZE FOR SGD, SHB, AND QHM

Following earlier studies (Iiduka, 2022b; Sato & Iiduka, 2023a), we derive Proposition 4.1 for es-
timating a lower bound on the critical batch size. First, the convergence of the optimizer must be
analyzed (Theorems A.1, 4.1, and 4.2), and on the basis of that analysis, the number of steps T
required for training is defined as a function of batch size b (Theorem B.1). Next, computational
complexity is expressed as the number of steps multiplied by the batch size, and computational com-
plexity T (b)b is defined as a function of batch size b. Finally, we identify critical batch size b⋆ that
minimizes computational complexity function T (b)b (Theorem B.2) and transform the lower bound
for each optimizer (Proposition 4.1).

B.1 RELATIONSHIP BETWEEN BATCH SIZE AND NUMBER OF STEPS NEEDED FOR
ϵ-APPROXIMATION

According to Theorems A.1, 4.1, and 4.2, the following hold:

(i) for SGD,

1

T

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤
∥x0 − x∥2

2ηT
+
η

2

(
C2

SGD

b
+K2

SGD

)
=

∥x0 − x∥2

2η︸ ︷︷ ︸
=:XSGD

1

T
+
ηC2

SGD

2︸ ︷︷ ︸
=:YSGD

1

b
+
ηK2

SGD

2︸ ︷︷ ︸
=:ZSGD

; (10)
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(ii) for SHB,

1

T

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩]

≤ ∥x0 − x∥2

2ηT
+
βD(x)

1− β

√
C2

SHB +K2
SHB +

η
(
β2 − β + 1

)
2β(1− β)2

(
C2

SHB

b
+K2

SHB

)
=

∥x0 − x∥2

2η︸ ︷︷ ︸
=:XSHB

1

T
+
η
(
β2 − β + 1

)
C2

SHB

2β(1− β)2︸ ︷︷ ︸
=:YSHB

1

b

+

{
η
(
β2 − β + 1

)
2β(1− β)2

K2
SHB +

βD(x)

1− β

√
C2

SHB +K2
SHB

}
︸ ︷︷ ︸

=:ZSHB

; (11)

(iii) for QHM,

1

T

T−1∑
t=0

E [⟨xt − x,∇f(xt)⟩]

≤ ∥x0 − x∥2

2η(1− νβ)T
+
νβD(x)

1− νβ

√
C2

QHM +K2
QHM +

η

2(1− νβ)

(
C2

QHM

b
+K2

QHM

)

=
∥x0 − x∥2

2η(1− νβ)︸ ︷︷ ︸
=:XQHM

1

T
+

ηC2
QHM

2(1− νβ)︸ ︷︷ ︸
=:YQHM

1

b
+

{
ηC2

QHM

2(1− νβ)
K2

QHM +
νβD(x)

1− νβ

√
C2

QHM +K2
QHM

}
︸ ︷︷ ︸

=:ZQHM

.

(12)

The relationship between b and number of steps TSGD, TSHB, and TQHM satisfying an ϵ-approximation
is as follows:

Theorem B.1. Suppose that Assumptions (A1)-(A4), and 4.1 hold and consider SGD, SHB, and
QHM. Then, TSGD(b), TSHB(b), and TQHM(b) defined by

TSGD(b) :=
XSGDb

(ϵ2 − ZSGD)b− YSGD
≤ TSGD for b >

YSGD

ϵ2 − ZSGD
, (13)

TSHB(b) :=
XSHBb

(ϵ2 − ZSHB)b− YSHB
≤ TSHB for b >

YSHB

ϵ2 − ZSHB
, (14)

TQHM(b) :=
XQHMb

(ϵ2 − ZQHM)b− YQHM
≤ TQHM for b >

YQHM

ϵ2 − ZQHM
(15)

satisfy

1

TSGD

TSGD−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤ ϵ2,

1

TSHB

TSHB−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤ ϵ2,

1

TQHM

TQHM−1∑
t=0

E [⟨xt − x,∇f(xt)⟩] ≤ ϵ2.

In addition, the functions TSGD(b), TSHB(b), and TQHM(b) defined by (13)-(15) are monotone de-
creasing and convex for b > YSGD

ϵ2−ZSGD
, b > YSHB

ϵ2−ZSHB
, and b > YQHM

ϵ2−ZQHM
.
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Proof. According to (10) and (13), SGD achieves an ϵ-approximation. We have that, for b >
YSGD

ϵ2−ZSGD
,

dTSGD(b)

db
=

−XSGDYSGD

{(ϵ2 − ZSGD)b− YSGD}2
≤ 0,

d2TSGD(b)

db2
=

2XSGDYSGD(ϵ
2 − ZSGD)

{(ϵ2 − ZSGD)b− YSGD}3
≥ 0.

Therefore, TSGD(b) is monotone decreasing and convex for b > YSGD
ϵ2−ZSGD

. The discussions for SHB
and QHM are similar to the one for SGD. This completes the proof.

B.2 EXISTENCE OF A CRITICAL BATCH SIZE

The critical batch size minimizes the computational complexity for training. Here, we use stochastic
first-order oracle (SFO) complexity as a measure of computational complexity. Since the stochastic
gradient is computed b times per step, SFO complexity is defined as

TSGD(b)b =
XSGDb

2

(ϵ2 − ZSGD)b− YSGD
,

TSHB(b)b =
XSHBb

2

(ϵ2 − ZSHB)b− YSHB
, and (16)

TQHM(b)b =
XQHMb

2

(ϵ2 − ZQHM)b− YQHM
.

The following theorem guarantees the existence of critical batch sizes that are global minimizers of
TSGD(b)b, TSHB(b)b, and TQHM(b)b defined by (16).
Theorem B.2. Suppose that Assumptions (A1)-(A4) and 4.1 hold and consider SGD, SHB, and
QHM. Then, there exist

b⋆SGD :=
2YSGD

ϵ2 − ZSGD
, b⋆SHB :=

2YSHB

ϵ2 − ZSHB
, and b⋆QHM :=

2YQHM

ϵ2 − ZQHM
(17)

such that b⋆SGD minimizes the convex function TSGD(b)b (b > YSGD/(ϵ
2 − ZSGD)), b⋆SHB minimizes

the convex function TSHB(b)b (b > YSHB/(ϵ
2 − ZSHB)), and b⋆QHM minimizes the convex function

TQHM(b)b (b > YQHM/(ϵ
2 − ZQHM)).

Proof. From (17), we have that, for b > YSGD/(ϵ
2 − ZSGD)),

dTSGD(b)b

db
=
XSGDb

{
(ϵ2 − ZSGD)b− 2YSGD

}
{(ϵ2 − ZSGD)b− YSGD}2

,

d2TSGD(b)b

db2
=

2XSGDY
2

SGD

{(ϵ2 − ZSGD)b− YSGD}3
≥ 0.

Hence, TSGD(b)b is convex for b > YSGD/(ϵ
2 − ZSGD) and

dTSGD(b)b

db


< 0 if b < b⋆SGD,

= 0 if b = b⋆SGD = 2YSGD
ϵ2−ZSGD

,

> 0 if b > b⋆SGD.

The discussions for SHB and QHM are similar to the one for SGD. This completes the proof.

B.3 PROOF OF PROPOSITION 4.1

Proof. Theorem B.2 and the definition of YSGD and ZSGD (see (10)) ensure that

b⋆SGD :=
2YSGD

ϵ2 − ZSGD
>

2YSGD

ϵ2
=

2

ϵ2
· ηC

2
SGD

2
=
ηC2

SGD

ϵ2
.
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Similarly, for SHB, from Theorem B.2 and the definition of YSHB and ZSHB (see (11)), we obtain

b⋆SHB :=
2YSHB

ϵ2 − ZSHB
>

2YSHB

ϵ2
=

2

ϵ2
·
η
(
β2 − β + 1

)
C2

SHB

2β(1− β)2
=
η
(
β2 − β + 1

)
C2

SHB

β(1− β)2ϵ2
.

Finally, for QHM, from Theorem B.2 and the definition of YQHM and ZQHM (see (12)), we obtain

b⋆QHM :=
2YQHM

ϵ2 − ZQHM
>

2YQHM

ϵ2
=

2

ϵ2
·
ηC2

QHM

2(1− νβ)
=

ηC2
QHM

(1− νβ)ϵ2
.

This completes the proof.

B.4 MORE DETAILS ON EXPERIMENTAL RESULTS IN SECTION 4.3

Since SFO complexity is expressed as the product of the number of steps and the batch size, we
first measured the number of steps T required to achieve a sufficiently small gradient norm for each
batch size. Figure 6 plots the number of steps T needed to achieve the gradient norm of the past t
steps at time t to average less than ϵ = 0.5 versus batch size b. The figure shows that the number
of steps for each optimizer was mostly monotone decreasing and convex with respect to batch size
b, which provides experimental support for Theorem B.1. Next, we calculated SFO complexity
by multiplying number of steps T by batch size b. As shown in Figure 7, SFO complexity for each
optimizer was convex with respect to batch size b, which provides experimental support for Theorem
B.2. We performed similar experiments on training WideResNet-28-10 on CIFAR100 and obtained
similar results. The results are plotted in Figures 12 and 13.

B.5 COMPUTING VARIANCE OF STOCHASTIC GRADIENT USING PROPOSITION 4.1

Training ResNet18 on CIFAR100 dataset: From Proposition 4.1 and the hyperparameters used in
the experiments for training ResNet18 on the CIFAR100 dataset, we obtained

C2
SGD <

b⋆SGDϵ
2

η
=

29 · (0.5)2

0.1
= 1280,

C2
SHB <

b⋆SHBϵ
2β(1− β)2

η(β2 − β + 1)
=

210 · (0.5)2 · 0.9 · (0.1)2

0.1 · 0.91
= 25.318,

C2
NSHB <

b⋆NSHBϵ
2(1− νβ)

η
=

29 · (0.5)2 · (1− 1 · 0.9)
0.1

= 128,

where η = 0.1, β = 0.9, ν = 1, and ϵ = 0.5 were used in the experiments and b⋆SGD = 29, b⋆SHB =
210, and b⋆NSHB = 29 were measured by experiment (see Figure 7).

23 24 25 26 27 28 29 210 211 212 213

batch size

104

105

106

107

st
ep

s

SGD
SHB
NSHB

Figure 6: Number of steps for SGD, SHB, and
NSHB needed to train ResNet18 on CIFAR100
dataset versus batch size. The solid line repre-
sents the mean value, and the shaded area rep-
resents the maximum and minimum over three
runs.

23 24 25 26 27 28 29 210 211 212 213

batch size

108

SF
O

SGD
SHB
NSHB

Figure 7: SFO complexities for SGD, SHB, and
NSHB needed to train ResNet18 on CIFAR100
dataset versus batch size. The double circle de-
notes the critical batch size that minimizes SFO
complexity. The solid line represents the mean
value, and the shaded area represents the maxi-
mum and minimum over three runs. This is the
same graph shown in Figure 2.
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To discuss the noise level of smoothing in Section 3, we also measured the gradient norm and its
upper bound. The measured gradient norm was larger for smaller batch sizes, with maximum values
of 4.528, 1.77, and 4.5 for SGD, SHB, and NSHB, respectively. We used this value as an upper
bound on the gradient norm (i.e., KSGD := 4.528, KSHB := 1.77, and KNSHB := 4.5) for training
ResNet18 on the CIFAR100 dataset.

Training WideResNet-28-10 on CIFAR100 dataset: From a similar discussion, for training
WideResNet-28-10 on the CIFAR100 dataset, we obtained

C2
SGD <

b⋆SGDϵ
2

η
=

22 · (0.5)2

0.1
= 10,

C2
SHB <

b⋆SHBϵ
2β(1− β)2

η(β2 − β + 1)
=

25 · (0.5)2 · 0.9 · (0.1)2

0.1 · 0.91
= 0.79,

C2
NSHB <

b⋆NSHBϵ
2(1− νβ)

η
=

22 · (0.5)2 · (1− 1 · 0.9)
0.1

= 1.0,

where η = 0.1, β = 0.9, ν = 1, and ϵ = 0.5 were used in the experiments and b⋆SGD = 22, b⋆SHB =
25, and b⋆NSHB = 22 were measured by experiment (see Figure 13). We also used it as an upper
bound on the gradient norm (KSGD := 4.259, KSHB := 1.66, and KNSHB := 4.262) for training
WideResNet-28-10 on the CIFAR100 dataset.
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Figure 8: Number of steps for SGD, SHB, and
NSHB needed to train WideResNet-28-10 on CI-
FAR100 dataset versus batch size. The solid
line represents the mean value, and the shaded
area represents the maximum and minimum over
three runs.
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Figure 9: SFO complexities for SGD, SHB, and
NSHB needed to train WideResNet-28-10 on CI-
FAR100 dataset versus batch size. The double
circle denotes the critical batch size that mini-
mizes SFO complexity. The solid line represents
the mean value, and the shaded area represents
the maximum and minimum over three runs.

Training MobileNetV2 on CIFAR100 dataset: From a similar discussion, for training MobileNet-
v2 on the CIFAR100 dataset, we obtained

C2
SGD <

b⋆SGDϵ
2

η
=

23 · (0.5)2

0.1
= 20,

C2
SHB <

b⋆SHBϵ
2β(1− β)2

η(β2 − β + 1)
=

28 · (0.5)2 · 0.9 · (0.1)2

0.1 · 0.91
= 6.33,

C2
NSHB <

b⋆NSHBϵ
2(1− νβ)

η
=

23 · (0.5)2 · (1− 1 · 0.9)
0.1

= 2,

where η = 0.1, β = 0.9, ν = 1, and ϵ = 0.5 were used in the experiments and b⋆SGD = 22, b⋆SHB =
25, and b⋆NSHB = 22 were measured by experiment (see Figure 13). We also measured the gradient
norm and its upper bound; the maximum value of 1.43 for SHB, i.e., KSHB := 1.43.
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Figure 10: Number of steps for SGD, SHB,
and NSHB needed to train MobileNetV2 on CI-
FAR100 dataset versus batch size. The solid
line represents the mean value, and the shaded
area represents the maximum and minimum over
three runs.
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Figure 11: SFO complexities for SGD, SHB,
and NSHB needed to train MovileNetV2 on CI-
FAR100 dataset versus batch size. The double
circle denotes the critical batch size that mini-
mizes SFO complexity. The solid line represents
the mean value, and the shaded area represents
the maximum and minimum over three runs.

Training ResNet18 on CIFAR10 dataset: From a similar discussion, for training ResNet18 on the
CIFAR10 dataset, we obtained

C2
SGD <

b⋆SGDϵ
2

η
=

23 · (0.5)2

0.1
= 20,

C2
SHB <

b⋆SHBϵ
2β(1− β)2

η(β2 − β + 1)
=

25 · (0.5)2 · 0.9 · (0.1)2

0.1 · 0.91
= 0.79,

C2
NSHB <

b⋆NSHBϵ
2(1− νβ)

η
=

23 · (0.5)2 · (1− 1 · 0.9)
0.1

= 2,

where η = 0.1, β = 0.9, ν = 1, and ϵ = 0.5 were used in the experiments and b⋆SGD = 22, b⋆SHB =
25, and b⋆NSHB = 22 were measured by experiment (see Figure 13). We also measured the gradient
norm and its upper bound; the maximum value of 1.134 for SHB, i.e., KSHB := 1.134.
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Figure 12: Number of steps for SGD, SHB, and
NSHB needed to train ResNet18 on CIFAR10
dataset versus batch size. The solid line repre-
sents the mean value, and the shaded area rep-
resents the maximum and minimum over three
runs.
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Figure 13: SFO complexities for SGD, SHB, and
NSHB needed to train ResNet18 on CIFAR10
dataset versus batch size. The double circle de-
notes the critical batch size that minimizes SFO
complexity. The solid line represents the mean
value, and the shaded area represents the maxi-
mum and minimum over three runs.
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C SMOOTHING PROPERTY OF OPTIMIZERS WITH A MINI-BATCH STOCHASTIC
GRADIENT

C.1 PROOF OF LEMMA 2.1

Proof. From Definition 2.1 and (C2), we have, for all x,y ∈ Rd,∣∣∣f̂δ(x)− f(x)
∣∣∣ = |Eu [f(x− δu)]− f(x)|

= |Eu [f(x− δu)− f(x)]|
≤ Eu [|f(x− δu)− f(x)|]
≤ Eu [Lf∥(x− δu)− x∥]
= δLfEu [∥u∥] .

This completes the proof.

Remark C.1. Since the standard normal distribution in high dimensions d is close to a uniform
distribution on a sphere of radius

√
d (Vershynin, 2018, Section 3.3.3), in deep neural network

training, for all u ∼ N
(
0; 1√

d
Id

)
,

∥u∥ ≈ 1.

Therefore, we have ∣∣∣f̂δ(x)− f(x)
∣∣∣ ≤ δLf .

C.2 PROOF OF THEOREM 3.1

Proof. The definition of mt implies that∥∥ωSHB
t

∥∥2 = ∥mt −∇f(xt)∥2

= ∥∇fSt(xt) + βmt−1 −∇f(xt)∥2

= ∥∇fSt
(xt)−∇f(xt)∥2 + 2β⟨∇fSt

(xt)−∇f(xt),mt−1⟩+ β2∥mt−1∥2.
Hence, from Lemmas A.2 and A.4, we obtain

E
[∥∥ωSHB

t

∥∥2] = E
[
∥∇fSt

(xt)−∇f(xt)∥2
]
+ β2E

[
∥mt−1∥2

]
≤ C2

SHB

b
+
β(β2 − β + 1)

(1− β)2

(
C2

SHB

b
+K2

SHB

)
=

(
1 +

β(β2 − β + 1)

(1− β)2

)
C2

SHB

b
+
β(β2 − β + 1)

(1− β)2
K2

SHB.

Similarly, the definition of dt implies that∥∥∥ωQHM
t

∥∥∥2 = ∥dt −∇f(xt)∥2

= ∥(1− νβ)∇fSt
(xt) + νβdt−1 −∇f(xt)∥2

= ∥(1− νβ) (∇fSt(xt)−∇f(xt)) + νβ(dt−1 −∇f(xt))∥2

= (1− νβ)2∥∇fSt
(xt)−∇f(xt)∥2 + ν2β2∥dt−1 −∇f(xt)∥2

+ 2νβ(1− νβ)⟨∇fSt
(xt)−∇f(xt),dt−1 −∇f(xt)⟩.

Therefore, from Assumption (A2)(i) and νβ < 1, we obtain

E
[∥∥∥ωQHM

t

∥∥∥2] = (1− νβ)2E
[
∥∇fSt

(xt)−∇f(xt)∥2
]
+ ν2β2E

[
∥dt−1 −∇f(xt)∥2

]
(18)

≤ (1− νβ)2E
[
∥∇fSt

(xt)−∇f(xt)∥2
]
+ E

[
∥dt−1 −∇f(xt)∥2

]
. (19)
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On the other hand, Proposition A.1 guarantees that

E
[∥∥∥ωQHM

t

∥∥∥2] = (1− νβ)E
[
∥∇fSt

(xt)−∇f(xt)∥2
]
+ νβE

[
∥dt−1 −∇f(xt)∥2

]
− νβ(1− νβ)E

[
∥dt−1 −∇fSt

(xt)∥2
]
. (20)

From (18) and (20), we have

E
[
∥dt−1 −∇f(xt)∥2

]
= E

[
∥dt−1 −∇fSt(xt)∥

2
]
− E

[
∥∇fSt(xt)−∇f(xt)∥2

]
(21)

≤ E
[
∥dt−1 −∇fSt(xt)∥

2
]
. (22)

Therefore, from (19) and (21), we obtain

E
[∥∥∥ωQHM

t

∥∥∥2] ≤ νβ(−2 + νβ)E
[
∥∇fSt

(xt)−∇f(xt)∥2
]
+ E

[
∥dt−1 −∇fSt

(xt)∥2
]
. (23)

Then, let us show that, for all t ∈ N,

E
[
∥dt−1 −∇fSt(xt)∥

2
]
≤ νβ(2− νβ)E

[
∥∇fSt(xt)−∇f(xt)∥2

]
. (24)

If (24) does not hold, there exists t0 ∈ N such that

E
[∥∥dt0−1 −∇fSt0

(xt0)
∥∥2] > νβ(2− νβ)E

[∥∥∇fSt0
(xt0)−∇f(xt0)

∥∥2] ,
which implies

E
[∥∥∇fSt0

(xt0)−∇f(xt0)
∥∥2] < 1

νβ(2− νβ)
E
[∥∥dt0−1 −∇fSt0

(xt0)
∥∥2] . (25)

Hence, from (23) and (25),

E
[∥∥∥ωQHM

t0

∥∥∥2] < νβ(−2 + νβ)

{
1

νβ(2− νβ)
E
[∥∥dt0−1 −∇fSt0

(xt0)
∥∥2]}

+ E
[∥∥dt0−1 −∇fSt0

(xt0)
∥∥2]

= 0.

Since E
[∥∥∥ωQHM

t0

∥∥∥2] ≥ 0, there is a contradiction. Therefore, (24) holds for all t ∈ N. Then,

Lemma A.1, (18), (22), and (24) ensure that

E
[∥∥∥ωQHM

t

∥∥∥2] ≤ (1− νβ)2E
[
∥∇fSt(xt)−∇f(xt)∥2

]
+ ν3β3(2− νβ)E

[
∥∇fSt(xt)−∇f(xt)∥2

]
=
{
(1− νβ)2 + ν3β3(2− νβ)

}
E
[
∥∇fSt

(xt)−∇f(xt)∥2
]

≤ 1

1− νβ

C2
QHM

b
.

This completes the proof.

C.3 DERIVATION OF EQUATION (2)

Let yt be the parameter updated by the gradient descent and xt+1 be the parameter updated by SHB
at time t; i.e.,

yt := xt − η∇f(xt),
xt+1 := xt − ηmt

= xt − η(∇f(xt) + ωSHB
t ).
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Then, we obtain

xt+1 := xt − ηmt

= (yt + η∇f(xt))− ηmt

= yt − ηωSHB
t , (26)

from ωSHB
t := mt −∇f(xt). Hence,

yt+1 = xt+1 − η∇f(xt+1)

= yt − ηωSHB
t − η∇f(yt − ηωSHB

t ).

By taking the expectation with respect to ωSHB
t on both sides, we obtain, from EωSHB

t

[
ωSHB
t

]
= 0,

EωSHB
t

[yt+1] = EωSHB
t [yt] − η∇EωSHB

t

[
f(yt − ηωSHB

t )
]
,

where we have used Eωt
[∇f(yt − ηωt)] = ∇Eωt

[f(yt − ηωt)], which holds for the Lipschitz-
continuous and the differentiability of f (Shapiro et al., 2009, Theorem 7.49). These conditions are
guaranteed in our Assumption (A1). In addition, from (26) and EωSHB

t

[
ωSHB
t

]
= 0, we obtain

EωSHB
t

[xt+1] = yt.

Therefore, on average, parameter xt+1 of function f arrived at using the SHB method coincides
with parameter yt of smoothed function f̂(yt) := EωSHB

t

[
f(yt − ηωSHB

t )
]

arrived at using gradient
descent. A similar discussion yields a similar equation for QHM.

C.4 DETAILS OF CALCULATING DEGREE OF SMOOTHING IN FIGURE 3

Training ResNet18 on CIFAR100 dataset: From (3)-(5), the hyperparameters used in the experi-
ments, and the value estimated in Section 4.3 for training ResNet18 on the CIFAR100 dataset, the
degree of smoothing can be calculated as

δSGD = η

√
C2

SGD

b
= 0.1 ·

√
1280

b
=

√
12.8

b
,

δSHB = η

√
C2

SHB

b
+
β(β2 − β + 1)

(1− β)2

(
C2

SHB

b
+K2

SHB

)

= 0.1 ·

√
25.318

b
+

0.9 · 0.91
(0.1)2

(
25.318

b
+ (1.77)2

)
= 0.1 ·

√
82.9 · 25.318

b
+ 81.9 · 3.1329

≈
√

21

b
+ 2.57,

δNSHB = η

√
1

1− β
·
C2

NSHB

b
= 0.1 ·

√
1

1− 0.9
· 128
b

= 0.1 ·
√

10 · 128
b

≈
√

12.8

b
,

where η = 0.1 and β = 0.9 were used in the experiments, C2
SGD = 1280, C2

SHB = 25.318, and
C2

NSHB = 128 were calculated in Section 4.3, and KSHB := 1.77 was observed in Section B.5.
Figure 14 plots the computed degrees of smoothing δSGD, δSHB, and δNSHB versus batch size b in
training ResNet18 on CIFAR100. Figure 15 is a logarithmic graph version of Figure 14.
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Figure 14: Degrees of smoothing δSGD, δSHB, and
δNSHB versus batch size in training ResNet18 on
CIFAR100 dataset. This is the same graph
shown in Figure 3.
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Figure 15: Logarithmic graph version of Figure
14, clearly showing that δSGD becomes smaller as
the batch size is increased.

Training WideResNet-28-10 on CIFAR100 dataset: A similar argument can be made for the
WideResNet-28-10 training. From (3)-(5), the hyperparameters used in the experiments, and the
value estimated in Section 4.3 for training WideResNet-28-10 on the CIFAR100 dataset, the degree
of smoothing can be calculated as

δSGD = η

√
C2

SGD

b
= 0.1 ·

√
10

b
=

√
0.1

b
,

δSHB = η

√
C2

SHB

b
+
β(β2 − β + 1)

(1− β)2

(
C2

SHB

b
+K2

SHB

)

= 0.1 ·

√
0.79

b
+

0.9 · 0.91
(0.1)2

(
0.79

b
+ (1.66)2

)
= 0.1 ·

√
82.9 · 0.79

b
+ 81.9 · 2.7556

≈
√

0.65

b
+ 2.26,

δNSHB = η

√
1

1− β
·
C2

NSHB

b
= 0.1 ·

√
1

1− 0.9
· 1
b

= 0.1 ·
√
10 · 1

b

≈
√

0.1

b
,

where η = 0.1 and β = 0.9 were used in the experiments, C2
SGD = 10, C2

SHB = 0.79, and C2
NSHB =

1.0 were calculated in Section 4.3, and KSHB := 1.66 was observed in Section B.5.

Figure 18 plots the computed degrees of smoothing δSGD, δSHB, and δNSHB versus batch size b in
training WideResNet-28-10 on CIFAR100. Figure 19 is a logarithmic graph version of Figure 18
showing that, for WideResNet-28-10 as well, the degree of smoothing with SGD with momentum
is always greater than with SGD. A comparison of Figures 14 and 18 shows that each optimizer
was more robust to batch size in training WideResNet-28-10 than in training ResNet18. Therefore,
generalizability may be less affected by batch size for training WideResNet-28-10 than for training
ResNet18. This is shown to be true in Appendix D.1.

A similar argument can be made for training MobileNetV2 on CIFAR100 dataset (Figures 16 and
17) and ResNet18 on CIFAR10 dataset (Figures 20 and 21).
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Figure 16: Degrees of smoothing δSGD, δSHB,
and δNSHB versus batch size in training Mo-
bileNetV2 on CIFAR100 dataset.
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Figure 17: Logarithmic graph version of Fig-
ure 16 more clearly showing that δSGD becomes
smaller as the batch size is increased.
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Figure 18: Degrees of smoothing δSGD, δSHB,
and δNSHB versus batch size in training
WideResNet-28-10 on CIFAR100 dataset.
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Figure 19: Logarithmic graph version of Fig-
ure 18 more clearly showing that δSGD becomes
smaller as the batch size is increased.
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Figure 20: Degrees of smoothing δSGD, δSHB, and
δNSHB versus batch size in training ResNet18 on
CIFAR10 dataset.
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Figure 21: Logarithmic graph version of Fig-
ure 20 more clearly showing that δSGD becomes
smaller as the batch size is increased.
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D MORE DETAILS ON EXPERIMENTAL RESULTS IN SECTION 5

This section complements Section 5. The experimental environment was as follows: NVIDIA
GeForce RTX 4090×2GPU and Intel Core i9 13900KF CPU. The software was Python 3.10.12,
PyTorch 2.1.0, and CUDA 12.2. The code is available at https://anonymous.4open.
science/r/role-of-momentum.

D.1 EXPERIMENTS ON GENERALIZABILITY OF SHB AND NSHB

We suggest that the generalizability of the model is determined by the degree of smoothing. In
both SGD and SGD with momentum, if the degree of smoothing δ is too low, the process can be
considered equivalent to optimizing a function f̂δ close to the original multimodal function f by gra-
dient descent, which leads to a sharp local optimal solution and less than excellent generalizability.
Therefore, a sufficiently large degree of smoothing is required to obtain sufficient generalizability.
On the other hand, from Lemma 2.1, too high a degree of smoothing may conversely lead to large
deviations from the original function and may prevent successful optimization. We confirmed these
considerations by experiment. We used learning rate of 0.1 and momentum factor of 0.9 in all
experiments.

As shown in Figures 3 and 18, the degree of smoothing with both SHB methods stopped decreasing
and stagnated from a certain batch size. Let us call b̂SHB the batch size at which stagnation begins.
For the training of ResNet18, b̂SHB = 27, while for the training of WideResNet-28-10, b̂SHB =
24. Therefore, when using an SHB method with a batch size greater than 27 for the training of
ResNet18 and greater than 24 for the training of WideResNet-28-10, the generalizability should be
approximately equal since they can be regarded as optimizing smoothed functions with noise levels
approximately equal.
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Figure 22: Test accuracy for SGD, SHB, and
NSHB versus batch size in training ResNet18
on CIFAR100 dataset. This is the same graph
shown in Figure 4.
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Figure 23: Test accuracy for SGD, SHB, and
NSHB versus batch size in training WideResNet-
28-10 on CIFAR100 dataset.

We measured test accuracy with batch sizes of 23 to 213 for 200 epochs for training ResNet18
(Figure 22) and with batch sizes of 22 to 211 for 200 epochs for training WideResNet-28-10 (Figure
23) with SGD, SHB, and NSHB on the CIFAR100 dataset. In both cases, the generalizability of
SGD worsened as the batch size was increased, whereas that of SHB remained stable. Moreover,
SHB achieved almost equal test accuracy from batch sizes of 28 to 212 for ResNet18 and from batch
sizes of 24 to 29 for WideResNet-28-10. For very large batch sizes, i.e., 213 for ResNet18 and 210

and 211 for WideResNet-28-10, accuracy decreased even though the degree of smoothing was the
same. Note that these results are for 200 epochs for all batch sizes, meaning that the number of steps
may have been insufficient for the larger batch sizes. When using the CIFAR100 dataset and 200
training epochs, the number of parameter update steps is 1, 250, 000 for a batch size of 23 but only
1400 for a batch size of 213.

D.2 DISTRIBUTION OF SEARCH DIRECTION NOISE

We collected 3000 each of search direction noise ωSHB
t and ωNSHB

t and tested whether each ele-
ment follows a normal distribution. They were collected at the point where ResNet18 had been
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trained on the CIFAR100 dataset (10,000 steps). ResNet18 has about 11M parameters, so ωSHB
t

and ωNSHB
t form an 11M-dimensional vector. Figures 24 and 25 plot the results for the ωSHB

t and
ωNSHB
t elements from dimension 0 to dimension 100,000. Figures 26 and 27 present the results for

all elements. These results demonstrate that each search direction noise, ωSHB
t and ωNSHB

t , follows
a normal distribution.

Figure 24: Distribution of 3000 ωSHB
t elements

from 0 to 100,000 dimensions.
Figure 25: Distribution of 3000 ωNSHB

t elements
from 0 to 100,000 dimensions.
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Figure 26: Complete results for distribution of 3000 ωSHB
t elements. The distribution is plotted

separately for each 100,000 dimensions.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 27: Complete results for distribution of 3000 ωNSHB
t elements. The distribution is plotted

separately for each 100,000 dimensions.
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