Under review as a conference paper at ICLR 2026

DEEP REFLECTION HINTING: LEVERAGING OFFLINE
KNOWLEDGE FOR IMPROVING LLLM AGENTS ADAP-
TATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents perform well in sequential decision-making
tasks, but improving them on unfamiliar domains often requires costly online in-
teractions or fine-tuning on large expert datasets. These strategies are imprac-
tical for closed-source models and expensive for open-source ones, with risks
of catastrophic forgetting. Offline trajectories offer reusable knowledge, yet
demonstration-based methods struggle because raw traces are long, noisy, and tied
to specific tasks. We present Deep Reflection Hinter (DR. HINTER), an agentic
system that distills offline traces into compact, context-aware hints. A zooming
mechanism highlights decisive steps in long trajectories, capturing both strate-
gies and pitfalls. Unlike prior methods, DR. HINTER leverages both successful
and failed trajectories, extracting guidance even when only failure data is avail-
able, while supporting parallelized hint generation and benchmark-independent
prompting. At inference, a retriever selects relevant hints for the current state,
providing targeted guidance with transparency and traceability. Experiments on
MiniWoB++, WorkArena-L1, and WebArena-Lite show that DR. HINTER consis-
tently outperforms strong baselines, including human- and document-based hints.

1 INTRODUCTION

Large language model (LLM) agents have shown impressive abilities in sequential decision-making
tasks such as web navigation and interactive environments. Yet their performance often deteriorates
in unfamiliar domains due to incomplete domain knowledge and reasoning gaps. Unlike static tasks,
sequential settings amplify small mistakes, where an early error can derail the entire trajectory.
Offline resources offer an attractive opportunity. Trajectories from prior agents (both successful and
failed), human demonstrations, and organizational documents all encode reusable decision patterns.
Leveraging this knowledge is particularly important for closed-source models, which cannot be fine-
tuned, and for large open-source models, where fine-tuning is costly and often risks catastrophic
forgetting. Methods that can distill reusable knowledge from offline data provide a scalable way to
improve state-of-the-art models without retraining or waiting for new releases.

Existing approaches, however, face several limitations. Supervised fine-tuning on offline trajectories
can improve in-domain performance but often overfits and generalizes poorly to new tasks (Ouyang
et al., 2022; |Yao et al., 2022). Retrieval-augmented generation (RAG) methods, such as in-context
demonstrations (Lewis et al.,2020)), provide task-specific examples at inference, but raw trajectories
are long, noisy, and tightly bound to their source tasks, limiting transfer. Recent work, such as Au-
toGuide (Fu et al.| 2024)), addresses part of this gap by distilling guidelines from offline trajectories,
but it is limited to contrastive trace pairs and uses benchmark-specific prompting. These challenges
motivate a more general and scalable framework for extracting and reusing offline knowledge.

We introduce DR. HINTER, an agentic system that distills offline traces into explicit, context-aware
hints. Instead of replaying full trajectories (Shinn et al.l [2023; |[Fu et al., 2024), DR. HINTER em-
ploys a zooming module to focus on critical decision points and a reflection step to convert them
into concise natural-language hints capturing both effective strategies and common pitfalls. Hints
can be generated from single traces, pairwise contrasts, or multi-trace aggregation, ensuring cov-
erage even when no successful run exists. Each hint is paired with a semantic key for retrieval,

Under review as a conference paper at ICLR 2026

enabling either fine-grained step-level guidance or efficient goal-conditioned retrieval at inference
preventing overload from irrelevant information (Zhao et al.l [2024) and complementing intra-task
reflection mechanisms (Shinn et al., 2023)). This offline-to-online pipeline produces a lightweight
database of actionable hints that improves agent robustness and long-horizon generalization without
requiring model fine-tuning. Since DR. HINTER represents guidance as explicit hints linked to their
source traces or documents, it provides greater transparency and traceability than both supervised
fine-tuning and in-context RAG, allowing systematic analysis of how offline data influences agent
behavior.

Contributions:

* We introduce Deep Reflection Hinter (DR. HINTER), an agentic system that distills offline
trajectories into explicit, context-aware hints. DR. HINTER features parallelized hint gen-
eration, intelligent zooming on critical steps, and flexible trace selection (single, pairwise,
or multi-trace), leveraging both successful and failed runs.

¢ We evaluate DR. HINTER across MiniWoB++, WorkArena-L1, and WebArena-Lite, where
it consistently outperforms strong baselines. We further compare against documentation
retrieval and human-authored hints, showing that automatically generated hints provide
more scalable and broadly effective guidance.

* We provide qualitative analyses that illustrate how DR. HINTER addresses common agent
failure modes by steering actions toward the correct context and preventing repeated errors,
thereby improving robustness and transparency.

2 RELATED WORK

LLMs have shown strong reasoning capabilities (Wei et al., |2022), resulting in LLM-based agents
applied on a variety of real-world interactive tasks, including web navigation (Nakano et al., 2021}
Wei et al., 2025; Zhang et al., [2025). However, performance on multiple web-focused bench-
marks (Yao et al.|[2022; |Deng et al., [2023} [Zhou et al., [2024b; Koh et al., [2024} |Drouin et al., [2024))
indicates that, as-is, LLMs still struggle with complex tasks requiring planning over long horizons.
This gap has motivated several directions of work on improving LLM-based agents.

Prompting and reflection. A large body of work explores prompting strategies to elicit stronger
reasoning and planning from LLMs. ReAct (Yao et al} [2023b) interleaves reasoning steps with
environment actions to structure trajectories. Building on this, Reflexion (Shinn et al., 2023) intro-
duces self-reflection over past trials to refine behavior, while ExpeL (Zhao et al.| 2024)) mines offline
Reflexion trajectories to extract reusable skills. Other approaches focus on explicit planning: Ada-
Planner (Sun et al.| [2023) iteratively adapts a plan to specific task instances, and AutoPlan (Ouyang
& Li, [2023) instead optimizes for generalizable plans across instances. Methods such as Inner
Monologue (Huang et al.l |2023)) and Self-Refine (Madaan et al., [2023) further extend reflection by
continuously revising intermediate reasoning.

Search-based planning. Beyond prompting, several works integrate symbolic search with LLM
reasoning to better handle long-horizon tasks. Tree-of-Thoughts (Yao et al.,2023a), Language Agent
Tree Search (Zhou et al.| 2024a), and their variants (Putta et al., 2024} |[Koh et al., 2025) explore
branching reasoning paths and dynamically selecting among them, improving robustness on tasks
where single-line chain-of-thought often fails. While effective, these approaches typically require
large test-time compute budgets and do not leverage offline knowledge.

Offline data and hinting. Orthogonal to online prompting and search, another line of work focuses
on extracting reusable guidance from offline data. RAG approaches (Lewis et al., 2020) have been
adapted for agents by retrieving demonstrations or examples (Yao et al., 2023b), but raw trajecto-
ries are long, noisy, and task-specific, limiting their transferability. AutoGuide (Fu et al., [2024)
addresses part of this challenge by distilling guidelines from contrastive trajectory pairs, showing
that abstracted guidance can outperform raw demonstrations. AutoGuide remains limited in scope,
as it only operates over contrastive trajectory pairs, relies on sequential extraction, and depends on
benchmark-specific prompting. In contrast, we introduce Deep Reflection Hinting, which broadens
hint extraction to include single traces, multiple traces, and failed trajectories, enables parallelized
extraction for scalability, and integrates heterogeneous offline sources such as domain documents
and human-written instructions into a unified framework.

Under review as a conference paper at ICLR 2026

3 DEEP REFLECTION HINTING

i‘Collect Traces :6; Zoom and Reflect "75 Retrieve and Act
IE .
. s [9% o R e R
x O R0 % og — |&
<% o, [e
xEnm. @ o
_—-""::’ é .g. cee = k-
Store
Successful Traces 10+ Hints
X Failed Traces ® Semantic Keys

Figure 1: Overview of the DR. HINTER. (1) Collect Traces: DR. HINTER operates over hetero-
geneous offline trajectories, including both successful (green) and failed (red) runs, allowing the
system to capture not only effective behaviors but also common pitfalls. (2) Zoom and Reflect: A
zooming module selects critical steps within each trace, and the hinter reflects on these segments to
distill them into concise, reusable natural language hints. Each hint is paired with a semantic key
summarizing its context and stored for retrieval. (3) Retrieve and Act: At inference time, the agent
generates a query (goal- or context-conditioned) which is matched against the database of semantic
keys. The most relevant hints are retrieved and injected into the agent’s context, guiding its actions.
This process unifies knowledge distillation, reflection, and retrieval, supporting both in-task relia-
bility and out-of-task generalization.

Large language model (LLM) agents often struggle to generalize across tasks when relying solely
on their base policy 7. Direct fine-tuning can be costly, unstable, or even impossible for closed-
source models. To address this, we propose to improve 7 by supplying it with targeted, reusable
guidance extracted from offline experience. At the center of our approach is the Hinter H, itself
an LLM, a model that transforms trajectories and documents into explicit natural-language hints.
Since hint generation is performed offline, 7 can be significantly larger and more capable than the
base agent, yet the resulting hints remain lightweight at inference. We instantiate this method as
DR. HINTER, which systematically augments the LLM base policy with retrieved hints to enhance
decision making without any fine-tuning.

3.1 DATA COLLECTION

Unlike prior work such as AutoGuide (Fu et al., [2024), which extracts guidance only from con-
trastive trajectory pairs, DR. HINTER can operate over a broader range of offline signals. Given a
dataset of trajectories {71, ..., 7n}, it flexibly selects evidence for hint generation. The trajectories
may come from the base policy 7, which yields hints tailored to its strengths and weaknesses, but
they can also originate from other agents or human demonstrations. We support three complemen-
tary modes:

1. Single-trace analysis. Generate hints from a single trajectory 7, highlighting effective de-
cisions in successful segments and exposing pitfalls in failed ones.

2. Pairwise analysis. Contrast two trajectories (77,7~) where the total reward assigned to
77 is greater than the reward assigned to 7, and identify the key divergences that explain
the performance gap. If no such pair is available, we also allow equal-reward or (fail, fail)
and (success, success) pairs.

Under review as a conference paper at ICLR 2026

3. Multi-trace analysis. Combine a set of trajectories {7%};c5 to surface patterns that are
robust across instances and transferable across tasks.

3.2 HINT GENERATION: ZOOM & REFLECT

A trajectory provides four types of signals: observations x such as screenshots, HTML (or AxTree);
reasoning tokens z that record intermediate thoughts; actions a that alter the environment; and re-
wards r that measure progress. The initial observation xy also contains the goal g. We combine
these signals to form the prompt (P) given to the Hinter. The simplest option is the full prompt
P — {2 2 a,r}1.7, which passes the entire trajectory as context. Long-horizon tasks quickly
make this representation unwieldy. To address this, we introduce a Zooming LLM module that
selects critical steps t* and extracts a compact prompt:
P ={z,a,r e U {7} g A

This keeps the full sequence of reasoning, actions, and rewards, while restricting observations to the
decisive windows. The parameter A specifies the length of the observation window appended after
t*, determining how much context is retained. Critical steps correspond to points where the agent
makes an important choice, repeats a common mistake, executes a successful strategy, interacts with
a key element, handles a timing dependency, or reaches a definitive outcome. For instance, in a
web form task, repeatedly clicking the wrong navigation bar is flagged as a critical step, while in a
multi-select list, the decisive step is holding Ctrl/Cmd to select multiple items. Appendix|C.I]details
the step-selection procedure.

Next, to support retrieval, we generate a semantic key summarizing the trajectory prefix. Given
T.¢, the summarizer S outputs a short natural-language context ¢; = S(7.¢). This key anchors hint
generation during training and enables efficient lookup at inference.

Finally, given a context ¢; and a prompt P, the Hinter produces a hint
h=H (Cty P, -,—),
which captures either a beneficial action or a common error to avoid. We collect all hints in a

database Dy; = {(ct, h)}, linking each hint to the semantic key from which it was derived (see
Appendix [F for pseudocode).

3.3 RETRIEVE & ACT

We explore two complementary strategies for retrieving and applying hints during inference.

Contextual retrieval with step-level hints. At each time step ¢, the summarizer produces a con-
text ¢, = S(7.t). The retrieval LLM module p then selects the top & hints most relevant to that
context, {h},...,hF} = p(ct, Dy), and the policy conditions its next action on both the trajectory
prefix and the retrieved hints, a; ~ W(:Co;t, {hi,..., hf}) This approach provides fine-grained,
context-specific guidance, but it is computationally costly since it requires one model call to estab-
lish the context and retrieve hints and another to generate the action.

Goal-conditioned retrieval with episode-level hints. A more efficient strategy retrieves hints
once at the start of an episode, using the goal g as the retrieval context: {h!,... h*} = p(g, Dy).
The policy then acts while simultaneously selecting a relevant hint from this fixed set, (a¢, hy) ~
7r(x0;t, {h%, ..., hk}) This method avoids repeated retrieval calls and reduces inference cost, while
still maintaining sufficient contextual relevance.

Source tasks for retrieval The choice of source tasks also determines how well hints generalize.
In-task retrieval draws hints from the same task but with different goals[ﬂ which strengthens relia-
bility within a domain. Cross-task retrieval excludes the source task altogether and forces the agent
to transfer knowledge from other tasks. Hybrid retrieval mixes both approaches with adjustable
weighting, striking a balance between reliability and transfer. Because hints capture abstract deci-
sion patterns rather than raw demonstrations, they remain effective across goals and tasks under both
settings.

'Benchmarks like MiniWoB++ and WorkArena support multiple seeds per task. We refer to a specific
instance of a task as a goal.

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL SETUP

Benchmarks We evaluate on three widely used benchmarks that span increasing levels of com-
plexity: MiniWoB++ (Liu et al., [2018)), a suite of synthetic single-page UI tasks; WorkArena-
L1 (Drouin et al., 2024]), a benchmark of enterprise knowledge-work tasks involving multi-step form
filling and navigation; and WebArena (Zhou et al.| 2024b)), a realistic environment of multi-domain
web tasks requiring long-horizon reasoning. Together, these benchmarks test both short-horizon
precision and long-horizon generalization.

MiniWob++: Simple Web Interaction Tasks WorkArena-L1: Knowledge Work Tasks WebArena-Lite: Web Navigation Tasks

Task: Order one of each item: Garlic bread, Spaghetti ... Task: Sort the "assets" list by the following fields: ... Task: Create a shipping report from 08/05/2022 to ...

Thought: To order the desired
items, I need to change the
quantity of “Garlic Bread” fo ...

= —_T T T T Thought: I need
: to sort the Assets
list by ..

Thought: I'll open
the Reports section

in the Magento ...

Action: click(64) Action: click(a80)

Action: click(339)

Figure 2: Web browsing benchmarks considered in our work: MiniWob++ (Liu et al., |2018)),
WorkArena-L1 (Drouin et al., 2024), and WebArena-Lite (Zhou et al.,[2024b; [Liu et al., 2025).

Observation and action spaces To improve speed and efficiency, we work with the accessibility
tree (AXTree). This reduces the size of the input by about 10x compared to the HTML DOM
trees. Exceptionally, on MiniWoB++, we work directly with the DOM since it is small enough
and contains more of the relevant information. The action space across all environments consists
of high-level UI primitives such as click (node), £ill (node, text), select (node,
option), scroll (node), and hover (node) as provided by BrowserGym. This abstraction
enables consistent evaluation across benchmarks with differing interfaces.

Baselines All methods build on the ReAct agent framework (Yao et al., |2023b)), which combines
chain-of-thought reasoning with environment interaction. We compare against: (i) ReAct without
offline hinting, (ii) Our implementation of AutoGuide (Fu et al.,[2024), which augments ReAct with
offline guideline extraction from contrastive trajectory pairs. We call this agent AutoGuidef. In
addition, we evaluate two variants of our agent: DR. HINTER (w/0 zoom), our basic implementation
that takes the full trajectory as input and distills offline trajectories into natural-language hints (for
WorkArena-L1 and WebArena-Lite, we drop AxTrees to fit within the hinter model’s context), and
DR. HINTER, which further includes zooming on critical steps.

Offline datasets We construct offline datasets using the AGENTLAB framework (Drouin et al.,
2024; [Chezelles et al., [2025)). For MiniWoB++, we collect trajectories by running a ReAct agent
on 5 held-out goals per task, and for WorkArena-L1, we collect trajectories on 10 held-out goals
per task. For WebArena, we use WebArena-Lite |[Liu et al.| (2025)) for parallel trace collection. In
all benchmarks, we retain both successful and failed trajectories so that hint extraction can cover
both positive decision points and common pitfalls. In contrast, AutoGuide (Fu et al., [2024)) requires
pairs of successful and failed traces and therefore only produces hints when both are available. To
study the impact of dataset quality, we additionally construct augmented datasets by including traces
from GPT-5, ensuring at least one successful trace per task. If no successful trace exists, even after
augmentation, AutoGuide produces no hint for that task, whereas DR. HINTER can still generate
useful hints from failed trajectories alone.

Evaluation protocol We evaluate generalization under two complementary settings: In-task gen-
eralization: The agent retrieves hints only from the same source task, but from different goals than
those used in evaluation. This setting measures how well hints transfer within a task across different
environment initializations. Out-of-task generalization: To assess a more challenging scenario, we
exclude the source task entirely from the hint database. At inference time, the agent must instead
rely on hints retrieved from other tasks, using the LLM retriever or embedding vector matching

*Since no public implementation of AutoGuide was available, we re-implemented it within our ReAct
framework for consistency and comparability.

Under review as a conference paper at ICLR 2026

to select the most relevant ones. This setup tests whether hints distilled from one set of tasks can
transfer effectively to unseen tasks with different structures.

The primary evaluation metric is average task success rate, reported separately for in-task and out-of-
task settings. We also provide qualitative analysis of retrieved hints to illustrate their interpretability
and usefulness.

5 EMPIRICAL STUDY

We present results through research questions examining the effectiveness, generalization, and de-
sign decisions of DR. HINTER.

270 . =
: -Hinter(w/o zoom
% 068l i Zji i mEm DR-Hinter
(3 ' 0.26-
g 0.44
B B
A 0.64 . 0.40° 0.22° -
GPT-5-NANO GPT-5 NANO GPT-S-MIO
5075 0.70y
20_74, i 0.68- 0.36
€0.73 0.66) 0.34
%0.72' 0.64 0.32-
:7:’0'71' ifl 2'22 0.30- +
0.70-
GPT-5-MINI GPT-5 MINI GPT-5-MINI
(a) Miniwob++ (b) WorkArena-L1 (c) WebArena-Lite

Figure 3: Average reward comparison across MiniWoB++, WorkArena-L1, and WebArena-Lite
using two base models with GPT-5-mini as the Hinter model. DR. HINTER and DR. HINTER(W/0
zoom) consistently outperform all baselines across most tasks, highlighting the effectiveness of our
approach. Shaded regions denote tasks where the base ReAct agent failed entirely, highlighting DR.
HINTER’s ability to extract useful hints even from failure-only trajectories.

5.1 DOES DR. HINTER IMPROVE OVERALL PERFORMANCE COMPARED TO BASELINES?

To address this question, we compare ReAct, AutoGuide, and DR. HINTER across three bench-
marks: MiniWoB++, WorkArena-L1, and WebArena-Lite. As shown in fig. [B] three key findings
emerge:

Generally, hints provide effective guidance to agents. Both AutoGuide and DR. HINTER con-
sistently outperform vanilla ReAct across all benchmarks and base models. This confirms that of-
fline hints provide meaningful guidance, steering the agent away from common pitfalls and toward
more successful strategies. Moreover, since GPT-5-mini is used as the hinter model, the gains
observed when the base model itself is GPT-5-mini highlight that DR. HINTER enables effective

self-improvement, demonstrating that a model can refine its own decision-making by reflecting on
past traces.

Under review as a conference paper at ICLR 2026

Even failed trajectories can provide constructive hints. While AutoGuide improves perfor-
mance over ReAct, its gains are larger for weaker base models and often limited to relatively simple
hints due to its reliance on contrastive pairs. In contrast, DR. HINTER outperforms AutoGuide
by generating hints from all available trajectories—successful or failed—rather than only paired
traces. This flexibility allows DR. HINTER to extract actionable guidance even from failure-only
data, leading to higher task performance. To emphasize this, we report performance on tasks where
the baseline ReAct agent failed entirely, shown as darker bars in fig. [3]

Entire trajectories are not always necessary for high quality hints. DR. HINTER further im-
proves over DR. HINTER(w/0 zoom) by zooming in on critical steps, highlighting the value of
providing the hinter with the most relevant context. Since zooming occurs offline, inference cost is
unchanged while performance improves. Together, these results demonstrate that both the breadth
of signals (including failed trajectories) and the precision of context (via zooming) are essential for
extracting robust, transferable hints.

5.2 HOW EFFECTIVE IS DR. HINTER COMPARED TO DOCUMENTATION AND HUMAN HINTS?

Alternative sources of guidance. To assess the value of trajectory-based hints, we compare DR.
HINTER against two alternative sources: platform documentation and human-authored instructions.
Unlike DR. HINTER, these hints are not distilled from trajectories but taken directly from raw re-
sources—documentation webpages or short annotator notes—and retrieved at inference time. This
comparison tests whether explicit external guidance can match or exceed the utility of trajectory-
derived hints.

Baseline configurations. For documentation,

we collected platform-specific materials: Ser- Taple 1: Comparison of DR. HINTER against al-
ViCGN(?W fqr WorkArena-L1, and GitLab and terpative hinting strategies. Results are reported
Sl?opplng.51tes for We!aArena. Pages were re- a5 average reward with standard error of 0.01 on
trieved with BM25 using the task goal as the WorkArena-L1 and 0.03 on WebArena-Lite.

query, and the top-ranked passages were pro-

vided directly to the agent as hints (see ap- _ Method WorkArena-L1 WebArena-Lite
pendix [A] for details). Human hints were pre- GPT-5-NANO
pared only for WorkArena-L1: we curated con- ReAct 0.41 0.23
cise notes for 16 particularly challenging goals, =~ Human hints 0.43 -
covering all task types while focusing on cases ~ Documentation 0.44 0.20
where automated hinting failed. In both base- DR. HINTER 0.48 0.27
lines, the retrieved content was used as a di- GPT-5-MINI
rect substitute for trajectory-based hints, notin ~ ReAct 0.61 0.32
combination. Results of these comparisons are ~ Human hints 0.66 -
reported in table [T} with details of the human ~ Documentation 0.64 0.33
DR. HINTER 0.68 0.34

hint collection in appendix

Effectiveness of external resources. Exter-

nal resources can substitute for trajectory-based hints, but with notable trade-offs. Documentation
retrieval scales easily and provides modest gains, though its utility depends heavily on manual qual-
ity and often yields only partially relevant context. Human hints (limited to 16 curated goals), while
effective are expensive to obtain and hard to scale. Overall, both baselines help bridge knowledge
gaps, but DR. HINTER is more practical: it automatically produces reusable hints from offline traces
without relying on manuals or human annotation.

5.3 CAN DR. HINTER GENERALIZE OUT-OF-TASK?

To assess out-of-task generalization, we remove the source task used to generate hints from the
retrieval pool. The retriever must then select the most relevant hints by matching the current task
goal against the remaining database entries. As shown in fig. f] DR. HINTER sustains competitive
performance under this setting, indicating that trajectory-derived hints can transfer beyond the tasks
they were trained on. On WorkArena-L1, we still observe clear gains over both ReAct and Auto-

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.725-

m ReAct

0.26- 035w autoGuidet
5 0.44- - _ mmm DR-Hinter(w/o zoom)
B ‘g 034" o DR-Hinter
E 2 0.24- 0.33-
0 0.42- P
g g 0.32-
o <
[0 0.22-
0.31-
2 0.40- E
. 0.30-
0.20-
GPT-5-NANO GPT-5-MINI GPT-5-NANO GPT-5-MINI
(a) WorkArena-L1 (b) WebArena-Lite

Figure 4: Out-of-task generalization performance on WorkArena-L1 and WebArena-Lite using two
base models with GPT-5-mini as the base for the hinter model.

Guide, while on WebArena-Liteall methods perform within the margin of noise, suggesting that this
benchmark remains especially challenging for cross-task transfer.

5.4 ANALYSIS & DISCUSSION

How does the size of the hinter model affect performance?

Figure [3] showed that GPT-5-mini can already serve as a capable hinter for both GPT-5-nano and
itself. To isolate the effect of capacity, we ablate the hinter model from GPT-5-mini to GPT-5.
As shown in Figure [3] the larger hinter generally produces higher-quality hints, translating into
stronger downstream performance. Gains are most pronounced on complex, long-horizon tasks
such as WorkArena-L1(+5%), where fine-grained context understanding and precise hint phrasing
matter most. On simpler tasks like MiniWoB++ (+2%), the advantage narrows, suggesting that
larger hinters are particularly useful when reasoning demands are high. Thus, scaling the hinter
model improves performance but introduces a clear trade-off between quality and computational
cost.

mmm AutoGuidet|GPT-5
AutoGuidet|GPT-5-mini

.E 0.70 0.28- =m DR-Hinter(w/o zoom)|GPT-5
g 0.48- m DR-Hinter(w/o zoom)|GPT-5-mini
Q]
: 0.68 ot 0.26
go 66 ‘ 0.24-
g™ 0.44-
< 0.22-

GPT-5-NANO GPT-5-NANO GPT-5-NANO
T 0.76 0.40
[0.70-
20.74
(3 0.35-
S 0.65-
5’0.72 ’
-
g 0.30-
< 0.70 0.60-

GPT-5-MINI GPT-5-MINI GPT-5-MINI

(a) Miniwob++ (b) WorkArena-L1 (c) WebArena-Lite

Figure 5: Comparison of hinter models (GPT-5-mini vs. GPT-5) on MiniWoB++, WorkArena-L1,
and WebArena-Lite. Larger hinters generally provide higher-quality hints, with the biggest gains on
complex, long-horizon tasks.

Under review as a conference paper at ICLR 2026

Qualitative analysis. Case studies illustrate how DR. HINTER’s hints intervene precisely at the
decision points that previously caused failures, directly correcting the agent’s reasoning and enabling
successful task completion.

MiniWoB++. In the click-scroll-1ist task, the agent is instructed to “Select Bermuda,
Saint Lucia from the scroll list and click Submit.” Without hints, the agent frequently fails because
it clicks the items sequentially without holding the control key, which causes earlier selections to be
deselected. A relevant retrieved hint states: “In a multi-select scroll list, hold Ctrl (Cmd on Mac)
and click each required item so all stay highlighted, then click the Submit button.” This explicit
correction allows the agent to overcome the failure mode of not performing multi-selection. Refer
to appendix [E.2] for the full reasoning and output of the DR. HINTER agent.

WorkArena-L1. Inthe filter-navigation tasks, the ReAct baseline often failed by rely-
ing on the wrong search context (e.g., the global bar or the Workspaces filter) or by clicking too
early before the application menu expanded, causing repeated loops without progress. DR. HINTER
corrected these errors by providing an explicit hint to use the Application Navigator’s All menu,
enter the application name in the correct filter box, and wait for the menu to expand before clicking
the target module. With this guidance, the agent consistently reached the intended Active module,
avoiding wasted actions and navigation errors. Refer to appendix for the full reasoning and
output of the DR. HINTER agent.

WebArena-Lite. In the Shopping Admin tasks, the agent must identify the customer with the
most cancellations over the entire history. The generic ReAct agent often failed by relying on sur-
face inspection of the first page of results and answering from what was visible without using the
grid’s controls. It did not open Filters, left a default date restriction in place (thus undercount-
ing “history”), sometimes relied on keyword search or Advanced Reporting, and neither sorted nor
paginated to aggregate counts, leading to incorrect totals. By contrast, DR. HINTER followed the
detailed sequence provided by the following hint: Go to Sales > Orders, open ’Filters’, set ’Status’
to 'Canceled’, click ’Apply Filters’, clear the ’Search by keyword’ box, then sort the ’Bill-to Name’
column to group names and scan/paginate for the largest group; to verify counts, use the ’'Bill-to
Name’ filter and read ’records found’, removing that chip before testing another; avoid ’Advanced
Reporting’. By closely following this sequence of steps, the agent is able to complete the task suc-
cessfully. Figure[I0Jin appendix[E.2]shows how the hinted agent leverages provided hints to properly
select the right action to take in order to solve a task.

6 CONCLUSION

We present DR. HINTER, an agentic system that distills large offline traces into short, retrievable
hints that help agents overcome common failure modes. DR. HINTER uses a zooming module to
identify critical decision points in long trajectories. A reflection step then distills these segments
into reusable strategies and pitfalls. The resulting hints are compact, transparent, and easily injected
at inference without fine-tuning. Experiments on MiniWoB++, WorkArena-L 1, and WebArena-Lite
show improvements over strong baselines, including gains in both out-of-goal and out-of-task gener-
alization. Ablations further highlight how retrieval design, hinter capacity, and the inclusion of failed
trajectories shape downstream performance, offering actionable insights for future applications. We
view this work as a step toward data-centric adaptation of LLM agents, where past trajectories, doc-
uments, and human instructions are systematically mined into reusable knowledge for more robust
and resilient decision-making.

Reproducibility Statement. The reproducibility of experiments on web agents poses several chal-
lenges, as it relies on a software stack for hosting the environment server and the backend of the web
agent. To address this, we rely on AgentLab and BrowserGymChezelles et al.| (2025)), a framework
designed for evaluating agents with reproducibility in mind. Among other features, the version of
all installed packages used during the experiments is saved in the experiment results. In addition to
open-sourcing our code, we will also provide all experiment traces as provided by AgentLab. In the
meantime, an anonymized codebase is provided in the supplementary materials.

Under review as a conference paper at ICLR 2026

For the reproducibility of our method, Section [3] which provides a detailed description of the DR.
HINTER framework, while Section specifies benchmarks, baselines, and evaluation protocols. Ap-
pendix [C] includes the full prompts used for hint generation and retrieval, Appendix [A] describe
documentation and human hint collection procedures, and Appendix [E.2] provides case studies with
reasoning traces. All datasets (MiniWoB++, WorkArena-L1, and WebArena-Lite) are publicly avail-
able, and we include details of our offline data collection and augmentation pipeline in Section 4]

REFERENCES

Thibault Le Sellier De Chezelles, Maxime Gasse, Alexandre Drouin, Massimo Caccia, Léo Boisvert,
Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan, Lawrence Keunho Jang,
Xing Han Lu, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Quentin Cappart, Graham
Neubig, Ruslan Salakhutdinov, Nicolas Chapados, and Alexandre Lacoste. The browsergym
ecosystem for web agent research, 2025. URL https://arxiv.org/abs/2412.05467,

Min Choi, Sahil Dua, and Alice Lisak. Introducing embeddinggemma: The best-in-class open
model for on-device embeddings. Google Developers Blog, September. 2025. URL https://
developers.googleblog.com/en/introducing—embeddinggemma/. Accessed:
2025-09-19.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=kiYgbO3wqwl.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom
Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. Workarena: how capable are
web agents at solving common knowledge work tasks? In Proceedings of the 41st International
Conference on Machine Learning, pp. 11642-11662, 2024.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of context-aware guide-
lines for large language model agents. Advances in Neural Information Processing Systems, 37:
119919-119948, 2024.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and brian ichter. Inner monologue: Embodied reasoning
through planning with language models. In Karen Liu, Dana Kulic, and Jeff Ichnowski (eds.),
Proceedings of The 6th Conference on Robot Learning, volume 205 of Proceedings of Machine
Learning Research, pp. 1769-1782. PMLR, 14-18 Dec 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Dangqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769-6781, 2020.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal
agents on realistic visual web tasks. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 881-905, 2024.

Jing Yu Koh, Stephen Marcus McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for

language model agents. Transactions on Machine Learning Research, 2025. ISSN 2835-8856.
URL https://openreview.net/forum?1d=QF0N3x2XVm.

10

https://arxiv.org/abs/2412.05467
https://developers.googleblog.com/en/introducing-embeddinggemma/
https://developers.googleblog.com/en/introducing-embeddinggemma/
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=QF0N3x2XVm

Under review as a conference paper at ICLR 2026

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktédschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:

9459-9474, 2020.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/1802.08802.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Song XiXuan, Yifan Xu, Shudan Zhang, Hanyu Lai,
Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao Sun, Siyi Cheng, Qinkai
Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan, Xiaotao Gu, Aohan
Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang. Visualagentbench:
Towards large multimodal models as visual foundation agents. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=2snKOc7TVp.

Xing Han Lu. Bm25s: Orders of magnitude faster lexical search via eager sparse scoring, 2024.
URLhttps://arxiv.org/abs/2407.03618.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Siqi Ouyang and Lei Li. Autoplan: Automatic planning of interactive decision-making tasks with
large language models. In Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 3114-3128, 2023.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford,
et al. Okapi at TREC-3. British Library Research and Development Department, 1995.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web
agents. arXiv preprint arXiv:2410.16464, 2024.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive plan-
ning from feedback with language models. Advances in neural information processing systems,
36:58202-58245, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
Chao Zhang, Bing Yin, Hyokun Yun, and Lihong Li. Webagent-rl: Training web agents via
end-to-end multi-turn reinforcement learning. In ICML 2025 Workshop on Computer Use Agents,
2025. URL https://openreview.net/forum?id=KgrYTALRJH.

11

https://arxiv.org/abs/1802.08802
https://openreview.net/forum?id=2snKOc7TVp
https://openreview.net/forum?id=2snKOc7TVp
https://arxiv.org/abs/2407.03618
https://openreview.net/forum?id=KqrYTALRjH

Under review as a conference paper at ICLR 2026

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744-20757, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
autonomous multi-agent system for web task execution with strategic exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 23378-23386, 2025.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LIm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632-19642, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning, acting, and planning in language models. In Forty-first
International Conference on Machine Learning, 2024a.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A real-
istic web environment for building autonomous agents. In The Twelfth International Confer-
ence on Learning Representations, 2024b. URL |https://openreview.net/forum?id=
oKn9coytLx.

12

https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

Under review as a conference paper at ICLR 2026

A DOCUMENTATION SEARCH AS HINTS FOR LLM AGENTS

We explore the use of documentation search as a hinting mechanism, enabling agents to retrieve
relevant knowledge directly from official platform resources. Specifically, we scrape documentation
from ServiceNow"| for WorkArena-L1, and from GitLa and shopping website for WebArena.
Each webpage is converted into a cleaned markdown file with a structured header that records meta-
data such as the page title, summary, keywords, and breadcrumbs.

Experimental Setup To evaluate how best to retrieve relevant hints, we explore three complemen-
tary design dimensions:

* Retrieval method. We compare sparse retrieval with BM25 (Robertson et al., [1995)
against dense retrieval using pretrained embeddings (Karpukhin et al.,|[2020).

* Query formulation. We test using the raw task goal as the query versus prompting the
LLM to generate a more specific query from the current task context. This comparison
mirrors episode-level hints versus step-level hints.

* Granularity of retrieval. We contrast retrieving full documentation pages with retrieving
structured chunks. In the chunked setting, we align snippets with the markdown hierarchy,
treating each section as an independent unit without overlap.

Information about the extracted documentation webpages can be found in Table

We evaluate configurations on WorkArena-L1 using GPT-5-mini as the base model. Sparse retrieval
is implemented with bm2 5 s |Lu|(2024)), while dense retrieval uses embeddinggemma—300m|/Choi
et al.|(2025) with Faiss|Douze et al.|(2024])). For reformulated queries, GPT-5-mini generates context-
aware search strings. To ensure fairness across setups, we fix the retrieval depth: the full-page setting
returns the top 3 pages, and the chunked setting returns the top 5 section-level snippets.

Table 3: Comparison of Documentation Search Set-
tings for Web-Browsing Agents

Table 2: Documentation Corpus Statistics: Search Query Document
Number of Pages and Chunks per Platform Type Type Type Reward
N/A N/A N/A 0.61
Platform # Pages # Chunks Sparse Goal Full 0.64
ServiceNow 60,967 287,271 Sparse . Goal - Chunk — 0.63
- Sparse LLM Full 0.62
GitLab 2,654 35,470
Shopping 508 4010 Sparse LLM Chunk 0.63
’ Dense Goal Full 0.60
Dense Goal Chunk 0.59
Dense LLM Full 0.62
Dense LLM Chunk 0.61

Results The ablation results across these configurations are reported in Table[3] Overall, we find
that a simple retrieval framework is highly competitive. Using BM25 with the task goal as the
query and retrieving full pages achieves performance on par with more complex dense retrieval and
LLM query reformulation setups. This configuration is also faster and easier to implement, making it
a strong baseline for documentation-based hinting. While advanced retrieval pipelines provide only
marginal gains, simplicity and efficiency often suffice for supplying LLM agents with actionable
documentation hints. Dense retrieval in particular underperforms, likely due to embeddings being
less attuned to domain-specific technical terminology.

Zhttps://www.servicenow.com/docs/
3https://docs.gitlab.com/
*https://experienceleague.adobe.com/en/docs/commerce-admin/user-guides/home

13

Under review as a conference paper at ICLR 2026

Discussion In most cases, we find that documentation pages are not a reliable source of instruc-
tions for navigating complex user interfaces. Unlike tutorials designed for end-users, documentation
rarely specifies how to perform low-level interactions such as clicking, scrolling, or filling forms.
As a result, retrieved passages often contain information that is only tangentially related to the task
at hand. Encouragingly, the agent is generally able to disregard irrelevant context and maintain a
similar level of performance, even if individual successes and failures shift across tasks. In other
words, documentation hints can occasionally distract the agent, but the net effect on performance is
largely stable when the provided context is unhelpful.

The impersonation task stands out as the most notable case where documentation significantly im-
proves performance. Without hints, GPT-5-mini frequently refuses to act, interpreting “imperson-
ation” as unsafe rather than recognizing it as a legitimate ServiceNow feature. This reflects an
alignment artifact, where the model overgeneralizes safety constraints to benign enterprise contexts.
Providing the impersonation documentation resolves this issue, enabling successful execution. This
example highlights the dual benefit of documentation retrieval: it can both supply missing proce-
dural knowledge and clarify task intent in ways that help override misaligned safety refusals. In
contrast, tasks such as filtering and sorting show degradation primarily due to skill-based errors,
underscoring that documentation hints are most impactful in cases where alignment conflicts, rather
than procedural gaps, are the limiting factor.

Limitations A key limitation of documentation-based hinting is its reliance on the availability of
high-quality resources. Within WebArena, only GitLab and Shopping/Shopping Admin tasks are
supported by relevant documentation, and even these are far less comprehensive than ServiceNow’s
materials in WorkArena-L1. Other platforms, such as OpenStreetMap and Postmill, offer little to no
user-facing documentation. As also noted by|Song et al.[(2024), the breadth and quality of documen-
tation directly affect agent performance, particularly for tasks requiring API-level interaction. This
underscores that documentation-based approaches may not generalize uniformly across platforms.

B HuUMAN HINT COLLECTION

To gather high—quality hints from humans, we designed an interactive annotation interface that
places the human annotator in the loop of action selection. At each step of a task, the model proposes
a list of candidate actions. If the correct action is among them, the annotator simply selects it. Oth-
erwise, the annotator can provide a free—form hint that guides the model toward the desired action.
The model then regenerates a new set of candidate actions conditioned on this hint, and the cycle
continues until the task is successfully completed. This iterative process ensures that we collect
both the final action sequence and, importantly, the intermediate natural language hints produced by
humans. fig. [f] presents the labeling Ul used to collect human hints.

The hints serve to make explicit the reasoning behind otherwise opaque choices. For example,
when filtering a table, annotators often wrote instructions such as: click on the gridcell that says "—
choose field - to pick Category or let’s do one condition at a time. Click on "choose field” so that
we can select Assigned to. Similarly, when filling a multi—tab form, annotators specified o set the
assignment group, click on the look up icon. These hints capture localized decision strategies and
offer the model additional guidance beyond raw demonstrations. By collecting such hints alongside
trajectories, we create a resource that directly encodes human teaching signals and can be reused to
improve model alignment with task—specific interaction patterns.

14

Under review as a conference paper at ICLR 2026

Snapshot 4/ 4
GOAL ERROR FEEDBACK
Go to the hardware store and order 8 “D: Laptop (PC)" with confi {‘Please specify an
operating system': "Windows 8', 'What size solid state drive do you want?": '500'}
HINTS Screenshot AxTree

click on the label associated to a radio button to select the option when filling a service *
catalog request

PR Reprompt with Hint

SUGGESTIONS

y click('a191")

reasoning:

To choose the requested 500 GB SSD | should click the label associated with that radio option (per the hint). The label a191
contains the visible "500 GB" text and will select the 500 GB radio when clicked

) click('a209')
~ reasoning:

The operating system must be set to Windows 8. Clicking the visible label for the Windows 8 radio (a209) will select that
option reliably.

) select_option(*a248", '8')

’ reasoning:

I need to set the quantity to 8. The Quantity combobox is a248; using select_option to choose "8" will change the quantity to
the desired amount before ordering.

Figure 6: Interactive labeling interface used for human hint collection. Annotators selected actions
from a model-generated list, or provided free—form hints when the desired action was missing. The
updated candidates were then re—evaluated until the task was completed.

C SYSTEM PROMPTS

C.1 STEP SELECTION

Prompt for Step Selection

You are a trace summarizer. Given the following execution trace, identify the step or steps
that are most important for understanding success or failure. Return the step numbers (start-
ing from 1) and a brief reason why they are important.

=== EXECUTION TRACE ===

Goal: <TASK GOAL>

Step 1: ...

Step 2: ...

=== STEP SELECTION CRITERIA ===

Look for steps that are critical because they:

1. Represent a key decision point or branching moment

2. Show a common mistake that could be avoided

3. Demonstrate a successful strategy or pattern

4. Involve important Ul elements or context clues

5. Show timing or sequence dependencies

6. Represent the moment where success/failure was determined

=== STEP SELECTION ===

List the most important step numbers (comma separated) and a brief reason for each.
IMPORTANT: Do not repeat the same step number. Select 1-2 critical steps that provide
the most valuable insights for generating actionable hints.

=== THINKING PROCESS ===

Before selecting the most important steps, think through:

1. Which steps represent critical decision points?

2. Which steps show avoidable mistakes?

3. Which steps demonstrate successful strategies?

4. Which steps involve important Ul/context clues?

5. Which steps show timing or sequence dependencies?

6. Which steps mark where success/failure was determined?

Think step by step and analyze carefully before making your selection.

15

Under review as a conference paper at ICLR 2026

C.2 STEP-SEQUENCE HINTING

Prompt for Step-Sequence Hint Generation

Task: <TASK NAME>

=== STEP SEQUENCE ANALYSIS (;N consecutive steps) ===

Goal: <TASK GOAL>

Step i: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

Step i+1: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

=== STEP-SEQUENCE HINT GENERATION ===

Based on the sequence of <N> consecutive steps above, provide a concise, actionable hint
that explains:

1. hat the agent accomplished across these steps.

2. What the agent should do next based on the context.

3. How to recognize when this sequence is needed.

4. Common mistakes to avoid during this sequence.

=== STEP-SEQUENCE GUIDANCE ===

Focus on:

— What changed in the environment across these steps.

— What the agent learned or accomplished.

— The next logical action.

— How to recognize the right moment for that action.

— The pattern or workflow this sequence represents.

Include the full Hint Requirements” and Output Format” as in Appendix[C.3}

C.3 HINT GENERATION

Prompt for Hint Generation (Single / Multi-Trace)

System role

You are a hint generation expert. You MUST respond using the structured format with
<think>, <topic>, and <hint> tags. Use the <think> section for thorough analy-
sis (200-800 words) and the <hint> section for concise, actionable guidance (under 256
tokens, single line).

Task: <TASK NAME>

Goal: <TASK GOAL>

(Optional) Documents/Instructions: <SHORT SNIPPETS OR NONE>

Execution trace(s):

Step 1: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

Step 2: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

(Repeat for each provided trace when multiple traces are given)

=== HINT REQUIREMENTS ===

IMPORTANT: Keep your hint SHORT and write it as a SINGLE LINE without line breaks.
Focus on:

— Common pitfalls or errors to avoid

— Specific strategies that work well

— Important details and UI cues to pay attention to

— Step-by-step guidance if multiple actions are required

=== ENHANCED REQUIREMENTS ===

16

Under review as a conference paper at ICLR 2026

Generalizability

— Make hints general enough to apply to similar tasks, not just this specific instance.

— DO NOT include: specific usernames, literal task content strings, element IDs like [123],
domain-specific secrets.

— DO include: reusable UI patterns (buttons, links, form fields), common workflows, robust
strategies.

Specificity & Actionability

— Use exact Ul text only when it represents common patterns (e.g., button labels like *Sub-
mit’).

— Specify element types and positions when relevant (e.g., button at the bottom of the form).
— Provide clear step ordering when multiple actions are needed.

Structure & Length

— Hint under 256 tokens, single line, no line breaks.

— Focus on what to do, not why it works.

— Use single quotes (’) and never double quotes (”’) in the hint.

Topic Tag

— Always provide one short sentence describing the applicability topic inside <t opic> tags
(e.g., filtering the table,multi-tab form filling).

—Ifaline SUMMARIZATION: <summarization> ispresentin the input, incorporate it
into the <t opic> description.

Known applicability topics: <TOPIC LIST IF AVAILABLE>

=== OUTPUT FORMAT ===

<think>

Your reasoning about the traces, patterns, decisive steps, and reusable strategies (200-800
words).

</think>

<topic>

One short sentence describing the general task topic (e.g., filtering the table).
</topic>

<hint>

A single-line, concise, actionable hint under 256 tokens (use single quotes, no line breaks).
</hint>

=== THINKING SECTION GUIDANCE ===

— Analyze the execution traces in detail.

— Identify key patterns, mistakes, and successful strategies.

— Explain (in <think>) why certain approaches work or fail.

— Consider multiple perspectives and edge cases.

— Aim for 200-800 words of thoughtful analysis.

=== HINT SECTION GUIDANCE ===

— Focus on the most critical action(s) the agent should take next.

— Avoid lengthy explanations or multiple examples.

— Prioritize what to do; keep it executable.

— Keep it under 256 tokens; use single quotes only.

=== EXAMPLES (GOOD) ===

Example 1 - Navigation:

<think>

Looking at the execution traces, the agent often fails by using the global search instead of
the left-side Application Navigator. Successful runs type into ’Filter/Filter navigator’ and
click module links after the app expands. Repeated clicks on admin menus are unnecessary;
the key is filtering in the left panel and then selecting the specific module entry once visible.
</think>

<hint>

Use the Application Navigator (left panel) with the ’Filter/Filter navigator’ input to find and
open modules; do not use the global search bar at the top.

</hint>

Example 2 - Form Submission

<think>

17

Under review as a conference paper at ICLR 2026

Agents fail when expecting a *Submit’ label; successful runs click whichever action com-
pletes the flow (’Save’, ’Create’, or ’Submit’). Enter does not submit; explicit clicks are
required.

</think>

<hint>

At the bottom of the form, click the action button that completes the flow (e.g., ’Save’,
’Create’, or *Submit’) instead of pressing Enter.

</hint>

=== EXAMPLES (BAD) ===

— Click the button with ID [123] to submit the form. (too specific)

— Enter ’john.doe@email.com ’ in the email field. (too specific)

— This task requires careful attention to detail. (too vague)

— The agent should understand the context before proceeding. (explanatory, not actionable)
— Click the ”Submit” button to continue. (uses double quotes)

C.4 TwO-TRACE COMPARISON (DESIRED VS. UNDESIRED)

Prompt for Two-Trace Comparison (Desired vs. Undesired)

You will be provided with a desired (successful) and an undesired (failed) trajectory for
the same task. Identify the first action where they diverge, explain why it leads to success
vs. failure, and produce a general, reusable hint.

Task: <TASK NAME>

Goal: <TASK GOAL>

— Desired trajectory —

Step 1: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

Step 2: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

— Undesired trajectory —

Step 1: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

Step 2: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

SUMMARIZATION: <ONE-LINE CONTEXT SUMMARY IF AVAILABLE>

=== COMPARISON GUIDANCE ===

1. Identify the first differing action and its local context.

2. Explain (in <think>) why one path succeeds and the other fails.

3. Derive a general rule that applies beyond this instance; avoid task-specific literals.

4. Follow the successful (desired) trajectory; do not invent steps absent from it.

=== OUTPUT FORMAT ===

<think>

Analysis of the first divergence, its effect on progress, Ul/context cues to detect it, and a
reusable rule (200-800 words).

</think>

<topic>

Short applicability topic (e.g., using the application navigator vs.
global search).

</topic>

<hint>

Single-line, general, actionable guidance under 256 tokens; preferably in the form: When
jstatus;, do jaction;, or Avoid jpitfall; and instead jaction;. Use single quotes.

</hint>

18

Under review as a conference paper at ICLR 2026

C.5 STEP-Z0OOM HINTING

Prompt for Step-Zoom Hint Generation

Task: <TASK NAME>

=== ZOOMED-IN STEPS ===

Goal: <TASK GOAL>

(For each step in the trace, include:)

Step ki Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

(For each step identified as important, additionally include the most informative structural
view, e.g., AXTree or HTML.)

=== HINT GENERATION ===

Based on the most important step(s) above, provide a concise, actionable hint that would
help an agent avoid common mistakes and succeed at this task.

=== STEP-FOCUSED GUIDANCE ===

1. Pay special attention to:

2. What makes this step decisive for success/failure.

3. The specific Ul elements or context guiding the correct action.

4. Common mistakes at this decision point.

5. How to recognize when this step is needed.

6. The correct sequence or timing for this action.

Include the full Hint Requirements” and Output Format” as in Appendix[C.3}

C.6 DUAL-TRACE STEP-ZOOM

Prompt for Dual-Trace Step-Zoom Analysis

Task: <TASK NAME>

=== DUAL TRACE STEP ZOOM ANALYSIS ===

For each trace (desired and undesired), provide:

— Outcome summary (successful/failed) and Goal.

— Steps with: Observation(s), Agent’s reasoning, Action taken,
Error encountered, Current reward.

— Mark IMPORTANT STEP for the selected critical steps and include the relevant struc-
tural view (AXTree/HTML) for those steps.

=== DUAL TRACE HINT GENERATION ===

Based on the most important step(s) across both traces, provide a concise, actionable hint
that helps avoid the observed failure.

=== DUAL TRACE STEP-FOCUSED GUIDANCE ===

Focus on:

1. Patterns emerging across both traces at critical steps.

2. Differences between correct and incorrect actions at those points.

3. The UI elements or context that disambiguate the right action.

4. Common mistakes at similar decision points.

5. How to recognize when these critical steps are needed.

6. The correct sequence/timing for actions at these points.

Include the full Hint Requirements” and Output Format” as in Appendix[C.3}

19

Under review as a conference paper at ICLR 2026

C.7 CONTEXT IDENTIFICATION

Prompt for Context Identification (Pre-Retrieval)

You are a helpful assistant that identifies the context of a task based on trace information.
You will see the prefix of a trajectory up to the first divergence between two traces. Summa-
rize the current status to guide retrieval of relevant hints.

=== INPUT (TRACE PREFIX) ===

GOAL: <TASK GOAL>

Step 1: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

Step 2: Observation(s), Agent’s reasoning, Action taken, Error
encountered, Current reward

... (up to the first differing action)

=== INSTRUCTIONS ===

Before choosing an action, query memory/documentation by first generating a brief, general
summary of the current status to help identify useful hints.

Return your answer as follows:

<think>chain of thought</think>

<context>one short sentence summary</context>

=== EXAMPLE ===

<think>

I have to sort by client and country. I could use the built-in sort on each column but I’'m not
sure if I can sort by both at the same time.

</think>

<context>

The user is preparing to apply multi-column sorting and needs guidance on adding the next
criterion.

</context>

D MORE RESULTS

How much faster is parallelized hint generation?

The original AutoGuide guideline extraction |Fu et al.| (2024) mod-

ule is implemented sequentially, which limits scalability. To .., — oo 00w
demonstrate the efficiency of our approach, we implemented a _wsm
parallelized version of hint generation that distributes trajectories ..,
across multiple workers. As shown in fig. [/} our parallel imple- 3
mentation achieves nearly a 20x speedup over sequential hinting, = ...
enabling large-scale hint generation on complex benchmarks. This e
improvement makes it practical to construct diverse and compre- fints Count

hensive hint databases without prohibitive computational overhead.

generation, 29 nt
Parallel hint generation, 20 jobs, 1.84 sec/hint (speedup x16)

Figure 7: Parallelized hint
generation.

20

Under review as a conference paper at ICLR 2026

E HINT ANALYSIS

E.1 HINT STATS

Table 4: MiniWoB++ Hint Database Statistics by Method, Base Model, and Hinter Model

Hinter Method Base Model Hinter Model Total Entries Unique Tasks Avg Hints/Task
gpt-5-mini gpt-5 117 28 4.17
- gpt-5-mini-2025-08-07 139 28 4.96
AutoGuide-vl gpt-5-nano gpt-5 157 36 4.38
gpt-5-mini-2025-08-07 174 36 4.83
gpt-5-mini gpt-5 625 125 5.00
gpt-5-mini-2025-08-07 614 125 4.91
DR.HINTER (w/o zoom) oo s hono ept-5 625 125 5.00
gpt-5-mini-2025-08-07 619 125 4.95
gpt-5-mini gpt-5 625 125 5.00
gpt-5-mini-2025-08-07 618 125 4.94
DR. HINTER gpt-5-nano gpt-5 625 125 5.00
gpt-5-mini-2025-08-07 620 125 4.96

Table 5: WorkArena-L1 Hint Database Statistics by Method, Base Model, and Hinter Model

Hinter Method Base Model Hinter Model Total Entries Unique Tasks Avg Hints/Task
gpt-5-mini gpt-5 105 21 5.00
. gpt-5-mini-2025-08-07 105 21 5.00
AutoGuide gpt-5-nano gpt-5 155 31 5.00
gpt-5-mini-2025-08-07 155 31 5.00
gpt-5-mini gpt-5 194 33 5.88
gpt-5-mini-2025-08-07 165 33 5.00
DR. HINTER (w/o zoom) gpt-5-nano gpt-5 188 33 5.70
gpt-5-mini-2025-08-07 168 33 5.09
gpt-5-mini gpt-5 165 33 5.00
gpt-5-mini-2025-08-07 164 33 4.97
DR. HINTER gpt-5-nano gpt-5 165 33 5.00
gpt-5-mini-2025-08-07 163 33 4.94

Table 6: WebArena-Lite Hint Database Statistics by Method and Hinter Model

Hinter Method Hinter Model Total Entries Unique Tasks Avg Hints/Task

. GPT-5 130 26 5
AutoGuide GPT-5-Mini 130 26 5

GPT-5 825 165 5
DR.HINTER b1 s Mini 825 165 5

E.2 HINT EXAMPLES

21

Under review as a conference paper at ICLR 2026

<think> Both traces involve the same Ul pattern: a HTML select element with the multiple attribute, a
visible list of options, and a 'Submit’ button. The successful trace shows the agent explicitly used
modifier-clicks (Control) when selecting multiple items; the agent selected the first target with Control-click,
added the second with another Control-click, then clicked 'Submit' and received reward. The failed trace
shows a common misunderstanding: the agent used plain clicks when attempting to select a second item,
which replaced the first selection rather than adding to it, and clicking 'Submit' then submitted only the
last-clicked option and produced no reward. Key patterns: - Presence of multiple attribute on the select
control signals multi-selection behavior; this requires modifier keys to accumulate selections. - A plain click
on an option typically sets selection to that single option (replaces existing selection). - Using Control (or
Command on macOS) while clicking adds or toggles individual options without deselecting others. -
Shift-click can be used to select contiguous ranges if needed. Differences between traces: - Successful:
used Control-modified clicks for both selections, then clicked 'Submit’' — correct sequence. - Failed: used
plain clicks resulting in the second click overwriting the first selection, then clicked 'Submit' — sequence
wrong because of missing modifier. Specific Ul/context cues: - The select element shows multiple="" which
is the explicit indicator that multiple selections are allowed. - The button labeled 'Submit’ is the final action
to apply the selection; ensure desired options are already selected before clicking it. - Sometimes DOM
snapshots show the select's value reflecting only ocne option even when multiple are visually selected; don't
rely only on the single 'value' attribute in snapshots — use the correct interaction (modifier-clicks) to ensure
multiple options are selected. Common mistakes to avoid: - Forgetting to hold the appropriate modifier key
when selecting additional options. - Assuming the second plain click will add to the first selection rather
than replace it. - Clicking "Submit' before verifying all required options have been added. Action sequence
to generalize: 1) Identify the select has multiple selection capability. 2) Use Control (or Command) modified
clicks to add each non-contiguous option, or Shift to select a contiguous range. 3) After all target options
are highlighted, click the "Submit' button to finalize. This guidance applies broadly to tasks that require
selecting several items from a multi-select list and then submitting the form. </think> <topic> selecting an
option and clicking the Submit button <ftopic> <hint> For multi-select lists, hold Control (or Command on
macOS) and click each option to add them to the selection, then click the 'Submit' button; avoid plain clicks
that replace the current selection and use Shift for contiguous ranges. </hint>

Figure 8: miniwob.click-scroll-list. DR. HINTER with gpt-5-mini as the hinter model and gpt-5-
nano as the base model. The performance is improved from 0.6 to 1 on this task after applying hint.

<think> Both traces aim to navigate to the Interaction app's Active module, but they diverge on which
navigation context and input to use. The successful frace opens the primary Application Navigator by
clicking the All menu, uses the left-panel filter textbox ('Enter search term to filter All menu'), types the app
name, waits for the Interaction application to appear and expand, then clicks the 'Active’ module link. The
failed trace repeatedly operates in the More menus / Workspaces context: it opens More menus, types into
the Workspaces filter, and repeatedly clicks the 'Active’ link there without getting the expected outcome.
Key patterns: (1) using the correct navigator context (All vs Workspaces) matters; the same app and
module labels can exist in different menus but only one leads to the intended module in this workflow, (2)
typing into an already-focused filter and waiting for results to populate before clicking is necessary, and (3)
repeatedly clicking without confirming the proper menu or waiting for navigation to complete is ineffective.
Common mistakes observed: choosing the wrong menu context (\Workspaces or global search) instead of
the Application Navigator, typing into the wrong filter box, and not confirming the Appearance/expansion of
the application entry before clicking the module link. The failed trace also shows excessive repeated clicks
on the same link, suggesting the agent was unsure whether the right context was selected or whether the
click had any effect. Timing/sequence issues: first ensure the desired menu (All / Application Navigator) is
expanded and the left-panel filter textbox is focused; second type the app name; third wait for the app entry
to expand and its module list to render; fourth click the specific module link. From a generalizable
perspective for ServiceNow navigation tasks: always pick the navigation area designed for module access
(left Application Navigator), use its dedicated filter input, verify the application container expands and lists
modules, then select the module link; avoid using top/global search fields or alternate menu contexts
unless specifically required. Also, visually confirm the filter input's placeholder text or the Application
Navigator header to ensure you're in the right panel; if results don't appear, clear the filter and retry or
re-open the All menu. These steps reduce errors caused by similar labels across different navigation
menus and avoid wasted repeated clicking. </think> <topic> navigating modules via the Application
Navigator (left panel) </topic> <hint> Open the Application Navigator 'All' menu (left panel), type the
application name into the 'Enter search term to filter All menu’ textbox, wait for the app to expand and show
modules, then click the module link "Active’ — do not use the top/global search or the "Workspaces' filter.
</hint>

Figure 9: workarena.servicenow.all-menu. DR. HINTER with gpt-5-mini as the hinter model and
gpt-5-nano as the base model. The performance is improved from O to 1 on this task after applying
hint.

22

Under review as a conference paper at ICLR 2026

<think> | will open the Filters panel so | can use the Bill-to Name filter to get exact counts per customer
(recommended in the hints). Opening Filters is the next step before applying a Bill-to Name query. </think>
<task_hint> Relevant hint: Open Sales > Orders, click 'Filters', set 'Status' to 'Canceled', click 'Apply
Filters'; clear the keyword search box, then sort the 'Bill-to Name' column to group names and
scan/paginate for the largest group; to verify counts, use the 'Bill-to Name' filter and read 'records found',
removing that chip before testing another. </task_hint> <action> click('845') </action>

Figure 10: webarenalite.288. DR. HINTER with gpt-5 as the hinter model and gpt-5-mini as the base
model. The performance is improved from O to 1 on this task after applying hint.

F HINT GENERATION AND RETRIEVAL ALGORITHM

Algorithm 1 DRH: Hint Generation (Zoom & Reflect)

Require: Offline trajectories {Ti}ﬁil (with ., z, a, r), optional documents/instructions,
summarizer S, hinter H
Ensure: Hint database Dy, = {(c, h)}

1: for each selection of evidence E € {single 7, pair (71, 77), multi-trace {77},cs} do

2: c+ S(E) > semantic key / context used for retrieval
3: if zooming then
4: choose critical step(s) t* and window A
5: P+ PP ={z,a,r}r.r U{z}=x 4
6: else
7: P« PM = {z 2 a,7}.r
8: end if
9: if contrastive then
10: P + contrastive prompt built from (7, 77)
11: end if
12: h < H(c, P) > natural-language hint linked to its source
13: Dy < Dy U{(c,h)}
14: end for

15: return Dy

Algorithm 2 DRH: Retrieve & Act

Require: Policy 7, database Dy = {(c, h)}, retriever p, summarizer S, goal g, mode € {EPISODE, STEP}

1: if mode = EPISODE then > goal-conditioned (episode-level) retrieval
2: {hlavhk}ep(g7DH)
3: end if
4: fort=1,...,7 do
S: Observe x; and update T.¢
6: if mode = STEP then > contextual (step-level) retrieval
7. Ct < S(T:t)
8: {h%,...,hf}%p(ct,DH)
9: ag ~ 7T($0;t, {ht,..., hf})
10: else > EPISODE
11: at Nw(xo;t,{hl,...,hk})
12: end if
13: Execute ay, receive (Tt41,7¢)
14: end for

15: return {a;}7_;

23

	Introduction
	Related Work
	Deep Reflection Hinting
	Data Collection
	Hint Generation: Zoom & Reflect
	Retrieve & Act

	Experimental Setup
	Empirical Study
	Does Dr. Hinter improve overall performance compared to baselines?
	How effective is Dr. Hinter compared to documentation and human hints?
	Can Dr. Hinter generalize out-of-task?
	Analysis & Discussion

	Conclusion
	Documentation Search as Hints for LLM Agents
	Human Hint Collection
	System prompts
	Step selection
	Step-Sequence Hinting
	Hint Generation
	Two-Trace Comparison (Desired vs. Undesired)
	Step-Zoom Hinting
	Dual-Trace Step-Zoom
	Context Identification

	More results
	Hint analysis
	Hint stats
	Hint examples

	Hint generation and retrieval algorithm

