

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DEEP REFLECTION HINTING: LEVERAGING OFFLINE KNOWLEDGE FOR IMPROVING WEB AGENTS ADAPTA- TION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Large language model (LLM) agents perform well in sequential decision-making tasks, but improving them on unfamiliar domains often requires costly online interactions or fine-tuning on large expert datasets. These strategies are impractical for closed-source models and expensive for open-source ones, with risks of catastrophic forgetting. Offline trajectories offer reusable knowledge, yet demonstration-based methods struggle because raw traces are long, noisy, and tied to specific tasks. We present *Deep Reflection Hinter* (DR. HINTER), an agentic system that distills offline traces into compact, context-aware hints. A zooming mechanism highlights decisive steps in long trajectories, capturing both strategies and pitfalls. Unlike prior methods, DR. HINTER leverages both successful and failed trajectories, extracting guidance even when only failure data is available, while supporting parallelized hint generation and benchmark-independent prompting. At inference, a retriever selects relevant hints for the current state, providing targeted guidance with transparency and traceability. Experiments on MiniWoB++, WorkArena-L1, and WebArena-Lite show that DR. HINTER consistently outperforms strong baselines, including human- and document-based hints.

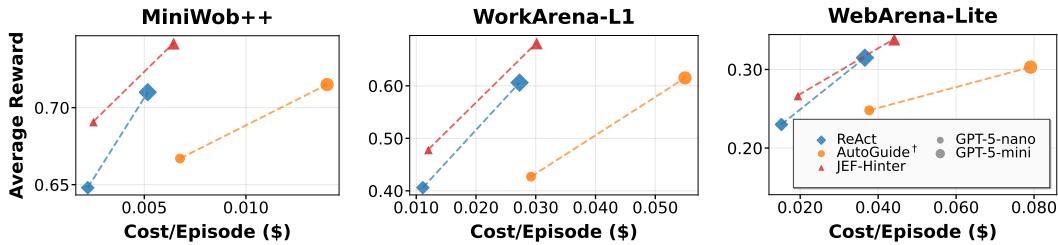


Figure 1: Average episodic reward versus test-time evaluation cost of DR. HINTER on MiniWoB++, WorkArena-L1, and WebArena-Lite, using GPT-5-mini as the Hinter model. Colors and markers denote different methods, while marker size reflects the base LLM model size.. DR. HINTER achieves substantial gains over baselines, incurring only slightly higher cost than the original ReAct (Yao et al., 2023b) agent while being far more efficient than Autoguide<sup>†</sup> (Fu et al., 2024).

## 1 INTRODUCTION

Large language model (LLM) agents have shown impressive abilities in sequential decision-making tasks such as web navigation and interactive environments. Yet their performance often deteriorates in unfamiliar domains due to incomplete domain knowledge and reasoning gaps. Unlike static tasks, sequential settings amplify small mistakes, where an early error can derail the entire trajectory. Offline resources offer an attractive opportunity. Trajectories from prior agents (both successful and failed), human demonstrations, and organizational documents all encode reusable decision patterns. Leveraging this knowledge is particularly important for closed-source models, which cannot be fine-tuned, and for large open-source models, where fine-tuning is costly and often risks catastrophic forgetting. Methods that can distill reusable knowledge from offline data provide a scalable way to improve state-of-the-art models without retraining or waiting for new releases.

054 Supervised fine-tuning on offline trajectories can appear to work, but off-policy bias means the  
 055 learned policy cannot reliably execute even the training tasks end-to-end on its own, and it gener-  
 056 alizes poorly to new tasks (Ouyang et al., 2022; Yao et al., 2022). Reinforcement learning can be  
 057 effective for web agents(Vattikonda et al., 2025), but its reliance on extensive online interactions is  
 058 impractical at scale, and it cannot be applied to closed-source models. Retrieval-augmented gener-  
 059 ation (RAG) methods, such as in-context demonstrations (Lewis et al., 2020), provide task-specific  
 060 examples at inference, but raw trajectories are long, noisy, and tightly bound to their source tasks,  
 061 limiting transfer. Recent work, such as AutoGuide (Fu et al., 2024), addresses part of this gap by  
 062 distilling guidelines from offline trajectories, but it is limited to contrastive trace pairs and uses  
 063 benchmark-specific prompting. These challenges motivate a more general and scalable framework  
 064 for extracting and reusing offline knowledge.

065 We introduce DR. HINTER, an agentic system that distills offline traces into explicit, context-aware  
 066 hints. Instead of replaying full trajectories (Shinn et al., 2023; Fu et al., 2024), DR. HINTER em-  
 067 ploys a *zooming module* to focus on critical decision points and a *reflection step* to convert them  
 068 into concise natural-language hints capturing both effective strategies and common pitfalls. Hints  
 069 can be generated from single traces, pairwise contrasts, or multi-trace aggregation, ensuring cov-  
 070 erage even when no successful run exists. Each hint is paired with a *semantic key* for retrieval,  
 071 enabling either fine-grained step-level guidance or efficient goal-conditioned retrieval at inference  
 072 preventing overload from irrelevant information (Zhao et al., 2024) and complementing intra-task  
 073 reflection mechanisms (Shinn et al., 2023). This offline-to-online pipeline produces a lightweight  
 074 database of actionable hints that improves agent robustness and long-horizon generalization without  
 075 requiring model fine-tuning. Since DR. HINTER represents guidance as explicit hints linked to their  
 076 source traces or documents, it provides greater transparency and traceability than both supervised  
 077 fine-tuning and in-context RAG, allowing systematic analysis of how offline data influences agent  
 behavior.

### 078 Contributions:

- 080 • We introduce *Deep Reflection Hinter* (DR. HINTER), an agentic system that distills offline  
 081 trajectories into explicit, context-aware hints. DR. HINTER features parallelized hint gen-  
 082 eration, intelligent zooming on critical steps, and flexible trace selection (single, pairwise,  
 083 or multi-trace), leveraging both successful and failed runs.
- 084 • We evaluate DR. HINTER across MiniWoB++, WorkArena-L1, and WebArena-Lite, where  
 085 it consistently outperforms strong baselines. We further compare against documentation  
 086 retrieval and human-authored hints, showing that automatically generated hints provide  
 087 more scalable and broadly effective guidance.
- 088 • We provide qualitative analyses that illustrate how DR. HINTER addresses common agent  
 089 failure modes by steering actions toward the correct context and preventing repeated errors,  
 090 thereby improving robustness and transparency.

## 092 2 RELATED WORK

094 LLMs have shown strong reasoning capabilities (Wei et al., 2022), resulting in LLM-based agents  
 095 applied on a variety of real-world interactive tasks, including web navigation (Nakano et al., 2021;  
 096 Wei et al., 2025; Zhang et al., 2025). However, performance on multiple web-focused bench-  
 097 marks (Yao et al., 2022; Deng et al., 2023; Zhou et al., 2024b; Koh et al., 2024; Drouin et al., 2024;  
 098 Boisvert et al., 2024) indicates that, as-is, LLMs still struggle with complex tasks requiring planning  
 099 over long horizons. This gap has motivated several directions of work on improving LLM-based  
 100 agents.

101 **Prompting and reflection.** A large body of work explores prompting strategies to elicit stronger  
 102 reasoning and planning from LLMs. ReAct (Yao et al., 2023b) interleaves reasoning steps with  
 103 environment actions to structure trajectories. Building on this, Reflexion (Shinn et al., 2023) intro-  
 104 duces self-reflection over past trials to refine behavior, while ExpeL (Zhao et al., 2024) mines offline  
 105 Reflexion trajectories to extract reusable skills. Other approaches focus on explicit planning: Ada-  
 106 Planner (Sun et al., 2023) iteratively adapts a plan to specific task instances, and AutoPlan (Ouyang  
 107 & Li, 2023) instead optimizes for generalizable plans across instances. Methods such as Inner  
 Monologue (Huang et al., 2023) and Self-Refine (Madaan et al., 2023) further extend reflection by

108 continuously revising intermediate reasoning. A concurrent work, Atomic Fact Augmentation with  
 109 Lookahead Search (Holt et al., 2025), enhances in-context planning via fact extraction and local  
 110 search but targets short-observation domains like ALFWorld, making it complementary to our focus  
 111 on large web-scale observations.

112 **Search-based planning.** Beyond prompting, several works integrate symbolic search with LLM  
 113 reasoning to better handle long-horizon tasks. Tree-of-Thoughts (Yao et al., 2023a), Language Agent  
 114 Tree Search (Zhou et al., 2024a), and their variants (Putta et al., 2024; Koh et al., 2025) explore  
 115 branching reasoning paths and dynamically selecting among them, improving robustness on tasks  
 116 where single-line chain-of-thought often fails. While effective, these approaches typically require  
 117 large test-time compute budgets and do not leverage offline knowledge.

118 **Offline data and hinting.** Orthogonal to online prompting and search, another line of work focuses  
 119 on extracting reusable guidance from offline data. RAG approaches (Lewis et al., 2020) have been  
 120 adapted for agents by retrieving demonstrations or examples (Yao et al., 2023b), but raw trajectories  
 121 are long, noisy, and task-specific, limiting their transferability. AutoGuide (Fu et al., 2024)  
 122 addresses part of this challenge by distilling guidelines from contrastive trajectory pairs, showing  
 123 that abstracted guidance can outperform raw demonstrations. More recently, Agent Workflow Mem-  
 124 ory (AWM) (Wang et al., 2024) induces reusable workflows from successful trajectories, enabling  
 125 agents to accumulate and reuse subroutines across tasks. AutoManual (Chen et al., 2024) similarly  
 126 aims to build reusable manuals but requires online interaction and repeated rule revision, whereas  
 127 our approach works fully offline and supports cross-task, cross-agent hint synthesis.

128 However, both AutoGuide and AWM remain constrained in scope: the former requires contrastive  
 129 pairs, while the latter depends on successful traces alone. By contrast, our approach extracts hints  
 130 from both successes and failures, making them more general than workflows or contrastive guide-  
 131 lines. Hints capture not only reusable strategies but also common pitfalls, providing broader and  
 132 more flexible guidance. We further enable parallelized extraction for scalability and integrate het-  
 133 erogeneous offline sources such as domain documents and human-written instructions into a unified  
 134 framework.

### 3 DEEP REFLECTION HINTING

138 Large language model (LLM) agents often struggle to generalize across tasks when relying solely  
 139 on their base policy  $\pi$ . Direct fine-tuning can be costly, unstable, or even impossible for closed-  
 140 source models. To address this, we propose to improve  $\pi$  by supplying it with targeted, reusable  
 141 guidance extracted from offline experience. At the center of our approach is the *Hinter*  $\mathcal{H}$ , itself  
 142 an LLM, a model that transforms trajectories and documents into explicit natural-language hints.  
 143 Since hint generation is performed offline,  $\mathcal{H}$  can be significantly larger and more capable than the  
 144 base agent, yet the resulting hints remain lightweight at inference. We instantiate this method as  
 145 DR. HINTER, which systematically augments the LLM base policy with retrieved hints to enhance  
 146 decision making without any fine-tuning.

#### 3.1 DATA COLLECTION

147 Unlike prior work such as AutoGuide (Fu et al., 2024), which extracts guidance only from con-  
 148 trastive trajectory pairs, DR. HINTER can operate over a broader range of offline signals. Given a  
 149 dataset of trajectories  $\{\tau_1, \dots, \tau_N\}$ , it flexibly selects evidence for hint generation. The trajectories  
 150 may come from the base policy  $\pi$ , which yields hints tailored to its strengths and weaknesses, but  
 151 they can also originate from other agents or human demonstrations. We support three comple-  
 152 mentary modes:

- 157 1. *Single-trace analysis.* Generate hints from a single trajectory  $\tau$ , highlighting effective de-  
 158 cisions in successful segments and exposing pitfalls in failed ones.
- 159 2. *Pairwise analysis.* Contrast two trajectories  $(\tau^+, \tau^-)$  where the total reward assigned to  
 160  $\tau^+$  is greater than the reward assigned to  $\tau^-$ , and identify the key divergences that explain  
 161 the performance gap. If no such pair is available, we also allow equal-reward or (fail, fail)  
 and (success, success) pairs.

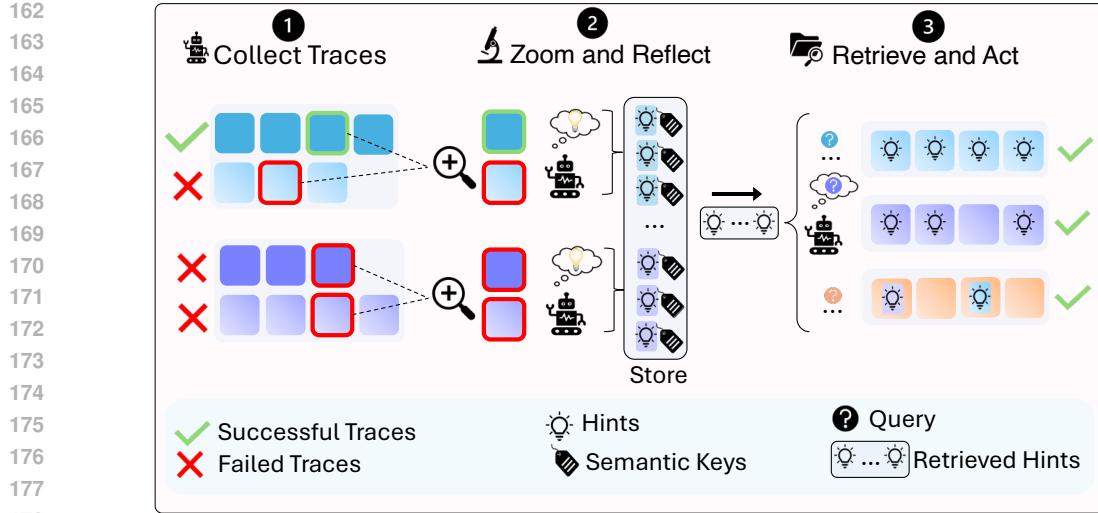


Figure 2: Overview of the DR. HINTER. **(1) Collect Traces:** DR. HINTER operates over heterogeneous offline trajectories, including both successful (green) and failed (red) runs, allowing the system to capture not only effective behaviors but also common pitfalls. **(2) Zoom and Reflect:** A zooming module selects critical steps within each trace, and the hinter reflects on these segments to distill them into concise, reusable natural language hints. Each hint is paired with a semantic key summarizing its context and stored for retrieval. **(3) Retrieve and Act:** At inference time, the agent generates a query (goal- or context-conditioned) which is matched against the database of semantic keys. The most relevant hints are retrieved and injected into the agent’s context, guiding its actions. This process unifies knowledge distillation, reflection, and retrieval, supporting both in-task reliability and out-of-task generalization.

3. *Multi-trace analysis.* Combine a set of trajectories  $\{\tau^i\}_{i \in S}$  to surface patterns that are robust across instances and transferable across tasks.

### 3.2 HINT GENERATION: ZOOM & REFLECT

A trajectory provides four types of signals: observations  $x$  such as screenshots, HTML (or AxTree); reasoning tokens  $z$  that record intermediate thoughts; actions  $a$  that alter the environment; and rewards  $r$  that measure progress. The initial observation  $x_0$  also contains the goal  $g$ . We combine these signals to form the prompt ( $P$ ) given to the Hinter. The simplest option is the full prompt  $P_{\tau}^{\text{full}} = \{x, z, a, r\}_{1:T}$ , which passes the entire trajectory as context. Long-horizon tasks quickly make this representation unwieldy. To address this, we introduce a Zooming LLM module that selects critical steps  $t^*$  and extracts a compact prompt:

$$P_{\tau}^{\text{zoom}} = \{z, a, r\}_{1:T} \cup \{x\}_{t^*:t^*+\Delta}.$$

This keeps the full sequence of reasoning, actions, and rewards, while restricting observations to the decisive windows. The parameter  $\Delta$  specifies the length of the observation window appended after  $t^*$ , determining how much context is retained. Critical steps correspond to points where the agent makes an important choice, repeats a common mistake, executes a successful strategy, interacts with a key element, handles a timing dependency, or reaches a definitive outcome. For instance, in a web form task, repeatedly clicking the wrong navigation bar is flagged as a critical step, while in a multi-select list, the decisive step is holding Ctrl/Cmd to select multiple items. Appendix C.1 details the step-selection procedure.

Next, to support retrieval, we generate a *semantic key* summarizing the trajectory prefix. Given  $\tau_{:t}$ , the summarizer  $\mathcal{S}$  outputs a short natural-language context  $c_t = \mathcal{S}(\tau_{:t})$ . This key anchors hint generation during training and enables efficient lookup at inference.

Finally, given a context  $c_t$  and a prompt  $P_{\tau}$ , the Hinter produces a hint

$$h = H(c_t, P_{\tau}),$$

216 which captures either a beneficial action or a common error to avoid. We collect all hints in a  
 217 database  $\mathcal{D}_{\mathcal{H}} = \{(c_t, h)\}$ , linking each hint to the semantic key from which it was derived (see  
 218 Appendix F for pseudocode).

219

### 220 3.3 RETRIEVE & ACT

221

222 We explore two complementary strategies for retrieving and applying hints during inference.

223

224 **Contextual retrieval with step-level hints.** At each time step  $t$ , the summarizer produces a context  
 225  $c_t = \mathcal{S}(\tau_{:t})$ . The retrieval LLM module  $\rho$  then selects the top  $k$  hints most relevant to that  
 226 context,  $\{h_t^1, \dots, h_t^k\} = \rho(c_t, \mathcal{D}_{\mathcal{H}})$ , and the policy conditions its next action on both the trajectory  
 227 prefix and the retrieved hints,  $a_t \sim \pi(x_{0:t}, \{h_t^1, \dots, h_t^k\})$ . This approach provides fine-grained,  
 228 context-specific guidance, but it is computationally costly since it requires one model call to establish  
 229 the context and retrieve hints and another to generate the action.

230

231 **Goal-conditioned retrieval with episode-level hints.** A more efficient strategy retrieves hints  
 232 once at the start of an episode, using the goal  $g$  as the retrieval context:  $\{h^1, \dots, h^k\} = \rho(g, \mathcal{D}_{\mathcal{H}})$ .  
 233 The policy then acts while simultaneously selecting a relevant hint from this fixed set,  $(a_t, h_t) \sim$   
 234  $\pi(x_{0:t}, \{h^1, \dots, h^k\})$ . This method avoids repeated retrieval calls and reduces inference cost, while  
 235 still maintaining sufficient contextual relevance.

236

237 **Source tasks for retrieval** The choice of source tasks also determines how well hints generalize.  
 238 In-task retrieval draws hints from the same task but with different goals<sup>1</sup>, which strengthens reliability  
 239 within a domain. Cross-task retrieval excludes the source task altogether and forces the agent to transfer  
 240 knowledge from other tasks. Hybrid retrieval mixes both approaches with adjustable weighting,  
 241 striking a balance between reliability and transfer. Because hints capture abstract decision  
 242 patterns rather than raw demonstrations, they remain effective across goals and tasks under both  
 243 settings.

244

245 **The zooming module, summarizer  $\mathcal{S}$ , hinter  $\mathcal{H}$ , retriever  $\rho$ , and base policy  $\pi$  are all LLM-based**  
 246 **components. In contrast, the hint database  $\mathcal{D}_{\mathcal{H}}$ , its indexing and storage, and the embedding-based**  
 247 **matching used for retrieval are lightweight non-LLM operations responsible for orchestration and**  
 248 **lookup.**

249

## 4 EXPERIMENTAL SETUP

250

251 **Benchmarks** We evaluate on three widely used benchmarks that span increasing levels of complexity:  
 252 MiniWoB++ (Liu et al., 2018), a suite of synthetic single-page UI tasks; WorkArena-  
 253 L1 (Drouin et al., 2024), a benchmark of enterprise knowledge-work tasks involving multi-step form  
 254 filling and navigation; and WebArena (Zhou et al., 2024b), a realistic environment of multi-domain  
 255 web tasks requiring long-horizon reasoning. Together, these benchmarks test both short-horizon  
 256 precision and long-horizon generalization.

257



255 Figure 3: Web browsing benchmarks considered in our work: MiniWoB++ (Liu et al., 2018),  
 256 WorkArena-L1 (Drouin et al., 2024), and WebArena-Lite (Zhou et al., 2024b; Liu et al., 2025).

257

258

259 <sup>1</sup>Benchmarks like MiniWoB++ and WorkArena support multiple seeds per task. We refer to a specific  
 260 instance of a task as a goal.

261

270 **Observation and action spaces** To improve speed and efficiency, we work with the accessibility  
 271 tree (AXTree). This reduces the size of the input by about 10x compared to the HTML DOM  
 272 trees. Exceptionally, on MiniWoB++, we work directly with the DOM since it is small enough  
 273 and contains more of the relevant information. The action space across all environments consists  
 274 of high-level UI primitives such as `click(node)`, `fill(node, text)`, `select(node, option)`,  
 275 `scroll(node)`, and `hover(node)` as provided by BrowserGym. This abstraction  
 276 enables consistent evaluation across benchmarks with differing interfaces.

277 **Baselines** All methods build on the ReAct agent framework (Yao et al., 2023b), which combines  
 278 chain-of-thought reasoning with environment interaction. We compare against: (i) **ReAct** without  
 279 offline hinting, (ii) Our implementation of **AutoGuide** (Fu et al., 2024), which augments ReAct with  
 280 offline guideline extraction from contrastive trajectory pairs. We call this agent AutoGuide<sup>†</sup>. In  
 281 addition, we evaluate two variants of our agent: **DR. HINTER** (w/o zoom), our basic implementation  
 282 that takes the full trajectory as input and distills offline trajectories into natural-language hints (for  
 283 WorkArena-L1 and WebArena-Lite, we drop AxTrees to fit within the hinter model’s context), and  
 284 **DR. HINTER**, which further includes zooming on critical steps.

285 **Offline datasets** We construct offline datasets using the AGENTLAB framework (Drouin et al.,  
 286 2024; Chezelles et al., 2025). For MiniWoB++, we collect trajectories by running a ReAct agent  
 287 on 5 held-out goals per task, and for WorkArena-L1, we collect trajectories on 10 held-out goals  
 288 per task. For WebArena, we use WebArena-Lite Liu et al. (2025) for parallel trace collection. In  
 289 all benchmarks, we retain both successful and failed trajectories so that hint extraction can cover  
 290 both positive decision points and common pitfalls. In contrast, AutoGuide (Fu et al., 2024) requires  
 291 pairs of successful and failed traces and therefore only produces hints when both are available. To  
 292 study the impact of dataset quality, we additionally construct augmented datasets by including traces  
 293 from GPT-5, ensuring at least one successful trace per task. If no successful trace exists, even after  
 294 augmentation, AutoGuide produces no hint for that task, whereas DR. HINTER can still generate  
 295 useful hints from failed trajectories alone.

296 **Evaluation protocol** We evaluate generalization under two complementary settings: *In-task generalization*: The agent retrieves hints only from the same source task, but from different goals than  
 297 those used in evaluation. This setting measures how well hints transfer within a task across different  
 298 environment initializations. *Out-of-task generalization*: To assess a more challenging scenario, we  
 299 exclude the source task entirely from the hint database. At inference time, the agent must instead  
 300 rely on hints retrieved from other tasks, using the LLM retriever or embedding vector matching  
 301 to select the most relevant ones. This setup tests whether hints distilled from one set of tasks can  
 302 transfer effectively to unseen tasks with different structures.

303 The primary evaluation metric is average task success rate, reported separately for in-task and out-of-  
 304 task settings. We also provide qualitative analysis of retrieved hints to illustrate their interpretability  
 305 and usefulness.

## 309 5 EMPIRICAL STUDY

311 We present results through research questions examining the effectiveness, generalization, and de-  
 312 sign decisions of DR. HINTER.

### 314 5.1 DOES DR. HINTER IMPROVE OVERALL PERFORMANCE COMPARED TO BASELINES?

316 To address this question, we compare ReAct, AutoGuide, and DR. HINTER across three bench-  
 317 marks: MiniWoB++, WorkArena-L1, and WebArena-Lite. As shown in fig. 4, three key findings  
 318 emerge:

319 **Generally, hints provide effective guidance to agents.** Both AutoGuide and DR. HINTER con-  
 320 sistently outperform vanilla ReAct across all benchmarks and base models. This confirms that of-  
 321 fline hints provide meaningful guidance, steering the agent away from common pitfalls and toward

323 <sup>†</sup>Since no public implementation of AutoGuide was available, we re-implemented it within our ReAct  
 framework for consistency and comparability.

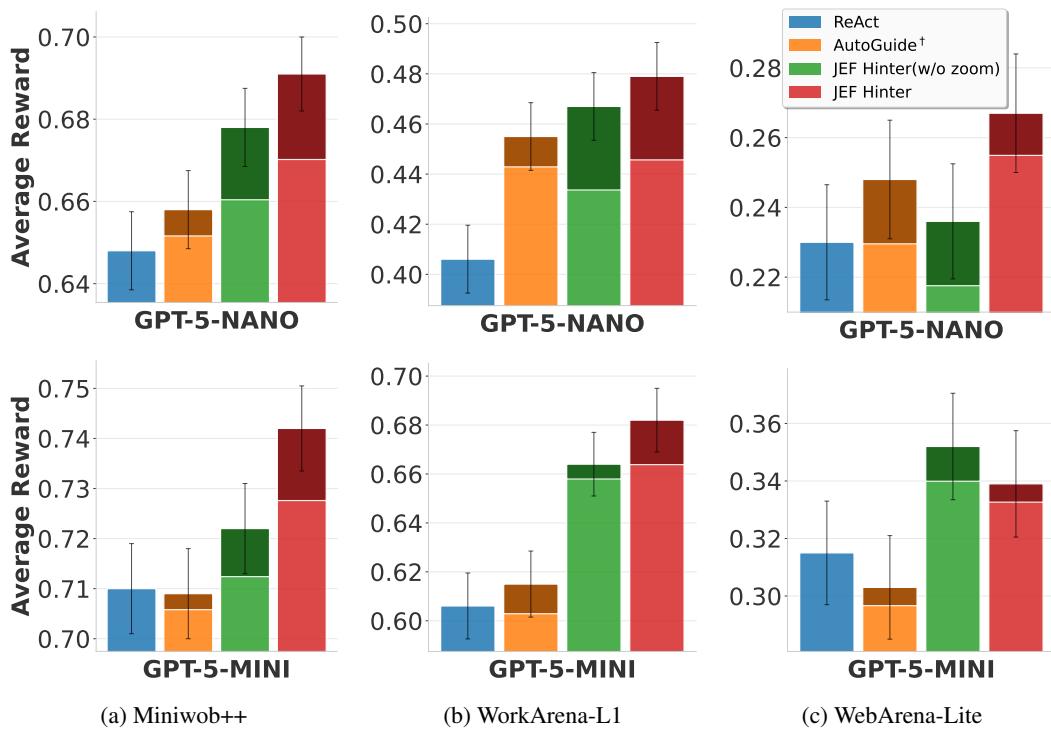


Figure 4: Average reward comparison across MiniWoB++, WorkArena-L1, and WebArena-Lite using two base models with **GPT-5-mini** as the Hinter model. DR. HINTER and DR. HINTER(w/o zoom) consistently outperform all baselines across most tasks, highlighting the effectiveness of our approach. Shaded regions denote tasks where the base ReAct agent failed entirely, highlighting DR. HINTER’s ability to extract useful hints even from failure-only trajectories.

more successful strategies. Moreover, since GPT-5-mini is used as the hinter model, the gains observed when the base model itself is GPT-5-mini highlight that DR. HINTER enables effective *self-improvement*, demonstrating that a model can refine its own decision-making by reflecting on past traces.

**Even failed trajectories can provide constructive hints.** While AutoGuide improves performance over ReAct, its gains are larger for weaker base models and often limited to relatively simple hints due to its reliance on contrastive pairs. In contrast, DR. HINTER outperforms AutoGuide by generating hints from *all* available trajectories—successful or failed—rather than only paired traces. This flexibility allows

DR. HINTER to extract actionable guidance even from failure-only data, leading to higher task performance. To emphasize this, we report performance on tasks where the baseline ReAct agent failed entirely, shown as darker bars in fig. 4.

Table 1: Ablation of full-trace vs. zoomed multi-trace hinting.

| Method          | MiniWoB++ | WorkArena-L1 |
|-----------------|-----------|--------------|
| ReAct           | 0.715     | 0.661        |
| DR. HINTER (FT) | 0.718     | 0.715        |
| DR. HINTER      | 0.739     | 0.770        |

**Entire trajectories are not always necessary for high quality hints.** DR. HINTER improves over its non-zooming variant by selectively surfacing the most critical steps from each trajectory. To better isolate the role of this mechanism, we additionally compare DR. HINTER to a variant that provides the hinter with the *entire* execution trace—every observation, action, and think token—without any step selection. Using GPT-5 for both the base agent and the hinter, supplying

378 a full single trace yields only marginal gains over ReAct. In contrast, zooming over two trajectories produces substantially larger improvements on both MiniWoB++ and WorkArena-L1 (Table 1).  
 379 These findings indicate that the hinter benefits not from receiving more context, but from receiving  
 380 more *informative* context: the ability to compare trajectories and focus on high-salience AXTree  
 381 snapshots is essential for generating actionable hints. Since zooming is performed entirely offline,  
 382 these gains come at no additional inference-time cost.  
 383

384  
 385  
 386 **Stronger base and hinter models.** We further evaluate DR. HINTER with stronger base agents  
 387 and stronger hinter models to assess whether hint-based adaptation remains effective with state-  
 388 of-the-art models. Using GPT-5 as both the underlying ReAct agent and the hinter, DR. HINTER  
 389 improves performance from 0.715 to 0.739 on MiniWoB++ and from 0.661 to 0.770 on WorkArena-  
 390 L1. We also experiment with a vision-based CUA agent paired with Claude-4.5-Sonnet serving as  
 391 both the base model and the hinter, observing gains from 20.6% to 40.0% on WorkArena-L1 and  
 392 from 27.3% to 29.1% on WebArena-Lite. These results demonstrate that DR. HINTER continues to  
 393 provide meaningful benefits even when applied to powerful modern models.  
 394

## 395 5.2 HOW EFFECTIVE IS DR. HINTER COMPARED TO DOCUMENTATION AND HUMAN HINTS?

396 **Alternative sources of guidance.** To assess the value of trajectory-based hints, we compare DR.  
 397 HINTER against two alternative sources: platform documentation and human-authored instructions.  
 398 Unlike DR. HINTER, these hints are not distilled from trajectories but taken directly from raw re-  
 399 sources—documentation webpages or short annotator notes—and retrieved at inference time. This  
 400 comparison tests whether explicit external guidance can match or exceed the utility of trajectory-  
 401 derived hints.  
 402

403 **Baseline configurations.** For documentation, 404 we collected platform-specific materials: ServiceNow for WorkArena-L1, and GitLab and 405 Shopping sites for WebArena. Pages were re- 406 trieval with BM25 using the task goal as the 407 query, and the top-ranked passages were pro- 408 vided directly to the agent as hints (see ap- 409 pendix A for details). Human hints were 410 prepared only for WorkArena-L1: we curated 411 concise notes for 16 particularly challenging goals, 412 covering all task types while focusing on cases 413 where automated hinting failed. In both base- 414 lines, the retrieved content was used as a di- 415 rect substitute for trajectory-based hints, not in 416 combination. Results of these comparisons are 417 reported in table 2, with details of the human 418 hint collection in appendix B.  
 419

420 **Effectiveness of external resources.** Exter- 421 nal resources can substitute for trajectory-based hints, but with notable trade-offs. Documentation 422 retrieval scales easily and provides modest gains, though its utility depends heavily on manual qual- 423 ity and often yields only partially relevant context. Human hints (limited to 16 curated goals), while 424 effective are expensive to obtain and hard to scale. Overall, both baselines help bridge knowledge 425 gaps, but DR. HINTER is more practical: it automatically produces reusable hints from offline traces 426 without relying on manuals or human annotation.  
 427

## 428 5.3 CAN DR. HINTER GENERALIZE OUT-OF-TASK?

429 To assess out-of-task generalization, we remove the source task used to generate hints from the 430 retrieval pool. The retriever must then select the most relevant hints by matching the current task 431 goal against the remaining database entries. As shown in fig. 5, DR. HINTER sustains competitive 432 performance under this setting, indicating that trajectory-derived hints can transfer beyond the tasks

Table 2: Comparison of DR. HINTER against alternative hinting strategies. Results are reported as average reward with standard error of 0.01 on WorkArena-L1 and 0.03 on WebArena-Lite.

| Method            | WorkArena-L1 | WebArena-Lite |
|-------------------|--------------|---------------|
| <b>GPT-5-NANO</b> |              |               |
| ReAct             | 0.41         | 0.23          |
| Human hints       | 0.43         | —             |
| Documentation     | 0.44         | 0.20          |
| DR. HINTER        | <b>0.48</b>  | <b>0.27</b>   |
| <b>GPT-5-MINI</b> |              |               |
| ReAct             | 0.61         | 0.32          |
| Human hints       | 0.66         | —             |
| Documentation     | 0.64         | 0.33          |
| DR. HINTER        | <b>0.68</b>  | <b>0.34</b>   |

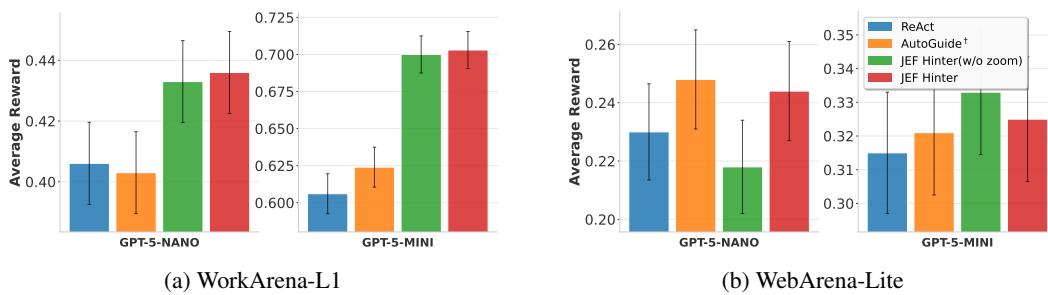


Figure 5: Out-of-task generalization performance on WorkArena-L1 and WebArena-Lite using two base models with **GPT-5-mini** as the base for the hinter model.

they were trained on. On WorkArena-L1, we still observe clear gains over both ReAct and AutoGuide, while on WebArena-Lite, all methods perform within the margin of noise, suggesting that this benchmark remains especially challenging for cross-task transfer.

Regarding broader cross-benchmark generalization (e.g., using MiniWoB++ hints for WorkArena or WebArena tasks), we note that hint extraction distills environment-specific UI structures and interaction patterns. As a result, transferring hints across benchmarks with different element vocabularies, accessibility-tree formats, and task types can introduce mismatches rather than clear benefits. This is a common limitation for UI-grounded memory and retrieval approaches. We added a paragraph to section 5.3 clarifying the intended scope of DR-HINTER: efficient offline adaptation within web domains, rather than universal cross-environment transfer.

#### 5.4 ANALYSIS & DISCUSSION

##### How does the size of the hinter model affect performance?

Figure 4 showed that GPT-5-mini can already serve as a capable hinter for both GPT-5-nano and itself. To isolate the effect of capacity, we ablate the hinter model from GPT-5-mini to GPT-5. As shown in Figure 6, the larger hinter generally produces higher-quality hints, translating into stronger downstream performance. Gains are most pronounced on complex, long-horizon tasks such as WorkArena-L1(+5%), where fine-grained context understanding and precise hint phrasing matter most. On simpler tasks like MiniWoB++ (+2%), the advantage narrows, suggesting that larger hinters are particularly useful when reasoning demands are high. Thus, scaling the hinter model improves performance but introduces a clear trade-off between quality and computational cost.

**Qualitative analysis.** Case studies illustrate how DR. HINTER’s hints intervene precisely at the decision points that previously caused failures, directly correcting the agent’s reasoning and enabling successful task completion.

**MiniWoB++.** In the `click-scroll-list` task, the agent is instructed to “Select Bermuda, Saint Lucia from the scroll list and click Submit.” Without hints, the agent frequently fails because it clicks the items sequentially without holding the control key, which causes earlier selections to be deselected. A relevant retrieved hint states: “*In a multi-select scroll list, hold Ctrl (Cmd on Mac) and click each required item so all stay highlighted, then click the Submit button.*” This explicit correction allows the agent to overcome the failure mode of not performing multi-selection. Refer to appendix E.2 for the full reasoning and output of the DR. HINTER agent.

**WorkArena-L1.** In the `filter-navigation` tasks, the ReAct baseline often failed by relying on the wrong search context (e.g., the global bar or the `Workspaces` filter) or by clicking too early before the application menu expanded, causing repeated loops without progress. DR. HINTER corrected these errors by providing an explicit hint to use the Application Navigator’s `All` menu, enter the application name in the correct filter box, and wait for the menu to expand before clicking

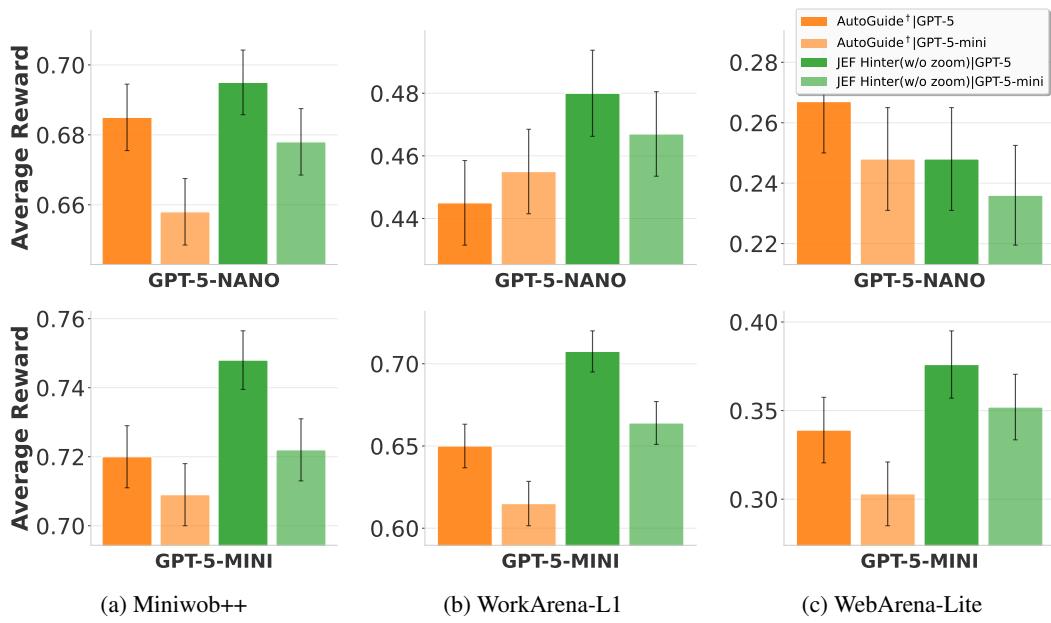


Figure 6: Comparison of hinter models (GPT-5-mini vs. GPT-5) on MiniWoB++, WorkArena-L1, and WebArena-Lite. Larger hinters generally provide higher-quality hints, with the biggest gains on complex, long-horizon tasks.

the target module. With this guidance, the agent consistently reached the intended *Active* module, avoiding wasted actions and navigation errors. Refer to appendix E.2 for the full reasoning and output of the DR. HINTER agent.

**WebArena-Lite.** In the Shopping Admin tasks, the agent must identify the customer with the most cancellations over the entire history. The *generic* ReAct agent often failed by relying on surface inspection of the first page of results and answering from what was visible without using the grid’s controls. It did not open *Filters*, left a default date restriction in place (thus undercounting “history”), sometimes relied on keyword search or *Advanced Reporting*, and neither sorted nor paginated to aggregate counts, leading to incorrect totals. By contrast, DR. HINTER followed the detailed sequence provided by the following hint: *Go to Sales > Orders, open ‘Filters’, set ‘Status’ to ‘Canceled’, click ‘Apply Filters’, clear the ‘Search by keyword’ box, then sort the ‘Bill-to Name’ column to group names and scan/paginate for the largest group; to verify counts, use the ‘Bill-to Name’ filter and read ‘records found’, removing that chip before testing another; avoid ‘Advanced Reporting’*. By closely following this sequence of steps, the agent is able to complete the task successfully. Figure 11 in appendix E.2 shows how the hinted agent leverages provided hints to properly select the right action to take in order to solve a task.

**Case Study for Zooming Mechanism (workarena.servicenow.sort-hardware-list task).** This task shows the strongest impact of zooming: DR-Hinter reaches only 10% success without zooming, but rises to 70% when zooming is enabled—even though the base agent is identical. The gain comes entirely from higher-quality hints generated when the hinter is given zoomed AXTree snapshots. Zooming surfaced four decisive steps drawn from both a successful trajectory (Steps 4 and 8) and a failed one (Steps 14 and 16). Step 4 captures the moment the agent selects the primary sort field and exposes the full dropdown; Step 8 contains a clean post-action AXTree after applying the sort; and Steps 14 and 16, although from a failing run, reveal the same key sorting widgets (field list, direction combobox, sort-row configuration). These steps form the minimal causal backbone of the task—“open filter panel → add sort rows → configure fields/directions → apply sort”—and enable the hinter to produce crisp, structured hints such as “expand the filter panel, click ‘Add Sort,’ choose fields in priority order, select directions, then click ‘Run filter’ to apply.” In contrast, non-zoomed traces generate noisy and unfocused hints like “open Personalize List, add fields, wait for headers to load, then click headers or use Actions ↴ Sort,” which do not reliably reflect the canonical work-

540 flow. This difference explains the  $0.1 \rightarrow 0.7$  success jump and why no improvement appears without  
 541 zooming.  
 542

543 **6 CONCLUSION**  
 544

545 We present DR. HINTER, an agentic system that distills large offline traces into short, retrievable  
 546 hints that help agents overcome common failure modes. DR. HINTER uses a zooming module to  
 547 identify critical decision points in long trajectories. A reflection step then distills these segments  
 548 into reusable strategies and pitfalls. The resulting hints are compact, transparent, and easily injected  
 549 at inference without fine-tuning. Experiments on MiniWoB++, WorkArena-L1, and WebArena-Lite  
 550 show improvements over strong baselines, including gains in both out-of-goal and out-of-task gener-  
 551 alization. Ablations further highlight how retrieval design, hinter capacity, and the inclusion of failed  
 552 trajectories shape downstream performance, offering actionable insights for future applications. We  
 553 view this work as a step toward data-centric adaptation of LLM agents, where past trajectories, doc-  
 554 uments, and human instructions are systematically mined into reusable knowledge for more robust  
 555 and resilient decision-making.  
 556

557 **Reproducibility Statement.** The reproducibility of experiments on web agents poses several chal-  
 558 lenges, as it relies on a software stack for hosting the environment server and the backend of the web  
 559 agent. To address this, we rely on AgentLab and BrowserGymChezelles et al. (2025), a framework  
 560 designed for evaluating agents with reproducibility in mind. Among other features, the version of  
 561 all installed packages used during the experiments is saved in the experiment results. In addition to  
 562 open-sourcing our code, we will also provide all experiment traces as provided by AgentLab. In the  
 563 meantime, an anonymized codebase is provided in the supplementary materials.

564 For the reproducibility of our method, Section 3, which provides a detailed description of the DR.  
 565 HINTER framework, while Section 4 specifies benchmarks, baselines, and evaluation protocols. Ap-  
 566 pendix C includes the full prompts used for hint generation and retrieval, Appendix A describe  
 567 documentation and human hint collection procedures, and Appendix E.2 provides case studies with  
 568 reasoning traces. All datasets (MiniWoB++, WorkArena-L1, and WebArena-Lite) are publicly avail-  
 569 able, and we include details of our offline data collection and augmentation pipeline in Section 4.  
 570

571 **REFERENCES**  
 572

573 Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault de Chezelles, Quentin  
 574 Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. Workarena++: Towards  
 575 compositional planning and reasoning-based common knowledge work tasks. *Advances in Neural*  
 576 *Information Processing Systems*, 37:5996–6051, 2024.  
 577

578 Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu, Binbin Lin, and Xiaofei He. Automanual:  
 579 Constructing instruction manuals by llm agents via interactive environmental learning. *Advances*  
 580 *in Neural Information Processing Systems*, 37:589–631, 2024.

581 Thibault Le Sellier De Chezelles, Maxime Gasse, Alexandre Drouin, Massimo Caccia, Léo Boisvert,  
 582 Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan, Lawrence Keunho Jang,  
 583 Xing Han Lù, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Quentin Cappart, Graham  
 584 Neubig, Ruslan Salakhutdinov, Nicolas Chapados, and Alexandre Lacoste. The browsergym  
 585 ecosystem for web agent research, 2025. URL <https://arxiv.org/abs/2412.05467>.  
 586

587 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and  
 588 Yu Su. Mind2web: Towards a generalist agent for the web. In *Thirty-seventh Conference on*  
 589 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=kiYqbO3wqw>.  
 590

591 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-  
 592 Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. *arXiv*  
 593 *preprint arXiv:2401.08281*, 2024.

594 Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom  
 595 Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. Workarena: how capable are  
 596 web agents at solving common knowledge work tasks? In *Proceedings of the 41st International*  
 597 *Conference on Machine Learning*, pp. 11642–11662, 2024.

598  
 599 Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,  
 600 and Honglak Lee. Autoguide: Automated generation and selection of context-aware guide-  
 601 lines for large language model agents. *Advances in Neural Information Processing Systems*, 37:  
 602 119919–119948, 2024.

603 Samuel Holt, Max Ruiz Luyten, Thomas Pouplin, and Mihaela van der Schaar. Improving llm agent  
 604 planning with in-context learning via atomic fact augmentation and lookahead search, 2025. URL  
 605 <https://arxiv.org/abs/2506.09171>.

606  
 607 Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan  
 608 Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda  
 609 Luu, Sergey Levine, Karol Hausman, and brian ichter. Inner monologue: Embodied reasoning  
 610 through planning with language models. In Karen Liu, Dana Kulic, and Jeff Ichnowski (eds.),  
 611 *Proceedings of The 6th Conference on Robot Learning*, volume 205 of *Proceedings of Machine*  
 612 *Learning Research*, pp. 1769–1782. PMLR, 14–18 Dec 2023.

613 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi  
 614 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP*  
 615 (1), pp. 6769–6781, 2020.

616 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham Neubig,  
 617 Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal  
 618 agents on realistic visual web tasks. In *Proceedings of the 62nd Annual Meeting of the Association*  
 619 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 881–905, 2024.

620  
 621 Jing Yu Koh, Stephen Marcus McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for  
 622 language model agents. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856.  
 623 URL <https://openreview.net/forum?id=QF0N3x2XVm>.

624 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,  
 625 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-  
 626 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:  
 627 9459–9474, 2020.

628  
 629 Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement  
 630 learning on web interfaces using workflow-guided exploration. In *International Conference on*  
 631 *Learning Representations (ICLR)*, 2018. URL <https://arxiv.org/abs/1802.08802>.

632  
 633 Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Song XiXuan, Yifan Xu, Shudan Zhang, Hanyu Lai,  
 634 Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao Sun, Siyi Cheng, Qinkai  
 635 Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan, Xiaotao Gu, Aohan  
 636 Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang. Visualagentbench:  
 637 Towards large multimodal models as visual foundation agents. In *The Thirteenth International*  
 638 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=2snKOc7TVp>.

639  
 640 Xing Han Lù. Bm25s: Orders of magnitude faster lexical search via eager sparse scoring, 2024.  
 641 URL <https://arxiv.org/abs/2407.03618>.

642 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri  
 643 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement  
 644 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

645  
 646 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-  
 647 pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted  
 question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

648 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong  
 649 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-  
 650 low instructions with human feedback. *Advances in neural information processing systems*, 35:  
 651 27730–27744, 2022.

652 Siqi Ouyang and Lei Li. Autoplan: Automatic planning of interactive decision-making tasks with  
 653 large language models. In *Findings of the Association for Computational Linguistics: EMNLP*  
 654 2023, pp. 3114–3128, 2023.

655 Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and  
 656 Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. *arXiv*  
 657 *preprint arXiv:2408.07199*, 2024.

658 Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford,  
 659 et al. *Okapi at TREC-3*. British Library Research and Development Department, 1995.

660 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:  
 661 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*  
 662 *Systems*, 36:8634–8652, 2023.

663 Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web  
 664 agents. *arXiv preprint arXiv:2410.16464*, 2024.

665 Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive plan-  
 666 ning from feedback with language models. *Advances in neural information processing systems*,  
 667 36:58202–58245, 2023.

668 Dheeraj Vattikonda, Santhoshi Ravichandran, Emiliano Penaloza, Hadi Nekoei, Megh Thakkar,  
 669 Thibault Le Sellier de Chezelles, Nicolas Gontier, Miguel Muñoz-Mármol, Sahar Omidi  
 670 Shayegan, Stefania Raimondo, et al. How to train your llm web agent: A statistical diagnosis.  
 671 *arXiv preprint arXiv:2507.04103*, 2025.

672 Henrique Schechter Vera, Sahil Dua, Biao Zhang, Daniel Salz, Ryan Mullins, Sindhu Raghuram  
 673 Panyam, Sara Smoot, Iftekhar Naim, Joe Zou, Feiyang Chen, et al. Embeddinggemma: Powerful  
 674 and lightweight text representations. *arXiv preprint arXiv:2509.20354*, 2025.

675 Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory,  
 676 2024. URL <https://arxiv.org/abs/2409.07429>.

677 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny  
 678 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*  
 679 *neural information processing systems*, 35:24824–24837, 2022.

680 Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,  
 681 Chao Zhang, Bing Yin, Hyokun Yun, and Lihong Li. Webagent-r1: Training web agents via  
 682 end-to-end multi-turn reinforcement learning. In *ICML 2025 Workshop on Computer Use Agents*,  
 683 2025. URL <https://openreview.net/forum?id=KqrYTALRjh>.

684 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable  
 685 real-world web interaction with grounded language agents. *Advances in Neural Information Pro-  
 686 cessing Systems*, 35:20744–20757, 2022.

687 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik  
 688 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-  
 689 vances in neural information processing systems*, 36:11809–11822, 2023a.

690 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.  
 691 React: Synergizing reasoning and acting in language models. In *International Conference on*  
 692 *Learning Representations (ICLR)*, 2023b.

693 Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and  
 694 autonomous multi-agent system for web task execution with strategic exploration. In *Proceedings*  
 695 *of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 23378–23386, 2025.

702 Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm  
703 agents are experiential learners. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
704 volume 38, pp. 19632–19642, 2024.

705  
706 Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-  
707 guage agent tree search unifies reasoning, acting, and planning in language models. In *Forty-first*  
708 *International Conference on Machine Learning*, 2024a.

709 Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,  
710 Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A real-  
711 istic web environment for building autonomous agents. In *The Twelfth International Confer-  
712 ence on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=oKn9c6ytLx>.

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

## 756 A DOCUMENTATION SEARCH AS HINTS FOR LLM AGENTS

758  
 759 We explore the use of documentation search as a hinting mechanism, enabling agents to retrieve  
 760 relevant knowledge directly from official platform resources. Specifically, we scrape documentation  
 761 from ServiceNow<sup>2</sup> for WorkArena-L1, and from GitLab<sup>3</sup> and shopping websites<sup>4</sup> for WebArena.  
 762 Each webpage is converted into a cleaned markdown file with a structured header that records meta-  
 763 data such as the page title, summary, keywords, and breadcrumbs.

764 **Experimental Setup** To evaluate how best to retrieve relevant hints, we explore three complemen-  
 765 tary design dimensions:

- 767 • **Retrieval method.** We compare sparse retrieval with BM25 (Robertson et al., 1995)  
 768 against dense retrieval using pretrained embeddings (Karpukhin et al., 2020).
- 770 • **Query formulation.** We test using the raw task goal as the query versus prompting the  
 771 LLM to generate a more specific query from the current task context. This comparison  
 772 mirrors episode-level hints versus step-level hints.
- 773 • **Granularity of retrieval.** We contrast retrieving full documentation pages with retrieving  
 774 structured chunks. In the chunked setting, we align snippets with the markdown hierarchy,  
 775 treating each section as an independent unit without overlap.

776 Information about the extracted documentation webpages can be found in Table 3.

777 We evaluate configurations on WorkArena-L1 using GPT-5-mini as the base model. Sparse retrieval  
 778 is implemented with `bm25s` Lù (2024), while dense retrieval uses `embeddinggemma-300m` Vera  
 779 et al. (2025) with Faiss Douze et al. (2024). For reformulated queries, GPT-5-mini generates context-  
 780 aware search strings. To ensure fairness across setups, we fix the retrieval depth: the full-page setting  
 781 returns the top 3 pages, and the chunked setting returns the top 5 section-level snippets.

783  
 784 Table 4: Comparison of Documentation Search Set-  
 785 tings for Web-Browsing Agents

786 Table 3: Documentation Corpus Statistics:  
 787 Number of Pages and Chunks per Platform

| 790 Platform   | 791 # Pages | 792 # Chunks |
|----------------|-------------|--------------|
| 791 ServiceNow | 792 60,967  | 793 287,271  |
| 792 GitLab     | 793 2,654   | 35,470       |
| 793 Shopping   | 598         | 4,010        |

| 794 Search Type | 795 Query Type | 796 Document Type | 797 Reward  |
|-----------------|----------------|-------------------|-------------|
| N/A             | N/A            | N/A               | 0.61        |
| Sparse          | Goal           | Full              | <b>0.64</b> |
| Sparse          | Goal           | Chunk             | <u>0.63</u> |
| Sparse          | LLM            | Full              | 0.62        |
| Sparse          | LLM            | Chunk             | <u>0.63</u> |
| Dense           | Goal           | Full              | 0.60        |
| Dense           | Goal           | Chunk             | 0.59        |
| Dense           | LLM            | Full              | 0.62        |
| Dense           | LLM            | Chunk             | 0.61        |

798 **Results** The ablation results across these configurations are reported in Table 4. Overall, we find  
 799 that a simple retrieval framework is highly competitive. Using BM25 with the task goal as the  
 800 query and retrieving full pages achieves performance on par with more complex dense retrieval and  
 801 LLM query reformulation setups. This configuration is also faster and easier to implement, making it  
 802 a strong baseline for documentation-based hinting. While advanced retrieval pipelines provide only  
 803 marginal gains, simplicity and efficiency often suffice for supplying LLM agents with actionable  
 804 documentation hints. Dense retrieval in particular underperforms, likely due to embeddings being  
 805 less attuned to domain-specific technical terminology.

806  
 807 <sup>2</sup><https://www.servicenow.com/docs/>

808 <sup>3</sup><https://docs.gitlab.com/>

809 <sup>4</sup><https://experienceleague.adobe.com/en/docs/commerce-admin/user-guides/home>

810     **Discussion** In most cases, we find that documentation pages are not a reliable source of instructions  
 811 for navigating complex user interfaces. Unlike tutorials designed for end-users, documentation  
 812 rarely specifies how to perform low-level interactions such as clicking, scrolling, or filling forms.  
 813 As a result, retrieved passages often contain information that is only tangentially related to the task  
 814 at hand. Encouragingly, the agent is generally able to disregard irrelevant context and maintain a  
 815 similar level of performance, even if individual successes and failures shift across tasks. In other  
 816 words, documentation hints can occasionally distract the agent, but the net effect on performance is  
 817 largely stable when the provided context is unhelpful.

818     The impersonation task stands out as the most notable case where documentation significantly im-  
 819 proves performance. Without hints, GPT-5-mini frequently refuses to act, interpreting "impersona-  
 820 tion" as unsafe rather than recognizing it as a legitimate ServiceNow feature. This reflects an  
 821 alignment artifact, where the model overgeneralizes safety constraints to benign enterprise contexts.  
 822 Providing the impersonation documentation resolves this issue, enabling successful execution. This  
 823 example highlights the dual benefit of documentation retrieval: it can both supply missing pro-  
 824 cedural knowledge and clarify task intent in ways that help override misaligned safety refusals. In  
 825 contrast, tasks such as filtering and sorting show degradation primarily due to skill-based errors,  
 826 underscoring that documentation hints are most impactful in cases where alignment conflicts, rather  
 827 than procedural gaps, are the limiting factor.

828  
 829  
 830  
 831  
 832     **Limitations** A key limitation of documentation-based hinting is its reliance on the availability of  
 833 high-quality resources. Within WebArena, only GitLab and Shopping/Shopping Admin tasks are  
 834 supported by relevant documentation, and even these are far less comprehensive than ServiceNow's  
 835 materials in WorkArena-L1. Other platforms, such as OpenStreetMap and Postmill, offer little to no  
 836 user-facing documentation. As also noted by Song et al. (2024), the breadth and quality of documen-  
 837 tation directly affect agent performance, particularly for tasks requiring API-level interaction. This  
 838 underscores that documentation-based approaches may not generalize uniformly across platforms.

## 845     B HUMAN HINT COLLECTION

846  
 847  
 848  
 849     To gather high-quality hints from humans, we designed an interactive annotation interface that  
 850 places the human annotator in the loop of action selection. At each step of a task, the model proposes  
 851 a list of candidate actions. If the correct action is among them, the annotator simply selects it. Oth-  
 852 erwise, the annotator can provide a free-form hint that guides the model toward the desired action.  
 853 The model then regenerates a new set of candidate actions conditioned on this hint, and the cycle  
 854 continues until the task is successfully completed. This iterative process ensures that we collect  
 855 both the final action sequence and, importantly, the intermediate natural language hints produced by  
 856 humans. fig. 7 presents the labeling UI used to collect human hints.

857     The hints serve to make explicit the reasoning behind otherwise opaque choices. For example,  
 858 when filtering a table, annotators often wrote instructions such as: *click on the gridcell that says "-*  
*choose field -" to pick Category or let's do one condition at a time. Click on "choose field" so that*  
*we can select Assigned to.* Similarly, when filling a multi-tab form, annotators specified *to set the*  
*assignment group, click on the look up icon.* These hints capture localized decision strategies and  
 860 offer the model additional guidance beyond raw demonstrations. By collecting such hints alongside  
 861 trajectories, we create a resource that directly encodes human teaching signals and can be reused to  
 862 improve model alignment with task-specific interaction patterns.

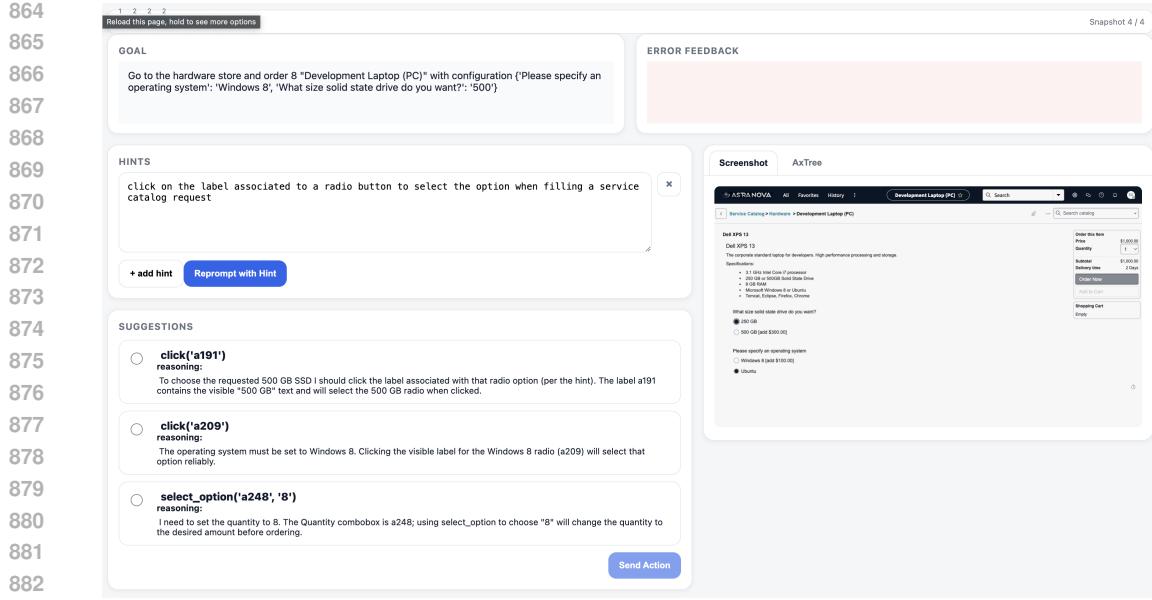


Figure 7: Interactive labeling interface used for human hint collection. Annotators selected actions from a model-generated list, or provided free-form hints when the desired action was missing. The updated candidates were then re-evaluated until the task was completed.

## C SYSTEM PROMPTS

### C.1 STEP SELECTION

#### Prompt for Step Selection

You are a trace summarizer. Given the following execution trace, identify the step or steps that are most important for understanding success or failure. Return the step numbers (starting from 1) and a brief reason why they are important.

#### ==== EXECUTION TRACE ====

Goal: <TASK GOAL>

Step 1: ...

Step 2: ...

#### ==== STEP SELECTION CRITERIA ====

Look for steps that are critical because they:

1. Represent a key decision point or branching moment
2. Show a common mistake that could be avoided
3. Demonstrate a successful strategy or pattern
4. Involve important UI elements or context clues
5. Show timing or sequence dependencies
6. Represent the moment where success/failure was determined

#### ==== STEP SELECTION ====

List the most important step numbers (comma separated) and a brief reason for each.

IMPORTANT: Do not repeat the same step number. Select 1–2 critical steps that provide the most valuable insights for generating actionable hints.

#### ==== THINKING PROCESS ====

Before selecting the most important steps, think through:

1. Which steps represent critical decision points?
2. Which steps show avoidable mistakes?
3. Which steps demonstrate successful strategies?
4. Which steps involve important UI/context clues?
5. Which steps show timing or sequence dependencies?
6. Which steps mark where success/failure was determined?

Think step by step and analyze carefully before making your selection.

918 C.2 STEP-SEQUENCE HINTING  
919920 Prompt for Step-Sequence Hint Generation  
921

922 Task: <TASK NAME>  
 923 **==== STEP SEQUENCE ANALYSIS (iN consecutive steps) ====**  
 924 Goal: <TASK GOAL>  
 925 Step i: Observation(s), Agent's reasoning, Action taken, Error  
 926 encountered, Current reward  
 927 Step i+1: Observation(s), Agent's reasoning, Action taken, Error  
 928 encountered, Current reward  
 929 ...  
 930 **==== STEP-SEQUENCE HINT GENERATION ====**  
 931 Based on the sequence of <N> consecutive steps above, provide a concise, actionable hint  
 932 that explains:  
 933 1. hat the agent accomplished across these steps.  
 934 2. What the agent should do next based on the context.  
 935 3. How to recognize when this sequence is needed.  
 936 4. Common mistakes to avoid during this sequence.  
 937 **==== STEP-SEQUENCE GUIDANCE ====**  
 938 Focus on:  
 939 - What changed in the environment across these steps.  
 940 - What the agent learned or accomplished.  
 941 - The next logical action.  
 942 - How to recognize the right moment for that action.  
 943 - The pattern or workflow this sequence represents.  
**Include the full Hint Requirements" and Output Format" as in Appendix C.3.**

945 C.3 HINT GENERATION  
946

947 Prompt for Hint Generation (Single / Multi-Trace)

949 **System role**  
 950 You are a hint generation expert. You MUST respond using the structured format with  
 951 <think>, <topic>, and <hint> tags. Use the <think> section for thorough analy-  
 952 sis (200–800 words) and the <hint> section for concise, actionable guidance (under 256  
 953 tokens, single line).  
 954 **==== INPUT ====**  
 955 Task: <TASK NAME>  
 956 Goal: <TASK GOAL>  
 957 (Optional) Documents/Instructions: <SHORT SNIPPETS OR NONE>  
**Execution trace(s):**  
 959 Step 1: Observation(s), Agent's reasoning, Action taken, Error  
 960 encountered, Current reward  
 961 Step 2: Observation(s), Agent's reasoning, Action taken, Error  
 962 encountered, Current reward  
 963 ...  
 964 (Repeat for each provided trace when multiple traces are given)  
 965 **==== HINT REQUIREMENTS ====**  
 966 IMPORTANT: Keep your hint SHORT and write it as a SINGLE LINE without line breaks.  
 967 Focus on:  
 968 - Common pitfalls or errors to avoid  
 969 - Specific strategies that work well  
 970 - Important details and UI cues to pay attention to  
 971 - Step-by-step guidance if multiple actions are required  
**==== ENHANCED REQUIREMENTS ====**

972  
 973 **Generalizability**  
 974 – Make hints general enough to apply to similar tasks, not just this specific instance.  
 975 – DO NOT include: specific usernames, literal task content strings, element IDs like [123],  
 976 domain-specific secrets.  
 977 – DO include: reusable UI patterns (buttons, links, form fields), common workflows, robust  
 978 strategies.  
 979 **Specificity & Actionability**  
 980 – Use exact UI text only when it represents common patterns (e.g., button labels like 'Sub-  
 981 mit').  
 982 – Specify element types and positions when relevant (e.g., button at the bottom of the form).  
 983 – Provide clear step ordering when multiple actions are needed.  
 984 **Structure & Length**  
 985 – Hint under 256 tokens, single line, no line breaks.  
 986 – Focus on what to do, not why it works.  
 987 – Use single quotes (') and *never* double quotes (") in the hint.  
 988 **Topic Tag**  
 989 – Always provide one short sentence describing the applicability topic inside <topic> tags  
 990 (e.g., filtering the table, multi-tab form filling).  
 991 – If a line **SUMMARIZATION**: <summarization> is present in the input, incorporate it  
 992 into the <topic> description.  
 993 Known applicability topics: <TOPIC LIST IF AVAILABLE>  
 994 **== OUTPUT FORMAT ==**  
 995 <think>  
 996 Your reasoning about the traces, patterns, decisive steps, and reusable strategies (200–800  
 997 words).  
 998 </think>  
 999 <topic>  
 1000 One short sentence describing the general task topic (e.g., filtering the table).  
 1001 </topic>  
 1002 <hint>  
 1003 A single-line, concise, actionable hint under 256 tokens (use single quotes, no line breaks).  
 1004 </hint>  
 1005 **== THINKING SECTION GUIDANCE ==**  
 1006 – Analyze the execution traces in detail.  
 1007 – Identify key patterns, mistakes, and successful strategies.  
 1008 – Explain (in <think>) why certain approaches work or fail.  
 1009 – Consider multiple perspectives and edge cases.  
 1010 – Aim for 200–800 words of thoughtful analysis.  
 1011 **== HINT SECTION GUIDANCE ==**  
 1012 – Focus on the most critical action(s) the agent should take next.  
 1013 – Avoid lengthy explanations or multiple examples.  
 1014 – Prioritize what to do; keep it executable.  
 1015 – Keep it under 256 tokens; use single quotes only.  
 1016 **== EXAMPLES (GOOD) ==**  
 1017 **Example 1 - Navigation:**  
 1018 <think>  
 1019 Looking at the execution traces, the agent often fails by using the global search instead of  
 1020 the left-side Application Navigator. Successful runs type into 'Filter/Filter navigator' and  
 1021 click module links after the app expands. Repeated clicks on admin menus are unnecessary;  
 1022 the key is filtering in the left panel and then selecting the specific module entry once visible.  
 1023 </think>  
 1024 <hint>  
 1025 Use the Application Navigator (left panel) with the 'Filter/Filter navigator' input to find and  
 1026 open modules; do not use the global search bar at the top.  
 1027 </hint>  
 1028 **Example 2 - Form Submission**  
 1029 <think>

1026  
 1027 Agents fail when expecting a 'Submit' label; successful runs click whichever action com-  
 1028 pletes the flow ('Save', 'Create', or 'Submit'). Enter does not submit; explicit clicks are  
 1029 required.  
 1030 </think>  
 1031 <hint>  
 1032 At the bottom of the form, click the action button that completes the flow (e.g., 'Save',  
 1033 'Create', or 'Submit') instead of pressing Enter.  
 1034 </hint>  
 1035 === EXAMPLES (BAD) ===  
 1036 - Click the button with ID [123] to submit the form. (too specific)  
 1037 - Enter 'john.doe@email.com' in the email field. (too specific)  
 1038 - This task requires careful attention to detail. (too vague)  
 1039 - The agent should understand the context before proceeding. (explanatory, not actionable)  
 1040 - Click the "Submit" button to continue. (uses double quotes)

#### C.4 TWO-TRACE COMPARISON (DESIRED VS. UNDESIRED)

1041  
 1042 Prompt for Two-Trace Comparison (Desired vs. Undesired)  
 1043  
 1044 You will be provided with a **desired (successful)** and an **undesired (failed)** trajectory for  
 1045 the same task. Identify the *first* action where they diverge, explain why it leads to success  
 1046 vs. failure, and produce a general, reusable hint.  
 1047 === INPUT ===  
 1048 Task: <TASK NAME>  
 1049 Goal: <TASK GOAL>  
 1050 — Desired trajectory —  
 1051 Step 1: Observation(s), Agent's reasoning, Action taken, Error  
 1052 encountered, Current reward  
 1053 Step 2: Observation(s), Agent's reasoning, Action taken, Error  
 1054 encountered, Current reward  
 1055 ...  
 1056 — Undesired trajectory —  
 1057 Step 1: Observation(s), Agent's reasoning, Action taken, Error  
 1058 encountered, Current reward  
 1059 Step 2: Observation(s), Agent's reasoning, Action taken, Error  
 1060 encountered, Current reward  
 1061 ...  
 1062 **SUMMARIZATION:** <ONE-LINE CONTEXT SUMMARY IF AVAILABLE>  
 1063 === COMPARISON GUIDANCE ===  
 1064 1. Identify the first differing action and its local context.  
 1065 2. Explain (in <think>) why one path succeeds and the other fails.  
 1066 3. Derive a general rule that applies beyond this instance; avoid task-specific literals.  
 1067 4. Follow the successful (desired) trajectory; do not invent steps absent from it.  
 1068 === OUTPUT FORMAT ===  
 1069 <think>  
 1070 Analysis of the first divergence, its effect on progress, UI/context cues to detect it, and a  
 1071 reusable rule (200–800 words).  
 1072 </think>  
 1073 <topic>  
 1074 Short applicability topic (e.g., using the application navigator vs.  
 1075 global search).  
 1076 </topic>  
 1077 <hint>  
 1078 Single-line, general, actionable guidance under 256 tokens; preferably in the form: When  
 1079 *istatus*, do *action* or Avoid *pitfall* and instead *action*. Use single quotes.  
 1079 </hint>

1080 C.5 STEP-ZOOM HINTING

1081

1082

1083

1084 Prompt for Step-Zoom Hint Generation

1085

1086 Task: &lt;TASK NAME&gt;

1087 **==== ZOOMED-IN STEPS ====**

1088 Goal: &lt;TASK GOAL&gt;

1089 (For each step in the trace, include:)

1090 Step k: Observation(s), Agent's reasoning, Action taken, Error  
1091 encountered, Current reward1092 (For each step identified as important, additionally include the most informative structural  
1093 view, e.g., AXTree or HTML.)1094 **==== HINT GENERATION ====**1095 Based on the most important step(s) above, provide a concise, actionable hint that would  
1096 help an agent avoid common mistakes and succeed at this task.1097 **==== STEP-FOCUSED GUIDANCE ====**

1. Pay special attention to:
2. What makes this step decisive for success/failure.
3. The specific UI elements or context guiding the correct action.
4. Common mistakes at this decision point.
5. How to recognize when this step is needed.
6. The correct sequence or timing for this action.

1098 **Include the full Hint Requirements" and Output Format" as in Appendix C.3.**

1103

1104

1105

1106

1107

1108

1109

1110 C.6 DUAL-TRACE STEP-ZOOM

1111

1112

1113

1114 Prompt for Dual-Trace Step-Zoom Analysis

1115

1116 Task: &lt;TASK NAME&gt;

1117 **==== DUAL TRACE STEP ZOOM ANALYSIS ====**

1118 For each trace (desired and undesired), provide:

- Outcome summary (successful/failed) and Goal.
- Steps with: Observation(s), Agent's reasoning, Action taken, Error encountered, Current reward.
- Mark **IMPORTANT STEP** for the selected critical steps and include the relevant structural view (AXTree/HTML) for those steps.

1119 **==== DUAL TRACE HINT GENERATION ====**1120 Based on the most important step(s) across both traces, provide a concise, actionable hint  
1121 that helps avoid the observed failure.1122 **==== DUAL TRACE STEP-FOCUSED GUIDANCE ====**

1123 Focus on:

1. Patterns emerging across both traces at critical steps.
2. Differences between correct and incorrect actions at those points.
3. The UI elements or context that disambiguate the right action.
4. Common mistakes at similar decision points.
5. How to recognize when these critical steps are needed.
6. The correct sequence/timing for actions at these points.

1124 **Include the full Hint Requirements" and Output Format" as in Appendix C.3.**

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 C.7 CONTEXT IDENTIFICATION  
11351136 Prompt for Context Identification (Pre-Retrieval)  
11371138 You are a helpful assistant that identifies the context of a task based on trace information.  
1139 You will see the prefix of a trajectory up to the first divergence between two traces. Summa-  
1140 rize the current status to guide retrieval of relevant hints.1141 **==== INPUT (TRACE PREFIX) ====**1142 **GOAL: <TASK GOAL>**1143 **Step 1:** Observation(s), Agent's reasoning, Action taken, Error  
1144 encountered, Current reward1145 **Step 2:** Observation(s), Agent's reasoning, Action taken, Error  
1146 encountered, Current reward

1147 ... (up to the first differing action)

1148 **==== INSTRUCTIONS ====**1149 Before choosing an action, query memory/documentation by first generating a brief, general  
1150 summary of the current status to help identify useful hints.

1151 Return your answer as follows:

1152 <think>chain of thought</think>  
1153 <context>one short sentence summary</context>1154 **==== EXAMPLE ====**

1155 &lt;think&gt;

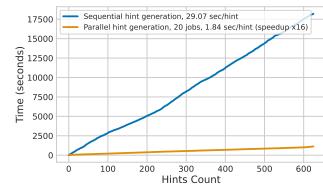
1156 I have to sort by client and country. I could use the built-in sort on each column but I'm not  
1157 sure if I can sort by both at the same time.

1158 &lt;/think&gt;

1159 &lt;context&gt;

1160 The user is preparing to apply multi-column sorting and needs guidance on adding the next  
1161 criterion.

1162 &lt;/context&gt;

1163 D MORE RESULTS  
11641165 **How much faster is parallelized hint generation?**1166 The original AutoGuide guideline extraction Fu et al. (2024) mod-  
1167 ule is implemented sequentially, which limits scalability. To  
1168 demonstrate the efficiency of our approach, we implemented a  
1169 parallelized version of hint generation that distributes trajectories  
1170 across multiple workers. As shown in fig. 8, our parallel imple-  
1171 mentation achieves nearly a 20× speedup over sequential hinting,  
1172 enabling large-scale hint generation on complex benchmarks. This  
1173 improvement makes it practical to construct diverse and com-  
1174 prehensive hint databases without prohibitive computational overhead.1175 Figure 8: Parallelized hint  
1176 generation.  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187

1188 E HINT ANALYSIS  
11891190 E.1 HINT STATS  
11911192 Table 5: MiniWoB++ Hint Database Statistics by Method, Base Model, and Hinter Model  
1193

| Hinter Method         | Base Model | Hinter Model          | Total Entries | Unique Tasks | Avg Hints/Task |
|-----------------------|------------|-----------------------|---------------|--------------|----------------|
| AutoGuide-v1          | gpt-5-mini | gpt-5                 | 117           | 28           | 4.17           |
|                       |            | gpt-5-mini-2025-08-07 | 139           | 28           | 4.96           |
|                       | gpt-5-nano | gpt-5                 | 157           | 36           | 4.38           |
|                       |            | gpt-5-mini-2025-08-07 | 174           | 36           | 4.83           |
| DR. HINTER (w/o zoom) | gpt-5-mini | gpt-5                 | 625           | 125          | 5.00           |
|                       |            | gpt-5-mini-2025-08-07 | 614           | 125          | 4.91           |
|                       | gpt-5-nano | gpt-5                 | 625           | 125          | 5.00           |
|                       |            | gpt-5-mini-2025-08-07 | 619           | 125          | 4.95           |
| DR. HINTER            | gpt-5-mini | gpt-5                 | 625           | 125          | 5.00           |
|                       |            | gpt-5-mini-2025-08-07 | 618           | 125          | 4.94           |
|                       | gpt-5-nano | gpt-5                 | 625           | 125          | 5.00           |
|                       |            | gpt-5-mini-2025-08-07 | 620           | 125          | 4.96           |

1209 Table 6: WorkArena-L1 Hint Database Statistics by Method, Base Model, and Hinter Model  
1210

| Hinter Method        | Base Model | Hinter Model          | Total Entries | Unique Tasks | Avg Hints/Task |
|----------------------|------------|-----------------------|---------------|--------------|----------------|
| AutoGuide            | gpt-5-mini | gpt-5                 | 105           | 21           | 5.00           |
|                      |            | gpt-5-mini-2025-08-07 | 105           | 21           | 5.00           |
|                      | gpt-5-nano | gpt-5                 | 155           | 31           | 5.00           |
|                      |            | gpt-5-mini-2025-08-07 | 155           | 31           | 5.00           |
| DR. HINTER(w/o zoom) | gpt-5-mini | gpt-5                 | 194           | 33           | 5.88           |
|                      |            | gpt-5-mini-2025-08-07 | 165           | 33           | 5.00           |
|                      | gpt-5-nano | gpt-5                 | 188           | 33           | 5.70           |
|                      |            | gpt-5-mini-2025-08-07 | 168           | 33           | 5.09           |
| DR. HINTER           | gpt-5-mini | gpt-5                 | 165           | 33           | 5.00           |
|                      |            | gpt-5-mini-2025-08-07 | 164           | 33           | 4.97           |
|                      | gpt-5-nano | gpt-5                 | 165           | 33           | 5.00           |
|                      |            | gpt-5-mini-2025-08-07 | 163           | 33           | 4.94           |

1226 Table 7: WebArena-Lite Hint Database Statistics by Method and Hinter Model  
1227

| Hinter Method | Hinter Model | Total Entries | Unique Tasks | Avg Hints/Task |
|---------------|--------------|---------------|--------------|----------------|
| AutoGuide     | GPT-5        | 130           | 26           | 5              |
|               | GPT-5-Mini   | 130           | 26           | 5              |
| DR. HINTER    | GPT-5        | 825           | 165          | 5              |
|               | GPT-5-Mini   | 825           | 165          | 5              |

1235 E.2 HINT EXAMPLES  
12361237  
1238  
1239  
1240  
1241

1242  
 1243  
 1244  
 1245  
 1246  
 1247  
 1248  
 1249  
 1250  
 1251  
 1252  
 1253  
 1254  
 1255  
 1256  
 1257  
 1258  
 1259  
 1260  
 1261  
 1262  
 1263  
 1264

**<think>** Both traces involve the same UI pattern: a HTML select element with the multiple attribute, a visible list of options, and a 'Submit' button. The successful trace shows the agent explicitly used modifier-clicks (Control) when selecting multiple items; the agent selected the first target with Control-click, added the second with another Control-click, then clicked 'Submit' and received reward. The failed trace shows a common misunderstanding: the agent used plain clicks when attempting to select a second item, which replaced the first selection rather than adding to it, and clicking 'Submit' then submitted only the last-clicked option and produced no reward. Key patterns: - Presence of multiple attribute on the select control signals multi-selection behavior; this requires modifier keys to accumulate selections. - A plain click on an option typically sets selection to that single option (replaces existing selection). - Using Control (or Command on macOS) while clicking adds or toggles individual options without deselecting others. - Shift-click can be used to select contiguous ranges if needed. Differences between traces: - Successful: used Control-modified clicks for both selections, then clicked 'Submit' — correct sequence. - Failed: used plain clicks resulting in the second click overwriting the first selection, then clicked 'Submit' — sequence wrong because of missing modifier. Specific UI/context cues: - The select element shows multiple="" which is the explicit indicator that multiple selections are allowed. - The button labeled 'Submit' is the final action to apply the selection; ensure desired options are already selected before clicking it. - Sometimes DOM snapshots show the select's value reflecting only one option even when multiple are visually selected; don't rely only on the single 'value' attribute in snapshots — use the correct interaction (modifier-clicks) to ensure multiple options are selected. Common mistakes to avoid: - Forgetting to hold the appropriate modifier key when selecting additional options. - Assuming the second plain click will add to the first selection rather than replace it. - Clicking 'Submit' before verifying all required options have been added. Action sequence to generalize: 1) Identify the select has multiple selection capability. 2) Use Control (or Command) modified clicks to add each non-contiguous option, or Shift to select a contiguous range. 3) After all target options are highlighted, click the 'Submit' button to finalize. This guidance applies broadly to tasks that require selecting several items from a multi-select list and then submitting the form. **</think> <topic> selecting an option and clicking the Submit button </topic> <hint>** For multi-select lists, hold Control (or Command on macOS) and click each option to add them to the selection, then click the 'Submit' button; avoid plain clicks that replace the current selection and use Shift for contiguous ranges. **</hint>**

1265  
 1266  
 1267  
 1268  
 1269  
 1270

Figure 9: miniwob.click-scroll-list. DR. HINTER with gpt-5-mini as the hinter model and gpt-5-nano as the base model. The performance is improved from 0.6 to 1 on this task after applying hint.

**<think>** Both traces aim to navigate to the Interaction app's Active module, but they diverge on which navigation context and input to use. The successful trace opens the primary Application Navigator by clicking the All menu, uses the left-panel filter textbox ('Enter search term to filter All menu'), types the app name, waits for the Interaction application to appear and expand, then clicks the 'Active' module link. The failed trace repeatedly operates in the More menus / Workspaces context: it opens More menus, types into the Workspaces filter, and repeatedly clicks the 'Active' link there without getting the expected outcome. Key patterns: (1) using the correct navigator context (All vs Workspaces) matters; the same app and module labels can exist in different menus but only one leads to the intended module in this workflow, (2) typing into an already-focused filter and waiting for results to populate before clicking is necessary, and (3) repeatedly clicking without confirming the proper menu or waiting for navigation to complete is ineffective. Common mistakes observed: choosing the wrong menu context (Workspaces or global search) instead of the Application Navigator, typing into the wrong filter box, and not confirming the Appearance/expansion of the application entry before clicking the module link. The failed trace also shows excessive repeated clicks on the same link, suggesting the agent was unsure whether the right context was selected or whether the click had any effect. Timing/sequence issues: first ensure the desired menu (All / Application Navigator) is expanded and the left-panel filter textbox is focused; second type the app name; third wait for the app entry to expand and its module list to render; fourth click the specific module link. From a generalizable perspective for ServiceNow navigation tasks: always pick the navigation area designed for module access (left Application Navigator), use its dedicated filter input, verify the application container expands and lists modules, then select the module link; avoid using top/global search fields or alternate menu contexts unless specifically required. Also, visually confirm the filter input's placeholder text or the Application Navigator header to ensure you're in the right panel; if results don't appear, clear the filter and retry or re-open the All menu. These steps reduce errors caused by similar labels across different navigation menus and avoid wasted repeated clicking. **</think> <topic> navigating modules via the Application Navigator (left panel) </topic> <hint>** Open the Application Navigator 'All' menu (left panel), type the application name into the 'Enter search term to filter All menu' textbox, wait for the app to expand and show modules, then click the module link 'Active' — do not use the top/global search or the 'Workspaces' filter. **</hint>**

1292  
 1293  
 1294  
 1295

Figure 10: workarena.servicenow.all-menu. DR. HINTER with gpt-5-mini as the hinter model and gpt-5-nano as the base model. The performance is improved from 0 to 1 on this task after applying hint.

1296 <think> I will open the Filters panel so I can use the Bill-to Name filter to get exact counts per customer  
1297 (recommended in the hints). Opening Filters is the next step before applying a Bill-to Name query. </think>  
1298 <task\_hint> Relevant hint: Open Sales > Orders, click 'Filters', set 'Status' to 'Canceled', click 'Apply  
1299 Filters'; clear the keyword search box, then sort the 'Bill-to Name' column to group names and  
1300 scan/paginate for the largest group; to verify counts, use the 'Bill-to Name' filter and read 'records found',  
1301 removing that chip before testing another. </task\_hint> <action> click('845') </action>

Figure 11: webarenalite.288. DR. HINTER with gpt-5 as the hinter model and gpt-5-mini as the base model. The performance is improved from 0 to 1 on this task after applying hint.

## F HINT GENERATION AND RETRIEVAL ALGORITHM

### Algorithm 1 DRH: Hint Generation (Zoom & Reflect)

---

**Algorithm 2 DRH: Retrieve & Act**

```

Require: Policy  $\pi$ , database  $\mathcal{D}_{\mathcal{H}} = \{(c, h)\}$ , retriever  $\rho$ , summarizer  $\mathcal{S}$ , goal  $g$ , mode  $\in \{\text{EPISODE}, \text{STEP}\}$ 
1: if mode = EPISODE then ▷ goal-conditioned (episode-level) retrieval
2:    $\{h^1, \dots, h^k\} \leftarrow \rho(g, \mathcal{D}_{\mathcal{H}})$ 
3: end if
4: for  $t = 1, \dots, T$  do
5:   Observe  $x_t$  and update  $\tau_{:t}$ 
6:   if mode = STEP then ▷ contextual (step-level) retrieval
7:      $c_t \leftarrow \mathcal{S}(\tau_{:t})$ 
8:      $\{h_t^1, \dots, h_t^k\} \leftarrow \rho(c_t, \mathcal{D}_{\mathcal{H}})$ 
9:      $a_t \sim \pi(x_{0:t}, \{h_t^1, \dots, h_t^k\})$ 
10:    else ▷ EPISODE
11:       $a_t \sim \pi(x_{0:t}, \{h^1, \dots, h^k\})$ 
12:    end if
13:    Execute  $a_t$ , receive  $(x_{t+1}, r_t)$ 
14: end for
15: return  $\{a_t\}_{t=1}^T$ 

```